JP2003089026A - Main spindle device for machine tool - Google Patents

Main spindle device for machine tool

Info

Publication number
JP2003089026A
JP2003089026A JP2001280948A JP2001280948A JP2003089026A JP 2003089026 A JP2003089026 A JP 2003089026A JP 2001280948 A JP2001280948 A JP 2001280948A JP 2001280948 A JP2001280948 A JP 2001280948A JP 2003089026 A JP2003089026 A JP 2003089026A
Authority
JP
Japan
Prior art keywords
load
fluid
spindle
fluid bearing
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001280948A
Other languages
Japanese (ja)
Other versions
JP3874400B2 (en
Inventor
Naoki Ito
直樹 伊東
Yoshihiro Mizutani
吉宏 水谷
Toshihiko Shima
稔彦 嶋
Ryohei Mukai
良平 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Koki KK
Original Assignee
Toyoda Koki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Koki KK filed Critical Toyoda Koki KK
Priority to JP2001280948A priority Critical patent/JP3874400B2/en
Publication of JP2003089026A publication Critical patent/JP2003089026A/en
Application granted granted Critical
Publication of JP3874400B2 publication Critical patent/JP3874400B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Machine Tool Units (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent rigidity or machining accuracy of a machine tool from decreasing by maintaining load carrying capacity of fluid bearings at a required value irrespective of a change in rotating speed of a spindle that is effected by a machining condition. SOLUTION: A spindle device for the machine tool comprises the main spindle 1 rotatably supported via the fluid bearings 2 and driven by a power source 6, a variable pressure control valve 13 for controlling pressure of pressure fluid supplied to the fluid bearings from a pump 10 driven by a power source 9, a rotating speed detecting means 5 for detecting the rotating speed of the main spindle, a load detecting means 14 for detecting load on the main spindle, and a controller 12 which controls the set value for the load carrying capacity based on a load detection signal from the load detecting means, has a relation between the rotating speed and the pressure of the fluid set in relation to the set value for the load carrying capacity of the fluid bearings and regulates the variable pressure control valve based on a rotating speed detection signal from the rotating speed detecting means and the load detection signal from the load detecting means to maintain the load carrying capacity of the fluid bearings at the specified value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、工作機械の主軸
装置、例えば研削盤の砥石主軸装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spindle device for machine tools, for example, a grindstone spindle device for a grinder.

【0002】[0002]

【従来の技術】図4に示す従来の技術における研削盤の
砥石台において、砥石軸1は、軸線方向で前後2箇所の
流体軸受2,2を介して回転自在に支承されている。砥
石軸1の先端には砥石車3が、後端にはプーリ4及びエ
ンコーダ5が夫々取り付けられており、モータ6のモー
タ軸に取り付けられたプーリ7と砥石軸1のプーリ4と
には無端ベルト8が巻掛られている。モータ9により駆
動されるポンプ10の吐出口と各流体軸受2とは、固定
圧力制御弁15が介在する管路・通路11により接続さ
れている。
2. Description of the Related Art In a wheel head of a conventional grinding machine shown in FIG. 4, a wheel shaft 1 is rotatably supported via two fluid bearings 2 at the front and rear in the axial direction. A grinding wheel 3 is attached to the front end of the grindstone shaft 1, and a pulley 4 and an encoder 5 are attached to the rear end thereof. The pulley 7 attached to the motor shaft of the motor 6 and the pulley 4 of the grindstone shaft 1 are endless. The belt 8 is wound around. The discharge port of the pump 10 driven by the motor 9 and each fluid bearing 2 are connected by a pipe line / passageway 11 in which a fixed pressure control valve 15 is interposed.

【0003】研削盤において、モータ6によりベルト伝
動機構を介して回転駆動される砥石軸1、即ち砥石車3
により工作物(図示しない)が研削加工される際に、研
削抵抗により砥石軸1への負荷は、モータ9により駆動
されるポンプ10から圧力流体が固定圧力制御弁15を
介し管路・通路11で供給される流体軸受2,2により
支持される。
In the grinder, a grindstone shaft 1 that is rotationally driven by a motor 6 via a belt transmission mechanism, that is, a grindstone wheel 3
When a workpiece (not shown) is ground by means of grinding, the load on the grindstone shaft 1 due to grinding resistance is that the pressure fluid from the pump 10 driven by the motor 9 passes through the fixed pressure control valve 15 and the pipeline / passage 11 Supported by fluid bearings 2, 2.

