JP2003092143A - Lithium polymer battery - Google Patents

Lithium polymer battery

Info

Publication number
JP2003092143A
JP2003092143A JP2001284799A JP2001284799A JP2003092143A JP 2003092143 A JP2003092143 A JP 2003092143A JP 2001284799 A JP2001284799 A JP 2001284799A JP 2001284799 A JP2001284799 A JP 2001284799A JP 2003092143 A JP2003092143 A JP 2003092143A
Authority
JP
Japan
Prior art keywords
negative electrode
current collector
collector foil
active material
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001284799A
Other languages
Japanese (ja)
Inventor
Yusuke Watarai
祐介 渡會
Akio Mizuguchi
暁夫 水口
Akihiro Higami
晃裕 樋上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2001284799A priority Critical patent/JP2003092143A/en
Publication of JP2003092143A publication Critical patent/JP2003092143A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To obstruct the generation of cracks in a polymer electrolyte layer in manufacturing and in charge/discharge of a secondary battery and enhance energy density of the secondary battery. SOLUTION: A polymer electrolyte layer 17 is interposed between a positive active material layer 13 of a positive sheet 11 and a negative active material layer 16 of a negative sheet 14, and the positive sheet and the negative sheet are stacked. A laminate 20 is folded back once or two or more times in zigzag to form a lithium polymer battery 10. A negative current collector foil 15 and the polymer electrolyte layer are folded back in a belt, with no disconnection, and the negative active material layer is formed on the negative current collector foil so that the folded part of the negative current collector foil is divided with a negative slit 18. The positive sheet has an area corresponding to the folded back area of the negative current collector foil, and interposed between polymer electrolyte layers other than the folded part of the negative current collector foil.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ポリマー電解質層
を介装して正極シート及び負極シートを積層したリチウ
ムイオンポリマー二次電池に関するものである。
TECHNICAL FIELD The present invention relates to a lithium ion polymer secondary battery in which a positive electrode sheet and a negative electrode sheet are laminated with a polymer electrolyte layer interposed.

【0002】[0002]

【従来の技術】従来、この種の電池として、正極集電体
箔の表面に活物質が形成された正極シートの活物質と、
負極集電体箔の表面に活物質が形成された負極シートの
活物質との間に、ポリマー電解質層を介装して正極シー
ト及び負極シートが積層されたリチウムイオンポリマー
二次電池が開示されている(特開2001−28273
号)。このリチウムイオンポリマー二次電池では、負極
シートが帯状であって活物質表面にポリマー電解質層を
積層した状態で1又は2回以上折畳まれ、この折畳まれ
る負極シートの折目を除くポリマー電解質層の間にはそ
れぞれ折畳み面積に相応した面積を有する複数の正極シ
ートが挟持される。また挟持される正極シートの活物質
表面にはポリマー電解質層が積層される。
2. Description of the Related Art Conventionally, as this type of battery, an active material of a positive electrode sheet having an active material formed on the surface of a positive electrode current collector foil,
Disclosed is a lithium ion polymer secondary battery in which a positive electrode sheet and a negative electrode sheet are laminated with a polymer electrolyte layer interposed between the active material formed on the surface of the negative electrode current collector foil and the active material of the negative electrode sheet. (Japanese Patent Laid-Open No. 2001-28273)
issue). In this lithium-ion polymer secondary battery, the negative electrode sheet is in the form of a strip, and the polymer electrolyte layer is laminated on the surface of the active material, and the polymer sheet is folded once or twice or more. A plurality of positive electrode sheets each having an area corresponding to the folded area are sandwiched between the electrolyte layers. Further, a polymer electrolyte layer is laminated on the surface of the active material of the sandwiched positive electrode sheets.

【0003】このように構成されたリチウムイオンポリ
マー二次電池では、面積を拡大させた帯状の負極シート
を折畳むので、比較的小さく薄い状態のまま放電容量を
拡大できる。また折畳み面積に相応した面積を有する複
数の正極シートをポリマー電解質層の間にそれぞれ挟持
させたので、折目部分における負極シートに撓みが生じ
ることはなく、負極シートが撓むことにより生じ得る内
部ショートを防止できる。更にポリマー電解質層を帯状
の負極シートに形成するので、そのポリマー電解質層の
間に挟持された複数の正極シートにおける活物質はそれ
ぞれ同一の電解質を共有していることになり、各活物質
間の内部インピーダンスが均一化してサイクル特性を向
上できるようになっている。
In the lithium ion polymer secondary battery having such a structure, since the strip-shaped negative electrode sheet having an enlarged area is folded, the discharge capacity can be increased in a relatively small and thin state. Further, since a plurality of positive electrode sheets each having an area corresponding to the folded area are sandwiched between the polymer electrolyte layers, the negative electrode sheet at the fold portion does not bend, and the negative electrode sheet may bend to prevent internal deformation. Can prevent short circuit. Further, since the polymer electrolyte layer is formed on the strip-shaped negative electrode sheet, the active materials in the plurality of positive electrode sheets sandwiched between the polymer electrolyte layers share the same electrolyte, respectively. The internal impedance is made uniform and the cycle characteristics can be improved.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記従来の特
開2001−28273号公報に示されたリチウムイオ
ンポリマー二次電池では、帯状の負極シートの活物質表
面にポリマー電解質層を積層し、かつ負極シートの折目
を除くポリマー電解質層の間に正極シートをそれぞれ挟
持して折畳むときに、負極集電体箔の山折側に位置する
負極シートの活物質によりポリマー電解質層に引張り応
力が作用するため、亀裂が発生し易く、亀裂が発生した
場合にはサイクル特性が低下するおそれがあった。また
上記従来のリチウムイオンポリマー二次電池では、電池
の充放電に伴う体積変化により、上記と同様に負極集電
体箔の山折側に位置する負極シートの活物質によりポリ
マー電解質層に引張り応力が作用するため、亀裂が発生
し易く、亀裂が発生した場合にはサイクル特性が低下す
るおそれがあった。更に上記従来のリチウムイオンポリ
マー二次電池では、負極シートの折れ目に正極シートの
活物質が存在しないため、負極シートの折れ目に位置す
る負極シートの活物質はリチウムイオンの吸蔵及び放出
に寄与せず、電池のエネルギ密度が低下する問題点があ
った。本発明の目的は、製造時及び充放電時におけるポ
リマー電解質層への亀裂の発生を阻止できるとともに、
エネルギ密度を向上できる、リチウムポリマー電池を提
供することにある。
However, in the lithium ion polymer secondary battery disclosed in the above-mentioned Japanese Patent Laid-Open No. 2001-28273, a polymer electrolyte layer is laminated on the surface of the active material of the strip-shaped negative electrode sheet, and When the positive electrode sheet is sandwiched between the polymer electrolyte layers excluding the folds of the negative electrode sheet and folded, tensile stress acts on the polymer electrolyte layer by the active material of the negative electrode sheet located on the mountain fold side of the negative electrode current collector foil. Therefore, cracks are likely to occur, and when cracks occur, cycle characteristics may be deteriorated. Further, in the above-mentioned conventional lithium ion polymer secondary battery, due to the volume change accompanying the charge and discharge of the battery, tensile stress is applied to the polymer electrolyte layer by the active material of the negative electrode sheet located on the mountain fold side of the negative electrode current collector foil as described above. Since it works, cracks are likely to occur, and when the cracks occur, cycle characteristics may deteriorate. Further, in the above-mentioned conventional lithium ion polymer secondary battery, since the active material of the positive electrode sheet does not exist at the fold of the negative electrode sheet, the active material of the negative electrode sheet located at the fold of the negative electrode sheet contributes to occlusion and release of lithium ions. However, there is a problem that the energy density of the battery is lowered. The object of the present invention is to prevent the generation of cracks in the polymer electrolyte layer during manufacturing and charging and discharging,
It is to provide a lithium polymer battery capable of improving energy density.

