JP2003086835A - Semiconductor light emitting element and its manufacturing method - Google Patents

Semiconductor light emitting element and its manufacturing method

Info

Publication number
JP2003086835A
JP2003086835A JP2001278057A JP2001278057A JP2003086835A JP 2003086835 A JP2003086835 A JP 2003086835A JP 2001278057 A JP2001278057 A JP 2001278057A JP 2001278057 A JP2001278057 A JP 2001278057A JP 2003086835 A JP2003086835 A JP 2003086835A
Authority
JP
Japan
Prior art keywords
light emitting
semiconductor
emitting device
laminated structure
semiconductor light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001278057A
Other languages
Japanese (ja)
Other versions
JP3723843B2 (en
Inventor
Kazuhiro Hane
一博 羽根
Yoshiaki Kanamori
義明 金森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2001278057A priority Critical patent/JP3723843B2/en
Publication of JP2003086835A publication Critical patent/JP2003086835A/en
Application granted granted Critical
Publication of JP3723843B2 publication Critical patent/JP3723843B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To make the light emitting efficiency of a semiconductor light emitting element higher by improving the transmittance of the element to the light generated in a multilayered laminated stature composed of a plurality of semiconductor layers constituting the element. SOLUTION: On the light emitting surface 16 of the multilayered laminated structure 18 constituted of a substrate 11, a first semiconductor layer 12, and a second semiconductor layer 13, an antireflection filter 17 composed of a plurality of projecting sections arranged in a cycle shorter than the wavelength of the light outputted from the light emitting surface 16 is formed on the surface 16.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体発光素子及
び半導体発光素子の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor light emitting device and a method for manufacturing the semiconductor light emitting device.

【0002】[0002]

【従来の技術】近年においては、小型、軽量、及び長寿
命などの長所を有する発光ダイオード(LED)などの
半導体発光素子の社会的要求が高まっており、これに伴
いLEDの高輝度化及び高効率化の要求も高まってい
る。
2. Description of the Related Art In recent years, there have been increasing social demands for semiconductor light emitting devices such as light emitting diodes (LEDs), which have advantages such as small size, light weight, and long life. The demand for efficiency is also increasing.

【0003】図1は、従来のダブルヘテロ構造のLED
の一例を示す構成図である。図1に示すLED10にお
いては、p−GaAlAsなどからなる基板1上に、同
じくp−GaAlAsなどからなる第1の半導体層2及
びn−GaAlAsなどからなる第2の半導体層3が順
次に形成されている。そして、基板1の裏面にはAuZ
nなどからなる第1の電極4が形成され、第2の半導体
層3上にはAuSnなどからなる第2の電極5が形成さ
れている。基板1、第1の半導体層2、及び第2の半導
体層3は多層積層構造8を構成する。
FIG. 1 shows a conventional LED having a double hetero structure.
It is a block diagram which shows an example. In the LED 10 shown in FIG. 1, a first semiconductor layer 2 also made of p-GaAlAs and a second semiconductor layer 3 made of n-GaAlAs are sequentially formed on a substrate 1 made of p-GaAlAs. ing. Then, on the back surface of the substrate 1, AuZ
A first electrode 4 made of n or the like is formed, and a second electrode 5 made of AuSn or the like is formed on the second semiconductor layer 3. The substrate 1, the first semiconductor layer 2, and the second semiconductor layer 3 form a multilayer laminated structure 8.

【0004】第1の半導体層2は発光層として機能し、
基板1及び第2の半導体層3は前記発光層に対する導電
層として機能する。また、第2の半導体層3の上面は発
光面6を構成する。第1の電極4及び第2の電極5間に
所定の電圧が印加されると、基板1及び第2の半導体層
3を通じて第1の半導体層2に電流が流れ、これを励起
することにより発光を生ぜしめる。
The first semiconductor layer 2 functions as a light emitting layer,
The substrate 1 and the second semiconductor layer 3 function as a conductive layer for the light emitting layer. The upper surface of the second semiconductor layer 3 constitutes the light emitting surface 6. When a predetermined voltage is applied between the first electrode 4 and the second electrode 5, a current flows through the substrate 1 and the second semiconductor layer 3 to the first semiconductor layer 2, and the current is excited to emit light. Give rise to.

【0005】このとき、例えば第1の半導体層2の中心
部分で生成された光は、図1中の矢印で示すような反射
や電極による吸収を繰り返した後、臨界角θc内に至る
ことによって、発光面6から外部へ取り出される。
At this time, for example, the light generated in the central portion of the first semiconductor layer 2 reaches the critical angle θc after being repeatedly reflected and absorbed by the electrodes as shown by an arrow in FIG. , Is taken out from the light emitting surface 6.

【0006】[0006]

【発明が解決しようとする課題】図1において、LED
10の外部に位置する大気の屈折率n1は約1.0であ
り、発光面6を構成する第2の半導体層3の屈折率n2
は、例えばGaAlAsから構成した場合約3.5であ
る。また、臨界角θcは、θc=sin−1(n1/n
2)で表されるため、上述したように屈折率n1及びn
2の差が大きくなると臨界角θcが減少してしまう。こ
の結果、発光面6からの光の透過率が劣化してしまい、
光取り出し効率が極めて低下してしまうという問題があ
った。
In FIG. 1, an LED is used.
The refractive index n1 of the atmosphere located outside of 10 is about 1.0, and the refractive index n2 of the second semiconductor layer 3 forming the light emitting surface 6 is n2.
Is about 3.5 when composed of, for example, GaAlAs. Further, the critical angle θc is θc = sin −1 (n1 / n
2), the refractive indices n1 and n are as described above.
If the difference between 2 becomes large, the critical angle θc will decrease. As a result, the transmittance of light from the light emitting surface 6 deteriorates,
There is a problem that the light extraction efficiency is extremely reduced.

