JPH09320637A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH09320637A
JPH09320637A JP8141901A JP14190196A JPH09320637A JP H09320637 A JPH09320637 A JP H09320637A JP 8141901 A JP8141901 A JP 8141901A JP 14190196 A JP14190196 A JP 14190196A JP H09320637 A JPH09320637 A JP H09320637A
Authority
JP
Japan
Prior art keywords
positive electrode
separator
negative electrode
positive
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8141901A
Other languages
Japanese (ja)
Inventor
Kazuya Kojima
和也 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP8141901A priority Critical patent/JPH09320637A/en
Publication of JPH09320637A publication Critical patent/JPH09320637A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery having a high volumetric energy density. SOLUTION: In a nonaqueous electrolyte secondary battery comprising positive and negative electrodes stacked with a separator between them, the plurality of positive electrodes 15 are secured to one side of the long-size separator 17 along the longitudinal direction, and the plurality of negative electrodes 16 to the other side of the separator 17 along the longitudinal direction, in such a way that they alternate in a line without overlapping each other, and the separator 17 on which the positive and negative electrodes 15, 16 are placed is folded to form an electrode stack. At each end of the separator 17, the positive and negative electrodes 15, 16 are fixed by a separator band having a predetermined width and a predetermined thickness. At the portion of the positive electrode 15 fixed by the separator band, a portion where a positive electrode active material is not applied is provided by a predetermined width so that the separator band does not abut to the positive electrode active material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は積層構造を有する非
水電解液二次電池に関し、更に詳しくは積層する電極間
のセパレータの枚数を小さくし、電池の体積エネルギー
密度の向上を図ることに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery having a laminated structure, and more specifically to reducing the number of separators between electrodes to be laminated to improve the volumetric energy density of the battery. Is.

【0002】[0002]

【従来の技術】近年、電子技術のめざましい進歩により
電子機器の小型・軽量化が進み、それに伴い携帯用電子
機器の電源としての電池に対しても、ますます小型・軽
量、且つ高エネルギー密度であることが求められるよう
になってきている。
2. Description of the Related Art In recent years, electronic devices have become smaller and lighter due to remarkable progress in electronic technology, and as a result, batteries for portable electronic devices have become smaller and lighter with higher energy density. There is an increasing demand for something.

【0003】従来、一般用途の二次電池としては、鉛電
池、ニッケル・カドミウム電池等、水溶液系二次電池が
主流である。しかしながら、これらの水溶液系二次電池
はサイクル特性には優れているものの、電池重量やエネ
ルギー密度の点で十分に満足できるものではなかった。
Conventionally, an aqueous solution type secondary battery such as a lead battery and a nickel-cadmium battery has been mainly used as a secondary battery for general use. However, although these aqueous secondary batteries have excellent cycle characteristics, they are not sufficiently satisfactory in terms of battery weight and energy density.

【0004】そこで、最近ではリチウムやリチウム合
金、更に炭素材料のようなリチウムイオンをドープ且つ
脱ドープが可能な物質を負極として使用し、また、正極
にリチウムコバルト酸化物等のリチウム複合酸化物を使
用する非水電解液二次電池の研究開発が行われてきてい
る。この電池は電池電圧が高く、高エネルギー密度を有
し、サイクル特性に優れたものである。
Therefore, recently, substances capable of doping and dedoping lithium ions such as lithium and lithium alloys and carbon materials have been used as negative electrodes, and lithium composite oxides such as lithium cobalt oxides have been used as positive electrodes. Research and development of non-aqueous electrolyte secondary batteries to be used have been conducted. This battery has a high battery voltage, a high energy density, and excellent cycle characteristics.

【0005】特に省エネルギー、環境汚染等の問題から
ロードレベリング等で使用する高電圧(数十〜数百ボル
ト)、高エネルギー容量、高エネルギー密度の電池の開
発が望まれている。これら高電圧、高容量が要求される
電池の場合、単電池が数十〜数百個も必要となり、通常
数セルの単電池が直列、または並列に接続された組電池
の集合体の形態を採ることが普通である。
Particularly, from the problems of energy saving and environmental pollution, it is desired to develop a high voltage (several tens to several hundreds of volts), high energy capacity, and high energy density battery used for load leveling and the like. In the case of these batteries that require high voltage and high capacity, several tens to several hundreds of unit cells are required, and usually, a form of an assembled battery assembly in which unit cells of several cells are connected in series or in parallel is required. It is normal to collect.

【0006】一方、使用される単電池の構造は、長尺電
極を巻回してなる渦巻き型、平板電極を積層してなる平
角型の2つのタイプが一般的である。渦巻き型構造の電
池は比較的電池構造が簡単であるものの、円筒形状にな
ることからスペースファクターが悪く、結果的に体積エ
ネルギー密度が低下し、また、充放電時の発熱による蓄
熱が大きくなるという問題点があった。
On the other hand, the structure of the unit cell used is generally of two types: a spiral type in which a long electrode is wound, and a rectangular type in which flat plate electrodes are laminated. Although the battery with a spiral structure has a relatively simple battery structure, it has a poor space factor due to its cylindrical shape, resulting in a decrease in volumetric energy density and a large amount of heat storage due to heat generation during charging / discharging. There was a problem.

