JP2003086139A - Electrodeless field discharge excimer lamp - Google Patents
Electrodeless field discharge excimer lampInfo
- Publication number
- JP2003086139A JP2003086139A JP2001276446A JP2001276446A JP2003086139A JP 2003086139 A JP2003086139 A JP 2003086139A JP 2001276446 A JP2001276446 A JP 2001276446A JP 2001276446 A JP2001276446 A JP 2001276446A JP 2003086139 A JP2003086139 A JP 2003086139A
- Authority
- JP
- Japan
- Prior art keywords
- discharge
- discharge vessel
- electrode
- excimer lamp
- lamp
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Circuit Arrangements For Discharge Lamps (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、塗料の硬化、表面
洗浄、殺菌あるいは光化学反応用の紫外線光源として使
用され、無電極電界放電によってエキシマ分子を生成
し、同エキシマ分子から放射される光を利用する無電極
電界放電エキシマランプの改良に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used as an ultraviolet light source for curing, surface cleaning, sterilizing or photochemical reaction of a paint, generates excimer molecules by electrodeless electric field discharge, and emits light emitted from the excimer molecules. The present invention relates to improvement of an electrodeless electric field discharge excimer lamp used.
【0002】[0002]
【従来の技術】本発明のランプに関連した技術として
は、特開2000−133209号あるいは特開200
0−311658号公報に開示された高周波を印加した
電界放電(別名:無電極電界放電)によりエキシマ分子
を生成し、エキシマ分子から放射される紫外線を利用す
る無電極電界放電ランプがよく知られている。2. Description of the Related Art As a technique related to the lamp of the present invention, there are JP-A-2000-133209 and JP-A-200.
A well-known electrodeless electric field discharge lamp that generates excimer molecules by electric field discharge (also known as electrodeless electric field discharge) to which a high frequency is applied and uses ultraviolet rays emitted from the excimer molecules is disclosed in Japanese Patent Application Laid-Open No. 0-311658. There is.
【0003】前記特開2000−133209号公報等
には、点灯周波数として内部電極に高周波を1MHz〜
100MHzの範囲で印加して、放電空間への電力の供
給を効率よく行ない、均一かつ安定な放電が得られる無
電極電界放電ランプが開示されている。In Japanese Patent Laid-Open No. 2000-133209, a high frequency of 1 MHz is applied to the internal electrodes as a lighting frequency.
Disclosed is an electrodeless electric field discharge lamp which can be applied in the range of 100 MHz to efficiently supply electric power to the discharge space to obtain a uniform and stable discharge.
【0004】[0004]
【発明が解決しようとする課題】前記公報のエキシマラ
ンプは、1MHz〜100MHzの高周波点灯であるた
め高い発光効率が得られるが、放電が開始されにくいと
いう課題がある。これは、特開2000−311658
号公報のように、トリガー電極が電気絶縁性の高い管の
外表面に巻かれているため、始動エネルギーが円周上に
分散されてしまうからである。また、トリガー電極と放
電容器との間に絶縁物としての空気が入り込んでいるた
め、始動エネルギーが減衰されてしまうからである。The excimer lamp disclosed in the above publication has high luminous efficiency because it is lit at a high frequency of 1 MHz to 100 MHz, but has a problem that discharge is difficult to start. This is Japanese Unexamined Patent Publication No. 2000-311658.
This is because, as in the publication, since the trigger electrode is wound around the outer surface of the tube having high electric insulation, the starting energy is dispersed on the circumference. In addition, since air as an insulator has entered between the trigger electrode and the discharge vessel, the starting energy is attenuated.
【0005】本発明は前記に鑑みてなされたものであ
り、容易かつ確実に周波数が1〜100MHzという高
周波で始動かつ点灯可能であるばかりでなく、安定した
放電が得られさらに発光効率が優れた無電極電界放電エ
キシマランプを提供することを目的とする。The present invention has been made in view of the above, and not only can it be started and lit easily and reliably at a high frequency of 1 to 100 MHz, but also stable discharge can be obtained and the luminous efficiency is excellent. An object is to provide an electrodeless electric field discharge excimer lamp.