【0005】[0005]

【課題を解決するための手段】請求項1に係る発明は、
図1に示すように、正極集電体箔12の表面に正極活物
質層13が形成された正極シート11の正極活物質層1
3と、負極集電体箔15の表面に負極活物質層16が形
成された負極シート14の負極活物質層16との間に、
ポリマー電解質層17を介装して正極シート11及び負
極シート14が積層され、この積層体20が1回折りに
より又は2回以上の葛折りにより折畳まれたリチウムポ
リマー電池の改良である。その特徴ある構成は、負極集
電体箔15及びポリマー電解質層17が帯状に連続した
状態で折畳まれ、負極活物質層16が負極集電体箔15
の折れ部分で負極スリット18を設けて分割されるよう
に負極集電体箔15上にそれぞれ形成され、正極シート
11がそれぞれ負極集電体箔15の折畳み面積に相応し
た面積を有しかつ負極集電体箔15の折れ部分を除くポ
リマー電解質層17の間にそれぞれ挟持されたところに
ある。
The invention according to claim 1 is
As shown in FIG. 1, the positive electrode active material layer 1 of the positive electrode sheet 11 in which the positive electrode active material layer 13 is formed on the surface of the positive electrode current collector foil 12.
3 and the negative electrode active material layer 16 of the negative electrode sheet 14 having the negative electrode active material layer 16 formed on the surface of the negative electrode current collector foil 15,
This is an improvement of a lithium polymer battery in which a positive electrode sheet 11 and a negative electrode sheet 14 are laminated with a polymer electrolyte layer 17 interposed, and the laminate 20 is folded by one bending or by folding twice or more. The characteristic structure is that the negative electrode current collector foil 15 and the polymer electrolyte layer 17 are folded in a continuous band shape, and the negative electrode active material layer 16 is folded into the negative electrode current collector foil 15.
Are formed on the negative electrode current collector foil 15 so as to be divided by providing the negative electrode slits 18 at the bent portions, and the positive electrode sheets 11 each have an area corresponding to the folded area of the negative electrode current collector foil 15 and the negative electrode. The current collector foil 15 is sandwiched between the polymer electrolyte layers 17 excluding the bent portions.

【0006】この請求項1に記載されたリチウムポリマ
ー電池では、電池10の製造時に負極集電体箔15の折
れ部分のうち負極集電体箔15の山折側のポリマー電解
質層17に引張り応力が作用するけれども、ポリマー電
解質層17が上記負極スリット18に侵入するように変
形するので、上記引張り応力は低減される。また電池1
0の充放電を繰返すと、負極活物質層16へのリチウム
イオンの吸蔵及び放出によって負極活物質層16が膨張
及び収縮して体積変化し、負極活物質層16の膨張によ
りポリマー電解質層17に引張り応力が作用するけれど
も、ポリマー電解質層17が上記負極スリット18に侵
入するように変形するので、上記引張り応力は低減され
る。更に負極集電体箔15の折れ部分には正極活物質層
13が存在せず、この折れ部分に負極活物質層16が存
在しても、この負極活物質層16はリチウムイオンの吸
蔵及び放出に寄与しないため、負極集電体箔15の折れ
部分に負極スリット18を設けることにより、負極活物
質層16の不要部分が取除かれる。なお、負極スリット
18を負極集電体箔15の折れ部分のうち負極集電体箔
15の山折側又は谷折側のいずれか一方又は双方に設け
ることが好ましい。
In the lithium polymer battery described in claim 1, a tensile stress is applied to the polymer electrolyte layer 17 on the mountain fold side of the negative electrode current collector foil 15 in the bent portion of the negative electrode current collector foil 15 when the battery 10 is manufactured. Although acting, the polymer electrolyte layer 17 is deformed so as to enter the negative electrode slit 18, so that the tensile stress is reduced. Battery 1
When charge and discharge of 0 are repeated, the negative electrode active material layer 16 expands and contracts due to the absorption and release of lithium ions into the negative electrode active material layer 16 to change in volume, and the negative electrode active material layer 16 expands to form a polymer electrolyte layer 17. Although the tensile stress acts, the polymer electrolyte layer 17 is deformed so as to enter the negative electrode slit 18, so that the tensile stress is reduced. Further, even if the positive electrode active material layer 13 does not exist in the bent portion of the negative electrode current collector foil 15 and the negative electrode active material layer 16 exists in this bent portion, the negative electrode active material layer 16 absorbs and releases lithium ions. Therefore, the unnecessary portion of the negative electrode active material layer 16 is removed by providing the negative electrode slit 18 in the bent portion of the negative electrode current collector foil 15. In addition, it is preferable that the negative electrode slit 18 is provided on either one or both of the mountain fold side and the valley fold side of the negative electrode current collector foil 15 among the bent portions of the negative electrode current collector foil 15.

【0007】[0007]

【発明の実施の形態】次に本発明の第1の実施の形態を
図面に基づいて説明する。図1に示すように、リチウム
ポリマー電池10(リチウムイオンポリマー二次電池)
は、正極シート11と負極シート14との間にポリマー
電解質層17を介装して得られた積層体20を、複数回
の葛折りにより折畳むことにより形成される。正極シー
ト11は正極集電体箔12と、この正極集電体箔12の
表面に形成された正極活物質層13とを有し、負極シー
ト14は負極集電体箔15と、この負極集電体箔15の
表面に形成された負極活物質層16とを有する。またポ
リマー電解質層17は正極集電体箔12の表面に形成さ
れた正極活物質層13と、負極集電体箔15の表面に形
成された負極活物質層16との間に介装される。上記負
極集電体箔15及びポリマー電解質層17は帯状に形成
される。負極集電体箔15を上述のように帯状に形成す
ることにより、放電容量の拡大が可能となる。
BEST MODE FOR CARRYING OUT THE INVENTION Next, a first embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 1, a lithium polymer battery 10 (lithium ion polymer secondary battery)
Is formed by folding the laminated body 20 obtained by interposing the polymer electrolyte layer 17 between the positive electrode sheet 11 and the negative electrode sheet 14 by folding a plurality of times. The positive electrode sheet 11 includes a positive electrode current collector foil 12 and a positive electrode active material layer 13 formed on the surface of the positive electrode current collector foil 12, and the negative electrode sheet 14 includes a negative electrode current collector foil 15 and the negative electrode current collector foil 15. The negative electrode active material layer 16 formed on the surface of the electric foil 15. The polymer electrolyte layer 17 is interposed between the positive electrode active material layer 13 formed on the surface of the positive electrode current collector foil 12 and the negative electrode active material layer 16 formed on the surface of the negative electrode current collector foil 15. . The negative electrode current collector foil 15 and the polymer electrolyte layer 17 are formed in a strip shape. By forming the negative electrode current collector foil 15 in a strip shape as described above, the discharge capacity can be expanded.

【0008】また負極活物質層16は負極集電体箔15
の折れ部分で負極スリット18を設けて分割されるよう
に上記負極集電体箔15上にそれぞれ形成される。上記
負極スリット18は負極集電体箔15の折れ部分のうち
負極集電体箔15の山折側に設けられた第1負極スリッ
ト18aと、負極集電体箔15の谷折側に設けられた第
2負極スリット18bとからなる。これらのスリット1
8a,18bの幅は0.5〜8mm、好ましくは1〜5
mmの範囲に設定される。上記スリット18a,18b
の幅を0.5〜8mmの範囲に限定したのは、0.5m
m未満では負極集電体箔15の折れ部分でのポリマー電
解質層17の亀裂の発生を十分に阻止できず、8mmを
越えるとエネルギ密度が低下するからである。
The negative electrode active material layer 16 is a negative electrode current collector foil 15.
It is formed on the negative electrode current collector foil 15 so as to be divided by providing the negative electrode slit 18 at the bent portion. The negative electrode slits 18 are provided on the first negative electrode slit 18a provided on the mountain fold side of the negative electrode current collector foil 15 in the folded portion of the negative electrode current collector foil 15 and on the valley fold side of the negative electrode current collector foil 15. The second negative electrode slit 18b. These slits 1
The width of 8a and 18b is 0.5 to 8 mm, preferably 1 to 5
It is set in the range of mm. The slits 18a, 18b
Is limited to 0.5 to 8 mm, the width is 0.5 m
If it is less than m, the generation of cracks in the polymer electrolyte layer 17 at the bent portion of the negative electrode current collector foil 15 cannot be sufficiently prevented, and if it exceeds 8 mm, the energy density is lowered.

