JP2003092210A - Rare-earth bonded magnet having superior oxidation resistance, and manufacturing method thereof - Google Patents

Rare-earth bonded magnet having superior oxidation resistance, and manufacturing method thereof

Info

Publication number
JP2003092210A
JP2003092210A JP2001283443A JP2001283443A JP2003092210A JP 2003092210 A JP2003092210 A JP 2003092210A JP 2001283443 A JP2001283443 A JP 2001283443A JP 2001283443 A JP2001283443 A JP 2001283443A JP 2003092210 A JP2003092210 A JP 2003092210A
Authority
JP
Japan
Prior art keywords
alloy powder
rare earth
bonded magnet
magnet
rare
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001283443A
Other languages
Japanese (ja)
Inventor
Hideki Matsuzawa
秀樹 松沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2001283443A priority Critical patent/JP2003092210A/en
Publication of JP2003092210A publication Critical patent/JP2003092210A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0551Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0552Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 in the form of particles, e.g. rapid quenched powders or ribbon flakes with a protective layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To form an oxidation-resistant coating on the surface of each particle of rare-earth alloy powder, and to improve the reliability of a bonded magnet obtained by using the resulting alloy powder. SOLUTION: On the surface of each particle of the alloy powder, a coating is formed obtained by reacting it and the derivative of triazinedithiol on each other. Specifically, after adding a solution of such compound as 2- dibuthylamino-4,6-dithiol-S-triazine of 1-3 pts.wt., which is obtained by dissolving it in an organic solvent, to the alloy powder 100 pts.wt. and fully agitating them, the solvent is removed to form an oxidation-resistant coating on the surface of each particle of the alloy powder. Thereafter, the alloy powder and a binder are kneaded and mixed with each other, to mold the resulting substance into the bonded magnet.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、希土類合金粉末
と、高分子化合物からなる結合材とを混練した混和物を
成形して得られる希土類ボンド磁石に関し、特に耐酸化
性を向上した系希土類ボンド磁石、及びその製造方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth bond magnet obtained by molding a mixture obtained by kneading a rare earth alloy powder and a binder made of a polymer compound, and more particularly to a rare earth bond magnet having improved oxidation resistance. The present invention relates to a magnet and a manufacturing method thereof.

【0002】[0002]

【従来の技術】近年の電気電子機器の小型化への要求に
対応して、軽量かつ小型化が可能な高性能磁石として、
希土類ボンド磁石の需要が増大し、さらなる性能の向上
が求められている。高特性を有する希土類磁石の代表と
しては、Nd−Fe−B系磁石がある。この磁石合金
は、組織中に極めて酸化しやすいNd−Fe合金相を含
み、さらにRFe14Bも酸化しやすいため、Sm−
Coに比較して磁石の酸化による磁気特性の劣化やバラ
ツキが大きい。
2. Description of the Related Art As a high-performance magnet which is lightweight and can be miniaturized in response to the recent demand for miniaturization of electric and electronic equipment,
The demand for rare earth bonded magnets is increasing, and further improvement in performance is required. A typical rare earth magnet having high characteristics is an Nd-Fe-B magnet. This magnet alloy contains an Nd-Fe alloy phase which is extremely easy to oxidize in its structure, and further R 2 Fe 14 B is also easily oxidizable, so that Sm-
Compared to Co, the deterioration and variation of the magnetic characteristics due to the oxidation of the magnet are large.

【0003】さらに、磁気回路などの装置に組み込んだ
場合、磁石から発生した酸化物の飛散による周辺部品へ
の汚染を引き起こす虞がある。
Further, when incorporated in a device such as a magnetic circuit, there is a possibility that the oxides generated from the magnet may be scattered to cause contamination of peripheral parts.

【0004】この問題を解決する方法として、希土類合
金粉末表面や成形した磁石表面へのメッキ被膜の付与が
提案されている。しかしながら、提案されている耐酸化
性被膜は、被膜形成工程中で多量の水を使用するため、
処理工程中で磁石材料が酸化したり、処理後であっても
微量の水分の残留が原因となって酸化したりする場合が
多く、耐酸化性が十分とは言い難い。
As a method for solving this problem, it has been proposed to apply a plating film to the surface of the rare earth alloy powder or the surface of the molded magnet. However, the proposed oxidation resistant coating uses a large amount of water during the coating formation process,
In many cases, the magnet material is oxidized during the treatment process or is oxidized even after the treatment due to the residual of a small amount of water, and it is difficult to say that the oxidation resistance is sufficient.