【0004】[0004]

【発明が解決しようとする課題】流体軸受2の負荷容量
Cは、流体軸受2に供給される流体圧力Pと砥石軸1の
回転速度Nとにより定まる。即ち、流体圧力P一定の下
では、砥石軸の回転速度Nと流体軸受2の負荷容量Cと
は一致して増減するので、研削加工において、工作物・
研削条件等で砥石軸1の回転速度Nが低下されると、流
体軸受2の負荷容量Cも低下し、即ち剛性が低下して、
その結果、加工精度が低下する(図5参照)。従って、
一つ研削盤においては、剛性の低下、即ち加工精度の低
下を回避するために、砥石軸の回転速度の変化範囲、即
ち工作物・研削条件等の範囲が制限される。
The load capacity C of the fluid bearing 2 is determined by the fluid pressure P supplied to the fluid bearing 2 and the rotational speed N of the grindstone shaft 1. That is, when the fluid pressure P is constant, the rotational speed N of the grindstone shaft and the load capacity C of the fluid bearing 2 increase / decrease in a consistent manner.
When the rotational speed N of the grindstone shaft 1 is reduced under grinding conditions or the like, the load capacity C of the fluid bearing 2 is also reduced, that is, the rigidity is reduced,
As a result, the processing accuracy decreases (see FIG. 5). Therefore,
In one grinding machine, in order to avoid a decrease in rigidity, that is, a decrease in processing accuracy, the range of change in the rotational speed of the grindstone shaft, that is, the range of the workpiece / grinding condition, etc. is limited.

【0005】この発明は、工作機械での加工において、
工作物・加工条件等で主軸の回転速度の変化に拘らず、
流体軸受の負荷容量を所要値に維持し、剛性、即ち加工
精度の低下を抑止し、広い範囲での工作物・加工条件等
の加工を可能としようとするものである。
The present invention, in machining with a machine tool,
Regardless of changes in the rotation speed of the spindle due to workpieces, processing conditions, etc.,
The load capacity of the hydrodynamic bearing is maintained at a required value, rigidity, that is, deterioration of machining accuracy is suppressed, and machining of a wide range of workpieces, machining conditions, and the like is made possible.

【0006】[0006]

【課題を解決するための手段】この発明の主軸装置は、
流体軸受を介して回転自在に支承され、動力源で回転駆
動される工作機械の主軸、動力源で駆動されるポンプか
ら流体軸受へ供給される圧力流体の圧力を制御する可変
圧力制御弁、主軸の回転速度を検出する回転速度検出手
段、及び流体軸受の負荷容量の設定値のもとでの回転速
度と流体圧力との関係が設定されており、流体軸受の負
荷容量が設定値に維持されるように、回転速度検出手段
からの回転速度検出信号に基づいて可変圧力制御弁を調
整する制御器から構成されている。
The spindle device of the present invention comprises:
A spindle of a machine tool that is rotatably supported by a fluid bearing and is rotatably driven by a power source, a variable pressure control valve that controls the pressure of pressure fluid supplied from a pump driven by a power source to the fluid bearing, a spindle. The rotation speed detecting means for detecting the rotation speed of the fluid bearing and the relationship between the rotation speed and the fluid pressure under the set value of the load capacity of the fluid bearing are set, and the load capacity of the fluid bearing is maintained at the set value. Thus, the controller for adjusting the variable pressure control valve based on the rotation speed detection signal from the rotation speed detection means is configured.

【0007】更には、主軸に対する負荷を検出する負荷
検出手段、例えば流体軸受における主軸の半径方向変位
を検出する変位計又は主軸の駆動手段の動力負荷を検出
する手段も備えられ、制御器は、負荷検出手段の負荷検
出信号に基づいて負荷容量の設定値を制御し、その流体
軸受の負荷容量の設定値のもとでの回転速度と流体圧力
との関係が設定されており、流体軸受の負荷容量が所定
値に維持されるように、回転速度検出手段からの回転速
度検出信号及び負荷検出手段からの負荷検出信号に基づ
いて可変圧力制御弁を調整するようにしてもよい。
Further, a load detecting means for detecting a load on the main shaft, for example, a displacement gauge for detecting a radial displacement of the main shaft in the fluid bearing or a means for detecting a power load of the drive means for the main shaft is provided, and the controller is The set value of the load capacity is controlled based on the load detection signal of the load detection means, and the relationship between the rotational speed and the fluid pressure under the set value of the load capacity of the fluid bearing is set. The variable pressure control valve may be adjusted based on the rotation speed detection signal from the rotation speed detection means and the load detection signal from the load detection means so that the load capacity is maintained at a predetermined value.

【0008】[0008]

【発明の実施の形態】この発明の実施の形態において
は、工作機械の主軸装置として研削盤の砥石主軸装置を
例示し、それを図面に従って説明する。図1に示すこの
発明の実施の第1形態においては、研削盤の砥石台にお
ける砥石軸1は、軸線方向で前後2箇所の流体軸受2,
2を介して回転自在に支承されている。砥石軸1の先端
には砥石車3が、後端にはプーリ4及びエンコーダ5が
夫々取り付けられており、モータ6のモータ軸に取り付
けられたプーリ7と砥石軸1のプーリ4とには無端ベル
ト8が巻掛られている。
BEST MODE FOR CARRYING OUT THE INVENTION In the embodiments of the present invention, a grindstone spindle device of a grinder is exemplified as a spindle device of a machine tool, and it will be described with reference to the drawings. In the first embodiment of the present invention shown in FIG. 1, a grindstone shaft 1 in a grindstone base of a grinder has a fluid bearing 2 at two front and rear positions in an axial direction.
It is rotatably supported via 2. A grinding wheel 3 is attached to the front end of the grindstone shaft 1, and a pulley 4 and an encoder 5 are attached to the rear end thereof. The pulley 7 attached to the motor shaft of the motor 6 and the pulley 4 of the grindstone shaft 1 are endless. The belt 8 is wound around.