【0009】一方、正極シート11はそれぞれ負極集電
体箔15の折畳み面積に相応した面積を有し、かつ負極
集電体箔15の折れ部分を除くポリマー電解質層17の
間にそれぞれ挟持される。なお、負極集電体箔15とし
てはCu箔が挙げられ、負極活物質層16の活物質とし
ては炭素系の活物質が挙げられる。また正極集電体箔1
2としてはAl箔が挙げられ、正極活物質層13の活物
質としてはLiCoO 2が挙げられる。更にポリマー電
解質層17としてはポリエチレンオキシド、ポリフッ化
ビニリデン等が挙げられる。
On the other hand, each of the positive electrode sheets 11 is a negative electrode current collector.
A negative electrode having an area corresponding to the folded area of the body foil 15.
Of the polymer electrolyte layer 17 excluding the bent portion of the collector foil 15.
Sandwiched between each. In addition, as the negative electrode current collector foil 15
Include Cu foil, which is used as the active material of the negative electrode active material layer 16.
Examples include carbon-based active materials. Also, the positive electrode current collector foil 1
Examples of 2 include Al foil, which is an active material of the positive electrode active material layer 13.
LiCoO as quality 2Is mentioned. Furthermore, polymer
Polyethylene oxide, polyfluoride as the degrading layer 17
Examples thereof include vinylidene.

【0010】このように構成されたリチウムポリマー電
池10の製造方法を説明する。 負極シート14の作製及びポリマー電解質層17の
形成 先ず負極活物質層16に含まれる活物質を溶液に分散混
合して負極活物質スラリーを調製する。次にこのスラリ
ーを帯状の負極集電体箔15の上面に、ドクタブレード
法やスクリーン印刷法などにより間欠塗布して乾燥する
(図6(b))。このとき負極活物質層16の一方の側
縁16aを負極集電体箔15の一方の側縁15aに一致
させ、かつ負極活物質層16の他方の側縁16bを負極
集電体箔15の他方の側縁15bから所定の距離だけ内
側にずらした状態で、複数の負極活物質層16を負極集
電体箔15の上面に所定の間隔(負極スリット18)を
設けて形成する。これにより負極シート14が作製され
る。なお、上記負極シート14の上面、即ち複数の負極
活物質層16の上面には、電解質スラリーをドクタブレ
ード法などにより連続塗布して乾燥することによりポリ
マー電解質層17が形成される(図6(c))。このポ
リマー電解質層17は複数の負極活物質層16を被覆す
る面積を有する帯状に形成される。
A method of manufacturing the lithium polymer battery 10 having the above structure will be described. Preparation of Negative Electrode Sheet 14 and Formation of Polymer Electrolyte Layer 17 First, the active material contained in the negative electrode active material layer 16 is dispersed and mixed in a solution to prepare a negative electrode active material slurry. Next, this slurry is intermittently applied to the upper surface of the strip-shaped negative electrode current collector foil 15 by a doctor blade method, a screen printing method or the like and dried (FIG. 6B). At this time, one side edge 16a of the negative electrode active material layer 16 is made to coincide with one side edge 15a of the negative electrode current collector foil 15, and the other side edge 16b of the negative electrode active material layer 16 is changed to the negative electrode current collector foil 15. A plurality of negative electrode active material layers 16 are formed on the upper surface of the negative electrode current collector foil 15 at predetermined intervals (negative electrode slits 18) while being shifted inward by a predetermined distance from the other side edge 15b. As a result, the negative electrode sheet 14 is manufactured. The polymer electrolyte layer 17 is formed on the upper surface of the negative electrode sheet 14, that is, the upper surfaces of the plurality of negative electrode active material layers 16 by continuously applying an electrolyte slurry by a doctor blade method or the like and drying (FIG. 6 ( c)). The polymer electrolyte layer 17 is formed in a strip shape having an area that covers the plurality of negative electrode active material layers 16.

【0011】 正極シート11の作製及びポリマー電
解質層17の形成 先ず正極活物質層13に含まれる活物質を溶液に分散混
合して正極活物質スラリーを調製する。次いでこのスラ
リーを帯状の正極集電体箔12の上面に、ドクターブレ
ード法などにより連続塗布して乾燥する(図5
(b))。このとき正極活物質層13の一方の側縁13
aを正極集電体箔12の一方の側縁12aに一致させ、
かつ正極活物質層13の他方の側縁13bを正極集電体
箔12の他方の側縁12bから所定の距離だけ内側にず
らした状態で、正極活物質層13を正極集電体箔12の
上面に帯状に形成する。次に帯状の正極活物質層13の
上面に電解質スラリーをドクタブレード法などにより連
続塗布して乾燥することによりポリマー電解質層17を
形成する(図5(c))。このポリマー電解質層17は
正極活物質層13を被覆する面積を有する帯状に形成さ
れる。更に上記正極活物質層13及びポリマー電解質層
17が形成された帯状の正極集電体箔12を、正極活物
質層13及びポリマー電解質層17とともに、負極集電
体箔15の折畳み面積に相応した面積を有するように切
断する。これにより表面にポリマー電解質層17が形成
された所定の面積の正極シート11が複数作製される。
Preparation of Positive Electrode Sheet 11 and Formation of Polymer Electrolyte Layer 17 First, the active material contained in the positive electrode active material layer 13 is dispersed and mixed in a solution to prepare a positive electrode active material slurry. Next, this slurry is continuously applied to the upper surface of the strip-shaped positive electrode current collector foil 12 by a doctor blade method or the like and dried (FIG. 5).
(B)). At this time, one side edge 13 of the positive electrode active material layer 13
a is aligned with one side edge 12a of the positive electrode current collector foil 12,
Further, the positive electrode active material layer 13 of the positive electrode current collector foil 12 is moved in a state where the other side edge 13b of the positive electrode active material layer 13 is displaced inward by a predetermined distance from the other side edge 12b of the positive electrode current collector foil 12. It is formed like a strip on the upper surface. Next, the electrolyte slurry is continuously applied to the upper surface of the strip-shaped positive electrode active material layer 13 by a doctor blade method or the like and dried to form the polymer electrolyte layer 17 (FIG. 5C). The polymer electrolyte layer 17 is formed in a band shape having an area that covers the positive electrode active material layer 13. Further, the strip-shaped positive electrode current collector foil 12 on which the positive electrode active material layer 13 and the polymer electrolyte layer 17 are formed corresponds to the folded area of the negative electrode current collector foil 15 together with the positive electrode active material layer 13 and the polymer electrolyte layer 17. Cut to have area. As a result, a plurality of positive electrode sheets 11 having a predetermined area and having the polymer electrolyte layer 17 formed on the surface thereof are produced.

【0012】 負極シート14及び正極シート11の
熱圧着 先ず帯状のポリマー電解質層17を上側にした負極シー
ト14上に、ポリマー電解質層17を下側にした複数の
正極シート11を、負極集電体箔15の折れ部分で所定
の間隔をあけて配置して積層体20を作製する(図
4)。次に所定の温度に加熱されかつ実線矢印の方向に
回転する一対のローラ19,19間に、上記積層体20
を破線矢印で示す方向から挿入する。これによりポリマ
ー電解質層17を介装した状態で正極シート11及び負
極シート14が熱圧着される。なお、複数の正極シート
11の負極シート14上への配置は、帯状の負極集電体
箔15の他方の側縁15bが複数の正極集電体箔12の
一方の側縁12aから突出し、複数の正極集電体箔12
の他方の側縁12bが帯状の負極集電体箔15の一方の
側縁15aから突出するように配置される。
Thermocompression bonding of the negative electrode sheet 14 and the positive electrode sheet 11. First, a plurality of positive electrode sheets 11 with the polymer electrolyte layer 17 on the lower side are provided on the negative electrode sheet 14 with the strip-shaped polymer electrolyte layer 17 on the upper side. Laminated bodies 20 are produced by arranging the folded portions of the foil 15 at predetermined intervals (FIG. 4). Next, between the pair of rollers 19 and 19 which are heated to a predetermined temperature and rotate in the direction of the solid line arrow, the laminated body 20 is provided.
Is inserted from the direction indicated by the dashed arrow. As a result, the positive electrode sheet 11 and the negative electrode sheet 14 are thermocompression bonded with the polymer electrolyte layer 17 interposed. The plurality of positive electrode sheets 11 are arranged on the negative electrode sheet 14 such that the other side edge 15b of the strip-shaped negative electrode current collector foil 15 projects from one side edge 12a of the plurality of positive electrode current collector foils 12. Positive electrode current collector foil 12
The other side edge 12b is arranged so as to project from one side edge 15a of the strip-shaped negative electrode current collector foil 15.