【0005】また、金属の防錆表面処理の一般的方法で
ある塗装法では、塗料の基材が有機高分子であるため、
金属との親和性が不十分で、磁石の部品化工程や使用時
において亀裂や剥離を生じ易いこと、また特に反応硬化
型の塗料の場合は、痕跡程度の未反応官能基の経時変化
が錆発生の原因となることもあり、特に、このような合
金系では、信頼性が不十分で、用途が限定されているの
が現状である。しかも、希土類ボンド磁石の原料に用い
るような粉末の表面に、塗装処理を施すことは、作業性
のうえから多大の困難を伴い、実質的に不可能に近い。
Further, in the coating method, which is a general method of rust-proof surface treatment of metal, since the base material of the coating material is an organic polymer,
Insufficient affinity with metals, cracks and peeling are likely to occur during the process of making magnet parts and during use.In particular, in the case of reaction hardening type paint, traces of unreacted functional groups change over time with rust. In some cases, such an alloy system is currently unreliable and has limited applications. In addition, it is practically impossible to apply the coating treatment to the surface of the powder used as the raw material of the rare earth bonded magnet, because of the great difficulty in workability.

【0006】さらに、スパッター、イオン蒸着法を用い
た金属被膜形成による酸化防止法は、合金粉末全体への
均一コーティングが困難であること、また被覆層組織が
下地面に垂直方向に方向性を持つため、被覆層に微細な
間隙を生じ、十分な耐酸化性が期待できないなどの問題
がある。
Further, in the oxidation prevention method by forming a metal film using sputtering or ion vapor deposition, it is difficult to uniformly coat the entire alloy powder, and the coating layer structure has a directivity in the direction perpendicular to the underlying surface. Therefore, there is a problem that a fine gap is generated in the coating layer and sufficient oxidation resistance cannot be expected.

【0007】[0007]

【発明が解決しようとする課題】そこで、本発明の技術
的課題は、上記欠点に鑑み、より耐酸化性に優れた希土
類ボンド磁石およびその製造方法を提供することにあ
る。
SUMMARY OF THE INVENTION Therefore, in view of the above-mentioned drawbacks, a technical object of the present invention is to provide a rare earth bonded magnet having more excellent oxidation resistance and a method for producing the same.

【0008】[0008]

【課題を解決するための手段】本発明は、従来の塗装、
電解めっき、スパッター、イオン蒸着などとはまったく
異なった方法を用いることにより、希土類合金粉末表面
に、より強固な耐酸化性の被膜を形成する方法を検討し
た結果なされたものである。
The present invention is a conventional coating,
This was made as a result of studying a method for forming a stronger oxidation resistant coating on the surface of the rare earth alloy powder by using a method completely different from electrolytic plating, sputtering, ion vapor deposition and the like.

【0009】即ち、本発明は、希土類合金粉末と結合材
を混練成形してなる希土類ボンド磁石において、前記希
土類合金粉末は、表面に、1,3,5−トリアジンの
2、4、6の位置のいずれかを−R、残部を−SM[R
はSHまたはNRで、R 、Rは水素、アルキ
ル基、フェニル基のいずれか、Mは水素、アルカリ金
属、アルカリ土類金属のいずれか、Sはイオウ、Nは窒
素]で置換したトリアジンジチオール誘導体の少なくと
も1種によって形成されてなる耐酸化性被膜を有するこ
とを特徴とする希土類ボンド磁石である。
That is, the present invention relates to a rare earth alloy powder and a binder.
In a rare-earth bonded magnet obtained by kneading and forming
The earth alloy powder has 1,3,5-triazine on its surface.
-R at any one of positions 2, 4, and 6 and the rest at -SM [R
Is SH or NR1RTwoAnd R 1, RTwoIs hydrogen, alk
Group, phenyl group, M is hydrogen, alkali gold
Genus or alkaline earth metal, S for sulfur, N for nitrogen
At least the triazinedithiol derivative substituted with
Also has an oxidation-resistant coating formed of one type.
And a rare-earth bonded magnet.