【0009】モータ9により駆動されるポンプ10の吐
出口と各流体軸受2とは、管路・通路11により接続さ
れ、管路11中には、制御器12に接続されて制御器1
2からの制御信号に基づいて制御される可変圧力制御弁
13が介在しており、制御器12は、砥石軸1に設けら
れたエンコーダ5に接続され、エンコーダ5からの砥石
軸回転速度検出信号に基づいて可変圧力制御弁13を調
整するようになっている。
The discharge port of the pump 10 driven by the motor 9 and each fluid bearing 2 are connected by a pipe line / passage 11, and in the pipe line 11, a controller 12 is connected to a controller 12.
The variable pressure control valve 13 controlled based on the control signal from the controller 2 is interposed, and the controller 12 is connected to the encoder 5 provided on the grindstone shaft 1 to detect the grindstone shaft rotation speed detection signal from the encoder 5. The variable pressure control valve 13 is adjusted based on the above.

【0010】そして、制御器12には、流体軸受2の負
荷容量Cの所定値のもとでの回転速度Nと流体圧力Pと
の関係が設定されている。即ち、制御器12は、所望に
設定した流体軸受2の負荷容量Cを一定に維持するよう
に、砥石軸1の回転速度Nに対応して流体軸受2に供給
される流体圧力Pを制御するようになっている。
In the controller 12, the relationship between the rotational speed N and the fluid pressure P under a predetermined value of the load capacity C of the fluid bearing 2 is set. That is, the controller 12 controls the fluid pressure P supplied to the fluid bearing 2 in accordance with the rotation speed N of the grindstone shaft 1 so that the load capacity C of the fluid bearing 2 set to a desired value is kept constant. It is like this.

【0011】砥石軸1の回転速度Nの検出手段として
は、砥石軸1のエンコーダ5の代りに、砥石軸1のモー
タ6の出力値又は数値制御研削盤における砥石軸1の回
転速度データに基づく検出手段を用いてもよい。研削盤
において、モータ6によりベルト伝動機構を介して回転
駆動される砥石軸1、即ち砥石車3により工作物(図示
しない)が研削加工される際に、研削抵抗により砥石軸
1への負荷は、流体軸受2により支持される。
As means for detecting the rotational speed N of the grindstone shaft 1, instead of the encoder 5 of the grindstone shaft 1, based on the output value of the motor 6 of the grindstone shaft 1 or the rotational speed data of the grindstone shaft 1 in the numerical control grinder. A detection means may be used. In the grinder, when a grindstone shaft 1 rotatably driven by a motor 6 via a belt transmission mechanism, that is, a grindstone 3 grinds a workpiece (not shown), a load on the grindstone shaft 1 due to grinding resistance is , Supported by the fluid bearing 2.

【0012】ここで、図3に基づき流体軸受2について
説明する。流体軸受2の軸受部材21は、図3に示すよ
うに、砥石軸1(図示しない)の外周面を回転自在に支
持する円筒形のインナースリーブ22が円筒形の軸受ケ
ーシング23の内周面に、例えば圧入、焼嵌め等により
嵌着一体化されて構成されている。
The fluid bearing 2 will be described with reference to FIG. As shown in FIG. 3, the bearing member 21 of the fluid dynamic bearing 2 includes a cylindrical inner sleeve 22 that rotatably supports the outer peripheral surface of the grindstone shaft 1 (not shown) on the inner peripheral surface of a cylindrical bearing casing 23. , And is fitted and integrated by press fitting, shrink fitting, or the like.

【0013】軸受面となるインナースリーブ22の内周
面には静圧ポケット24が適宜数円周方向に等間隔配列
で形成されている。図3に示す例では、静圧ポケットは
四辺形の形をしているが、この発明では特に形を限定し
ない。そして、インナースリーブ22の内周面におい
て、静圧ポケット24以外の区域は、ランド25とな
る。
On the inner peripheral surface of the inner sleeve 22 which serves as a bearing surface, static pressure pockets 24 are appropriately formed in the circumferential direction at equal intervals. In the example shown in FIG. 3, the static pressure pocket has a quadrilateral shape, but the shape is not particularly limited in the present invention. The area other than the static pressure pockets 24 on the inner peripheral surface of the inner sleeve 22 becomes the land 25.