【0013】 積層体20の折畳み 上記熱圧着された積層体20を、負極集電体箔15の折
れ部分で葛折りにより折畳む。即ち、図3に示すよう
に、正極シート11が配置されていない負極集電体箔1
5の折れ部分を、交互にジグザグに折曲げて折畳む。こ
れにより帯状の負極集電体箔15の他方の側縁15bは
複数の正極集電体箔12の一方の側縁12aから突出
し、複数の正極集電体箔12の他方の側縁12bは帯状
の負極集電体箔15の一方の側縁15aから突出した状
態で積層される。このように折畳まれた積層体20で
は、負極集電体箔15の折れ部分を除くポリマー電解質
層17の間に、この折畳み面積に相応した面積を有する
複数の正極シート11が挟持される。なお、複数の正極
集電体箔12の一方の側縁12aからは負極集電体箔1
5の他方の側縁15bである突出部15cがジグザグに
折れ曲った状態で突出し、この突出部15cにはジグザ
グに折れ曲った突出部15cを貫いて固定する止め金具
22により負極端子21の一端が固着される。また負極
集電体箔15の一方の側縁15aからは複数の正極集電
体箔12の他方の側縁12bである突出部12cがそれ
ぞれ突出し、これらの突出部12cには突出部12cを
貫いて固定する止め金具22により正極端子23の一端
が固着される。
Folding of Laminated Body 20 The above thermocompression-bonded laminated body 20 is folded by folding at the folded portion of the negative electrode current collector foil 15. That is, as shown in FIG. 3, the negative electrode current collector foil 1 on which the positive electrode sheet 11 is not disposed
Fold the folded parts of 5 alternately in zigzags. Thereby, the other side edge 15b of the strip-shaped negative electrode current collector foil 15 projects from one side edge 12a of the plurality of positive electrode current collector foils 12, and the other side edge 12b of the plurality of positive electrode current collector foils 12 is striped. The negative electrode current collector foil 15 is laminated in a state of protruding from one side edge 15a. In the laminated body 20 thus folded, a plurality of positive electrode sheets 11 having an area corresponding to the folded area are sandwiched between the polymer electrolyte layers 17 excluding the folded portion of the negative electrode current collector foil 15. In addition, from one side edge 12a of the plurality of positive electrode current collector foils 12, the negative electrode current collector foils 1
5, the protruding portion 15c which is the other side edge 15b protrudes in a zigzag bent state, and one end of the negative electrode terminal 21 is fixed to the protruding portion 15c by a fastener 22 that is fixed through the protruding portion 15c bent in a zigzag manner. Is fixed. Further, from one side edge 15a of the negative electrode current collector foil 15, the protrusions 12c which are the other side edges 12b of the plurality of positive electrode current collector foils 12 respectively protrude, and the protrusions 12c penetrate the protrusions 12c. One end of the positive electrode terminal 23 is fixed by the stopper 22 that is fixed by fixing.

【0014】 折畳まれた積層体20の密封 上記折畳まれかつ負極端子21及び正極端子22を有す
る積層体20は、ポリプロピレンがラミネートされたア
ルミニウム箔からなる一対のパッケージシート24,2
4により密封される(図1〜図3)。具体的には、上記
折畳まれかつ負極端子21及び正極端子23を有する積
層体20は、真空雰囲気中で一対のパッケージシート2
4,24の周囲を熱圧着することにより密封される。こ
のとき正極端子23の他端及び負極端子21の他端を一
対のパッケージシート24,24から外部に突出するよ
うに熱圧着される。このようにして作製されたリチウム
ポリマー電池10は、パッケージシート24,24から
突出する正極端子23の他端及び負極端子21の他端を
電池10の端子として使用することにより所望の電力を
得ることができる。
Sealing of Folded Laminated Body 20 The laminated body 20 which is folded and has the negative electrode terminal 21 and the positive electrode terminal 22 has a pair of package sheets 24, 2 made of aluminum foil laminated with polypropylene.
It is sealed by 4 (FIGS. 1-3). Specifically, the laminated body 20 having the above-mentioned folded and negative electrode terminal 21 and positive electrode terminal 23 has a pair of package sheets 2 in a vacuum atmosphere.
The periphery of 4, 24 is sealed by thermocompression bonding. At this time, the other end of the positive electrode terminal 23 and the other end of the negative electrode terminal 21 are thermocompression-bonded so as to project from the pair of package sheets 24, 24 to the outside. The lithium polymer battery 10 manufactured in this way obtains desired power by using the other end of the positive electrode terminal 23 and the other end of the negative electrode terminal 21 protruding from the package sheets 24, 24 as the terminals of the battery 10. You can

【0015】このように構成されたリチウムポリマー電
池10では、帯状の負極集電体箔15の折れ部分で、隣
合う負極活物質層16同士が負極スリット18を設けて
分割されているので、熱圧着された積層体20を折畳む
ときに、負極集電体箔15より弾性係数の小さいポリマ
ー電解質層17に負極集電体箔15の山折側で引張り応
力が作用するけれども、この引張り応力はポリマー電解
質層17が負極スリット18に侵入するように変形する
ことにより低減される。この結果、電池10の製造時、
即ち積層体20の折畳み時に、ポリマー電解質層17へ
の亀裂の発生を阻止できるので、電池10のサイクル特
性が低下するのを防止できる。
In the lithium polymer battery 10 thus constructed, adjacent negative electrode active material layers 16 are divided by the negative electrode slits 18 at the bent portion of the strip-shaped negative electrode current collector foil 15, so that heat is generated. When the pressure-bonded laminated body 20 is folded, a tensile stress acts on the polymer electrolyte layer 17 having a smaller elastic coefficient than the negative electrode current collector foil 15 on the mountain fold side of the negative electrode current collector foil 15. It is reduced by deforming the electrolyte layer 17 so as to enter the negative electrode slit 18. As a result, when the battery 10 is manufactured,
That is, it is possible to prevent the generation of cracks in the polymer electrolyte layer 17 when the laminated body 20 is folded, and thus it is possible to prevent the cycle characteristics of the battery 10 from being deteriorated.