【0010】また、本発明は、希土類合金粉末の表面
に、1,3,5−トリアジンの2、4、6の位置のいず
れかを−R、残部を−SM[RはSHまたはNR
で、R 、Rは水素、アルキル基、フェニル基のいず
れか、Mは水素、アルカリ金属、アルカリ土類金属のい
ずれか、Sはイオウ、Nは窒素]で置換したトリアジン
ジチオール誘導体の少なくとも1種によって耐酸化性被
膜を形成した後、結合材と混練成形することを特徴とす
る、前記の希土類ボンド磁石の製造方法である。
The present invention also relates to the surface of rare earth alloy powder.
The position of 2,3,5-triazine
-R for the other, -SM for the rest [R is SH or NR1RTwo
And R 1, RTwoIs hydrogen, alkyl group or phenyl group
Or M is hydrogen, alkali metal, or alkaline earth metal
Or S is sulfur and N is nitrogen]
Oxidation resistance of at least one dithiol derivative
Characterized by kneading and forming with a binder after forming a film
The method for producing a rare earth bonded magnet described above.

【0011】[0011]

【作用】トリアジンジチオール誘導体より合金粉末表面
に形成された被膜は、従来の化成被膜などに比較して極
めて耐食性、耐久性に優れ、金属表面との結合力が大き
い。更に撥水性及び潤滑性が付与されるので着水、着氷
などを防止できる。また安価で短時間に、剥離し難い薄
膜が形成できる。
The film formed from the triazinedithiol derivative on the surface of the alloy powder is extremely superior in corrosion resistance and durability as compared with the conventional chemical conversion film and has a large bonding force with the metal surface. Furthermore, since water repellency and lubricity are imparted, it is possible to prevent water, ice, etc. In addition, a thin film that is inexpensive and is difficult to peel off can be formed in a short time.

【0012】そして、希土類合金粉末表面に、トリアジ
ンジチオール誘導体から得られる耐酸化性被膜を形成す
る方法としては、各種の方法があり、代表的なものは、
トリアジンジチオール誘導体を有機溶媒に溶解した溶液
を、合金粉末に加えて混合し、その後、溶媒を乾燥によ
り除去する方法、合金粉末を混合機に投入し、混合機槽
内を窒素やアルゴンなどの不活性ガス雰囲気に保ちなが
ら、トリアジンジチオール誘導体を滴下し混合する方法
がある。
There are various methods for forming an oxidation resistant film obtained from a triazinedithiol derivative on the surface of a rare earth alloy powder, and typical methods are as follows.
A solution of the triazinedithiol derivative dissolved in an organic solvent is added to the alloy powder and mixed, and then the solvent is removed by drying.The alloy powder is put into a mixer and the inside of the mixer tank is filled with nitrogen or argon. There is a method of dropping and mixing the triazinedithiol derivative while maintaining the atmosphere of active gas.

【0013】有機溶媒としては、0〜80℃の温度範囲
で低粘度の液体であれば、特に限定されるものではな
く、殆どのものを使用できる。例えば、メチルアルコー
ル、エチルアルコール、イソプロピルアルコール、エチ
ルセルソルブのようなアルコール、アセトン、メチルエ
チルケトンのようなケトン、ジメチルホルムアミドのよ
うなアミド、酢酸エチルのようなエステル、テトラヒド
ロフランのようなフラン、ベンゼン、トルエンのような
芳香族炭化水素などを使用することができる。
The organic solvent is not particularly limited as long as it is a liquid having a low viscosity in the temperature range of 0 to 80 ° C., and most of them can be used. For example, alcohols such as methyl alcohol, ethyl alcohol, isopropyl alcohol, ethyl cellosolve, acetone, ketones such as methyl ethyl ketone, amides such as dimethylformamide, esters such as ethyl acetate, furan such as tetrahydrofuran, benzene, toluene. Aromatic hydrocarbons such as can be used.

【0014】トリアジンジチオール誘導体の添加量とし
ては、合金100重量部に対して、0.1〜5重量部で
ある。この量は、合金粉末の粒径、粒度分布、トリアジ
ンジチオール誘導体の種類などにより、適宜調整する。
The amount of the triazinedithiol derivative added is 0.1 to 5 parts by weight based on 100 parts by weight of the alloy. This amount is appropriately adjusted depending on the particle size of the alloy powder, the particle size distribution, the type of the triazinedithiol derivative, and the like.