【0007】かかる問題点に鑑み、多層積層構造8と第
2の電極5との間に反射防止膜を設けることが試みられ
ているが、このような反射防止膜に用いる材料が極めて
限定されてしまうとともに、極めて狭い発光波長に対し
てしか用いることができなかった。その結果、十分な透
過率を実現することができず、光取り出し効率の向上も
限られていた。
In view of such problems, it has been attempted to provide an antireflection film between the multilayer laminated structure 8 and the second electrode 5, but the material used for such an antireflection film is extremely limited. In addition, it can be used only for an extremely narrow emission wavelength. As a result, sufficient transmittance could not be realized, and improvement in light extraction efficiency was limited.

【0008】本発明は、半導体発光素子を構成する複数
の半導体層からなる多層積層構造で生成された光に対す
る透過率を向上させ、光の高い取り出し効率を得ること
を目的とする。
It is an object of the present invention to improve the transmittance of light generated by a multi-layered laminated structure composed of a plurality of semiconductor layers constituting a semiconductor light emitting device and to obtain a high light extraction efficiency.

【0009】[0009]

【課題を解決するための手段】上記目的を達成すべく、
本発明は、複数の半導体層からなる多層積層構造を含む
半導体発光素子であって、前記多層積層構造の発光面上
に、前記多層積層構造より発せられる光の波長よりも短
い周期で格子状に配置された、反射防止フィルタを具え
ることを特徴とする、半導体発光素子に関する。
[Means for Solving the Problems] In order to achieve the above object,
The present invention is a semiconductor light emitting device including a multilayer laminated structure composed of a plurality of semiconductor layers, wherein a lattice shape is formed on a light emitting surface of the multilayer laminated structure at a cycle shorter than a wavelength of light emitted from the multilayer laminated structure. A semiconductor light emitting device, characterized in that it comprises an antireflection filter arranged.

【0010】本発明者らは、上記目的を達成すべく鋭意
検討を行なった。その結果、従来の半導体発光素子を構
成する発光面上に、上述した特徴を有する反射防止フィ
ルタを設けることにより上記目的を達成できることを見
出した。すなわち、上述した反射防止フィルタを設ける
ことにより、前記多層積層構造の前記発光面を構成する
半導体材料の屈折率と、半導体発光素子外部の大気の屈
折率との差を補完し、前記屈折率差を滑らかに整合する
任意の屈折率空間が形成される。
The present inventors have conducted extensive studies to achieve the above object. As a result, they have found that the above object can be achieved by providing an antireflection filter having the above-described characteristics on the light emitting surface of a conventional semiconductor light emitting device. That is, by providing the above-described antireflection filter, the difference between the refractive index of the semiconductor material forming the light emitting surface of the multilayer laminated structure and the refractive index of the atmosphere outside the semiconductor light emitting element is complemented, and the refractive index difference is obtained. An arbitrary refractive index space that smoothly matches is formed.

【0011】このため、前記半導体発光素子の前記発光
面における実質的な臨界角が増大する。そして、前記半
導体発光素子内で生成された光の、前記発光面からの透
過率も増大し、結果として光取り出し効率も向上し、本
発明の目的を実現することができる。
Therefore, the substantial critical angle at the light emitting surface of the semiconductor light emitting device increases. Then, the transmittance of the light generated in the semiconductor light emitting element from the light emitting surface is also increased, and as a result, the light extraction efficiency is improved, and the object of the present invention can be realized.

【0012】なお、このような反射防止フィルタは、従
来の反射防止膜などに比較して、材料の選択性が高く、
広範囲の発光波長に対して適用することができる。
Such an antireflection filter has higher material selectivity than conventional antireflection films,
It can be applied to a wide range of emission wavelengths.

【0013】[0013]

【発明の実施の形態】以下、本発明を発明の実施の形態
に基づいて詳細に説明する。図2は、本発明の半導体発
光素子の一例を示す構成図である。なお、図2において
は本発明の特徴を明確にすべく、実際の構成とは異なる
ように描いている。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below in detail based on the embodiments of the invention. FIG. 2 is a configuration diagram showing an example of the semiconductor light emitting device of the present invention. In addition, in order to clarify the features of the present invention, FIG. 2 is drawn differently from the actual configuration.

【0014】図2に示す半導体発光素子20は、p−G
aAlAsなどからなる基板11上において、同じくp
−GaAlAsなどからなる第1の半導体層12及びn
−GaAlAsなどからなる第2の半導体層13を順次
に具えている。そして、基板11の裏面にはAuZnな
どからなる第1の電極14が形成され、第2の半導体層
13上にはAuSnなどからなる第2の電極15が形成
され、ダブルへテロ構造のLEDを構成している。
The semiconductor light emitting device 20 shown in FIG.
On the substrate 11 made of aAlAs or the like, p
A first semiconductor layer 12 made of GaAlAs or the like and n
-The second semiconductor layer 13 made of GaAlAs or the like is sequentially provided. Then, a first electrode 14 made of AuZn or the like is formed on the back surface of the substrate 11, and a second electrode 15 made of AuSn or the like is formed on the second semiconductor layer 13 to form an LED having a double hetero structure. I am configuring.

【0015】基板11、第1の半導体層12、及び第2
の半導体層13は多層積層構造18を構成する。第1の
半導体層12は発光層として機能し、基板11及び第2
の半導体層13は前記発光層に対する導電層として機能
する。
The substrate 11, the first semiconductor layer 12, and the second
The semiconductor layer 13 constitutes a multilayer laminated structure 18. The first semiconductor layer 12 functions as a light emitting layer, and the substrate 11 and the second semiconductor layer 12
The semiconductor layer 13 functions as a conductive layer for the light emitting layer.