【0006】[0006]
【課題を解決するための手段】上記問題点を解決するた
め、請求項1項記載の発明は、放電ガスが充填された中
空の放電容器と、該放電容器の外側に取り付けられた外
部電極と、同放電容器の中空部の略中心部に挿入される
中空の電気絶縁性が高い管と、該電気絶縁性が高い管の
外表面に取り付けられたトリガー電極および内部電極
と、該内部電極に1〜100MHzの範囲で高周波を印
加して電界放電させ、前記トリガー電極の先端部の幅A
を0.1mm〜5.0mmとし、かつ放電容器の内側に
接触するように構成した無電極電界放電エキシマランプ
である。In order to solve the above-mentioned problems, the invention according to claim 1 has a hollow discharge vessel filled with a discharge gas, and an external electrode attached to the outside of the discharge vessel. , A hollow tube having a high electrical insulating property which is inserted substantially in the center of the hollow portion of the discharge vessel, a trigger electrode and an internal electrode attached to the outer surface of the tube having a high electrical insulating property, and the internal electrode A high frequency is applied in the range of 1 to 100 MHz to cause electric field discharge, and the width A of the tip portion of the trigger electrode is
Is 0.1 mm to 5.0 mm, and is an electrodeless electric field discharge excimer lamp configured to be in contact with the inside of the discharge vessel.
【0007】請求項2項記載の発明は、前記電気絶縁性
が高い管の外表面に取り付けられたトリガー電極と前記
放電容器の外側に取り付けられた外部電極との距離Bを
15mm以下とする無電極電界放電エキシマランプであ
る。According to a second aspect of the present invention, the distance B between the trigger electrode attached to the outer surface of the tube having high electrical insulation and the external electrode attached to the outside of the discharge vessel is 15 mm or less. It is an electrode electric field discharge excimer lamp.
【0008】請求項1記載の発明によれば、従来と比較
してエキシマランプのトリガー電極の先端部の幅をより
細くしているので、始動エネルギーを管の円周上に分散
させることなく一部分に集中させることができる。ま
た、トリガー電極を放電容器の内側に接触する構造とし
ているため、トリガー電極と放電容器との間に絶縁物と
しての空気が入り込んでいたとしても始動エネルギーが
減衰されることがない。従って、速やかに点灯始動が行
なえる。According to the first aspect of the present invention, the width of the tip portion of the trigger electrode of the excimer lamp is made narrower than that of the prior art, so that the starting energy is partially dispersed on the circumference of the tube. Can be focused on. Further, since the trigger electrode has a structure in contact with the inside of the discharge container, the starting energy is not attenuated even if air as an insulator enters between the trigger electrode and the discharge container. Therefore, the lighting can be started quickly.
【0009】請求項2記載の発明によれば、トリガー電
極と放電容器の外側に取り付けられた外部電極との距離
を15mm以下とすることにより、より確実に点灯始動
が行なえる。According to the second aspect of the invention, the lighting start can be performed more reliably by setting the distance between the trigger electrode and the external electrode attached to the outside of the discharge vessel to be 15 mm or less.