【0015】また、結合材として使用する高分子化合物
としては、ポリエチレン、ポリプロピレンなどのポリオ
レフィン、ナイロン−6、ナイロン−12などのポリア
ミド樹脂、ポリエチレンテレフタレート、ポリブチレン
テレフタレートなどのポリエステル樹脂、エチレン−酢
酸ビニル共重合体、エチレン−エチルアクリレート共重
合体、ポリフェニレンサルファイド、及びこれらの変性
タイプの樹脂が用いられる。
As the polymer compound used as the binder, polyolefins such as polyethylene and polypropylene, polyamide resins such as nylon-6 and nylon-12, polyester resins such as polyethylene terephthalate and polybutylene terephthalate, and ethylene-vinyl acetate. Copolymers, ethylene-ethyl acrylate copolymers, polyphenylene sulfide, and resins of these modified types are used.

【0016】また、トリアジンジチオール誘導体の種類
により、金属−高分子化合物間の親和力を増加するも
の、金属の腐食を抑制する他に、高分子化合物の分解を
抑制するものなどがあるので、これら2種以上を組み合
わせて用いることで、諸特性を向上できる場合がある。
さらに、成形後の磁石表面に電解メッキ、塗装などの処
理を施すことで、耐酸化性をより向上できるのは論を俟
たない。
Further, depending on the type of the triazinedithiol derivative, there are those which increase the affinity between the metal and the polymer compound, and those which suppress the corrosion of the metal and the decomposition of the polymer compound. Various properties may be improved by using a combination of two or more species.
Further, it is arguable that the oxidation resistance can be further improved by subjecting the magnet surface after molding to treatment such as electrolytic plating and painting.

【0017】[0017]

【実施例】次に、本発明の具体的な実施例について、説
明する。
EXAMPLES Next, specific examples of the present invention will be described.

【0018】(実施例1)希土類合金粉末として、ネオ
ジミウムが31重量%、ホウ素が1.1重量%、残部が
鉄という組成の合金を、平均粒径50μmになるように
粉砕して調製した。この合金粉末100重量部を混合機
に投入し、3重量部の2−ジブチルアミノ−4,6−ジ
チオール−S−トリアジンを、イソプロピルアルコール
に溶解して加え、1時間攪拌後、真空乾燥でイソプロピ
ルアルコールを除去した。
Example 1 As a rare earth alloy powder, an alloy having a composition of neodymium of 31% by weight, boron of 1.1% by weight, and the balance of iron was prepared by pulverizing to an average particle size of 50 μm. 100 parts by weight of this alloy powder is charged into a mixer, 3 parts by weight of 2-dibutylamino-4,6-dithiol-S-triazine is dissolved in isopropyl alcohol, and the mixture is stirred for 1 hour and then vacuum dried to obtain isopropyl. The alcohol was removed.

【0019】次いで、この粉末100重量部に対し、9
重量部のナイロン−12を混合して二軸押出機で混練
し、得られた混和物を熱プレスにより圧縮成形し、1辺
が10mmの立法体形状のボンド磁石を得た。このボン
ド磁石について、5%食塩水を72時間噴霧するという
条件で、塩水噴霧試験を行なった。また、併せて碁盤目
試験も行なった。表1は、これらの試験結果を示したも
のである。
Next, with respect to 100 parts by weight of this powder, 9
By weight, nylon-12 was mixed and kneaded with a twin-screw extruder, and the resulting mixture was compression-molded by hot pressing to obtain a cubic bonded magnet having one side of 10 mm. A salt spray test was conducted on this bonded magnet under the condition that 5% saline was sprayed for 72 hours. In addition, a cross-cut test was also conducted. Table 1 shows the results of these tests.

【0020】[0020]

【表1】 [Table 1]

【0021】(実施例2)実施例とまったく同じ条件で
得たボンド磁石に、電解ニッケルメッキを施した。これ
についても、実施例1と同一の試験を行い、結果を実施
例1と同様に表1に示した。
(Example 2) A bonded magnet obtained under exactly the same conditions as in Example was subjected to electrolytic nickel plating. The same test as in Example 1 was conducted also for this, and the results are shown in Table 1 as in Example 1.

【0022】(実施例3)2−ジブチルアミノ−4,6
−ジチオール−S−トリアジンの添加量を、希土類合金
粉末100重量部に対して1重量部とした他は、まった
く同じ条件でボンド磁石を得、実施例1と同様に試験を
行い、結果を実施例1と同様に表1に示した。
(Example 3) 2-dibutylamino-4,6
-A bonded magnet was obtained under exactly the same conditions except that the addition amount of dithiol-S-triazine was 1 part by weight with respect to 100 parts by weight of the rare earth alloy powder, the same test as in Example 1 was performed, and the results were carried out. The results are shown in Table 1 as in Example 1.