【0016】第2の半導体層13は中央部が凹んで形成
されており、前記凹部内の底面が発光面16として機能
する。また、発光面16上には反射防止フィルタ17が
形成されている。この反射防止フィルタ17は、横方向
に周期T1、縦方向に周期T2で格子状に配置された複
数の凸部から構成されている。なお、以下に示す本発明
の半導体発光素子の製造方法に起因して、前記複数の凸
部、すなわち反射防止フィルタ17は、第2の半導体層
13と同一の半導体材料、例えばp−GaAlAsから
構成されている。
The second semiconductor layer 13 is formed so that its central portion is recessed, and the bottom surface in the recess functions as the light emitting surface 16. An antireflection filter 17 is formed on the light emitting surface 16. The antireflection filter 17 is composed of a plurality of convex portions arranged in a lattice with a cycle T1 in the horizontal direction and a cycle T2 in the vertical direction. Due to the method for manufacturing a semiconductor light emitting device of the present invention described below, the plurality of convex portions, that is, the antireflection filter 17 is made of the same semiconductor material as the second semiconductor layer 13, for example, p-GaAlAs. Has been done.

【0017】本発明においては、反射防止フィルタ17
を構成する格子状に配置された複数の凸部の周期T1及
びT2が、多層積層構造18の発光面16より発せられ
る光の波長よりも短いことが必要である。これによっ
て、半導体発光素子20から光を取り出す外部(大気)
の屈折率n1と、発光面16を構成する第2の半導体層
13の屈折率n2との差を補完し、これら屈折率差を滑
らかに整合する任意の屈折率空間を形成することができ
る。
In the present invention, the antireflection filter 17 is used.
It is necessary that the periods T1 and T2 of the plurality of convex portions arranged in a lattice pattern that configure the above are shorter than the wavelength of the light emitted from the light emitting surface 16 of the multilayer laminated structure 18. As a result, the light is extracted from the semiconductor light emitting element 20 to the outside (atmosphere).
The difference between the refractive index n1 and the refractive index n2 of the second semiconductor layer 13 forming the light emitting surface 16 can be complemented, and an arbitrary refractive index space that smoothly matches these refractive index differences can be formed.

【0018】図3は、図2に示す本発明に半導体発光素
子20の、積層方向における屈折率変化を示す概念図で
あり、図4は、図1に示す従来の半導体発光素子10
の、積層方向における屈折率変化を示す図である。図3
に示すように、本発明に従った図2の半導体発光素子2
0においては、反射防止フィルタ17によって第2の半
導体層13の屈折率n2と外部(大気)の屈折率n1と
の屈折率差を埋めるように、積層方向に向けて連続的に
変化した屈折率空間が形成される。
FIG. 3 is a conceptual diagram showing a change in the refractive index in the stacking direction of the semiconductor light emitting device 20 of the present invention shown in FIG. 2, and FIG. 4 is a conventional semiconductor light emitting device 10 shown in FIG.
FIG. 6 is a diagram showing a change in the refractive index in the stacking direction. Figure 3
2 shows the semiconductor light emitting device 2 of FIG. 2 according to the present invention.
At 0, the antireflection filter 17 continuously changes the refractive index in the stacking direction so as to fill the difference between the refractive index n2 of the second semiconductor layer 13 and the refractive index n1 of the outside (atmosphere). A space is formed.

【0019】これに対して、図4に示すように、反射防
止フィルタを有しない従来の半導体発光素子10におい
ては、第2の半導体層13から外部(大気)に向けて屈
折率がステップ状に急峻に変化するようになる。
On the other hand, as shown in FIG. 4, in the conventional semiconductor light emitting device 10 having no antireflection filter, the refractive index becomes stepwise from the second semiconductor layer 13 toward the outside (atmosphere). It will change rapidly.

【0020】したがって、上述したように、従来の半導
体発光素子10においては、発光面6に対する臨界角θ
cが小さくなってしまうのに対し、本発明に従った半導
体発光素子20においては、外部(大気)に対する屈折
率変化が小さいために、発光面16に対する実質的な臨
界角が増大する。この結果、発光面16の透過率が増大
し、外部(大気)への光取り出し効率も増大する。
Therefore, as described above, in the conventional semiconductor light emitting device 10, the critical angle θ with respect to the light emitting surface 6 is set.
On the other hand, in the semiconductor light emitting element 20 according to the present invention, the change in refractive index with respect to the outside (atmosphere) is small, whereas the substantial critical angle with respect to the light emitting surface 16 increases. As a result, the transmittance of the light emitting surface 16 increases and the light extraction efficiency to the outside (atmosphere) also increases.

【0021】なお、反射防止フィルタ17を構成する複
数の凸部の周期T1及びT2は、異なっていても良い
が、通常は作製工程を簡易化するために実質上同一にす
る。
The periods T1 and T2 of the plurality of convex portions constituting the antireflection filter 17 may be different, but usually they are substantially the same in order to simplify the manufacturing process.

【0022】また、反射防止フィルタ17の高さhは、
100nm〜400nmであることが好ましく、さらに
は200nm〜400nmであることが好ましい。これ
によって、可視光域にあるほとんど統べての光に対し
て、反射防止フィルタとして機能することができ、上述
した作用効果をより顕著に出現させることができる。な
お、高さhの下限は主として現状の微細加工技術によっ
て制限されている。
The height h of the antireflection filter 17 is
The thickness is preferably 100 nm to 400 nm, more preferably 200 nm to 400 nm. This makes it possible to function as an antireflection filter for almost all the light in the visible light region, and the above-described effects can be more remarkably exhibited. The lower limit of the height h is limited mainly by the current fine processing technology.