【0010】[0010]
【発明の実施の形態】本発明の実施の形態を図面に基づ
き説明する。図1は本発明に係る無電極電界放電エキシ
マランプの一実施例を示す概略断面図である。中空の放
電容器1は、全長約300mmの石英ガラスで、外側管
の外径は約35mmで内径が約32mm、内側管の外径
は約11mmで内径が約9mmになっている。放電容器
1の外側管の外側には外部電極2が巻回され、放電容器
1内には、2.0×104Paのキセノンガスが充填さ
れている。また、放電容器1の中空部の略中心部には、
中空の電気絶縁性が高い管としての石英ガラス管3が挿
入されていて、同電気絶縁性が高い管3の外側にはトリ
ガー電極4が配置されると共に内部電極5が巻回されて
いる。なお、ランプ点灯始動時はトリガー電源6からト
リガー電極4へ通電され、内部電極5には高周波電源7
から2.65MHzの高周波が印加されて放電容器1内
を電界放電させる。図中8は、ランプ取り付け用のセラ
ミックベースであり、9は端子としての冷媒の流出口で
ある。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic sectional view showing an embodiment of the electrodeless electric field discharge excimer lamp according to the present invention. The hollow discharge vessel 1 is made of quartz glass having a total length of about 300 mm, the outer tube has an outer diameter of about 35 mm and an inner diameter of about 32 mm, and the inner tube has an outer diameter of about 11 mm and an inner diameter of about 9 mm. The outer electrode 2 is wound around the outer tube of the discharge vessel 1, and the discharge vessel 1 is filled with 2.0 × 10 4 Pa of xenon gas. Further, in the substantially central portion of the hollow portion of the discharge vessel 1,
A quartz glass tube 3 as a hollow tube having high electrical insulation is inserted, and a trigger electrode 4 is arranged on the outside of the tube 3 having high electrical insulation and an internal electrode 5 is wound. In addition, when the lamp is turned on, the trigger power supply 6 energizes the trigger electrode 4, and the internal electrode 5 receives the high frequency power supply 7
From which a high frequency of 2.65 MHz is applied to cause electric field discharge in the discharge vessel 1. In the figure, 8 is a ceramic base for mounting a lamp, and 9 is a refrigerant outlet as a terminal.
【0011】図2(a),(b)はトリガー電極4の先
端部の幅(A)を2mmとした場合の実施例であり、内
部電極5との構成を示した図であり、図3はトリガー電
極4と外部電極2との位置関係を示した説明図である。2 (a) and 2 (b) show an embodiment in which the width (A) of the tip portion of the trigger electrode 4 is 2 mm, and is a view showing the structure with the internal electrode 5, and FIG. FIG. 4 is an explanatory diagram showing a positional relationship between the trigger electrode 4 and the external electrode 2.
【0012】始動用のトリガー電極4の取り付け位置と
しては、図に示すような外部電極2の近傍で、内部電極
5に対して放電が発生しない程度の距離をおいた位置に
する必要がある。放電容器1に対するトリガー電極4の
取り付け位置は、用途に合わせて管軸に対して円周上の
どの位置でも可能である。また、トリガー電極の先端部
は図示するように、円弧状に折り曲げて弾力性を持たせ
ている。そして、外部電極2とトリガー電極4との間で
形成される放電と、外部電極2と内部電極5との間で形
成される放電とが一部重なるため、速やかな始動、点灯
が可能になる。The trigger electrode 4 for starting needs to be attached at a position near the external electrode 2 as shown in the figure, with a distance to the internal electrode 5 such that no discharge is generated. The trigger electrode 4 can be attached to the discharge vessel 1 at any position on the circumference of the tube axis depending on the application. Further, as shown in the drawing, the tip portion of the trigger electrode is bent in an arc shape so as to have elasticity. Then, since the discharge formed between the external electrode 2 and the trigger electrode 4 partially overlaps the discharge formed between the external electrode 2 and the internal electrode 5, quick start and lighting are possible. .
【0013】前記実施例では、トリガー電極4の先端部
の幅Aを2mmとした場合について説明したが、A=
0.5〜5.0mmであれば、始動エネルギーを管の円
周上に分散させることなく一部分に集中させることがで
きる。なお、0.5mm未満であると、細すぎて製作が
煩雑であるばかりか、機械的強度が小さいという不具合
がある。5.0mmを超えると、その先端部の幅が大き
くなり一部分に集中させることができなくなり、始動特
性が低下していくという不具合がある。In the above embodiment, the case where the width A of the tip portion of the trigger electrode 4 is set to 2 mm has been described.