【0016】また電池10の充放電を繰返すと、負極活
物質層16へのリチウムイオンの吸蔵及び放出によって
負極活物質層16が膨張及び収縮して体積変化するけれ
ども、この負極活物質層16の体積変化は上記負極スリ
ット18の存在により吸収される。具体的には、負極活
物質層16の膨張によりポリマー電解質層17に引張り
応力が作用するけれども、ポリマー電解質層17が上記
負極スリット18に侵入するように変形するので、上記
引張り応力は低減される。この結果、電池10の充放電
時に、ポリマー電解質層17への亀裂の発生を阻止でき
るので、電池10のサイクル特性が低下するのを防止で
きる。更に負極集電体箔15の折れ部分には正極活物質
層13が存在せず、この折れ部分に負極活物質層16が
存在しても、この負極活物質層16はリチウムイオンの
吸蔵及び放出に寄与しない。このため負極集電体箔15
の折れ部分に負極スリット18を設けることにより、負
極活物質層16の不要部分が取除かれる。この結果、電
池10のエネルギ密度を向上できる。
When the battery 10 is repeatedly charged and discharged, the negative electrode active material layer 16 expands and contracts due to the absorption and release of lithium ions into the negative electrode active material layer 16 to change its volume. The change in volume is absorbed by the presence of the negative electrode slit 18. Specifically, although the tensile stress acts on the polymer electrolyte layer 17 due to the expansion of the negative electrode active material layer 16, the polymer electrolyte layer 17 is deformed so as to enter the negative electrode slit 18, so that the tensile stress is reduced. . As a result, it is possible to prevent the generation of cracks in the polymer electrolyte layer 17 during charge / discharge of the battery 10, and thus it is possible to prevent deterioration of the cycle characteristics of the battery 10. Further, even if the positive electrode active material layer 13 does not exist in the bent portion of the negative electrode current collector foil 15 and the negative electrode active material layer 16 exists in this bent portion, the negative electrode active material layer 16 absorbs and releases lithium ions. Does not contribute to. Therefore, the negative electrode current collector foil 15
By providing the negative electrode slit 18 in the bent portion, unnecessary portions of the negative electrode active material layer 16 are removed. As a result, the energy density of the battery 10 can be improved.

【0017】図7及び図8は本発明の第2の実施の形態
を示す。図7及び図8において図1及び図4と同一符号
は同一部品を示す。この実施の形態では、先ず帯状の負
極集電体箔15の両面に、負極活物質スラリーをドクタ
ブレード法やスクリーン印刷法などによりそれぞれ間欠
塗布し乾燥して、複数の負極活物質層16をそれぞれ形
成し、負極シート54を作製する。次いで帯状の負極集
電体箔15の両面に、複数の負極活物質層16を覆うよ
うに電解スラリーをドクタブレード法によりそれぞれ連
続塗布し乾燥して、一対の帯状のポリマー電解質層1
7,17をそれぞれ形成する。
7 and 8 show a second embodiment of the present invention. 7 and 8, the same reference numerals as those in FIGS. 1 and 4 indicate the same parts. In this embodiment, first, both surfaces of the strip-shaped negative electrode current collector foil 15 are intermittently coated with a negative electrode active material slurry by a doctor blade method, a screen printing method or the like and dried to form a plurality of negative electrode active material layers 16 respectively. Then, the negative electrode sheet 54 is formed. Then, the electrolytic slurry is continuously applied to both surfaces of the strip-shaped negative electrode current collector foil 15 by the doctor blade method so as to cover the plurality of negative electrode active material layers 16 and dried to form a pair of strip-shaped polymer electrolyte layers 1
7 and 17 are formed respectively.

【0018】一方、帯状の正極集電体箔12の両面に、
正極活物質スラリーをドクタブレード法によりそれぞれ
連続塗布し乾燥して、一対の正極活物質層13,13を
それぞれ形成する。次いで帯状の正極集電体箔12の両
面に、帯状の正極活物質層13を覆うように電解スラリ
ーをドクタブレード法によりそれぞれ連続塗布し乾燥し
て、一対の帯状のポリマー電解質層17,17をそれぞ
れ形成した後に、帯状の正極集電体箔12を正極活物質
層13及びポリマー電解質層16とともに、負極集電体
箔15の折畳み面積に相応した面積を有するように切断
する。これにより両面にポリマー電解質層17が形成さ
れた所定の面積の正極シート51が複数作製される。
On the other hand, on both sides of the strip-shaped positive electrode current collector foil 12,
The positive electrode active material slurry is continuously applied by a doctor blade method and dried to form a pair of positive electrode active material layers 13 and 13, respectively. Then, the electrolytic slurry is continuously applied to both surfaces of the strip-shaped positive electrode current collector foil 12 by the doctor blade method so as to cover the strip-shaped positive electrode active material layer 13 and dried to form a pair of strip-shaped polymer electrolyte layers 17 and 17. After each formation, the strip-shaped positive electrode current collector foil 12 is cut together with the positive electrode active material layer 13 and the polymer electrolyte layer 16 so as to have an area corresponding to the folded area of the negative electrode current collector foil 15. As a result, a plurality of positive electrode sheets 51 having a predetermined area and having the polymer electrolyte layer 17 formed on both surfaces thereof are produced.

【0019】次に上記帯状の負極シート54の上面に、
所定のピッチで上記複数の正極シート51を並べるとと
もに、負極シート54の下面に上記正極シート51の配
置されていない位置に所定のピッチで複数の正極シート
51を並べた後に、一対のローラ19,19で熱圧着し
て積層体60を作製する(図8)。更にこの積層体60
を複数回の葛折りにより折畳む。即ち、負極シート54
の一端の上面に位置する正極シート51上面が、隣接し
かつ上面に正極シート51の配置されていない負極シー
ト54上面にポリマー電解質層17を介して対向するよ
うに積層体60を折畳んだ後、負極シート54の一端近
傍の下面に位置する正極シート51下面が、隣接しかつ
下面に正極シート51の配置されていない負極シート5
4下面にポリマー電解質層17を介して対向するように
積層体60を折畳む。この作業を繰返して折畳んだ積層
体60を作製する。上記以外の構成及び製造方法は第1
の実施の形態と同一である。
Next, on the upper surface of the strip-shaped negative electrode sheet 54,
After arranging the plurality of positive electrode sheets 51 at a predetermined pitch and arranging the plurality of positive electrode sheets 51 at a predetermined pitch on the lower surface of the negative electrode sheet 54 at a predetermined pitch, a pair of rollers 19, By thermocompression bonding at 19, a laminate 60 is produced (FIG. 8). Further, this laminated body 60
Fold multiple times by folding. That is, the negative electrode sheet 54
After the laminated body 60 is folded so that the upper surface of the positive electrode sheet 51 located on the upper surface of one end of the positive electrode sheet 51 is adjacent to and faces the upper surface of the negative electrode sheet 54 on which the positive electrode sheet 51 is not disposed via the polymer electrolyte layer 17. The negative electrode sheet 5 located on the lower surface near one end of the negative electrode sheet 54 is adjacent to the lower surface of the negative electrode sheet 54, and the positive electrode sheet 51 is not arranged on the lower surface.
4. The laminated body 60 is folded so as to face the lower surface via the polymer electrolyte layer 17. This operation is repeated to produce the folded laminated body 60. The configuration and manufacturing method other than the above are the first
It is the same as the embodiment.

【0020】このように構成されたリチウムポリマー電
池50では、負極シート54と正極シート51が交互に
積層されるため、リチウムポリマー電池50のエネルギ
ー密度を向上することができる。この場合、帯状のポリ
マー電解質層17が2枚必要であるけれども、積層体6
0の折畳み回数が3回以上である場合には、サイクル特
性を向上できる。
In the lithium polymer battery 50 thus constructed, the negative electrode sheets 54 and the positive electrode sheets 51 are alternately laminated, so that the energy density of the lithium polymer battery 50 can be improved. In this case, although two strip-shaped polymer electrolyte layers 17 are required, the laminate 6
When the number of folds of 0 is 3 or more, cycle characteristics can be improved.