【0014】図3に示すように、インナースリーブ22
の外周面には、両側端部を残して全周に亘る円周方向の
凹溝が形成され、インナースリーブ22が軸受ケーシン
グ23に嵌着された状態では、凹溝は、軸受ケーシング
23の内周面と共に、給油円周通路26を形成する。こ
の給油円周通路26には、図1で示すように管路・通路
11が接続されており、給油円周通路26は給油礼27
を介して静圧ボケット24の中央部に連通している。
As shown in FIG. 3, the inner sleeve 22
A circumferential groove is formed on the outer peripheral surface over the entire circumference except for both side ends, and when the inner sleeve 22 is fitted in the bearing casing 23, the groove is inside the bearing casing 23. An oil supply circumferential passage 26 is formed together with the peripheral surface. A pipe line / passage 11 is connected to the refueling circumferential passage 26 as shown in FIG.
It is communicated with the central portion of the static pressure bocket 24 via.

【0015】ポンプ10から吐出された流体は、管路・
通路11、給油円周通路26及ぴ給油孔27を介して静
圧ポケット24に供給される。静圧ポケツト24へ供給
された流体は、隣接するランド25と図示しない砥石軸
1との間隙に導入され、この間隙から漏れ出た流体は油
槽へ排出される。かくして、流体軸受2は、静圧ポケッ
ト24において静圧流体軸受として機能すると共に、ラ
ンド25と砥石軸1の外周面との間隙に存在する流体に
は砥石軸1の回転における楔作用により動圧が発生し
て、流体軸受2の動圧効果も加わる。
The fluid discharged from the pump 10 is
It is supplied to the static pressure pocket 24 through the passage 11, the oil supply circumferential passage 26 and the oil supply hole 27. The fluid supplied to the static pressure pocket 24 is introduced into the gap between the adjacent land 25 and the grindstone shaft 1 (not shown), and the fluid leaking from this gap is discharged to the oil tank. Thus, the hydrodynamic bearing 2 functions as a hydrostatic bearing in the hydrostatic pocket 24, and the fluid existing in the gap between the land 25 and the outer peripheral surface of the grindstone shaft 1 is dynamically compressed by the wedge action in the rotation of the grindstone shaft 1. Occurs, and the dynamic pressure effect of the fluid bearing 2 is also added.

【0016】流体軸受2の負荷容量Cば、このとき発生
する勤圧に応じて変化する。即ち、静圧ポケット24に
供給される流体圧力Pが一定であれば、砥石軸1の回転
速度が速いほど、砥石軸1の回転における楔作用が高ま
るため、ランド25と砥石軸1の外周面との間隙に発生
する動圧が高まり、流体軸受2の負荷容量Cが大きくな
るのである。
The load capacity C of the fluid bearing 2 changes depending on the working pressure generated at this time. That is, if the fluid pressure P supplied to the static pressure pocket 24 is constant, the wedge action in the rotation of the grindstone shaft 1 increases as the rotational speed of the grindstone shaft 1 increases, so that the outer peripheral surfaces of the land 25 and the grindstone shaft 1 are increased. That is, the dynamic pressure generated in the gap between and increases, and the load capacity C of the fluid bearing 2 increases.

【0017】流体軸受2の負荷容量Cは、流体軸受2に
供給される流体圧力Pと砥石軸1の回転速度Nとにより
定まる。即ち、流体圧力P一定の下では、回転速度Nと
負荷容量Cとは一致して増減するので、工作物・研削条
件等で砥石軸1の回転速度Nが変更された場合、その変
更した回転速度Nは検出手段(エンコーダ5等)で検出
され、その検出信号が制御器12に入力される。
The load capacity C of the fluid bearing 2 is determined by the fluid pressure P supplied to the fluid bearing 2 and the rotational speed N of the grindstone shaft 1. That is, when the fluid pressure P is constant, the rotational speed N and the load capacity C coincide with each other and thus increase or decrease. Therefore, when the rotational speed N of the grindstone shaft 1 is changed due to the workpiece / grinding conditions, etc. The speed N is detected by the detection means (encoder 5, etc.), and the detection signal is input to the controller 12.

【0018】すると、制御器12においては、予め設定
されている一定負荷容量Cのもとでの回転速度Nと流体
圧力Pとの関係に基づいて、検出された回転速度Nに対
応した流体圧力Pになるように可変圧力制御弁13に対
し制御信号を入力するので、可変圧力制御弁13はそれ
により調整される。
Then, in the controller 12, the fluid pressure corresponding to the detected rotation speed N is determined based on the relationship between the rotation speed N and the fluid pressure P under a preset constant load capacity C. Since the control signal is input to the variable pressure control valve 13 so as to become P, the variable pressure control valve 13 is adjusted by it.

【0019】かくして、モータ9により駆動されるポン
プ10から管路・通路11を介して各流体軸受2に供給
される流体の流体圧力Pは、調整された可変圧力制御弁
13により増減調整され、砥石軸1の回転速度Nが変化
しても、流体軸受2の負荷容量Cは、設定された所定値
に維持される(図5参照)。従って、研削加工におい
て、砥石軸1の負荷容量変化による加工精度の低下を防
止することができる。
Thus, the fluid pressure P of the fluid supplied from the pump 10 driven by the motor 9 to each fluid bearing 2 via the conduit / passage 11 is adjusted up and down by the adjusted variable pressure control valve 13. Even if the rotational speed N of the grindstone shaft 1 changes, the load capacity C of the fluid bearing 2 is maintained at the set predetermined value (see FIG. 5). Therefore, in the grinding process, it is possible to prevent a decrease in processing accuracy due to a change in the load capacity of the grindstone shaft 1.