If it is 0.5 to 5.0 mm, the starting energy can be concentrated on a part without being dispersed on the circumference of the tube. If it is less than 0.5 mm, not only is it too thin and complicated to manufacture, but also the mechanical strength is low. If it exceeds 5.0 mm, the width of the tip portion becomes large and it is not possible to concentrate it on a part, and there is a problem that the starting characteristic deteriorates.
【0014】次に、実験例について説明する。図3に示
すトリガー電極4と外部電極2との距離Bを変化させた
場合のランプの始動電圧の変化について測定した。本発
明に係る実施例(A=2mm)と従来例(電極先端形状
が円筒)のランプとの始動電圧の特性の変化を図4に示
す。図4は、トリガー電極4と外部電極2との距離Bが
15mmを越えてしまうとランプが始動しないことを示
している。これは、本発明のトリガー電極を用いると従
来例のトリガー電極よりも低いエネルギーで始動が可能
であり、始動がより確実であることを実証している。Next, an experimental example will be described. The change in the starting voltage of the lamp when the distance B between the trigger electrode 4 and the external electrode 2 shown in FIG. 3 was changed was measured. FIG. 4 shows changes in the starting voltage characteristics of the lamp according to the present invention (A = 2 mm) and the lamp according to the conventional example (electrode tip shape is cylindrical). FIG. 4 shows that the lamp does not start when the distance B between the trigger electrode 4 and the external electrode 2 exceeds 15 mm. This demonstrates that the trigger electrode of the present invention can be started with lower energy than the conventional trigger electrode, and the start is more reliable.
【0015】そして、前記エキシマランプを処理装置に
組み込み使用する場合、電気絶縁性が高い管3の中空部
には冷媒10が流されている。冷媒10を流す理由は次
のとおりである。高周波(無線周波数,1〜100MH
z)の電圧を放電容器に印加すると、放電容器内のすべ
ての空間に高密度のプラズマが形成され、一様な放電
(霧状の放電)となる。これは従来例の誘電体バリア放
電ランプにおけるマイクロブラズマのように、位置的、
時間的なプラズマの変動がないため、単位面積当たりの
紫外線出力を従来の誘電体バリア放電ランプの数十倍に
することが可能となる。しかし、これに伴い放電容器1
の温度上昇が過大となるので、放電容器を効果的に冷却
するためである。When the excimer lamp is used by incorporating it into a processing apparatus, the refrigerant 10 is flown through the hollow portion of the tube 3 having high electric insulation. The reason for flowing the refrigerant 10 is as follows. High frequency (radio frequency, 1-100 MH
When the voltage of z) is applied to the discharge vessel, high-density plasma is formed in all the spaces in the discharge vessel, and uniform discharge (fog-like discharge) is generated. This is positional, like micro-plasma in the conventional dielectric barrier discharge lamp,
Since there is no temporal fluctuation of plasma, it is possible to increase the ultraviolet ray output per unit area to several tens of times that of the conventional dielectric barrier discharge lamp. However, along with this, the discharge vessel 1
This is because the temperature rise of 1 is excessively large and the discharge vessel is effectively cooled.
【0016】このように、放電容器1の温度上昇によ
り、無電極電界放電エキシマランプの発光効率が著しく
低下するため、放電容器1を十分に冷却する必要があ
る。そのため、ランプ中心部にある内部電極5を直接冷
媒で冷却すればよいのであるが、内部電極5には高電圧
が印加されているため、電気絶縁性の高い冷媒を必要と
する。一般に、電気絶縁性の高い冷媒は有機物である
が、有機物の冷媒ではランプから発生する紫外線により
変質してしまう。したがって、電気絶縁性の高い蒸留水
などを使用すればよいが、蒸留水の場合、電気絶縁性の
維持と管理が難しい。As described above, since the luminous efficiency of the electrodeless electric field discharge excimer lamp is remarkably lowered due to the temperature rise of the discharge vessel 1, it is necessary to cool the discharge vessel 1 sufficiently. Therefore, it suffices to directly cool the internal electrode 5 in the central portion of the lamp with the cooling medium, but since a high voltage is applied to the internal electrode 5, a cooling medium having high electrical insulation is required. Generally, a refrigerant having a high electric insulation property is an organic substance, but the organic substance refrigerant is deteriorated by ultraviolet rays generated from a lamp. Therefore, distilled water having high electric insulation may be used, but in the case of distilled water, it is difficult to maintain and manage the electric insulation.