【0023】さらに、反射防止フィルタ17を構成する
複数の凸部の周期T1及びT2は、発光面16より発せ
られる光の波長よりも短ければ特には限定されないが、
統べての可視光域の光に対処すべく100nm〜400
nmの範囲に設定する。これによって反射防止フィルタ
17の作製を簡易に行なうことができるとともに、広範
囲の発光波長に対して上述した作用効果を生ぜしめるこ
とができる。
Further, the periods T1 and T2 of the plurality of convex portions constituting the antireflection filter 17 are not particularly limited as long as they are shorter than the wavelength of the light emitted from the light emitting surface 16.
100 nm to 400 to deal with all visible light
Set to the range of nm. As a result, the antireflection filter 17 can be easily manufactured, and at the same time, the above-described effects can be obtained for a wide range of emission wavelengths.

【0024】なお、第1の半導体層12及び第2の半導
体層13の厚さなどについては、これら各層の組成や成
膜技術、目的とする物理特性などに依存して任意に形成
することができる。
The thicknesses of the first semiconductor layer 12 and the second semiconductor layer 13 may be arbitrarily formed depending on the composition of each layer, the film forming technique, the desired physical characteristics, and the like. it can.

【0025】次に、図2に示す半導体発光素子20の製
造方法について説明する。図5〜図10は、半導体発光
素子20の製造工程を説明するための断面図である。な
お、これらの図面においては、半導体発光素子20のA
−A線を含む断面において半導体発光素子が順次に形成
される様子を示している。
Next, a method of manufacturing the semiconductor light emitting device 20 shown in FIG. 2 will be described. 5 to 10 are cross-sectional views for explaining the manufacturing process of the semiconductor light emitting device 20. In these drawings, A of the semiconductor light emitting device 20
It shows that the semiconductor light emitting elements are sequentially formed in the cross section including the -A line.

【0026】最初に、図5に示すように、基板11上に
おいて第1の半導体層12及び第2の半導体層13を、
CVD法やエピタキシャル成長法など公知の成膜技術を
用いて形成する。次いで、図6に示すように、基板11
の裏面に第1の電極14を形成し、第2の半導体層13
上に第2の電極15を形成する。次いで、図7に示すよ
うに、第2の半導体層13上に、第2の電極15を覆う
ようにして電子線レジスト膜21をスピンコート法など
によって、例えば厚さ0.1μm〜0.4μmに形成す
る。
First, as shown in FIG. 5, the first semiconductor layer 12 and the second semiconductor layer 13 are formed on the substrate 11.
It is formed using a known film forming technique such as a CVD method or an epitaxial growth method. Then, as shown in FIG.
Forming a first electrode 14 on the back surface of the second semiconductor layer 13
The second electrode 15 is formed on top. Then, as shown in FIG. 7, an electron beam resist film 21 is formed on the second semiconductor layer 13 so as to cover the second electrode 15 by a spin coating method or the like, for example, with a thickness of 0.1 μm to 0.4 μm. To form.

【0027】次いで、図8に示すように、レジスト膜2
1に対して電子線描画処理を行ない、その後現像処理を
施すことにより、レジストパターン22を形成する。次
いで、図9に示すように、所定のエッチングガスを用
い、レジストパターン22を介してエッチング処理を施
すことにより、第2の半導体層13を直接的にエッチン
グ処理し、反射防止フィルタ17を形成する。次いで、
図10に示すように、残留したレジストパターン22を
有機溶剤などを用いて除去することにより、反射防止フ
ィルタ17を有する半導体発光素子20を得る。
Next, as shown in FIG. 8, the resist film 2
The resist pattern 22 is formed by performing an electron beam drawing process on 1 and then performing a developing process. Next, as shown in FIG. 9, the second semiconductor layer 13 is directly etched by using a predetermined etching gas and through the resist pattern 22 to form the antireflection filter 17. . Then
As shown in FIG. 10, the remaining resist pattern 22 is removed by using an organic solvent or the like to obtain the semiconductor light emitting device 20 having the antireflection filter 17.

【0028】上記エッチング処理においては、前記所定
のエッチングガスを放電により原子状に分解し、これに
よって得た原子状のエッチング種を用いて行なうことが
好ましい。これによって、第2の半導体層13のエッチ
ング処理をより効果的に行なうことができ、上述した高
さhを有する反射防止フィルタ17を短時間で得ること
ができる。
The above-mentioned etching treatment is preferably carried out by using the atomic etching species obtained by decomposing the predetermined etching gas into an atomic shape by electric discharge. As a result, the etching treatment of the second semiconductor layer 13 can be performed more effectively, and the antireflection filter 17 having the height h described above can be obtained in a short time.

【0029】また、前記エッチングガスをエッチング特
性の異なる複数のハロゲンガスから構成し、これら複数
のハロゲン系ガスを交互に用いて行なうことが好まし
い。例えば、SFガス及びClガスを交互に用いて
行なう。SFガスは横方向のエッチング特性に優れ、
Clガスは深さ方向のエッチング特性に優れる。した
がって、両者を併用し、これらを交互に用いてエッチン
グ処理を行なうことにより、反射防止フィルタとして十
分に機能する、アスペクト比に優れた複数の凸部を簡易
に形成することができる。
It is preferable that the etching gas is composed of a plurality of halogen gases having different etching characteristics, and the halogen gases are alternately used. For example, SF 6 gas and Cl 2 gas are used alternately. SF 6 gas has excellent lateral etching characteristics,
Cl 2 gas has excellent etching characteristics in the depth direction. Therefore, by using both of them in combination and performing the etching treatment by alternately using them, it is possible to easily form a plurality of convex portions having an excellent aspect ratio and sufficiently functioning as an antireflection filter.

【0030】なお、複数の凸部のアスペクト比が小さい
と、これらは実質的に格子状に配置されないことにな
り、反射防止フィルタとして機能しなくなる場合があ
る。
When the aspect ratios of the plurality of convex portions are small, these convex portions are not arranged substantially in a grid and may not function as an antireflection filter.