【0023】(実施例4)実施例3のボンド磁石に電解
ニッケルメッキを施し、ボンド磁石を得、実施例1と同
様に試験を行い、結果を実施例1と同様に表1に示し
た。
(Example 4) The bonded magnet of Example 3 was subjected to electrolytic nickel plating to obtain a bonded magnet, and the same test as in Example 1 was conducted. The results are shown in Table 1 as in Example 1.

【0024】(比較例)また、比較のために、トリアジ
ンジチオール誘導体による表面処理を施していない希土
類合金粉末を用いて、その他の条件を実施例1とまった
く同一にして得たボンド磁石、及び前記ボンド磁石に電
解ニッケルメッキを施した試料についても、実施例1と
同様の試験を行い、結果を実施例1と同様に表1に示し
た。
Comparative Example For comparison, a bonded magnet obtained by using a rare earth alloy powder not surface-treated with a triazinedithiol derivative under the same conditions as in Example 1, and the above The same test as in Example 1 was performed on the sample in which the bonded magnet was subjected to electrolytic nickel plating, and the results are shown in Table 1 as in Example 1.

【0025】表1に示した結果によれば、トリアジンジ
チオール誘導体による表面処理を施さなかった希土類合
金粉末を使用したボンド磁石においては、ニッケルメッ
キを施さないと、錆の発生が認められた。これに対し、
トリアジンジチオール誘導体で希土類合金粉末に表面処
理を施したボンド磁石においては、ニッケルメッキの有
無に関わらず、錆の発生は認められなかった。
According to the results shown in Table 1, in the bonded magnet using the rare earth alloy powder which was not surface-treated with the triazinedithiol derivative, rust was observed without nickel plating. In contrast,
No rusting was observed in the bonded magnet obtained by subjecting the rare earth alloy powder to the surface treatment with the triazinedithiol derivative, regardless of the presence or absence of nickel plating.

【0026】[0026]

【発明の効果】以上に説明したように、本発明によって
得られる希土類ボンド磁石は、原料となる希土類合金粉
末表面に、耐酸化性被膜を有するため、耐酸化性、耐久
性に優れ、従来製品に比較して、特性の安定性や信頼性
などが向上している。
As described above, since the rare earth bonded magnet obtained by the present invention has the oxidation resistant coating on the surface of the rare earth alloy powder as the raw material, it is excellent in the oxidation resistance and the durability, and the conventional products. Compared with, the stability and reliability of the characteristics are improved.

【0027】また、実施例では、結合材に熱可塑性の高
分子化合物を用い、熱プレスにより圧縮成形した例を示
したが、射出成形タイプや熱硬化性の高分子化合物を用
いて圧縮成形したボンド磁石などに用いる原料粉末に、
トリアジンジチオール誘導体による耐酸化性被膜を形成
しても、同様の優れた効果が得られることが確認でき
た。
Further, in the examples, an example was shown in which a thermoplastic polymer compound was used as a binder and compression molding was performed by hot pressing. However, injection molding type or thermosetting polymer compound was used for compression molding. For raw material powder used for bond magnets,
It was confirmed that the same excellent effect can be obtained even if an oxidation resistant film is formed with the triazinedithiol derivative.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 希土類合金粉末と結合材を混練成形して
なる希土類ボンド磁石において、前記希土類合金粉末
は、表面に、1,3,5−トリアジンの2、4、6の位
置のいずれかを−R、残部を−SM[RはSHまたはN
で、R 、Rは水素、アルキル基、フェニル
基のいずれか、Mは水素、アルカリ金属、アルカリ土類
金属のいずれか、Sはイオウ、Nは窒素]で置換したト
リアジンジチオール誘導体の少なくとも1種によって形
成されてなる耐酸化性被膜を有することを特徴とする希
土類ボンド磁石。
1. A rare earth alloy powder and a binder are kneaded and molded.
In the rare earth bonded magnet, the rare earth alloy powder
Is the 2,3,5-triazine 2,4,6 position on the surface.
-R for any of the positions and -SM for the rest [R is SH or N
R1RTwoAnd R 1, RTwoIs hydrogen, alkyl group, phenyl
Any of the groups, M is hydrogen, alkali metal, alkaline earth
Any of the metals, S for sulfur, N for nitrogen]
Formed by at least one riadine dithiol derivative
Rarely characterized by having an oxidation resistant coating formed
Earth bond magnet.
【請求項2】 希土類合金粉末の表面に、1,3,5−
トリアジンの2、4、6の位置のいずれかを−R、残部
を−SM[RはSHまたはNRで、R 、R
水素、アルキル基、フェニル基のいずれか、Mは水素、
アルカリ金属、アルカリ土類金属のいずれか、Sはイオ
ウ、Nは窒素]で置換したトリアジンジチオール誘導体
の少なくとも1種によって耐酸化性被膜を形成した後、
結合材と混練成形することを特徴とする請求項1に記載
の希土類ボンド磁石の製造方法。
2. The surface of the rare earth alloy powder is 1,3,5-
-R at any of positions 2, 4, and 6 of triazine, balance
-SM [R is SH or NR1RTwoAnd R 1, RTwoIs
Hydrogen, an alkyl group, a phenyl group, M is hydrogen,
Alkali metal or alkaline earth metal, S is Io
C, N is nitrogen] substituted triazinedithiol derivative
After forming an oxidation resistant coating with at least one of
The kneading and molding with a binder, according to claim 1.
Manufacturing method of rare earth bonded magnet.
JP2001283443A 2001-09-18 2001-09-18 Rare-earth bonded magnet having superior oxidation resistance, and manufacturing method thereof Pending JP2003092210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001283443A JP2003092210A (en) 2001-09-18 2001-09-18 Rare-earth bonded magnet having superior oxidation resistance, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001283443A JP2003092210A (en) 2001-09-18 2001-09-18 Rare-earth bonded magnet having superior oxidation resistance, and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2003092210A true JP2003092210A (en) 2003-03-28