【0017】そこで、本発明では電気絶縁性が高い管3
を放電容器1の中空部の略中心部に挿入し、電気絶縁性
が高い管3の内部に冷媒10を流す方法を採っている。
すなわち、内部電極5を直接冷媒で冷却せずに、電気絶
縁性が高い管に冷媒を流して間接的に内部電極を冷却し
ている。これにより、電気絶縁性の高い蒸留水等の冷媒
を必要としない。電気絶縁性が高い管の部材としては、
紫外線により変質することがなく、熱伝導性の良い、ア
ルミナやガラスなどのセラミックスが適している。ま
た、冷媒としては、電気絶縁性は必要としないので、比
熱の大きい冷媒として水を使用してもよい。Therefore, in the present invention, the tube 3 having a high electric insulation property is used.
Is inserted in the substantially central portion of the hollow portion of the discharge vessel 1, and the refrigerant 10 is caused to flow inside the tube 3 having high electrical insulation.
That is, the internal electrode 5 is not directly cooled by the cooling medium, but the cooling medium is caused to flow through a pipe having high electric insulation to indirectly cool the internal electrode. As a result, a refrigerant such as distilled water having high electric insulation is not required. As a member of the tube with high electrical insulation,
Ceramics such as alumina and glass, which do not deteriorate due to ultraviolet rays and have good thermal conductivity, are suitable. Further, since the refrigerant does not require electrical insulation, water may be used as the refrigerant having a large specific heat.
【0018】一般にエキシマランプは、励起された希ガ
ス原子と他の原子とが出会う確率が高いほど、紫外線の
出力効率は上がる。したがって、放電ガス圧を増加させ
ると紫外線の出力効率は上がるが、放電ガス圧を高くし
過ぎると放電開始電圧が上昇して、ランプを点灯させる
ことが困難になる。そこで、本発明に係る無電極電界放
電エキシマランプのように、ランプの点灯周波数が高け
れば(無線周波数,1〜100MHz)放電ガス圧が低
くても励起された希ガス原子と他の原子とが出会う確率
は高くなる。その上、ランプ中心部より放電容器が十分
に冷却されるので、放電ガスも冷却され紫外線の発光効
率はさらに向上する。また、ランプの放電ガス圧が低い
ので、放電開始電圧は低くくなり、ランプの始動性も向
上する。Generally, in the excimer lamp, the higher the probability that the excited rare gas atom and the other atom meet, the higher the output efficiency of ultraviolet rays. Therefore, if the discharge gas pressure is increased, the output efficiency of ultraviolet rays is increased, but if the discharge gas pressure is too high, the discharge start voltage increases and it becomes difficult to light the lamp. Therefore, as in the electrodeless electric field discharge excimer lamp according to the present invention, if the lighting frequency of the lamp is high (radio frequency, 1 to 100 MHz), excited rare gas atoms and other atoms are generated even if the discharge gas pressure is low. The chances of encountering are high. In addition, since the discharge vessel is sufficiently cooled from the central portion of the lamp, the discharge gas is also cooled and the luminous efficiency of ultraviolet rays is further improved. Further, since the discharge gas pressure of the lamp is low, the discharge starting voltage becomes low, and the startability of the lamp is also improved.
【0019】[0019]
【発明の効果】以上説明したように、本発明は、点灯周
波数として内部電極に高周波を1〜100MHzの範囲
で印加して、電界放電させる無電極電界放電エキシマラ
ンプにおいて、前記トリガー電極の先端部の幅Aを0.