【0021】なお、上記第1及び第2の実施の形態で
は、負極スリットを負極集電体箔の折れ部分のうち負極
集電体箔の山折側及び谷折側の双方に設けたが、負極ス
リットを負極集電体箔の折れ部分のうち負極集電体箔の
山折側又は谷折側のいずれか一方に設けてもよい。ま
た、上記第1及び第2の実施の形態では、挟持される正
極シート11がその正極活物質層13表面にポリマー電
解質層17を有する場合を説明したが、負極シートの負
極活物質層表面にポリマー電解質層を介して正極シート
を積層可能であれば、正極シートの正極活物質層表面に
ポリマー電解質層を予め形成しなくてもよい。更に、上
記第1の実施の形態では、正極シートの一方の面と負極
シートの一方の面に、活物質層及びポリマー電解質層の
2層をそれぞれ設けた例(図4)を示し、上記第2の実
施の形態では、正極シートの両面と負極シートの両面
に、活物質及びポリマー電解質層の2層をそれぞれ設け
た例(図8)を示したが、これらに限らず、帯状の負極
シートの両面に負極活物質層及びポリマー電解質層の2
層をそれぞれ設け、複数の正極シートの一方の面に正極
活物質層及びポリマー電解質層の2層を設けてもよく、
或いは複数の正極シートの両面に正極活物質層及びポリ
マー電解質層の2層をそれぞれ設け、帯状の負極シート
の一方の面に負極活物質層及びポリマー電解質層の2層
を設けてもよい。但し、一方の面のみに活物質層及びポ
リマー電解質層の2層を有するシートは帯状の負極シー
トであることが好ましい。
In the first and second embodiments, the negative electrode slits are provided on both the mountain fold side and the valley fold side of the negative electrode current collector foil in the folded portion of the negative electrode current collector foil. The slit may be provided on one of the folded side of the negative electrode current collector foil and on the mountain fold side or the valley fold side of the negative electrode current collector foil. Further, in the first and second embodiments, the case where the sandwiched positive electrode sheet 11 has the polymer electrolyte layer 17 on the surface of the positive electrode active material layer 13 has been described. If the positive electrode sheet can be laminated via the polymer electrolyte layer, the polymer electrolyte layer need not be formed in advance on the surface of the positive electrode active material layer of the positive electrode sheet. Furthermore, in the first embodiment, an example (FIG. 4) in which two layers of the active material layer and the polymer electrolyte layer are provided on one surface of the positive electrode sheet and one surface of the negative electrode sheet, respectively, is shown. In the second embodiment, an example in which two layers of the active material and the polymer electrolyte layer are provided on both surfaces of the positive electrode sheet and the negative electrode sheet (FIG. 8) is shown, but the present invention is not limited to these, and the strip-shaped negative electrode sheet is also provided. 2 of negative electrode active material layer and polymer electrolyte layer on both sides of
Each layer may be provided, and two layers of a positive electrode active material layer and a polymer electrolyte layer may be provided on one surface of a plurality of positive electrode sheets,
Alternatively, two layers of a positive electrode active material layer and a polymer electrolyte layer may be respectively provided on both surfaces of a plurality of positive electrode sheets, and two layers of a negative electrode active material layer and a polymer electrolyte layer may be provided on one surface of a strip-shaped negative electrode sheet. However, the sheet having two layers of the active material layer and the polymer electrolyte layer only on one surface is preferably a strip-shaped negative electrode sheet.

【0022】[0022]

【実施例】次に本発明の実施例を比較例とともに詳しく
説明する。 <実施例1>先ず複数枚の正極シート11を作製した
(図5)。即ち、LiCoO2粉末70gと黒鉛粉末
(商品名;ケッチェンブラック)4gを、ポリフッ化ビ
ニリデンのN−メチルピロリドン溶液に分散混合して、
正極活物質スラリーを作製した。一方、フッ化ビニリデ
ン−ヘキサフルオロプロピレン共重合体(エルフアトケ
ム製、Kynar2810;ヘキサフルオロプロピレン
12wt%含有品)40gをジメチルカーボネート20
0gに60℃で溶解し、更に電解液80gを撹拌混合し
て、電解質スラリーを作製した。次に幅10cm長さが
1mのAl製の正極集電体箔12の上面に、正極活物質
スラリーをドクターブレード法により連続塗布し乾燥し
て、正極集電体箔12上面に正極活物質層13を形成
し、更にその正極活物質層13を覆うように電解質スラ
リーを連続塗布し乾燥してポリマー電解質層17を形成
した。正極活物質層13及びポリマー電解質層17が形
成された帯状の正極集電体箔12を、正極活物質層13
及びポリマー電解質層17とともに切断して、ポリマー
電解質層17を有する幅及び長さが10cm及び10c
mの10枚の正極シート11を得た。
EXAMPLES Next, examples of the present invention will be described in detail together with comparative examples. Example 1 First, a plurality of positive electrode sheets 11 were produced (FIG. 5). That is, 70 g of LiCoO 2 powder and 4 g of graphite powder (trade name; Ketjen Black) are dispersed and mixed in a N-methylpyrrolidone solution of polyvinylidene fluoride,
A positive electrode active material slurry was prepared. On the other hand, 40 g of vinylidene fluoride-hexafluoropropylene copolymer (manufactured by Elf Atchem, Kynar 2810; product containing hexafluoropropylene 12 wt%) was added to dimethyl carbonate 20.
It was dissolved in 0 g at 60 ° C., and 80 g of an electrolytic solution was further stirred and mixed to prepare an electrolyte slurry. Next, the positive electrode current collector foil 12 made of Al having a width of 10 cm and a length of 1 m is continuously coated with the positive electrode active material slurry by a doctor blade method and dried to form a positive electrode active material layer on the upper surface of the positive electrode current collector foil 12. 13 was formed, and the electrolyte slurry was continuously applied so as to cover the positive electrode active material layer 13 and dried to form a polymer electrolyte layer 17. The strip-shaped positive electrode current collector foil 12 on which the positive electrode active material layer 13 and the polymer electrolyte layer 17 are formed is used as the positive electrode active material layer 13
And with the polymer electrolyte layer 17, the width and length having the polymer electrolyte layer 17 are 10 cm and 10 c.
m positive electrode sheets 11 were obtained.

【0023】一方、帯状の負極シート14を作製した
(図6)。即ち、幅10cm長さが1mのCu製の負極
集電体箔15の上面に、燐片状天然黒鉛粉末50gをポ
リフッ化ビニリデンのN−メチルピロリドン溶液に分散
混合した負極活物質スラリーを、ドクタブレード法によ
り間欠塗布し乾燥して、負極集電体箔15上面に複数の
負極活物質層16を形成した。次にこの負極活物質層1
6を覆うように上記電解質スラリーをドクタブレード法
により連続塗布し乾燥してポリマー電解質層17を形成
し、ポリマー電解質層17を有する帯状の負極シート1
4を作製した。
On the other hand, a strip-shaped negative electrode sheet 14 was prepared (FIG. 6). That is, a negative electrode active material slurry in which 50 g of scaly natural graphite powder is dispersed and mixed in a N-methylpyrrolidone solution of polyvinylidene fluoride on the upper surface of a negative electrode current collector foil 15 made of Cu having a width of 10 cm and a length of 1 m is prepared by a doctor. A plurality of negative electrode active material layers 16 were formed on the upper surface of the negative electrode current collector foil 15 by intermittent coating using a blade method and drying. Next, this negative electrode active material layer 1
6 is continuously applied by a doctor blade method so as to cover 6 and dried to form a polymer electrolyte layer 17, and a strip-shaped negative electrode sheet 1 having the polymer electrolyte layer 17 is formed.
4 was produced.

【0024】上記帯状のポリマー電解質層17を上側に
した負極シート14上に、ポリマー電解質層17を下側
にした複数の正極シート11を、負極集電体箔15の折
れ部分で所定の間隔をあけて配置した状態で熱圧着して
積層体20を作製した(図4)。この積層体20を負極
集電体箔15の折れ部分で葛折りにより折畳んだ。即
ち、図3に示すように、正極シート11が配置されてい
ない負極集電体箔15の折れ部分を交互にジグザグに折
曲げて折畳んだ。これにより幅10cm長さ10cmの
折畳み面積を有する帯状の負極シート14のポリマー電
解質層17の間に、それぞれ幅10cm長さ10cmの
10枚の正極シート11が挟持されたリチウムポリマー
電池10を得た。この電池10を実施例1とした。
A plurality of positive electrode sheets 11 with the polymer electrolyte layer 17 on the lower side are placed on the negative electrode sheet 14 with the strip-shaped polymer electrolyte layer 17 on the upper side at predetermined intervals at the bent portions of the negative electrode current collector foil 15. The laminated body 20 was produced by thermocompression bonding in a state of being opened and arranged (FIG. 4). This laminate 20 was folded by folding at the folded portion of the negative electrode current collector foil 15. That is, as shown in FIG. 3, the folded portion of the negative electrode current collector foil 15 on which the positive electrode sheet 11 was not arranged was alternately bent in a zigzag manner and folded. Thus, a lithium polymer battery 10 was obtained in which ten positive electrode sheets 11 each having a width of 10 cm and a length of 10 cm were sandwiched between the polymer electrolyte layers 17 of the strip-shaped negative electrode sheet 14 having a folding area of 10 cm in width and 10 cm in length. . This battery 10 is referred to as Example 1.