Family

ID=19106926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001283443A Pending JP2003092210A (en) 2001-09-18 2001-09-18 Rare-earth bonded magnet having superior oxidation resistance, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2003092210A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006005304A (en) * 2004-06-21 2006-01-05 Sumitomo Metal Mining Co Ltd Rare earth bond magnet and composition for the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006005304A (en) * 2004-06-21 2006-01-05 Sumitomo Metal Mining Co Ltd Rare earth bond magnet and composition for the same
JP4501546B2 (en) * 2004-06-21 2010-07-14 住友金属鉱山株式会社 Rare earth bonded magnet composition and rare earth bonded magnet obtained using the same

Similar Documents

Publication Publication Date Title
CN1299299C (en) Corrosion-resistant rare earth element magnet
KR101233725B1 (en) The rapidly solidified rare earth-transition metal-boron magnet material and the process for making the same
US6696097B2 (en) Method of making a shaped plastic magnet
JPH04328804A (en) Corrosion-proof permanent magnet and manufacture thereof
EP1441047B1 (en) Method for forming electroplated coating on surface of article
JP2003092210A (en) Rare-earth bonded magnet having superior oxidation resistance, and manufacturing method thereof
JP2016194140A (en) Rare earth magnetic powder and production method therefor, and resin composition for bond magnet, bond magnet
JPS61163975A (en) Electrically conductive paint composition
JPH0230564B2 (en) PURASUCHITSUKUMAGUNETSUTOSOSEIBUTSU
JPH01147806A (en) Manufacture of resin-bonded type magnet
JPH05175024A (en) Rare earth bonded magnet materilal, rare earth bonded magnet and manufacture of the magnet
JPH0828295B2 (en) Permanent magnet with excellent oxidation resistance and method for manufacturing the same
JPH04354104A (en) Manufacture of rare earth bond magnet
JPH02103906A (en) Resin coupled type magnet excellent in corrosion resistance
JPH079846B2 (en) Permanent magnet having good corrosion resistance and method for producing the same
JPS63187603A (en) Permanent magnet having improved resistance to oxidation and manufacture thereof
JPH03108702A (en) Magnet and manufacture thereof
JP2980122B2 (en) Manufacturing method of rare earth resin bonded magnet
JPH01248602A (en) Manufacture of rare earth resin bonding magnet excellent in resistance to oxidation
JP2770244B2 (en) Manufacturing method of bonded magnet with excellent oxidation resistance
JPH08167514A (en) Compound for anti-corrosive bonded magnet, bonded magnet and manufacturing method
JPH01166519A (en) Resin-bound iron-rare earth magnet
JPH01318207A (en) Rare-earth alloy magnet with protective coating
JP2004071649A (en) Method of improving adhesion of additional polyimide resin film
JP2005032845A (en) Bond magnet and its producing method