【0031】また、SFガス及びClガスなど複数
のハロゲン系ガスを用いる場合においても、これらを放
電により原子状に分解して形成されたエッチング種とし
て用いることが好ましいが、原子状に分解する放電条件
はガス毎に異なる。
Further, even when a plurality of halogen-based gases such as SF 6 gas and Cl 2 gas are used, it is preferable to use them as an etching species formed by atomically decomposing them by discharge, but they are decomposed atomically. The discharge conditions to be applied differ for each gas.

【0032】[0032]

【実施例】本実施例においては、図5〜図10に示す工
程に従って、図2に示すような半導体発光素子20を作
製した。なお、基板11はp−GaAlAsから構成す
るとともに、第1の半導体層12は厚さ0.35μmの
p−GaAlAsから構成した。また、第2の半導体層
13は厚さ160μmのn−GaAlAsから構成し
た。また、レジスト膜21の厚さは0.4μmとした。
EXAMPLE In this example, a semiconductor light emitting device 20 as shown in FIG. 2 was produced according to the steps shown in FIGS. The substrate 11 was made of p-GaAlAs, and the first semiconductor layer 12 was made of p-GaAlAs with a thickness of 0.35 μm. The second semiconductor layer 13 is composed of 160 μm thick n-GaAlAs. The thickness of the resist film 21 is 0.4 μm.

【0033】さらに、エッチングパターンを介しての第
2の半導体層13のエッチングは、SFガス及びCl
ガスを、SFガス、Clガス、SFガスの順に
用い、3段階で実施した。なお、これらエッチングガス
は、放電により原子状に分解させて使用した。
Further, the etching of the second semiconductor layer 13 through the etching pattern is performed by using SF 6 gas and Cl.
2 gas was used in order of SF 6 gas, Cl 2 gas, and SF 6 gas, and it carried out in 3 steps. These etching gases were used after being decomposed into atoms by discharge.

【0034】図11は、このようにして形成した反射防
止フィルタ17の一部を示すSEM写真である。図11
から明らかなように、反射防止フィルタ17は、格子状
に配置された複数の凸部から形成されていることが分か
る。また、複数の凸部の配置周期は、横方向及び縦方向
共に約200nmであり、高さは約275nmであるこ
とが分かる。
FIG. 11 is an SEM photograph showing a part of the antireflection filter 17 thus formed. Figure 11
As is apparent from the above, it is understood that the antireflection filter 17 is formed of a plurality of convex portions arranged in a grid pattern. Further, it can be seen that the arrangement period of the plurality of convex portions is about 200 nm in both the horizontal and vertical directions and the height is about 275 nm.

【0035】図12は、上述のようにして作製した半導
体発光素子20の相対発光強度を示すグラフである。図
12において、角度0度は発光面16に垂直な方向(法
線方向)を示し、角度が大きくなるにつれて発光面16
に対する法線方向から発光面16に向けて傾斜すること
を示している。なお、相対強度は、反射防止フィルタを
介して出力された光の強度を、反射防止フィルタを介さ
ずに出力された光の強度で除したものである。
FIG. 12 is a graph showing the relative light emission intensity of the semiconductor light emitting device 20 manufactured as described above. In FIG. 12, an angle of 0 degree indicates a direction (normal direction) perpendicular to the light emitting surface 16, and the light emitting surface 16 increases as the angle increases.
It is shown that it is inclined toward the light emitting surface 16 from the normal direction to. The relative intensity is the intensity of the light output through the antireflection filter divided by the intensity of the light output without the antireflection filter.

【0036】図12から明らかなように、測定角度の4
0度程度まで均一に光が出力されており、発光面16に
対する実質的な臨界角は少なくとも40度程度の値を示
すことが分かる。さらに、図1に示すような従来のGa
AlAsからなる半導体発光素子の臨界角θcが約16
度程度であることを考慮すると、本実施例において得た
半導体発光素子20は約2倍以上の実質的な臨界角を有
することが分かる。
As is apparent from FIG. 12, the measurement angle of 4
It can be seen that light is uniformly output up to about 0 degree, and the substantial critical angle with respect to the light emitting surface 16 exhibits a value of at least about 40 degrees. Furthermore, as shown in FIG.
The critical angle θc of the semiconductor light emitting device made of AlAs is about 16
It can be seen that the semiconductor light emitting device 20 obtained in this example has a substantial critical angle of about 2 times or more in consideration of the fact that the degree is about the degree.

【0037】図13は、上記半導体発光素子の発光スペ
クトル(実線)を示すグラフである。なお、同一の条件
で作製した反射防止フィルタを有しない半導体発光素子
の発光スペクトル(点線)も合わせて示す。
FIG. 13 is a graph showing the emission spectrum (solid line) of the semiconductor light emitting device. In addition, the emission spectrum (dotted line) of the semiconductor light emitting element which does not have the antireflection filter manufactured under the same conditions is also shown.

【0038】図13から明らかなように、反射防止フィ
ルタを有する本実施例の半導体発光素子は、反射防止フ
ィルタを有しないものに比較して、約30%発光強度が
増大している。すなわち、発光面16における透過率が
増大し、光取り出し効率が増大していることが分かる。
さらに、本実施例の半導体発光素子では、ピーク波長の
半値幅も増大しており、広波長帯域において好適に用い
ることが可能であることが分かる。
As is clear from FIG. 13, the semiconductor light emitting device of this embodiment having the antireflection filter has an emission intensity increased by about 30% as compared with the semiconductor light emitting device having no antireflection filter. That is, it can be seen that the transmittance at the light emitting surface 16 is increased and the light extraction efficiency is increased.
Furthermore, in the semiconductor light emitting device of this example, the half-value width of the peak wavelength is also increased, and it can be seen that it can be suitably used in a wide wavelength band.