【0020】図2に示す別の実施の形態は、図1に示す
実施の形態の主軸装置において、更に砥石車3、即ち砥
石軸1に対する負荷を検出する負荷検出手段が設けら
れ、負荷検出手段は、負荷検出信号を制御器12に入力
するように、回転速度信号を入力するエンコーダ5と並
列して接続されている。
In another embodiment shown in FIG. 2, the spindle device of the embodiment shown in FIG. 1 is further provided with load detecting means for detecting a load on the grinding wheel 3, that is, the grinding wheel shaft 1, and the load detecting means. Is connected in parallel with the encoder 5 for inputting the rotation speed signal so as to input the load detection signal to the controller 12.

【0021】砥石車3、即ち砥石軸1に対する負荷を検
出する負荷検出手段としては、例えば、砥石軸1に対す
る負荷が流体軸受2における砥石軸1の半径方向の位置
に対応することに注目して、流体軸受2における砥石軸
1の半径方向の位置を検出する変位計14が流体軸受2
の部位に設けられている。変位計14は、例えば渦電流
式変位計等の非接触検知のものである。
As the load detecting means for detecting the load on the grinding wheel 3, that is, the grindstone shaft 1, for example, note that the load on the grindstone shaft 1 corresponds to the radial position of the grindstone shaft 1 in the fluid bearing 2. The displacement gauge 14 for detecting the radial position of the grindstone shaft 1 in the fluid bearing 2 is the fluid bearing 2
It is provided at the site. The displacement gauge 14 is, for example, an eddy current type displacement gauge or the like for non-contact detection.

【0022】そして、制御器12は、砥石軸1の回転速
度Nと砥石軸1の負荷とに対応して流体軸受2に供給さ
れる流体圧力Pを制御するように可変圧力制御弁13を
調整するようになっている。即ち、制御器12において
は、位置検出信号が中立位置に維持するのに必要な最低
増圧傾向に流体圧力Pの設定値が調整されるようになっ
ている。
The controller 12 adjusts the variable pressure control valve 13 so as to control the fluid pressure P supplied to the fluid bearing 2 in accordance with the rotational speed N of the grindstone shaft 1 and the load of the grindstone shaft 1. It is supposed to do. That is, in the controller 12, the set value of the fluid pressure P is adjusted to the minimum pressure increase tendency required to maintain the position detection signal at the neutral position.

【0023】砥石車3、即ち砥石軸1に対する負荷を砥
石軸1のモータ6の動力負荷として扱い、砥石軸1に対
する負荷を検出する手段として、変位計14の代りに、
砥石軸1のモータ6の動力負荷を検出する手段(例えば
モータ6の負荷電流を検出する電流センサ)を用いても
よい。
As a means for detecting the load on the grindstone shaft 1 by treating the load on the grindstone wheel 3, that is, the grindstone shaft 1 as the power load of the motor 6 of the grindstone shaft 1, instead of the displacement meter 14,
A means for detecting the power load of the motor 6 of the grindstone shaft 1 (for example, a current sensor for detecting the load current of the motor 6) may be used.

【0024】砥石車3の同一回転のもとにおいても、加
工条件により砥石車3、即ち砥石軸1への負荷が異なる
ので、先の実施の形態においては、加工条件範囲におい
て、流体軸受2の十分な負荷容量Cが設定されている。
又加工条件の変更に応じて負荷容量Cを変更設定しなけ
ればならない。
Even under the same rotation of the grinding wheel 3, the load on the grinding wheel 3, that is, the grindstone shaft 1 is different depending on the processing conditions. Therefore, in the above-described embodiment, the fluid bearing 2 is operated in the processing condition range. Sufficient load capacity C is set.
In addition, the load capacity C must be changed and set according to the change in the processing conditions.

【0025】しかし、負荷容量Cの一つの設定のもと
で、加工中の負荷の減少においては、無駄な流体圧力が
流体軸受2に供給されることになるが、図2に示す実施
の形態においては、負荷検出手段(変位計14等)から
の負荷に応じた検出信号が制御器12に入力されるの
で、検出位置が中立位置、又は動力負荷が所定値に維持
されるのに必要な最低増圧傾向に流体圧力Pの設定値が
調整されるので、無駄な流体圧力を供給することはなく
なり、ポンプ10を駆動するモータ9の消費電力は節減
される。
However, when the load capacity C is set to one and the load during machining is reduced, useless fluid pressure is supplied to the fluid bearing 2. However, the embodiment shown in FIG. In the above, since the detection signal corresponding to the load from the load detecting means (displacement meter 14 or the like) is input to the controller 12, it is necessary to maintain the detection position at the neutral position or the power load at a predetermined value. Since the set value of the fluid pressure P is adjusted to the lowest pressure increasing tendency, useless fluid pressure is not supplied, and the power consumption of the motor 9 that drives the pump 10 is saved.