1〜5.0mmとし、かつトリガー電極と外部電極との
距離Bを15mm以下とするにより、確実に始動点灯が
行えるという利点がある。また、トリガー電極の前方部
を折り曲げて弾力性を持たせて放電容器の内側に接触さ
せることにより、始動エネルギーの減衰がなく、かつ電
気絶縁性が高い管を放電容器の内部に保持できるため、
ランプ製作が容易である等の利点がある。As described above, according to the present invention, in the electrodeless electric field discharge excimer lamp for applying a high frequency in the range of 1 to 100 MHz to the internal electrode as a lighting frequency to cause electric field discharge, the tip portion of the trigger electrode is used. Width A of 0.
By setting the distance B between the trigger electrode and the external electrode to 15 mm or less and 1 mm to 5.0 mm, there is an advantage that the starting lighting can be reliably performed. Further, by bending the front part of the trigger electrode and making it elastic and contacting the inside of the discharge vessel, there is no attenuation of the starting energy, and since a highly electrically insulating tube can be held inside the discharge vessel,
There are advantages such as easy manufacture of the lamp.
【図1】本発明に係る無電極電界放電エキシマランプの
概略断面図である。FIG. 1 is a schematic sectional view of an electrodeless electric field discharge excimer lamp according to the present invention.
【図2】同じくトリガー電極の平面図および側面図であ
る。FIG. 2 is a plan view and a side view of a trigger electrode.
【図3】同じくトリガー電極と外部電極の位置関係を示
す説明図である。FIG. 3 is an explanatory diagram showing a positional relationship between a trigger electrode and an external electrode, similarly.
【図4】本発明の実施例と従来例における、トリガー電
極と外部電極との電極間距離と始動電圧との関係を示す
特性図である。FIG. 4 is a characteristic diagram showing a relationship between an electrode distance between a trigger electrode and an external electrode and a starting voltage in an example of the present invention and a conventional example.
1 放電容器 2 外部電極 3 電気絶縁性が高い管 4 トリガー電極 5 内部電極 6 トリガー電源 7 高周波電源 8 ベース(ランプ取り付け用セラミックベース) 9 端子(冷媒流出口) 10 冷媒 1 discharge vessel 2 external electrodes 3 Tubes with high electrical insulation 4 Trigger electrode 5 internal electrodes 6 Trigger power supply 7 High frequency power supply 8 base (ceramic base for lamp mounting) 9 terminals (refrigerant outlet) 10 Refrigerant
───────────────────────────────────────────────────── フロントページの続き (72)発明者 柴田 好久 埼玉県行田市壱里山町1−1 岩崎電気株 式会社埼玉製作所内 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Yoshihisa Shibata 1-1 Iriyama-cho, Gyoda-shi, Saitama Iwasaki Electric Co., Ltd. Inside the Saitama Factory
Claims (2)
と、該放電容器の外側に取り付けられた外部電極と、同
放電容器の中空部の略中心部に挿入される中空の電気絶
縁性が高い管と、該電気絶縁性が高い管の外表面に取り
付けられたトリガー電極および内部電極と、該内部電極
に1MHz〜100MHzの範囲で高周波を印加して電
界放電させる無電極電界放電エキシマランプであって、
前記トリガー電極の先端部の幅Aを0.1〜5.0mm
とし、かつ前記放電容器の内側に接触するように構成し
たことを特徴とする無電極電界放電エキシマランプ。1. A hollow discharge vessel filled with a discharge gas, an external electrode attached to the outside of the discharge vessel, and a hollow electrical insulating material inserted into a substantially central portion of the hollow portion of the discharge vessel. A high tube, a trigger electrode and an internal electrode attached to the outer surface of the tube having high electrical insulation, and an electrodeless field discharge excimer lamp for applying an electric field to the internal electrode by applying a high frequency in the range of 1 MHz to 100 MHz. There
The width A of the tip of the trigger electrode is 0.1 to 5.0 mm.
And an electrodeless electric field discharge excimer lamp, which is configured to be in contact with the inside of the discharge vessel.