【0039】以上、具体例を挙げながら発明の実施の形
態に基づいて本発明を詳細に説明してきたが、本発明は
上記内容に限定されるものではなく、本発明の範疇を逸
脱しない限りにおいて、あらゆる変形や変更が可能であ
る。
Although the present invention has been described in detail based on the embodiments of the invention with reference to specific examples, the present invention is not limited to the above contents and does not depart from the scope of the present invention. , All modifications and changes are possible.

【0040】例えば、上記においては、第2の半導体層
13を直接的にエッチングすることによって反射防止フ
ィルタ17を作製したが、第2の半導体層13上に追加
の層を形成し、この層に対してエッチング処理を施すこ
とによって、第2の半導体層13と別体で作製すること
もできる。
For example, in the above description, the antireflection filter 17 is manufactured by directly etching the second semiconductor layer 13. However, an additional layer is formed on the second semiconductor layer 13, and this layer is formed. Alternatively, the second semiconductor layer 13 can be manufactured separately from the second semiconductor layer 13 by performing an etching process.

【0041】また、レジストパターン21を作製する際
に、電子線描画処理に代えてレーザ干渉法やステッパー
を用いて行なうことができる。さらに、反射防止フィル
タ17を構成する凸部はテーパー状を呈するが、その他
の任意の形状を有することができる。
Further, when the resist pattern 21 is formed, laser interferometry or a stepper can be used instead of the electron beam drawing process. Further, although the convex portion forming the antireflection filter 17 has a tapered shape, it can have any other shape.

【0042】[0042]

【発明の効果】以上説明したように、本発明によれば、
発光面の実質的な臨界角を増大させて発光波長の透過率
を向上させ、光取り出し効率に優れた半導体発光素子を
提供することができる。
As described above, according to the present invention,
It is possible to provide a semiconductor light emitting device having an excellent light extraction efficiency by increasing the substantial critical angle of the light emitting surface to improve the transmittance of the emission wavelength.

【図面の簡単な説明】[Brief description of drawings]

【図1】 従来の半導体発光素子の一例を示す構成図で
ある。
FIG. 1 is a configuration diagram showing an example of a conventional semiconductor light emitting device.

【図2】 本発明の半導体発光素子の一例を示す斜視図
である。
FIG. 2 is a perspective view showing an example of a semiconductor light emitting device of the present invention.

【図3】 本発明の半導体発光素子における、積層方向
の屈折率変化を示す概念図である。
FIG. 3 is a conceptual diagram showing changes in the refractive index in the stacking direction in the semiconductor light emitting device of the present invention.

【図4】 従来の半導体発光素子における、積層方向の
屈折率変化を示す概念図である。
FIG. 4 is a conceptual diagram showing a change in refractive index in a stacking direction in a conventional semiconductor light emitting device.

【図5】 本発明の半導体発光素子の製造方法における
一工程を示す断面図である。
FIG. 5 is a cross-sectional view showing one step in a method for manufacturing a semiconductor light emitting device of the present invention.

【図6】 図5に示す工程の次の工程を示す断面図であ
る。
6 is a cross-sectional view showing a step subsequent to the step shown in FIG.

【図7】 図6に示す工程の次の工程を示す断面図であ
る。
7 is a cross-sectional view showing a step subsequent to the step shown in FIG.

【図8】 図7に示す工程の次の工程を示す断面図であ
る。
8 is a sectional view showing a step subsequent to the step shown in FIG. 7. FIG.

【図9】 図8に示す工程の次の工程を示す断面図であ
る。
9 is a cross-sectional view showing a step subsequent to the step shown in FIG.

【図10】 図9に示す工程の次の工程を示す断面図で
ある。
FIG. 10 is a cross-sectional view showing a step next to the step shown in FIG. 9.

【図11】 本発明の半導体発光素子の反射防止フィル
タの一部を示すSEM写真である。
FIG. 11 is an SEM photograph showing a part of the antireflection filter of the semiconductor light emitting device of the present invention.

【図12】 本発明の半導体発光素子の相対発光強度を
示すグラフである。
FIG. 12 is a graph showing the relative light emission intensity of the semiconductor light emitting device of the present invention.

【図13】 本発明の半導体発光素子の発光スペクトル
を示すグラフである。
FIG. 13 is a graph showing an emission spectrum of the semiconductor light emitting device of the present invention.

【符号の説明】[Explanation of symbols]

1、11 基板 2、12 第1の半導体層 3、13 第2の半導体層 4、14 第1の電極 5、15 第2の電極 6、16 発光面 8、18 多層積層構造 10、20 半導体発光素子 17 反射防止フィルタ 1, 11 substrate 2, 12 First semiconductor layer 3, 13 Second semiconductor layer 4, 14 First electrode 5, 15 Second electrode 6, 16 light emitting surface 8, 18 Multi-layer laminated structure 10, 20 Semiconductor light emitting device 17 Anti-reflection filter