【0025】<比較例1>実施例1と同一の手順で10
枚の正極シートを作製した。次いで実施例1と同一の手
順により得られた帯状の負極シートを切断して幅が10
cm長さが10cmの10枚の負極シートを得た。次に
単一の負極シートを単一の正極シートにポリマー電解質
層を介してそれぞれ熱圧着して10組の積層体を作製し
た。この10組の積層体を更に積層して正極シートと負
極シートの対抗面積が実施例1と略同一のリチウムポリ
マー電池を得た。この電池を比較例1とした。
Comparative Example 1 The same procedure as in Example 1 was repeated.
A positive electrode sheet was prepared. Then, the strip-shaped negative electrode sheet obtained by the same procedure as in Example 1 was cut to have a width of 10
Ten negative electrode sheets having a cm length of 10 cm were obtained. Next, the single negative electrode sheet was thermocompression-bonded to the single positive electrode sheet via the polymer electrolyte layer to prepare 10 sets of laminates. These 10 sets of laminates were further laminated to obtain a lithium polymer battery in which the opposing areas of the positive electrode sheet and the negative electrode sheet were substantially the same as in Example 1. This battery was designated as Comparative Example 1.

【0026】<比較例2>負極集電体箔の上面に負極活
物質スラリーをドクタブレード法により連続塗布し乾燥
することにより、連続した負極活物質層を有する負極シ
ート、即ち負極スリットを有しない負極シートを作成し
たことを除いて、実施例1と同様にしてリチウムポリマ
ー電池を得た。この二次電池を比較例2とした。
Comparative Example 2 A negative electrode sheet having a continuous negative electrode active material layer, that is, a negative electrode slit is not provided by continuously applying a negative electrode active material slurry on the upper surface of a negative electrode current collector foil by a doctor blade method and drying. A lithium polymer battery was obtained in the same manner as in Example 1 except that a negative electrode sheet was prepared. This secondary battery was designated as Comparative Example 2.

【0027】<比較試験>実施例1、比較例1及び比較
例2のリチウムポリマー電池の容量保持率のサイクル特
性を充放電試験機により測定した。この結果を図9に示
す。
<Comparative Test> The cycle characteristics of the capacity retention of the lithium polymer batteries of Example 1, Comparative Example 1 and Comparative Example 2 were measured by a charge / discharge tester. The result is shown in FIG.

【0028】<評価>図9の結果から明らかなように、
実施例1におけるリチウムポリマー電池のサイクル特性
における勾配は、比較例1及び2における勾配に比較し
て緩やかであり、実施例1の容量保持率のサイクル特性
は比較例1及び2の容量保持率のサイクル特性より向上
していることが判った。これは、実施例1では負極集電
体箔の折れ部分におけるポリマー電解質層の亀裂の発生
が阻止されたためであると考えられる。
<Evaluation> As is clear from the results shown in FIG.
The gradient in the cycle characteristics of the lithium polymer battery in Example 1 is gentler than that in Comparative Examples 1 and 2, and the cycle characteristic of the capacity retention rate of Example 1 is the capacity retention rate of Comparative Examples 1 and 2. It was found that the cycle characteristics were improved. It is considered that this is because in Example 1, the generation of cracks in the polymer electrolyte layer in the bent portion of the negative electrode current collector foil was prevented.

【0029】[0029]

【発明の効果】以上述べたように、本発明によれば、負
極集電体箔及びポリマー電解質層を帯状に連続した状態
で折畳み、負極活物質層を負極集電体箔の折れ部分で負
極スリットを設けて分割するように負極集電体箔上にそ
れぞれ形成し、正極シートがそれぞれ負極集電体箔の折
畳み面積に相応した面積を有し、更に負極集電体箔の折
れ部分を除くポリマー電解質層の間に正極シートをそれ
ぞれ挟持したので、電池の製造時に負極集電体箔の山折
側のポリマー電解質層に引張り応力が作用しても、ポリ
マー電解質層が上記負極スリットに侵入するように変形
して、上記引張り応力は低減される。この結果、電池の
製造時に、ポリマー電解質層への亀裂の発生を阻止でき
るので、電池のサイクル特性が低下するのを防止でき
る。
As described above, according to the present invention, the negative electrode current collector foil and the polymer electrolyte layer are folded in a continuous strip shape, and the negative electrode active material layer is formed at the bent portion of the negative electrode current collector foil. It is formed on the negative electrode current collector foil so as to be divided by providing slits, and the positive electrode sheet has an area corresponding to the folding area of the negative electrode current collector foil, and the bent portion of the negative electrode current collector foil is excluded. Since the positive electrode sheet was sandwiched between the polymer electrolyte layers, even if tensile stress acts on the polymer electrolyte layer on the mountain fold side of the negative electrode current collector foil during manufacturing of the battery, the polymer electrolyte layer may penetrate into the negative electrode slit. And the tensile stress is reduced. As a result, cracks in the polymer electrolyte layer can be prevented from occurring during the production of the battery, so that the cycle characteristics of the battery can be prevented from being deteriorated.

【0030】また電池の充放電を繰返すと、負極活物質
層へのリチウムイオンの吸蔵及び放出によって負極活物
質層が膨張及び収縮して体積変化して、負極活物質層の
膨張によりポリマー電解質層に引張り応力が作用するけ
れども、ポリマー電解質層が上記負極スリットに侵入す
るように変形するので、上記引張り応力は低減される。
この結果、電池の充放電時に、ポリマー電解質層への亀
裂の発生を阻止できるので、電池のサイクル特性が低下
するのを防止できる。更に負極集電体箔の折れ部分には
正極活物質層が存在せず、この折れ部分に負極活物質層
が存在しても、この負極活物質層はリチウムイオンの吸
蔵及び放出に寄与しないため、負極集電体箔の折れ部分
に負極スリットを設けることにより、負極活物質層の不
要部分が取除かれる。この結果、電池のエネルギ密度を
向上できる。
When the battery is repeatedly charged and discharged, the negative electrode active material layer expands and contracts due to the absorption and release of lithium ions into the negative electrode active material layer to change in volume, and the negative electrode active material layer expands to cause the polymer electrolyte layer to expand. Although the tensile stress acts on the polymer electrolyte layer, the polymer electrolyte layer is deformed so as to penetrate into the negative electrode slit, so that the tensile stress is reduced.
As a result, it is possible to prevent the generation of cracks in the polymer electrolyte layer during charge / discharge of the battery, so that it is possible to prevent deterioration of the cycle characteristics of the battery. Furthermore, the positive electrode active material layer does not exist in the bent portion of the negative electrode current collector foil, and even if the negative electrode active material layer exists in the bent portion, the negative electrode active material layer does not contribute to occlusion and release of lithium ions. By providing the negative electrode slit in the bent portion of the negative electrode current collector foil, the unnecessary portion of the negative electrode active material layer is removed. As a result, the energy density of the battery can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明第1実施形態のリチウムポリマー電池を
示す図2のA−A線断面図。
FIG. 1 is a sectional view taken along the line AA of FIG. 2 showing a lithium polymer battery according to a first embodiment of the present invention.

【図2】その電池を示す図1のB−B線断面図。FIG. 2 is a cross-sectional view taken along line BB of FIG. 1 showing the battery.

【図3】その電池の密封直前の状態を示す分解斜視図。FIG. 3 is an exploded perspective view showing a state immediately before sealing the battery.

【図4】その負極シートに正極シートが熱圧着される直
前の状態を示す斜視図。
FIG. 4 is a perspective view showing a state immediately before the positive electrode sheet is thermocompression bonded to the negative electrode sheet.

【図5】その正極シートの製造工程を示す図。FIG. 5 is a diagram showing a manufacturing process of the positive electrode sheet.

【図6】その負極シートの製造工程を示す図。FIG. 6 is a diagram showing a manufacturing process of the negative electrode sheet.

【図7】本発明第2実施形態を示す図1に対応する断面
図。
FIG. 7 is a sectional view corresponding to FIG. 1, showing a second embodiment of the present invention.

【図8】その負極シートに正極シートが熱圧着される直
前の状態を示す斜視図。
FIG. 8 is a perspective view showing a state immediately before the positive electrode sheet is thermocompression bonded to the negative electrode sheet.

【図9】実施例1及び比較例1のリチウムポリマー電池
の容量保持率のサイクル特性を示す図。
FIG. 9 is a diagram showing cycle characteristics of capacity retention of the lithium polymer batteries of Example 1 and Comparative Example 1.

【符号の説明】[Explanation of symbols]

10,50 リチウムポリマー電池 11,51 正極シート 12 正極集電体箔 13 正極活物質層 14,54 負極シート 15 負極集電体箔 16 負極活物質層 17 ポリマー電解質層 18 負極スリット 20,60 積層体 10,50 Lithium polymer battery 11,51 Positive electrode sheet 12 Positive electrode current collector foil 13 Positive electrode active material layer 14,54 Negative electrode sheet 15 Negative electrode current collector foil 16 Negative electrode active material layer 17 Polymer electrolyte layer 18 Negative slit 20,60 laminate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 水口 暁夫 茨城県那珂郡那珂町向山1002−14 三菱マ テリアル株式会社総合研究所那珂研究セン ター内 (72)発明者 樋上 晃裕 茨城県那珂郡那珂町向山1002−14 三菱マ テリアル株式会社総合研究所那珂研究セン ター内 Fターム(参考) 5H029 AJ03 AJ11 AK03 AL07 AM03 AM16 BJ04 BJ15 CJ03 CJ22 HJ12 5H050 AA08 AA14 BA15 CA08 CB08 DA02 DA03 FA06 GA03 GA22 HA12    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Akio Mizuguchi             1002-14 Mukoyama, Naka-machi, Naka-gun, Ibaraki Prefecture             Terari Co., Ltd.             Inside (72) Inventor Akihiro Higami             1002-14 Mukoyama, Naka-machi, Naka-gun, Ibaraki Prefecture             Terari Co., Ltd.             Inside F term (reference) 5H029 AJ03 AJ11 AK03 AL07 AM03                       AM16 BJ04 BJ15 CJ03 CJ22                       HJ12                 5H050 AA08 AA14 BA15 CA08 CB08                       DA02 DA03 FA06 GA03 GA22                       HA12

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 正極集電体箔(12)の表面に正極活物質層
(13)が形成された正極シート(11)の前記正極活物質層(1
3)と、負極集電体箔(15)の表面に負極活物質層(16)が形
成された負極シート(14)の前記負極活物質層(16)との間
に、ポリマー電解質層(17)を介装して前記正極シート(1
1)及び前記負極シート(14)が積層され、前記積層体(20)
が1回折りにより又は2回以上の葛折りにより折畳まれ
たリチウムポリマー電池において、 前記負極集電体箔(15)及び前記ポリマー電解質層(17)が
帯状に連続した状態で折畳まれ、 前記負極活物質層(16)が前記負極集電体箔(15)の折れ部
分で負極スリット(18)を設けて分割されるように前記負
極集電体箔(15)上にそれぞれ形成され、 前記正極シート(11)がそれぞれ前記負極集電体箔(15)の
折畳み面積に相応した面積を有しかつ前記負極集電体箔
(15)の折れ部分を除く前記ポリマー電解質層(17)の間に
それぞれ挟持されたことを特徴とするリチウムポリマー
電池。
1. A positive electrode active material layer on the surface of the positive electrode current collector foil (12).
The positive electrode active material layer (1) of the positive electrode sheet (11) on which (13) is formed
3) and the negative electrode active material layer (16) of the negative electrode sheet (14) having the negative electrode active material layer (16) formed on the surface of the negative electrode current collector foil (15), the polymer electrolyte layer (17 ) And the positive electrode sheet (1
1) and the negative electrode sheet (14) are laminated, the laminate (20)
In a lithium polymer battery in which the negative electrode current collector foil (15) and the polymer electrolyte layer (17) are folded in a belt-like continuous state, The negative electrode active material layer (16) is respectively formed on the negative electrode current collector foil (15) so as to be divided by providing a negative electrode slit (18) at a bent portion of the negative electrode current collector foil (15), The positive electrode sheet (11) has an area corresponding to the folding area of the negative electrode current collector foil (15), and the negative electrode current collector foil.
A lithium polymer battery, which is sandwiched between the polymer electrolyte layers (17) excluding the bent portions of (15).
【請求項2】 負極スリット(18)が負極集電体箔(15)の
折れ部分のうち前記負極集電体箔(15)の山折側又は谷折
側のいずれか一方又は双方に設けられた請求項1記載の
リチウムポリマー電池。
2. The negative electrode slit (18) is provided on either one or both of the mountain fold side and the valley fold side of the negative electrode current collector foil (15) among the bent portions of the negative electrode current collector foil (15). The lithium polymer battery according to claim 1.
JP2001284799A 2001-09-19 2001-09-19 Lithium polymer battery Withdrawn JP2003092143A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001284799A JP2003092143A (en) 2001-09-19 2001-09-19 Lithium polymer battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001284799A JP2003092143A (en) 2001-09-19 2001-09-19 Lithium polymer battery

Publications (1)

Publication Number Publication Date
JP2003092143A true JP2003092143A (en) 2003-03-28

Family

ID=19108060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001284799A Withdrawn JP2003092143A (en) 2001-09-19 2001-09-19 Lithium polymer battery

Country Status (1)

Country Link
JP (1) JP2003092143A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7906233B2 (en) 2003-09-01 2011-03-15 Byd Company Limited Lithium ion secondary battery
DE102011102847B4 (en) * 2010-06-10 2019-12-12 Denso Corporation Layered electrode product for a cell and method for its production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7906233B2 (en) 2003-09-01 2011-03-15 Byd Company Limited Lithium ion secondary battery
DE102011102847B4 (en) * 2010-06-10 2019-12-12 Denso Corporation Layered electrode product for a cell and method for its production

Similar Documents

Publication Publication Date Title
JP3680744B2 (en) Lithium ion polymer secondary battery
US7384705B2 (en) Electrode and battery, and methods of producing the same
US20030134190A1 (en) Nonaqueous electrolyte battery and production method therefor
JP5521051B2 (en) Secondary battery and manufacturing method thereof
JP6032628B2 (en) Thin battery
JPH11162443A (en) Assembled battery
JP2000030742A (en) Lithium-ion secondary battery element
JP7220617B2 (en) ALL-SOLID BATTERY AND METHOD FOR MANUFACTURING ALL-SOLID BATTERY
JP2005285647A (en) Power source
JP2006202680A (en) Polymer battery
JP2003100282A (en) Electrode and its manufacturing method
JP2002157997A (en) Method of manufacturing collapsible lithium battery
JP2004071302A (en) Storage element module and its manufacturing method
JPH09320637A (en) Nonaqueous electrolyte secondary battery
CN111354922A (en) Wound battery and method for manufacturing wound battery
CN111326707A (en) Laminated battery and method for manufacturing laminated battery
JP2000173657A (en) Solid electrolyte battery
JP3709495B2 (en) Lithium ion polymer secondary battery
JP2003092145A (en) Lithiumion polymer secondary battery
JP2003100350A (en) Cell and its making method
JP3680809B2 (en) Lithium ion polymer secondary battery and manufacturing method thereof
JP2003092144A (en) Lithium polymer secondary battery
JP2002251989A (en) Lithium ion polymer secondary battery
JP2004207119A (en) Lithium ion polymer secondary battery
JP2003092143A (en) Lithium polymer battery

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081202