付けられたトリガー電極と前記放電容器の外側に取り付
けられた外部電極との距離Bを15mm以下と構成する
ことを特徴とする請求項1記載の無電極電界放電エキシ
マランプ。2. The distance B between the trigger electrode attached to the outer surface of the tube having high electrical insulation and the external electrode attached to the outside of the discharge vessel is set to 15 mm or less. 1. The electrodeless electric field discharge excimer lamp according to 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001276446A JP2003086139A (en) | 2001-09-12 | 2001-09-12 | Electrodeless field discharge excimer lamp |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001276446A JP2003086139A (en) | 2001-09-12 | 2001-09-12 | Electrodeless field discharge excimer lamp |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003086139A true JP2003086139A (en) | 2003-03-20 |
Family
ID=19101142
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001276446A Pending JP2003086139A (en) | 2001-09-12 | 2001-09-12 | Electrodeless field discharge excimer lamp |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003086139A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1971999A2 (en) * | 2005-12-21 | 2008-09-24 | Trojan Technologies Inc. | Excimer radiation lamp assembly, and source module and fluid treatment system containing same |
CN103828017A (en) * | 2011-09-13 | 2014-05-28 | 浜松光子学株式会社 | Light emitting apparatus |
-
2001
- 2001-09-12 JP JP2001276446A patent/JP2003086139A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1971999A2 (en) * | 2005-12-21 | 2008-09-24 | Trojan Technologies Inc. | Excimer radiation lamp assembly, and source module and fluid treatment system containing same |
EP1971999A4 (en) * | 2005-12-21 | 2012-05-30 | Trojan Techn Inc | Excimer radiation lamp assembly, and source module and fluid treatment system containing same |
CN103828017A (en) * | 2011-09-13 | 2014-05-28 | 浜松光子学株式会社 | Light emitting apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0767485A2 (en) | Electrodeless fluorescent lamp | |
US9159545B2 (en) | Excimer lamp | |
CN100380570C (en) | Unit comprising short-arc discharge lamp with starting antenna | |
JPH10321039A (en) | Microwave discharge lamp device | |
JP4568989B2 (en) | High pressure discharge lamp and lighting device | |
JP3346190B2 (en) | Rare gas discharge lamp | |
JP4164716B2 (en) | Electrodeless field discharge excimer lamp and electrodeless field discharge excimer lamp device | |
JP3506055B2 (en) | Dielectric barrier discharge lamp and light irradiation device thereof | |
US20080061669A1 (en) | Dielectric barrier discharge excimer light source | |
JP2003086139A (en) | Electrodeless field discharge excimer lamp | |
KR100638955B1 (en) | Uv radiator having a tubular discharge vessel | |
US20050035711A1 (en) | Method and apparatus for a high efficiency ultraviolet radiation source | |
JP2002110102A (en) | Dielectric barrier discharge lamp | |
JP3178184B2 (en) | Dielectric barrier discharge lamp | |
JP2002279935A (en) | Excimer radiator | |
JPH06181050A (en) | Rare gas discharge lamp apparatus | |
JP2001084962A (en) | Ultraviolet irradiating device using flash discharge lamp | |
JP2004227820A (en) | Discharge lamp | |
JP2002319371A (en) | Dielectric barrier discharge lamp, device for lighting dielectric barrier discharge lamp, and ultraviolet irradiation device | |
JPH1050269A (en) | Electrodeless discharge lamp, electrodeless discharge lamp device, electrodeless discharge lamp lighting device, and fluid treating device | |
JP2002175781A (en) | Discharge lamp and ultraviolet ray irradiating device | |
JP3065079B1 (en) | Rare gas discharge lamp, method of manufacturing rare gas discharge lamp, and apparatus using rare gas discharge lamp | |
JP3125606B2 (en) | Dielectric barrier discharge lamp device | |
JP2002319369A (en) | Dielectric barrier discharge lamp, and ultraviolet irradiation device | |
JP3753332B2 (en) | Inductively coupled electrodeless discharge lamp and lighting device using the same |