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 複数の半導体層からなる多層積層構造を
含む半導体発光素子であって、前記多層積層構造の発光
面上に、前記多層積層構造より発せられる光の波長より
も短い周期で、格子状に配置された複数の凸部よりなる
反射防止フィルタを具えることを特徴とする、半導体発
光素子。
1. A semiconductor light-emitting device including a multi-layer laminated structure composed of a plurality of semiconductor layers, wherein a grating is formed on a light-emitting surface of the multi-layer laminated structure at a period shorter than a wavelength of light emitted from the multi-layer laminated structure. A semiconductor light-emitting device, comprising an antireflection filter composed of a plurality of convex portions arranged in a line.
【請求項2】 前記反射防止フィルタは、前記多層積層
構造の、前記発光面を構成する半導体層と同一の半導体
材料から構成されていることを特徴とする、請求項1に
記載の半導体発光素子。
2. The semiconductor light emitting device according to claim 1, wherein the antireflection filter is made of the same semiconductor material as a semiconductor layer forming the light emitting surface of the multilayer laminated structure. .
【請求項3】 前記反射防止フィルタを構成する前記複
数の凸部の高さが100nm〜400nmであることを
特徴とする、請求項1又は2に記載の半導体発光素子。
3. The semiconductor light emitting device according to claim 1, wherein the height of the plurality of convex portions forming the antireflection filter is 100 nm to 400 nm.
【請求項4】 前記反射防止フィルタを構成する前記複
数の凸部の格子状周期が100nm〜400nmである
ことを特徴とする、請求項1〜3のいずれか一に記載の
半導体発光素子。
4. The semiconductor light emitting device according to claim 1, wherein the plurality of convex portions forming the antireflection filter have a lattice period of 100 nm to 400 nm.
【請求項5】 複数の半導体層からなる多層積層構造を
形成する工程と、前記多層積層構造の発光面上に電子線
レジスト膜を形成する工程と、 前記レジスト膜を電子線描画し、現像することにより所
定のレジストパターンを形成する工程と、 前記レジストパターンを介して前記多層積層構造の、前
記発光面を構成する半導体層をエッチングして、前記多
層積層構造より発せられる光の波長よりも短い周期で格
子状に配置された、反射防止フィルタを形成する工程
と、を含むことを特徴とする、半導体発光素子の製造方
法。
5. A step of forming a multilayer laminated structure composed of a plurality of semiconductor layers, a step of forming an electron beam resist film on a light emitting surface of the multilayer laminated structure, and an electron beam drawing and developing of the resist film. A step of forming a predetermined resist pattern by etching the semiconductor layer forming the light emitting surface of the multilayer laminated structure through the resist pattern, and the wavelength of light emitted from the multilayer laminated structure is shorter than the wavelength of light emitted from the multilayer laminated structure. And a step of forming antireflection filters arranged in a grid pattern at regular intervals, the method for manufacturing a semiconductor light emitting device.
【請求項6】 前記多層積層構造の、前記発光面を構成
する半導体層のエッチングは、エッチングガスを放電に
より原子状に分解してなる原子状のエッチング種を用い
て行なうことを特徴とする、請求項5に記載の半導体発
光素子の製造方法。
6. The etching of the semiconductor layer constituting the light emitting surface of the multilayer laminated structure is performed using an atomic etching species formed by atomically decomposing an etching gas by discharging. The method for manufacturing a semiconductor light emitting device according to claim 5.
【請求項7】 前記エッチングガスはエッチング特性の
異なる複数のハロゲン系ガスからなり、前記エッチング
は前記複数のハロゲン系ガスを交互に用いて行なうこと
を特徴とする、請求項6に記載の半導体発光素子の製造
方法。
7. The semiconductor light emitting device according to claim 6, wherein the etching gas comprises a plurality of halogen-based gases having different etching characteristics, and the etching is performed by alternately using the plurality of halogen-based gases. Device manufacturing method.
【請求項8】 前記複数のハロゲン系ガスは、SF
ス及びClガスから構成されることを特徴とする、請
求項7に記載の半導体発光素子の製造方法。
8. The method for manufacturing a semiconductor light emitting device according to claim 7, wherein the plurality of halogen-based gases are composed of SF 6 gas and Cl 2 gas.
JP2001278057A 2001-09-13 2001-09-13 Semiconductor light emitting device and method for manufacturing semiconductor light emitting device Expired - Lifetime JP3723843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001278057A JP3723843B2 (en) 2001-09-13 2001-09-13 Semiconductor light emitting device and method for manufacturing semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001278057A JP3723843B2 (en) 2001-09-13 2001-09-13 Semiconductor light emitting device and method for manufacturing semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2003086835A true JP2003086835A (en) 2003-03-20
JP3723843B2 JP3723843B2 (en) 2005-12-07

Family

ID=19102485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001278057A Expired - Lifetime JP3723843B2 (en) 2001-09-13 2001-09-13 Semiconductor light emitting device and method for manufacturing semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP3723843B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005005679A (en) * 2003-04-15 2005-01-06 Matsushita Electric Ind Co Ltd Semiconductor light emitting device and its manufacturing method
JP2005019541A (en) * 2003-06-24 2005-01-20 Rohm Co Ltd Optical semiconductor device
FR2865343A1 (en) * 2004-01-21 2005-07-22 Koito Mfg Co Ltd ELECTROLUMINESCENT MODULE AND LAMP FOR VEHICLE HEADLIGHT
JP2005354020A (en) * 2004-05-10 2005-12-22 Univ Meijo Semiconductor light-emitting device manufacturing method and semiconductor light-emitting device
GB2417825A (en) * 2004-09-04 2006-03-08 Arima Optoelectronics Corp LED with a colour purifying diffraction lattice
WO2006025277A1 (en) * 2004-08-31 2006-03-09 Meijo University Production method for semiconductor light emittingt element and semiconductor light emitting element
WO2006093018A1 (en) * 2005-03-01 2006-09-08 Meijo University Two-light flux interference exposure device, two-light flux interference exposure method, semiconductor light emitting element manufacturing method, and semiconductor light emitting element
JP2009049301A (en) * 2007-08-22 2009-03-05 Toshiba Corp Light-emitting device and method of manufacturing the same
US7542197B2 (en) * 2003-11-01 2009-06-02 Silicon Quest Kabushiki-Kaisha Spatial light modulator featured with an anti-reflective structure
US7772587B2 (en) * 2005-12-09 2010-08-10 Electronics And Telecommunications Research Institute Silicon-based light emitting diode for enhancing light extraction efficiency and method of fabricating the same
JP2011014936A (en) * 2010-10-18 2011-01-20 Showa Denko Kk Gallium nitride based compound semiconductor light-emitting element
US9122867B2 (en) 2007-06-08 2015-09-01 International Business Machines Corporation Techniques for presenting password feedback to a computer system user
JP2015204363A (en) * 2014-04-14 2015-11-16 株式会社昭和真空 Light-emitting element, and method for manufacturing the same