【0026】[0026]

【発明の効果】この発明の主軸装置においては、流体軸
受に供給される流体の流体圧力は、制御器により調整さ
れる可変圧力制御弁により増減調整され、主軸の回転速
度が変化しても、流体軸受の負荷容量は、制御器に設定
された所定値に維持される(図5参照)。従って、主軸
の負荷容量変化による加工誤差等の問題は発生せず、更
には、広い範囲での工作物・加工条件等の加工を可能と
しようとするものである。
In the spindle device according to the present invention, the fluid pressure of the fluid supplied to the fluid bearing is increased / decreased by the variable pressure control valve adjusted by the controller, so that the rotational speed of the spindle changes. The load capacity of the fluid bearing is maintained at a predetermined value set in the controller (see FIG. 5). Therefore, problems such as machining errors due to changes in the load capacity of the spindle do not occur, and further, machining of workpieces, machining conditions, etc. in a wide range is made possible.

【0027】更に、負荷容量の一つの設定値のもとで、
加工中の負荷の減少においては、無駄な流体圧力が流体
軸受に供給されることになるが、負荷検出手段での検出
負荷に基づく所定値に維持されるのに必要な最低増圧傾
向に流体圧力の設定値が調整されるので、無駄な流体圧
力の供給、即ち動力は節減される。
Furthermore, under one set value of the load capacity,
When the load is reduced during machining, useless fluid pressure is supplied to the fluid bearing, but the fluid pressure tends to be the minimum pressure increase necessary to maintain a predetermined value based on the load detected by the load detection means. Since the set value of the pressure is adjusted, useless supply of fluid pressure, that is, power is saved.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施の形態における研削盤の主軸装
置の構成図である。
FIG. 1 is a configuration diagram of a spindle device of a grinding machine according to an embodiment of the present invention.

【図2】この発明の別の実施の形態における研削盤の主
軸装置の構成図である。
FIG. 2 is a configuration diagram of a spindle device of a grinding machine according to another embodiment of the present invention.

【図3】この発明の実施の形態における研削盤の主軸装
置のラジアルの軸装置の断面斜視図である。
FIG. 3 is a cross-sectional perspective view of a radial shaft device of a main shaft device of a grinding machine according to an embodiment of the present invention.

【図4】従来の技術における研削盤の主軸装置の構成図
である。
FIG. 4 is a configuration diagram of a spindle device of a grinding machine in a conventional technique.

【図5】研削盤の主軸装置の流体軸受の流体圧力・負荷
容量と砥石軸の回転速度との関係グラフである。
FIG. 5 is a graph showing the relationship between the fluid pressure / load capacity of the fluid bearing of the spindle device of the grinder and the rotational speed of the grindstone shaft.

【符号の説明】[Explanation of symbols]

1 砥石軸 2 流体軸受 3 砥石車 4 プーリ 5 エンコーダ 6 モータ 7 プーリ 8 無端ベルト 9 モータ 10 ポンプ 11 管路・通路 12 制御器 13 可変圧力制御弁 14 変位計 1 wheel axis 2 fluid bearing 3 grinding wheel 4 pulley 5 encoder 6 motor 7 pulley 8 Endless belt 9 motors 10 pumps 11 pipelines / passages 12 Controller 13 Variable pressure control valve 14 Displacement meter

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成13年10月29日(2001.10.
29)
[Submission date] October 29, 2001 (2001.10.
29)

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】全図[Correction target item name] All drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

【図2】 [Fig. 2]

【図3】 [Figure 3]

【図4】 [Figure 4]

【図5】 [Figure 5]

フロントページの続き (72)発明者 嶋 稔彦 愛知県刈谷市朝日町1丁目1番地 豊田工 機株式会社内 (72)発明者 向井 良平 愛知県刈谷市朝日町1丁目1番地 豊田工 機株式会社内 Fターム(参考) 3C034 AA20 BB07 CA17 CB06 CB18 3C048 CC07 DD13 EE07 3J102 AA02 BA03 BA17 CA11 CA32 CA36 EA03 EA06 EA09 EB01 EB03 EB07 GA07 Continued front page    (72) Inventor Toshihiko Shima             1-1 Asahi-cho, Kariya city, Aichi             Machine Co., Ltd. (72) Inventor Ryohei Mukai             1-1 Asahi-cho, Kariya city, Aichi             Machine Co., Ltd. F-term (reference) 3C034 AA20 BB07 CA17 CB06 CB18                 3C048 CC07 DD13 EE07                 3J102 AA02 BA03 BA17 CA11 CA32                       CA36 EA03 EA06 EA09 EB01                       EB03 EB07 GA07