【0007】これに対して、平角型構造の電池はスペー
スファクターが良く、充放電時の蓄熱も小さく、特にロ
ードレベリング等で使用する複数個の単電池を接続した
組電池に用いて好適である。
On the other hand, the rectangular battery has a good space factor and a small amount of heat storage during charging and discharging, and is particularly suitable for use as an assembled battery in which a plurality of cells used for load leveling and the like are connected. .

【0008】しかしながら、この平角型構造の電池には
次のような問題点があった。即ち、平角型構造の電池は
組み立て作業の簡便のため、正極および負極電極は予め
2枚のセパレータで袋状に挟み、各々を正極ユニット、
負極ユニットとし、これらを順次積層する積層構造を採
っていた。この場合、正極と負極の間にはセパレータが
2枚介在することになり、これらセパレータが一定の体
積を占めることによって、形成された電池の体積エネル
ギー密度を下げることになっていた。また、個別に形成
された正極と負極とを積層する作業時に、正極と負極と
の相対的位置にずれの生じる虞れがあった。
However, the battery having the rectangular structure has the following problems. That is, in order to simplify the assembly work of a flat battery, the positive electrode and the negative electrode are preliminarily sandwiched between two separators in a bag shape, and each of them is a positive electrode unit,
A negative electrode unit was used, and a laminated structure in which these were sequentially laminated was adopted. In this case, two separators are interposed between the positive electrode and the negative electrode, and these separators occupy a certain volume, thereby lowering the volume energy density of the formed battery. Further, there is a possibility that the relative positions of the positive electrode and the negative electrode may be displaced during the work of stacking the positive electrode and the negative electrode that are individually formed.

【0009】また、電極を2枚のセパレータで袋状に挟
むため、電極周囲にはセパレータのヒートシール部があ
り、これによっても体積エネルギー密度を下げていた。
Further, since the electrode is sandwiched between two separators in a bag shape, there is a heat seal portion of the separator around the electrode, which also reduces the volume energy density.

【0010】[0010]

【発明が解決しようとする課題】従って本発明の課題
は、積層型の平角型構造の電池において、正極と負極の
間に介在するセパレータの数を少なくして電池の体積エ
ネルギー密度を増加し、スペースファクターの良い、高
エネルギー容量の非水電解液二次電池を提供しようとす
るものである。更に、積層時における正極と負極との位
置ずれ発生の防止を図るものである。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to increase the volumetric energy density of a battery by reducing the number of separators interposed between the positive electrode and the negative electrode in a laminated flat type battery. It is intended to provide a high energy capacity non-aqueous electrolyte secondary battery with a good space factor. Further, it is intended to prevent the positional deviation between the positive electrode and the negative electrode from occurring during stacking.

【0011】[0011]

【課題を解決するための手段】本発明は上記課題に鑑み
なされたものであり、正極集電体の片面、若しくは両面
に正極活物質を塗布したシート状の正極電極と、負極集
電体の片面、若しくは両面に負極活物質を塗布したシー
ト状の負極電極とがセパレータを介して積層されてなる
非水電解液二次電池において、複数の正極電極を長尺の
セパレートシートの一方の面に長手方向に沿って、ま
た、複数の負極電極を前記セパレートシートの他の面に
長手方向に沿って、それぞれが互いに重なり合うことな
く交互に一列に配置して固定し、更に、正極と負極を配
設した前記セパレートシートが折り畳んで非水電解液二
次電池を形成する。
The present invention has been made in view of the above problems, and a sheet-shaped positive electrode having a positive electrode active material coated on one side or both sides of a positive electrode current collector and a negative electrode current collector. In a non-aqueous electrolyte secondary battery in which a sheet-shaped negative electrode coated with a negative electrode active material on one side or both sides is laminated via a separator, a plurality of positive electrodes are provided on one side of a long separate sheet. Along the lengthwise direction, and also on the other surface of the separate sheet, along the lengthwise direction, a plurality of negative electrodes are alternately arranged and fixed in a row without overlapping each other. The provided separate sheet is folded to form a non-aqueous electrolyte secondary battery.

【0012】前記セパレートシートの両側端部におい
て、所定の幅と所定の厚みを有する押さえ部材により、
正極電極と負極電極とを固定する。また、押さえ部材に
よりセパレートシート上に固定される正極電極の両側端
に、前記押さえ部材が正極活物質に当接することがない
所定の幅で正極活物質の未塗布部を設けて上記課題を解
決する。
At both end portions of the separate sheet, by pressing members having a predetermined width and a predetermined thickness,
The positive electrode and the negative electrode are fixed. Further, the above problem is solved by providing an uncoated portion of the positive electrode active material with a predetermined width so that the pressing member does not come into contact with the positive electrode active material, at both ends of the positive electrode fixed on the separate sheet by the pressing member. To do.

【0013】本発明によると正極、負極の電極枚数に対
するセパレータの枚数が従来に比して略1/2に削減で
き、従って、電池特性に影響を及ぼすことなく体積エネ
ルギー密度が大幅に向上する。また、正負電極ユニット
における正極と負極との相対位置関係が一定に定まる。
According to the present invention, the number of separators with respect to the number of positive and negative electrodes can be reduced to about 1/2 of the conventional one, and therefore the volume energy density can be greatly improved without affecting the battery characteristics. Further, the relative positional relationship between the positive electrode and the negative electrode in the positive and negative electrode units is fixed.

【0014】[0014]

【発明の実施の形態】本発明の実施形態例について図1
ないし図8を参照して説明する。図1は本発明における
非水電解液二次電池の、(a)は正極の形状を、(b)
は負極の形状を示し、図2は本発明における非水電解液
二次電池の正極と負極の積層方法について説明するため
の図である。図3は正極のセパレータ上への固定につい
て説明するための図であり、図4は同様に負極のセパレ
ータ上への固定について説明するための図である。ま
た、図5は本発明の非水電解液二次電池の斜視図であ
り、図6はこの非水電解液二次電池の内部構成を示す斜
視図である。更に、図7は本発明との比較のために構成
された非水電解液二次電池の、(a)は正極の形状を、
(b)は負極の形状を、(c)はセパレータの形状を示
す図であり、図8は本発明との比較のために構成され
た、従来と同一構造の電極ユニットの断面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an embodiment of the present invention.
This will be described with reference to FIG. FIG. 1 shows the shape of the positive electrode in the non-aqueous electrolyte secondary battery according to the present invention, and FIG.
Shows the shape of the negative electrode, and FIG. 2 is a diagram for explaining a method for laminating the positive electrode and the negative electrode of the non-aqueous electrolyte secondary battery in the present invention. FIG. 3 is a diagram for explaining fixation of the positive electrode on the separator, and FIG. 4 is a diagram for similarly explaining fixation of the negative electrode on the separator. 5 is a perspective view of the non-aqueous electrolyte secondary battery of the present invention, and FIG. 6 is a perspective view showing the internal structure of the non-aqueous electrolyte secondary battery. Further, FIG. 7 shows a non-aqueous electrolyte secondary battery configured for comparison with the present invention, (a) shows the shape of the positive electrode,
8B is a diagram showing the shape of the negative electrode and FIG. 8C is a diagram showing the shape of the separator, and FIG. 8 is a cross-sectional view of an electrode unit having the same structure as the conventional one, which is configured for comparison with the present invention.

【0015】まず、正極は次のようにして作製した。炭
酸リチウムと炭酸コバルトをLi/Co(モル比)=1
になるように混合し、空気中で900℃、5時間焼成し
て正極活物質(LiCoO2 )を合成した。この正極活
物質を自動乳鉢を用いて粉砕し、LiCoO2 粉末を得
た。このようにして得られたLiCoO2 粉末を95重
量%、炭酸リチウムを5重量%の割合で混合する。得ら
れた混合品を91重量%、導電体材としてグラファイト
を6重量%、結着剤としてポリフッ化ビニリデンを3重
量%の割合で混合して正極合剤を作製した。この正極合
剤をN−メチル−2−ピロリドンに分散してスラリー状
とし、これを正極集電体である帯状のアルミニウム箔
(厚さ20μm)の両面に塗布し、乾燥後、ローラープ
レス機で圧縮成形して正極を作製した。
First, the positive electrode was manufactured as follows. Li / Co (molar ratio) = 1 for lithium carbonate and cobalt carbonate
To obtain a positive electrode active material (LiCoO 2 ) by calcination in air at 900 ° C. for 5 hours. This positive electrode active material was crushed using an automatic mortar to obtain LiCoO 2 powder. The LiCoO 2 powder thus obtained is mixed at a ratio of 95% by weight and lithium carbonate at a ratio of 5% by weight. 91% by weight of the obtained mixed product, 6% by weight of graphite as a conductor material, and 3% by weight of polyvinylidene fluoride as a binder were mixed to prepare a positive electrode mixture. This positive electrode mixture was dispersed in N-methyl-2-pyrrolidone to form a slurry, which was applied to both sides of a strip-shaped aluminum foil (thickness 20 μm) which is a positive electrode current collector, dried, and then dried with a roller press. A positive electrode was produced by compression molding.

【0016】負極は次のようにして作製した。出発物質
に石油ピッチを用い、これを酸素を含む官能基を10〜
20%導入(所謂、酸素架橋)した後、不活性ガス中に
おいて1000℃で焼成してガラス状炭素に近い性質の
難黒鉛化炭素材料を得た。この炭素材料を90重量%、
結着剤としてポリフッ化ビニリデンを10重量%の割合
で混合して負極合剤を作製した。この負極合剤をN−メ
チル−2−ピロリドンに分散してスラリー状とし、これ
を負極集電体である帯状の銅箔(厚さ10μm)の両面
に塗布し、乾燥後、ローラープレス機で圧縮成形して負
極を作製した。
The negative electrode was manufactured as follows. Petroleum pitch was used as the starting material, and the functional group containing oxygen was added to
After introducing 20% (so-called oxygen crosslinking), it was fired at 1000 ° C. in an inert gas to obtain a non-graphitizable carbon material having a property close to that of glassy carbon. 90% by weight of this carbon material,
As a binder, polyvinylidene fluoride was mixed at a ratio of 10% by weight to prepare a negative electrode mixture. This negative electrode mixture was dispersed in N-methyl-2-pyrrolidone to form a slurry, which was applied to both sides of a strip-shaped copper foil (thickness 10 μm) which is a negative electrode current collector, and after drying, with a roller press machine. A negative electrode was produced by compression molding.

【0017】つぎに、本発明の実施例における正極と負
極の形状について図1を参照して説明する。まず、正極
15は図1(a)に示すように、横W1 =265mm、
縦D1 =110mmの正極活物質22が塗布された部位
と、正極集電体がそのまま突出した両側の耳部7aと耳
部7bとで構成されている。一方、負極16は同図
(b)に示すように、横W2 =269mm、縦D2 =1
12mmの負極活物質23が塗布された部位と、負極集
電体がそのまま突出している耳部8とで構成されてい
る。この耳部7aと耳部8はそれぞれ集電と、後述する
セパレータへの固定に、また、耳部7bはセパレータへ
の固定に用いられる。
Next, the shapes of the positive electrode and the negative electrode in the embodiment of the present invention will be described with reference to FIG. First, as shown in FIG. 1A, the positive electrode 15 has a lateral W 1 = 265 mm,
The vertical D 1 = 110 mm is composed of a portion coated with the positive electrode active material 22, and the ears 7a and 7b on both sides from which the positive electrode current collector protrudes. On the other hand, the negative electrode 16 has a horizontal W 2 = 269 mm and a vertical D 2 = 1 as shown in FIG.
12 mm of the negative electrode active material 23 is applied, and the ears 8 from which the negative electrode current collector protrudes as it is. The ears 7a and 8 are used for collecting current and fixing to a separator described later, and the ears 7b are used for fixing to the separator.

【0018】上述した正極15と負極16は図2に示す
ように、幅W3 =273mm、厚さt=25μmのポリ
プロピレン製の微多孔性フィルムからなるセパレータ1
7に、その一方の面に正極15を、また、他の面に負極
16を所定の間隙を設けて交互に配置する。セパレータ
17は図2に示すように、谷折り、山折りを行って正極
15および負極16を折り畳み積層電極体を形成する。
尚、本実施例においては正極15を53枚、負極16を
54枚用い、積層の両端は負極16となるように折り畳
んで積層する。また、同図からも分かるように、正極1
5と負極16はそれぞれ、耳部が同一側に出るように配
置する。
As shown in FIG. 2, the above-described positive electrode 15 and negative electrode 16 are separators 1 made of a polypropylene microporous film having a width W 3 = 273 mm and a thickness t = 25 μm.
7, the positive electrodes 15 are alternately arranged on one surface and the negative electrodes 16 are arranged on the other surface with a predetermined gap. As shown in FIG. 2, the separator 17 is valley-folded and mountain-folded to fold the positive electrode 15 and the negative electrode 16 to form a laminated electrode body.
In this embodiment, 53 positive electrodes 15 and 54 negative electrodes 16 are used, and both ends of the stack are folded so that the negative electrodes 16 are formed. Further, as can be seen from the figure, the positive electrode 1
5 and the negative electrode 16 are arranged so that the ears are on the same side.

【0019】正極15のセパレータ17への固定を図3
に示す。幅W4 =4mm、厚さt=25μmのポリプロ
ピレン製の微多孔性フィルムからなるセパレータ帯18
を用いて、正極15の両側の耳部7a、7bをセパレー
タ17と挟み、ヒートシール部19a、19b、19
c、19dの4ヵ所を熱溶着して、正極15をセパレー
タ15に固定する。
The fixing of the positive electrode 15 to the separator 17 is shown in FIG.
Shown in Separator strip 18 made of a polypropylene microporous film having a width W 4 = 4 mm and a thickness t = 25 μm
The ears 7a, 7b on both sides of the positive electrode 15 are sandwiched with the separator 17 by using the heat seal parts 19a, 19b, 19
The positive electrode 15 is fixed to the separator 15 by heat-welding the four portions of c and 19d.

【0020】また、負極16のセパレータ17への固定
は図4に示すように、上述したセパレータ帯18を用い
て負極16の両側をセパレータ17と挟み、ヒートシー
ル部19e、19f、19g、19hの4ヵ所を熱溶着
して、負極16をセパレータ17に固定する。
Further, as shown in FIG. 4, the negative electrode 16 is fixed to the separator 17 by sandwiching the both sides of the negative electrode 16 with the separator 17 by using the above-mentioned separator strips 18, and by fixing the heat seal portions 19e, 19f, 19g and 19h. The negative electrode 16 is fixed to the separator 17 by heat-welding the four places.

【0021】上述したように折り畳んで積層された積層
電極体は図5および図6に示すように、電池ケース4に
収納されて電池を形成する。正極15の耳部7a、およ
び負極16の耳部8をそれぞれ個別に束ねて、正極電極
端子1および負極電極端子2に超音波で溶着し、その
後、安全弁3を有する天板5を電池ケース4に溶接した
後、電解液を含浸して容量が60Ahの最終電池を得
た。
The laminated electrode body folded and laminated as described above is housed in the battery case 4 to form a battery, as shown in FIGS. 5 and 6. The ears 7a of the positive electrode 15 and the ears 8 of the negative electrode 16 are individually bundled and ultrasonically welded to the positive electrode terminal 1 and the negative electrode terminal 2, and then the top plate 5 having the safety valve 3 is attached to the battery case 4. After welding, the electrolyte was impregnated into a final battery with a capacity of 60 Ah.

【0022】比較例 本発明の実施例と比較するために従来の電極構造の電池
を作製した。正極は図7(a)に示すように、横W5
265mm、縦D5 =107mmの正極活物質22が塗
布された部位と正極集電体がそのまま突出している耳部
7とで構成されている。また、負極は図7(b)に示す
ように、横W6 =270mm、縦D6 =109mmの負
極活物質23が塗布された部位と負極集電体がそのまま
突出している耳部8とで構成されている。更に、正極1
5と負極16の間に介在させて両者間を分離するセパレ
ータ6は、横W7 =273mm、縦D7 =112mm、
厚さt=25μmのポリプロピレン製の微多孔性フィル
ムからなっている。
Comparative Example A battery having a conventional electrode structure was prepared for comparison with the examples of the present invention. As shown in FIG. 7A, the positive electrode has a lateral W 5 =
The positive electrode active material 22 having a length of 265 mm and a vertical D 5 = 107 mm is applied, and the positive electrode current collector protrudes as it is from the ear portion 7. In addition, as shown in FIG. 7B, the negative electrode is composed of a portion having a width W 6 = 270 mm and a length D 6 = 109 mm, to which the negative electrode active material 23 is applied, and an ear portion 8 from which the negative electrode current collector protrudes. It is configured. Furthermore, the positive electrode 1
The separator 6, which is interposed between the negative electrode 16 and the negative electrode 16 to separate them from each other, has a width W 7 = 273 mm and a length D 7 = 112 mm.
It consists of a polypropylene microporous film with a thickness t = 25 μm.

【0023】図8は比較例の電池ユニットの断面図であ
って、セパレータ6a、6bの2枚のセパレータを用い
て正極15を挟み、その周囲を所定の間隔でセパレータ
6a、6bを熱溶着して正極15を袋状に包み、一枚の
正極ユニット9を形成する。また、同様にセパレータ6
c、6dを2枚のセパレータを用いて負極16を挟み、
その周囲を所定の間隔でセパレータ6c、6dを熱溶着
して負極16を袋状に包み、一枚の負極ユニット10を
形成する。この正極ユニット9を46枚と負極ユニット
10を47枚、交互に積層して積層電極体とし、それ以
外は実施例と同様にして電池を作製した。電池容量は5
0Ahであった。尚、積層電極体の両端は負極ユニット
10となるようにする。
FIG. 8 is a cross-sectional view of a battery unit of a comparative example. The positive electrode 15 is sandwiched between two separators 6a and 6b, and the separators 6a and 6b are heat-welded at predetermined intervals around the positive electrode 15. By wrapping the positive electrode 15 in a bag shape, one positive electrode unit 9 is formed. Similarly, the separator 6
C and 6d sandwich the negative electrode 16 with two separators,
The negative electrodes 16 are wrapped in a bag shape by heat-sealing the separators 6c and 6d at predetermined intervals around the periphery thereof to form a single negative electrode unit 10. A battery was produced in the same manner as in the example except that 46 sheets of the positive electrode unit 9 and 47 sheets of the negative electrode unit 10 were alternately laminated to form a laminated electrode body. Battery capacity is 5
It was 0 Ah. The both ends of the laminated electrode body serve as the negative electrode unit 10.

【0024】上述した実施例と比較例の単電池の電極積
層体部分の体積エネルギー密度を表1に示す。
Table 1 shows the volume energy densities of the electrode laminate portions of the unit cells of the above-mentioned examples and comparative examples.

【0025】[0025]

【表1】 [Table 1]

【0026】表1より本発明に係わる単電池は従来に比
して20%以上、体積エネルギー密度の高い電池である
ことが分かる。
It can be seen from Table 1 that the unit cell according to the present invention has a high volume energy density of 20% or more as compared with the conventional one.

【0027】本実施例においては、正極活物質22が塗
布されていない耳部7a、7bには厚さが25μmのセ
パレータ帯18が2枚重なることになる。しかしながら
正極活物質22の塗布厚は片面当たり70μm程度であ
り、従ってこれによって電極積層体の厚みが増すことは
ない。また、片面にのみ活物質を塗布した電極構造の場
合も、セパレータ帯18の2枚の合計の厚みは50μm
であることから、塗布厚70μmよりも小さく、従って
この場合も電極積層体の厚みが増すことはない。また、
塗布厚が薄い場合はセパレータ帯18の厚さを選定する
ことによって電極積層体の厚みの増加を押さえることが
できることは当然である。
In the present embodiment, two separator strips 18 having a thickness of 25 μm are overlapped on the ears 7a and 7b which are not coated with the positive electrode active material 22. However, the coating thickness of the positive electrode active material 22 is about 70 μm on each side, and thus the thickness of the electrode laminate does not increase. Also, in the case of an electrode structure in which the active material is applied only on one surface, the total thickness of the two separator strips 18 is 50 μm.
Therefore, the coating thickness is smaller than 70 μm, and therefore the thickness of the electrode laminate does not increase in this case as well. Also,
When the coating thickness is thin, it is natural that an increase in the thickness of the electrode laminated body can be suppressed by selecting the thickness of the separator strip 18.

【0028】尚、本実施例では正極15、負極16とも
電極活物質を電極集電体の両面に塗布した電極を用いた
が、正極15および負極16の一方、若しくは両方にお
いて、電極活物質を電極集電体の片面に塗布した電極を
用いても、同様の効果が得られることは当然である。ま
た、正極15および負極16を固定するセパレータ帯1
8はポリオレフィン系樹脂であれば無孔であってもよ
い。
In the present embodiment, both the positive electrode 15 and the negative electrode 16 were electrodes coated with the electrode active material on both sides of the electrode current collector, but the electrode active material may be used on one or both of the positive electrode 15 and the negative electrode 16. Of course, the same effect can be obtained by using the electrode coated on one surface of the electrode current collector. Also, a separator strip 1 for fixing the positive electrode 15 and the negative electrode 16
If 8 is a polyolefin resin, it may be non-porous.

【0029】また、負極16にもセパレータ帯18当接
する部位に活物質を塗布しない耳部を設けてもよい。更
に、正極15、負極16をセパレータ17にセパレータ
帯18を用いて固定するには本実施例に用いた熱溶着に
限ることなく、他の固定方法を用いてもよいことは論を
待たない。
Further, the negative electrode 16 may also be provided with an ear portion to which the active material is not applied, at a portion contacting the separator band 18. Further, it is needless to say that the fixing method of fixing the positive electrode 15 and the negative electrode 16 to the separator 17 using the separator band 18 is not limited to the heat welding used in the present embodiment, and other fixing methods may be used.

【0030】[0030]

【発明の効果】以上の説明からも明らかなように、本発
明の構成を採ることにより、正極、負極の電極枚数に対
するセパレータの枚数が略1/2に削減でき、従って、
電池特性に影響を及ぼすことなく体積エネルギー密度を
大幅に向上することができる。また、このセパレータの
枚数の削減によりコストダウンが図れる。
As is clear from the above description, by adopting the configuration of the present invention, the number of separators with respect to the number of positive and negative electrodes can be reduced to about 1/2.
The volume energy density can be significantly improved without affecting the battery characteristics. Further, cost reduction can be achieved by reducing the number of separators.

【0031】また、正極と負極との位置関係がずれる虞
れがなく、更に、連続する電極を固定したセパレータを
折り畳むことで電極積層体が容易に作製できるので、品
質の向上と製造作業の効率が改善する。
Further, there is no fear that the positional relationship between the positive electrode and the negative electrode is displaced, and furthermore, the electrode laminated body can be easily manufactured by folding the separator to which the continuous electrodes are fixed, so that the quality is improved and the manufacturing work efficiency is improved. Will improve.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明における非水電解液二次電池の、
(a)は正極の形状を、(b)は負極の形状を示す図で
ある。
FIG. 1 shows a non-aqueous electrolyte secondary battery according to the present invention,
(A) is a figure which shows the shape of a positive electrode, (b) is a figure which shows the shape of a negative electrode.

【図2】 本発明における非水電解液二次電池の正極と
負極の積層方法について説明するための図である。
FIG. 2 is a diagram for explaining a method of stacking a positive electrode and a negative electrode of a non-aqueous electrolyte secondary battery according to the present invention.

【図3】 正極のセパレータ上への固定について説明す
るための図である。
FIG. 3 is a diagram for explaining fixation of a positive electrode onto a separator.

【図4】 負極のセパレータ上への固定について説明す
るための図である。
FIG. 4 is a diagram for explaining fixation of a negative electrode onto a separator.

【図5】 本発明の非水電解液二次電池の斜視図であ
る。
FIG. 5 is a perspective view of a non-aqueous electrolyte secondary battery of the present invention.

【図6】 本発明の非水電解液二次電池の内部構成を示
す斜視図である。
FIG. 6 is a perspective view showing an internal configuration of a non-aqueous electrolyte secondary battery of the present invention.

【図7】 本発明との比較のために構成された非水電解
液二次電池の、(a)は正極の形状を、(b)は負極の
形状を、(c)はセパレータの形状を示す図である。
FIG. 7 shows a non-aqueous electrolyte secondary battery configured for comparison with the present invention, in which (a) is a positive electrode shape, (b) is a negative electrode shape, and (c) is a separator shape. FIG.

【図8】 本発明との比較のために構成された、従来と
同一構造の電極ユニットの断面図である。
FIG. 8 is a cross-sectional view of an electrode unit having the same structure as a conventional one, which is configured for comparison with the present invention.

【符号の説明】[Explanation of symbols]

1…正極電極端子、2…負極電極端子、3…安全弁、4
…電池ケース、5…天板、6,6a,6b,6c,6d
…セパレータ、7,7a,7b,8…耳部、9…正極ユ
ニット、10…負極ユニット、15…正極、16…負
極、17…セパレータ、18…セパレータ帯、19a〜
19h…ヒートシール部
1 ... Positive electrode terminal, 2 ... Negative electrode terminal, 3 ... Safety valve, 4
... Battery case, 5 ... Top plate, 6, 6a, 6b, 6c, 6d
... Separator, 7, 7a, 7b, 8 ... Ear, 9 ... Positive electrode unit, 10 ... Negative electrode unit, 15 ... Positive electrode, 16 ... Negative electrode, 17 ... Separator, 18 ... Separator band, 19a ...
19h ... Heat seal part

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 正極集電体の片面、若しくは両面に正極
活物質を塗布したシート状の正極電極と、負極集電体の
片面、若しくは両面に負極活物質を塗布したシート状の
負極電極とがセパレータを介して積層されてなる非水電
解液二次電池において、 複数の正極電極を長尺のセパレートシートの一方の面に
長手方向に沿って、また、複数の負極電極を前記セパレ
ートシートの他の面に長手方向に沿って、それぞれが互
いに重なり合うことなく交互に一列に配置して固定し、 更に、正極と負極を配設した前記セパレートシートが折
り畳んで形成されていることを特徴とする非水電解液二
次電池。
1. A sheet-shaped positive electrode in which a positive electrode active material is applied to one surface or both surfaces of a positive electrode current collector, and a sheet-shaped negative electrode in which a negative electrode active material is applied to one surface or both surfaces of a negative electrode current collector. In the non-aqueous electrolyte secondary battery formed by stacking via a separator, a plurality of positive electrodes along the longitudinal direction on one surface of the long separation sheet, and a plurality of negative electrodes of the separate sheet. Along the lengthwise direction of the other surface, they are arranged and fixed alternately in a row without overlapping with each other, and further, the separate sheet on which the positive electrode and the negative electrode are arranged is formed by folding. Non-aqueous electrolyte secondary battery.
【請求項2】 前記セパレートシートの両側端部におい
て、所定の幅と所定の厚みを有する押さえ部材により、
正極電極と負極電極とを固定することを特徴とする、請
求項1に記載の非水電解液二次電池。
2. A pressing member having a predetermined width and a predetermined thickness is provided at both end portions of the separate sheet,
The non-aqueous electrolyte secondary battery according to claim 1, wherein the positive electrode and the negative electrode are fixed.
【請求項3】 請求項2に記載の押さえ部材により前記
セパレートシート上に固定される前記正極電極の両側端
に、前記押さえ部材が正極活物質に当接することがない
所定の幅で正極活物質の未塗布部を設けたことを特徴と
する、請求項1に記載の非水電解液二次電池。
3. A positive electrode active material having a predetermined width such that the pressing member does not come into contact with the positive electrode active material at both ends of the positive electrode fixed on the separate sheet by the pressing member according to claim 2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-coated portion is provided.
JP8141901A 1996-06-04 1996-06-04 Nonaqueous electrolyte secondary battery Pending JPH09320637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8141901A JPH09320637A (en) 1996-06-04 1996-06-04 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8141901A JPH09320637A (en) 1996-06-04 1996-06-04 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH09320637A true JPH09320637A (en) 1997-12-12

Family

ID=15302802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8141901A Pending JPH09320637A (en) 1996-06-04 1996-06-04 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH09320637A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151151A (en) * 2000-11-09 2002-05-24 Mitsubishi Cable Ind Ltd Apparatus and method for assembling sheet-shaped lithium battery
JP2002157990A (en) * 2000-11-21 2002-05-31 Nitto Denko Corp Separator for battery and electrode group using this separator
JP2002270242A (en) * 2001-03-13 2002-09-20 Osaka Gas Co Ltd Nonaqueous secondary cell, and manufacturing method of the same
JP2003523060A (en) * 2000-02-08 2003-07-29 エルジー・ケミカル・カンパニー・リミテッド Superimposed electrochemical cell
JP2006278897A (en) * 2005-03-30 2006-10-12 Tdk Corp Electrochemical device
WO2006120959A1 (en) * 2005-05-10 2006-11-16 Matsushita Electric Industrial Co., Ltd. Battery
JP2008287925A (en) * 2007-05-15 2008-11-27 Toshiba Corp Non-aqueous electrolyte battery
JP2009123752A (en) * 2007-11-12 2009-06-04 Mitsubishi Electric Corp Electric power storage device and method for manufacturing the same
WO2011126047A1 (en) * 2010-04-06 2011-10-13 住友電気工業株式会社 Method for producing separator, method for manufacturing molten salt battery, separator, and molten salt battery
JP2011258434A (en) * 2010-06-10 2011-12-22 Denso Corp Electrode laminate for battery
JP2013507732A (en) * 2009-10-07 2013-03-04 エスケー イノベーション カンパニー リミテッド Battery electrode assembly and method of manufacturing the same
WO2013146513A1 (en) * 2012-03-30 2013-10-03 三洋電機株式会社 Laminated battery
WO2015071808A1 (en) * 2013-11-15 2015-05-21 Semiconductor Energy Laboratory Co., Ltd. Power storage unit and electronic device including the same
US10320025B2 (en) 2013-10-22 2019-06-11 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and electronic device
US10908640B2 (en) 2013-11-15 2021-02-02 Semiconductor Energy Laboratory Co., Ltd. Electronic device

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003523060A (en) * 2000-02-08 2003-07-29 エルジー・ケミカル・カンパニー・リミテッド Superimposed electrochemical cell
JP2002151151A (en) * 2000-11-09 2002-05-24 Mitsubishi Cable Ind Ltd Apparatus and method for assembling sheet-shaped lithium battery
JP2002157990A (en) * 2000-11-21 2002-05-31 Nitto Denko Corp Separator for battery and electrode group using this separator
JP2002270242A (en) * 2001-03-13 2002-09-20 Osaka Gas Co Ltd Nonaqueous secondary cell, and manufacturing method of the same
JP4562304B2 (en) * 2001-03-13 2010-10-13 大阪瓦斯株式会社 Method for producing non-aqueous secondary battery
JP2006278897A (en) * 2005-03-30 2006-10-12 Tdk Corp Electrochemical device
JP4670430B2 (en) * 2005-03-30 2011-04-13 Tdk株式会社 Electrochemical devices
WO2006120959A1 (en) * 2005-05-10 2006-11-16 Matsushita Electric Industrial Co., Ltd. Battery
US8426069B2 (en) 2005-05-10 2013-04-23 Panasonic Corporation Battery having a belt-like separator
JP2008287925A (en) * 2007-05-15 2008-11-27 Toshiba Corp Non-aqueous electrolyte battery
JP2009123752A (en) * 2007-11-12 2009-06-04 Mitsubishi Electric Corp Electric power storage device and method for manufacturing the same
JP2013507732A (en) * 2009-10-07 2013-03-04 エスケー イノベーション カンパニー リミテッド Battery electrode assembly and method of manufacturing the same
CN102834949A (en) * 2010-04-06 2012-12-19 住友电气工业株式会社 Method for producing separator, method for producing molten salt battery, separator, and molten salt battery
WO2011126047A1 (en) * 2010-04-06 2011-10-13 住友電気工業株式会社 Method for producing separator, method for manufacturing molten salt battery, separator, and molten salt battery
US8685571B2 (en) 2010-04-06 2014-04-01 Sumitomo Electric Industries, Ltd. Method for producing separator, method for producing molten salt battery, separator, and molten salt battery
JP5712928B2 (en) * 2010-04-06 2015-05-07 住友電気工業株式会社 Separator manufacturing method, molten salt battery manufacturing method, separator, and molten salt battery
JP2011258434A (en) * 2010-06-10 2011-12-22 Denso Corp Electrode laminate for battery
WO2013146513A1 (en) * 2012-03-30 2013-10-03 三洋電機株式会社 Laminated battery
CN104205464A (en) * 2012-03-30 2014-12-10 三洋电机株式会社 Laminated battery
JPWO2013146513A1 (en) * 2012-03-30 2015-12-14 三洋電機株式会社 Stacked battery
US11316189B2 (en) 2013-10-22 2022-04-26 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and electronic device
US10320025B2 (en) 2013-10-22 2019-06-11 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and electronic device
US11677095B2 (en) 2013-10-22 2023-06-13 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and electronic device
WO2015071808A1 (en) * 2013-11-15 2015-05-21 Semiconductor Energy Laboratory Co., Ltd. Power storage unit and electronic device including the same
US11347263B2 (en) 2013-11-15 2022-05-31 Semiconductor Energy Laboratory Co., Ltd. Electronic device
US10908640B2 (en) 2013-11-15 2021-02-02 Semiconductor Energy Laboratory Co., Ltd. Electronic device

Similar Documents

Publication Publication Date Title
US6709785B2 (en) Stacked electrochemical cell and method for preparing the same
US6726733B2 (en) Multiply stacked electrochemical cell and method for preparing the same
KR100515571B1 (en) Stacked electrochemical cell
KR100925857B1 (en) Multi-layered Type Electrochemistry Cell of Improved Safety
KR101014817B1 (en) stack/folding-typed Electrode Assembly Containing Safety Member and Process for Preparation of the Same
JP6859059B2 (en) Lithium-ion secondary battery and its manufacturing method
US20090136834A1 (en) Method of Constructing an Electrode Assembly
US6461762B1 (en) Rechargeable battery structure having a stacked structure of sequentially folded cells
WO2011002064A1 (en) Laminated battery
JPH09320637A (en) Nonaqueous electrolyte secondary battery
JP2001160393A (en) Nonaqueous secondary battery
JP4562304B2 (en) Method for producing non-aqueous secondary battery
CN113594533A (en) Battery cell, preparation method and system thereof and secondary battery
KR101154883B1 (en) Method for Production of Electrode Assembly with Improved Electrolyte Wetting Property
KR101387137B1 (en) Electrode assembly and rechargeable battery with the same
JP2020095871A (en) Laminated battery and method of manufacturing the same
JPH09320636A (en) Nonaqueous electrolyte secondary battery
JPH09161763A (en) Lithium ion secondary battery
JPH09147830A (en) Battery and its electrode structure
JPH04167375A (en) Rectangular lithium secondary cell
JPH08138726A (en) Layer-built lithium secondary battery
JPH11307127A (en) Laminated battery electrode
KR20240056395A (en) Elctrode assembly and electrochemical device comprising the same
KR20240056431A (en) Elctrode assembly and electrochemical device comprising the same
KR20240056430A (en) Elctrode assembly and electrochemical device comprising the same