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005005679A (en) * 2003-04-15 2005-01-06 Matsushita Electric Ind Co Ltd Semiconductor light emitting device and its manufacturing method
JP2005019541A (en) * 2003-06-24 2005-01-20 Rohm Co Ltd Optical semiconductor device
US7542197B2 (en) * 2003-11-01 2009-06-02 Silicon Quest Kabushiki-Kaisha Spatial light modulator featured with an anti-reflective structure
FR2865343A1 (en) * 2004-01-21 2005-07-22 Koito Mfg Co Ltd ELECTROLUMINESCENT MODULE AND LAMP FOR VEHICLE HEADLIGHT
JP2005209795A (en) * 2004-01-21 2005-08-04 Koito Mfg Co Ltd Light emitting module and lighting tool
US7282748B2 (en) 2004-01-21 2007-10-16 Koito Manufacturing Co., Ltd. Light emitting module and lamp
JP2005354020A (en) * 2004-05-10 2005-12-22 Univ Meijo Semiconductor light-emitting device manufacturing method and semiconductor light-emitting device
WO2006025277A1 (en) * 2004-08-31 2006-03-09 Meijo University Production method for semiconductor light emittingt element and semiconductor light emitting element
US7612381B2 (en) 2004-08-31 2009-11-03 Meijo University Method for fabricating a semiconductor device and semiconductor device
GB2417825A (en) * 2004-09-04 2006-03-08 Arima Optoelectronics Corp LED with a colour purifying diffraction lattice
GB2417825B (en) * 2004-09-04 2006-11-22 Arima Optoelectronics Corp Light emitting diode with diffraction lattice
JPWO2006093018A1 (en) * 2005-03-01 2008-08-21 学校法人 名城大学 Two-beam interference exposure apparatus, two-beam interference exposure method, method for manufacturing semiconductor light emitting element, and semiconductor light emitting element
WO2006093018A1 (en) * 2005-03-01 2006-09-08 Meijo University Two-light flux interference exposure device, two-light flux interference exposure method, semiconductor light emitting element manufacturing method, and semiconductor light emitting element
US7756189B2 (en) 2005-03-01 2010-07-13 Meijo University Two-light flux interference exposure device, two-light flux interference exposure method, semiconductor light emitting element manufacturing method, and semiconductor light emitting element
KR101260343B1 (en) * 2005-03-01 2013-05-03 각코우호우징 메이조다이가쿠 Two-light flux interference exposure device, two-light flux interference exposure method, semiconductor light emitting element manufacturing method, and semiconductor light emitting element
TWI406101B (en) * 2005-03-01 2013-08-21 Univ Meijo Two-beam interferometric exposure equipment, two-beam interferometric exposure method, production method of semiconductor light emitting device and semiconductor light emitting device
US7772587B2 (en) * 2005-12-09 2010-08-10 Electronics And Telecommunications Research Institute Silicon-based light emitting diode for enhancing light extraction efficiency and method of fabricating the same
US9122867B2 (en) 2007-06-08 2015-09-01 International Business Machines Corporation Techniques for presenting password feedback to a computer system user
JP2009049301A (en) * 2007-08-22 2009-03-05 Toshiba Corp Light-emitting device and method of manufacturing the same
JP2011014936A (en) * 2010-10-18 2011-01-20 Showa Denko Kk Gallium nitride based compound semiconductor light-emitting element
JP2015204363A (en) * 2014-04-14 2015-11-16 株式会社昭和真空 Light-emitting element, and method for manufacturing the same

Also Published As

Publication number Publication date
JP3723843B2 (en) 2005-12-07

Similar Documents

Publication Publication Date Title
JP4824293B2 (en) Photonic crystal light emitting device
KR101476863B1 (en) Light­emitting diode chip with a metal reflective layer,through contact,tunnel contact and a charge carrier contact
JP2006191068A (en) High output light emitting diode and its manufacturing method
JP2003086835A (en) Semiconductor light emitting element and its manufacturing method
CN108172673B (en) Manufacturing method and structure of distributed Bragg reflector pattern for LED flip chip
US20080157108A1 (en) Light-Emitting Diode and Method for Manufacturing the Same
US10868213B2 (en) LED utilizing internal color conversion with light extraction enhancements
KR20080061695A (en) Fabrication method of light emitting device having scattering center using anodic aluminum oxide and light emitting device thereby
KR101490174B1 (en) Light Emitting Diode of having Multi-Junction Structure and Method of forming the same
CN110783435B (en) Semiconductor light emitting device
KR101777516B1 (en) High voltage led flip chip and method for manufacturing the same
CN103811614B (en) Light emitting element with hetero-material structure and manufacturing method thereof
US10283677B2 (en) LED structure and fabrication method
JP2005191220A (en) Semiconductor light emitting element and its manufacturing method
US20070158662A1 (en) Two-dimensional photonic crystal LED
JP5404808B2 (en) Light emitting element
KR101814283B1 (en) Light Emitting Diode With Multiple n Contact Structure
KR100805324B1 (en) Light emitting diode for enhancing efficiency
JP3895683B2 (en) Semiconductor light emitting device
CN113439344A (en) Optoelectronic semiconductor component with a section of a conductive layer and method for the production thereof
JP2004014725A (en) Semiconductor light emitting device
KR101216664B1 (en) method for manufacturing high-brightness LED using diffractive optical elements and high-brightness LED using thereof
JP4093843B2 (en) Semiconductor light emitting device
JP2012209488A (en) Light-emitting device
US20230016028A1 (en) Semiconductor light-emitting component and light-emitting device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050725

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050823

R150 Certificate of patent or registration of utility model

Ref document number: 3723843

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term