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 流体軸受を介して回転自在に支承され、
動力源で回転駆動される主軸、 動力源で駆動されるポンプから流体軸受へ供給される圧
力流体の圧力を制御する可変圧力制御弁、 主軸の回転速度を検出する回転速度検出手段、 及び流体軸受の負荷容量の設定値のもとでの回転速度と
流体圧力との関係が設定されており、流体軸受の負荷容
量が設定値に維持されるように、回転速度検出手段から
の回転速度検出信号に基づいて可変圧力制御弁を調整す
る制御器から構成されている工作機械の主軸装置。
1. A rotatably supported bearing via a fluid bearing,
A main shaft rotated by a power source, a variable pressure control valve for controlling the pressure of pressure fluid supplied from a pump driven by a power source to a fluid bearing, a rotation speed detection means for detecting the rotation speed of the main shaft, and a fluid bearing The relationship between the rotational speed and the fluid pressure under the set value of the load capacity of is set, and the rotational speed detection signal from the rotational speed detection means is set so that the load capacity of the fluid bearing is maintained at the set value. Machine tool spindle device consisting of a controller that adjusts a variable pressure control valve based on.
【請求項2】 流体軸受を介して回転自在に支承され、
動力源で回転駆動される主軸、 動力源で駆動されるポンプから流体軸受へ供給される圧
力流体の圧力を制御する可変圧力制御弁、 主軸の回転速度を検出する回転速度検出手段、 主軸に対する負荷を検出する負荷検出手段、 及び負荷検出手段の負荷検出信号に基づいて負荷容量の
設定値を制御し、その流体軸受の負荷容量の設定値のも
とでの回転速度と流体圧力との関係が設定されており、
流体軸受の負荷容量が所定値に維持されるように、回転
速度検出手段からの回転速度検出信号及び負荷検出手段
からの負荷検出信号に基づいて可変圧力制御弁を調整す
る制御器から構成されている工作機械の主軸装置。
2. A rotatably supported via a fluid bearing,
A spindle driven by a power source, a variable pressure control valve that controls the pressure of the pressure fluid supplied from a pump driven by a power source to a fluid bearing, a rotation speed detection unit that detects the rotation speed of the spindle, and a load on the spindle. The load detecting means for detecting the load capacity and the load capacity setting value are controlled based on the load detecting signal of the load detecting means, and the relationship between the rotational speed and the fluid pressure under the load capacity setting value of the fluid bearing is Is set,
A controller for adjusting the variable pressure control valve based on the rotation speed detection signal from the rotation speed detection means and the load detection signal from the load detection means so that the load capacity of the fluid bearing is maintained at a predetermined value. Machine tool spindle device.
【請求項3】 負荷検出手段が流体軸受における主軸の
半径方向変位を検出する変位計である請求項2に記載の
工作機械の主軸装置。
3. The spindle device for a machine tool according to claim 2, wherein the load detecting means is a displacement gauge that detects a radial displacement of the spindle in the fluid bearing.
【請求項4】 負荷検出手段が主軸の駆動手段の動力負
荷を検出する手段である請求項2に記載の工作機械の主
軸装置。
4. The spindle device for a machine tool according to claim 2, wherein the load detection means is means for detecting a power load of the drive means for the spindle.
JP2001280948A 2001-09-17 2001-09-17 Machine tool spindle equipment Expired - Fee Related JP3874400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001280948A JP3874400B2 (en) 2001-09-17 2001-09-17 Machine tool spindle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001280948A JP3874400B2 (en) 2001-09-17 2001-09-17 Machine tool spindle equipment

Publications (2)

Publication Number Publication Date
JP2003089026A true JP2003089026A (en) 2003-03-25
JP3874400B2 JP3874400B2 (en) 2007-01-31

Family

ID=19104861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001280948A Expired - Fee Related JP3874400B2 (en) 2001-09-17 2001-09-17 Machine tool spindle equipment

Country Status (1)

Country Link
JP (1) JP3874400B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010532270A (en) * 2007-07-06 2010-10-07 エルビン・ユンカー・マシーネンファブリーク・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Method for supporting a rotating workpiece during grinding and a dynamic pressure-type steady rest
JP2014237208A (en) * 2013-06-10 2014-12-18 株式会社ジェイテクト Main spindle device
JP2017019048A (en) * 2015-07-10 2017-01-26 株式会社ジェイテクト Machine tool
WO2017060679A1 (en) * 2015-10-08 2017-04-13 Birmingham High Performance Turbomachinery Limited Improvements in or relating to gas bearings
JP2019209399A (en) * 2018-05-31 2019-12-12 国立大学法人 鹿児島大学 Main spindle system of machine tool
JP2021058968A (en) * 2019-10-07 2021-04-15 国立大学法人 鹿児島大学 Main shaft system of machine tool

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58165960A (en) * 1982-03-26 1983-10-01 Citizen Watch Co Ltd Fine displacement/angle setting device
JPS62246403A (en) * 1986-04-15 1987-10-27 Hitachi Seiko Ltd Control device for spindle axial center
JPH04141364A (en) * 1990-09-28 1992-05-14 Toyoda Mach Works Ltd Detection device for abnormal overload of grinding wheel shaft
JPH0663803A (en) * 1992-08-18 1994-03-08 Nippei Toyama Corp Pressurized fluid journal bearing
JPH07124864A (en) * 1994-03-03 1995-05-16 Seiko Seiki Co Ltd Cylinder grinding device
JPH106170A (en) * 1996-06-17 1998-01-13 Toyota Motor Corp Tool managing method and device
JPH10146740A (en) * 1996-11-14 1998-06-02 Brother Ind Ltd Tool abnormality detection device
JPH10296644A (en) * 1997-04-25 1998-11-10 Techno Oote Kako:Kk Fluid pressure type vice
JP2000130432A (en) * 1998-10-27 2000-05-12 Mitsubishi Heavy Ind Ltd Fluid bearing and grinder
JP2002357222A (en) * 2000-09-25 2002-12-13 Toyoda Mach Works Ltd Fluid bearing

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58165960A (en) * 1982-03-26 1983-10-01 Citizen Watch Co Ltd Fine displacement/angle setting device
JPS62246403A (en) * 1986-04-15 1987-10-27 Hitachi Seiko Ltd Control device for spindle axial center
JPH04141364A (en) * 1990-09-28 1992-05-14 Toyoda Mach Works Ltd Detection device for abnormal overload of grinding wheel shaft
JPH0663803A (en) * 1992-08-18 1994-03-08 Nippei Toyama Corp Pressurized fluid journal bearing
JPH07124864A (en) * 1994-03-03 1995-05-16 Seiko Seiki Co Ltd Cylinder grinding device
JPH106170A (en) * 1996-06-17 1998-01-13 Toyota Motor Corp Tool managing method and device
JPH10146740A (en) * 1996-11-14 1998-06-02 Brother Ind Ltd Tool abnormality detection device
JPH10296644A (en) * 1997-04-25 1998-11-10 Techno Oote Kako:Kk Fluid pressure type vice
JP2000130432A (en) * 1998-10-27 2000-05-12 Mitsubishi Heavy Ind Ltd Fluid bearing and grinder
JP2002357222A (en) * 2000-09-25 2002-12-13 Toyoda Mach Works Ltd Fluid bearing

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010532270A (en) * 2007-07-06 2010-10-07 エルビン・ユンカー・マシーネンファブリーク・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Method for supporting a rotating workpiece during grinding and a dynamic pressure-type steady rest
JP2014237208A (en) * 2013-06-10 2014-12-18 株式会社ジェイテクト Main spindle device
JP2017019048A (en) * 2015-07-10 2017-01-26 株式会社ジェイテクト Machine tool
WO2017060679A1 (en) * 2015-10-08 2017-04-13 Birmingham High Performance Turbomachinery Limited Improvements in or relating to gas bearings
CN108291575A (en) * 2015-10-08 2018-07-17 伯明翰高性能涡轮机械公司 Gas bearing or improvement about gas bearing
US10451104B2 (en) 2015-10-08 2019-10-22 Birmingham High Performance Turbomachinery Limited Gas bearings
JP2019209399A (en) * 2018-05-31 2019-12-12 国立大学法人 鹿児島大学 Main spindle system of machine tool
JP2021058968A (en) * 2019-10-07 2021-04-15 国立大学法人 鹿児島大学 Main shaft system of machine tool

Also Published As

Publication number Publication date
JP3874400B2 (en) 2007-01-31

Similar Documents

Publication Publication Date Title
US7182676B2 (en) Machining apparatus and machining method of work end face, roller and roller bearing
KR100966936B1 (en) Indexing Apparatus
KR20100125401A (en) Rotation-resistance device for machine tool main shaft drive
JP2003089026A (en) Main spindle device for machine tool
JP4250999B2 (en) Coolant pump device and drill device
JP4414449B2 (en) Surface grinding machine, spindle device, and surface grinding method
JPH0852653A (en) Cut-in amount control method for ground columnar object in external surface polishing device
WO2021019956A1 (en) Honing tool and honing machining method
JP6464775B2 (en) Air seal structure and spindle device to which air seal structure is applied
JP2001113402A (en) Spindle unit
JPH08229813A (en) Method for cutting control edge of control bush
JP2003071710A (en) Grinding machine
JPH0742730A (en) Pre-load variable spindle device
JP5375491B2 (en) Fluid holding device
JP3583264B2 (en) Surface grinding method and surface grinding device
JPH09317769A (en) Main spindle device and method for adjusting balance of main spindle
JP6790574B2 (en) Spindle device and grinder equipped with the spindle device
JPH01289658A (en) Grinder
JP6492699B2 (en) Thrust support device for operating member, and machine tool provided with the support device
JP2020020347A (en) Rotary shaft member supporting device and grinder
JP2003291064A (en) Grinding method and process
JP2009297811A (en) Main spindle device of machine tool
JP2011073118A (en) Fluid holding device
JPH0821435A (en) Spindle device using dynamic pressure bearing
JP2002005169A (en) Fluid bearing device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060301

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061023

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees