JP2003083689A - Rotary regenerative heat-exchanger - Google Patents

Rotary regenerative heat-exchanger

Info

Publication number
JP2003083689A
JP2003083689A JP2001277930A JP2001277930A JP2003083689A JP 2003083689 A JP2003083689 A JP 2003083689A JP 2001277930 A JP2001277930 A JP 2001277930A JP 2001277930 A JP2001277930 A JP 2001277930A JP 2003083689 A JP2003083689 A JP 2003083689A
Authority
JP
Japan
Prior art keywords
enamel
heat
rotor
heat exchange
transfer element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001277930A
Other languages
Japanese (ja)
Inventor
Tadashi Noguchi
正 野口
Rihei Hamada
利平 濱田
Fumio Tokunaga
文夫 徳永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON SANGYO KK
General Electric Switzerland GmbH
Tomatec Co Ltd
Original Assignee
NIPPON SANGYO KK
Alstom Schweiz AG
Tokan Material Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON SANGYO KK, Alstom Schweiz AG, Tokan Material Technology Co Ltd filed Critical NIPPON SANGYO KK
Priority to JP2001277930A priority Critical patent/JP2003083689A/en
Publication of JP2003083689A publication Critical patent/JP2003083689A/en
Pending legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rotary regenerative heat-exchanger provided with members, such as heat-transfer element, in which heat resistance is enhanced, and simplification in production processes and effect on environment can be improved, without degradation of excellent corrosion-resistance of conventional enamel. SOLUTION: This heat exchanger is constituted of a rotation center-shaft 1, a rotor 2, a partition 3, a basket, a heat-transfer element in the basket, and a seal in the radial direction, extending axially along the edge of the partition 3. In the heat exchanger, any one of the heat-transfer elements, the basket, the partition 3, and the axially extending seal is covered with an enamel comprising 50-60 wt.% of SiO2 +ZrO2 +TiO2 , 10-20 wt.% of Al2 O3 +B2 O3 , 10-15 wt.% of Na2 O+K2 O+Li2 O, 10-15 wt.% of CaO+BaO+SrO, and 1.5-5.0 wt.% of FeO+ CoO+NiO+CuO.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、回転再生式熱交換
装置に関する。
TECHNICAL FIELD The present invention relates to a rotary regeneration heat exchange device.

【0002】[0002]

【従来の技術】一般に回転再生式熱交換装置は、図1な
いし図4に示すように、回転中心軸1と、該回転中心軸
1のまわりに回転するロータ2と、該ロータ2内で半径
方向に延びる複数の仕切り3と、これら仕切り3間に収
容されるバスケット4と、該バスケット4内に装填され
る伝熱エレメント5と、上記仕切り3の軸方向縁に沿っ
て延びる複数の半径方向シール6と、上記ロータ2を収
容しこれに加熱流体および被加熱流体を導く入口ダクト
7a及び出口ダクト7bを備えたハウジング7とから構
成され、上記ロータ2を回転させると共に上記伝熱エレ
メント5を介して加熱流体と被加熱流体との間で熱交換
を行わしめるようになっている。8はセクタープレート
であって、加熱流体(高温流体)側と被加熱流体(低温
流体)側を分けるようになっている。
2. Description of the Related Art Generally, as shown in FIGS. 1 to 4, a rotary regeneration type heat exchange device has a rotation center axis 1, a rotor 2 rotating around the rotation center axis 1, and a radius inside the rotor 2. A plurality of partitions 3 extending in the direction, a basket 4 housed between the partitions 3, a heat transfer element 5 loaded in the basket 4, and a plurality of radial directions extending along the axial edge of the partition 3. It is composed of a seal 6 and a housing 7 which houses the rotor 2 and has an inlet duct 7a and an outlet duct 7b for introducing a heating fluid and a fluid to be heated into the rotor 7, rotating the rotor 2 and connecting the heat transfer element 5 to the rotor 7. The heat exchange between the heating fluid and the fluid to be heated is performed via the above. Reference numeral 8 denotes a sector plate which separates the heating fluid (high temperature fluid) side and the heated fluid (low temperature fluid) side.

【0003】上記回転再生式熱交換装置を運転中に、上
記加熱流体が、硫黄を含む燃料を燃焼させた排ガスなど
の場合には、図2に示すロータ2の低温部で硫酸の凝縮
が生じて、いわゆる低温腐食が発生する。また、燃料が
天然ガスの場合には、上記低温部で水分凝縮が生じて、
その凝縮水は塩化物イオンや硫酸イオンを含んだ低pH
水であるため、いわゆる水腐食が発生する。これらの低
温腐食や水腐食により、特に伝熱エレメント5は損耗し
て熱効率の低下や腐食生成物で圧力損失が上昇する等の
問題点があった。これらの腐食に対して、低温部に用い
られる伝熱エレメント5の材料として従来、耐食鋼の1
0倍程度の耐食性を有するエナメル被覆鋼が用いられて
いた。
When the heating fluid is an exhaust gas obtained by burning a fuel containing sulfur during the operation of the rotary regeneration heat exchanger, sulfuric acid is condensed in the low temperature portion of the rotor 2 shown in FIG. Therefore, so-called low temperature corrosion occurs. Also, when the fuel is natural gas, water condensation occurs in the low temperature part,
The condensed water has a low pH containing chloride ions and sulfate ions.
Since it is water, so-called water corrosion occurs. Due to these low temperature corrosion and water corrosion, there are problems in that the heat transfer element 5 is particularly worn, the thermal efficiency is lowered, and the pressure loss is increased due to corrosion products. As a material for the heat transfer element 5 used in the low temperature part, the conventional corrosion resistant steel
An enamel-coated steel having about 0 times the corrosion resistance was used.

【0004】しかしながら、最近の発電プラントは運転
の多様化により、時々運転を停止する運転パターンが導
入される事で、上述のような継続運転中の低温腐食とは
別に、停止中でも伝熱エレメントや各部材(バスケッ
ト、仕切り、半径方向シール等)に腐食が発生すること
が多くなった。
However, due to the diversification of the operation of recent power plants, an operation pattern of occasionally stopping the operation is introduced. In addition to the low temperature corrosion during the continuous operation as described above, the heat transfer element and Corrosion often occurred in each member (basket, partition, radial seal, etc.).

【0005】停止中の腐食は水に起因し、回転再生式熱
交換装置内で大気中の水分の露点凝縮や、運転中の付着
ダストの吸湿に因るところが多く、また、それは運転停
止に伴う水洗回数の増加も影響している。上述のよう
に、従来の回転再生式熱交換装置の伝熱エレメント5の
低温部には、エナメル被覆鋼が用いられているので、停
止中の腐食は水洗を含めて問題が生じないが、運転中に
排ガスによる低温腐食が生じない中温部や高温部(図2
参照)では、耐食鋼を含めた金属材料が用いられている
ため、停止中に中温部や高温部に錆が発生する。特に、
伝熱エレメントに発生した錆は、乾燥や加熱することで
強固な浮錆となって流体流路を狭くし、材料の損耗以上
に次回立ち上げ時に圧力損失が異常に上昇するという、
大きな危険性があった。
Corrosion during shutdown is caused by water, and is often due to dew point condensation of atmospheric moisture in the rotary regeneration heat exchanger and moisture absorption of adhering dust during operation. The increase in the number of washings also has an effect. As described above, since the enamel-coated steel is used in the low temperature part of the heat transfer element 5 of the conventional rotary regeneration heat exchanger, corrosion during stoppage does not cause a problem including washing, but Medium temperature and high temperature parts where low temperature corrosion due to exhaust gas does not occur (Fig. 2
In (see), since metal materials including corrosion resistant steel are used, rust occurs in the middle temperature part and the high temperature part during the stop. In particular,
The rust generated on the heat transfer element becomes strong floating rust by drying and heating, narrowing the fluid flow path, and the pressure loss rises abnormally at the next startup more than the loss of material.
There was a great danger.

【0006】[0006]

【発明が解決しようとする課題】伝熱エレメント5の中
温部や高温部の耐食性は、エナメル被覆鋼を用いれば確
保できるが、従来の耐食性エナメル被覆鋼には、耐熱性
の限界があって、その適用はせいぜい熱交換装置の中温
部の中ほどに位置する部材まで(300℃弱)で、中温
部の高温側や高温部(すなわち300℃以上)において
は長期の使用で劣化していた。これは、熱交換に伴い材
料に対する温度変化の振幅のために、エナメル層に微細
クラックが発生して劣化が始まるが、高温酸化性の観点
からはあまり問題とはならないものの、凝縮水分や腐食
性環境の場合では、母材を侵して劣化の進行を助長す
る。また、中温部では低温側も低温腐食域であることが
多く、特に中温部のエナメルとしては高温側では耐熱性
を、低温側では低温部に使用されていると同等の耐食性
を必要とする。さらに、特殊なエナメル焼成の場合に
は、生産性が低下してコスト高となるので、従来通りの
焼成方法で品質を維持することのできるエナメル材料が
要請されている。
Corrosion resistance of the heat transfer element 5 in the middle and high temperature parts can be ensured by using the enamel coated steel, but the conventional corrosion resistant enamel coated steel has a limit of heat resistance, The application was at most up to a member located in the middle of the middle temperature part of the heat exchange device (a little less than 300 ° C.), and the high temperature side of the middle temperature part and the high temperature part (that is, 300 ° C. or higher) were deteriorated by long-term use. This is because the amplitude of the temperature change with respect to the material due to heat exchange causes microcracks in the enamel layer to start deterioration, but this is not a problem from the viewpoint of high-temperature oxidization, but it does not cause condensed moisture or corrosive In the case of environment, the base material is attacked to promote the progress of deterioration. Further, in the middle temperature part, the low temperature side is often a low temperature corrosion region, and in particular, the enamel of the middle temperature part needs heat resistance on the high temperature side and corrosion resistance equivalent to that used on the low temperature part on the low temperature side. Further, in the case of a special enamel firing, the productivity is lowered and the cost becomes high, so that an enamel material capable of maintaining the quality by the conventional firing method is required.

【0007】本発明は、上記従来の要請に応えるために
なされたもので、その目的とするところは従来のエナメ
ルの持つ優れた耐食性を損なうことなく、耐熱性を大幅
に向上させることができ、生産工程の単純化と環境への
影響を大幅に改善することができる伝熱エレメント等の
部材を備えた回転再生式熱交換装置を提供することにあ
る。
The present invention has been made in order to meet the above-mentioned conventional requirements, and the purpose thereof is to significantly improve heat resistance without impairing the excellent corrosion resistance of conventional enamel. It is an object of the present invention to provide a rotary regeneration heat exchange device equipped with a member such as a heat transfer element capable of greatly simplifying the production process and significantly improving the influence on the environment.

【0008】[0008]

【課題を解決するための手段】本発明の回転再生式熱交
換装置は、回転中心軸と、該回転中心軸のまわりに回転
するロータと、該ロータの半径方向に延びる複数の仕切
りと、これら仕切り間に収容されるバスケットと、該バ
スケット内に装填される伝熱エレメントと、上記仕切り
の軸方向縁に沿って延びる複数の半径方向シールと、上
記ロータを収容しこれに加熱流体および被加熱流体を導
く入口ダクト及び出口ダクトを備えたハウジングとから
構成され、上記ロータを回転させると共に上記伝熱エレ
メントを介して加熱流体と被加熱流体との間で熱交換を
行わしめる回転再生式熱交換装置において、上記伝熱エ
レメント、バスケット、仕切り、半径方向シールの少な
くともいずれか1つがエナメルで被覆され、当該エナメ
ルの化学組成の重量割合が、SiO+ZrO+Ti
が50〜60%、Al+Bが10〜2
0%、NaO+KO+LiOが10〜15%、C
aO+BaO+SrOが10〜15%、FeO+CoO
+NiO+CuOが1.5〜5.0%から成ることを特
徴とする。また、上記装置において、エナメル被膜中に
形成される圧縮応力が加熱によって引張応力に変化する
温度が、350℃以上であることを特徴とするものであ
る。
SUMMARY OF THE INVENTION A rotary regeneration heat exchange apparatus according to the present invention comprises a rotation center axis, a rotor rotating about the rotation center axis, and a plurality of partitions extending in the radial direction of the rotor. A basket housed between the partitions, a heat transfer element loaded in the basket, a plurality of radial seals extending along an axial edge of the partition, the rotor containing the heating fluid and the heated fluid. A rotary regenerative heat exchange, which comprises a housing having an inlet duct and an outlet duct for guiding a fluid, rotates the rotor, and exchanges heat between a heating fluid and a heated fluid via the heat transfer element. In the device, at least one of the heat transfer element, the basket, the partition, and the radial seal is coated with an enamel, and the weight of the chemical composition of the enamel is increased. Ratio, SiO 2 + ZrO 2 + Ti
O 2 is 50 to 60%, Al 2 O 3 + B 2 O 3 is 10 to 2
0%, Na 2 O + K 2 O + Li 2 O 10 to 15%, C
aO + BaO + SrO 10 to 15%, FeO + CoO
+ NiO + CuO is characterized by being composed of 1.5 to 5.0%. Further, in the above apparatus, the temperature at which the compressive stress formed in the enamel coating changes into a tensile stress by heating is 350 ° C. or higher.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。上述のように、従来のエナメル被覆鋼で耐
食性は十分に確保されているので、本発明では、耐食性
を損なわずに耐熱性を向上させるためにエナメルの化学
組成(フリット成分ともいう)の調整を行った。従来の
エナメルと本発明のエナメルの比較を表1に示す。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. As described above, since the corrosion resistance is sufficiently ensured in the conventional enamel-coated steel, in the present invention, the chemical composition of the enamel (also referred to as frit component) is adjusted to improve the heat resistance without impairing the corrosion resistance. went. Table 1 shows a comparison between the conventional enamel and the enamel of the present invention.

【0010】[0010]

【表1】 [Table 1]

【0011】上記SiO+ZrO+TiOは、エ
ナメルの主成分であり、化学的耐久性を向上させ、耐熱
性を付与させる成分である。SiO+ZrO+Ti
のうち、SiOは85〜95%、ZrOは0〜
5%、TiOは0〜10%である。SiO+ZrO
+TiOが50%以下であると、化学的耐久性が劣
り、60%以上になると、難溶性になり焼成し難くな
る。
The above-mentioned SiO 2 + ZrO 2 + TiO 2 is a main component of enamel, is a component which improves chemical durability and imparts heat resistance. SiO 2 + ZrO 2 + Ti
Of O 2 , SiO 2 is 85 to 95% and ZrO 2 is 0 to
5%, TiO 2 is 0 to 10%. SiO 2 + ZrO
When 2 + TiO 2 is 50% or less, the chemical durability is poor, and when it is 60% or more, it becomes insoluble and becomes difficult to be fired.

【0012】上記Al+Bは、エナメルの
耐食性と易溶性に影響を与える成分である。Al
+Bのうち、Alは0〜5%、B
95〜100%である。Al+Bが10%
以下であると、エナメルが難溶性になり焼成し難くな
り、20%以上であると、耐食性が悪くなる。
The Al 2 O 3 + B 2 O 3 is a component that affects the corrosion resistance and the easy solubility of the enamel. Al 2 O 3
Of + B 2 O 3, Al 2 O 3 is 0~5%, B 2 O 3 is 95 to 100%. Al 2 O 3 + B 2 O 3 is 10%
When it is below, the enamel becomes poorly soluble and becomes difficult to be fired, and when it is at least 20%, the corrosion resistance becomes poor.

【0013】上記NaO+KO+LiOは、エナ
メルの耐食性、易溶性および熱膨張係数に影響を与える
成分である。NaO+KO+LiOのうち、Na
Oは80〜90%、KOは0〜5%、LiOは1
0〜20%である。NaO+KO+LiOが10
%以下では、エナメルが難溶性になり焼成し難くなり、
15%以上では熱膨張係数が大きくなって、エナメル被
膜中に形成される圧縮応力を小さくして、耐熱性を低下
させる。また、耐食性も低下させる。
The Na 2 O + K 2 O + Li 2 O is a component that affects the corrosion resistance, the easy solubility and the thermal expansion coefficient of the enamel. Of Na 2 O + K 2 O + Li 2 O, Na
2 O is 80 to 90%, K 2 O is 0 to 5%, Li 2 O is 1
It is 0 to 20%. Na 2 O + K 2 O + Li 2 O is 10
% Or less, the enamel becomes poorly soluble and difficult to fire,
If it is 15% or more, the coefficient of thermal expansion becomes large, and the compressive stress formed in the enamel coating is made small to lower the heat resistance. Also, the corrosion resistance is reduced.

【0014】上記CaO+BaO+SrOは、上記Na
O+KO+LiOと同様の作用をする成分である
が、NaO+KO+LiOよりも緩慢な働きをす
る。CaO+BaO+SrOのうち、CaOは90〜9
5%、BaOは0〜10%、SrOは0〜5%である。
CaO+BaO+SrOが10%以下では、易溶性が不
足して焼成し難くなり、15%以上では耐食性が低下す
る。
The CaO + BaO + SrO is the Na
2 O + K 2 O + Li 2 O and is a component which acts similarly to a slow work than Na 2 O + K 2 O + Li 2 O. Of CaO + BaO + SrO, CaO is 90-9
5%, BaO is 0 to 10%, and SrO is 0 to 5%.
When CaO + BaO + SrO is 10% or less, the easy solubility is insufficient and it becomes difficult to fire, and when it is 15% or more, the corrosion resistance decreases.

【0015】上記FeO+CoO+NiO+CuOは、
エナメルの密着性を確保する成分である。FeO+Co
O+NiO+CuOのうち、FeOは0〜20%、Co
Oは10〜90%、NiOは10〜90%、CuOは0
〜50%である。FeO+CoO+NiO+CuOが
1.5%以下では密着性が確保できず、5%以上ではエ
ナメル表面に金属成分が析出し、耐食性が悪くなる。
The above FeO + CoO + NiO + CuO is
It is a component that ensures the adhesion of enamel. FeO + Co
Of O + NiO + CuO, FeO is 0 to 20%, Co
O is 10 to 90%, NiO is 10 to 90%, and CuO is 0.
~ 50%. If FeO + CoO + NiO + CuO is 1.5% or less, the adhesiveness cannot be secured, and if it is 5% or more, a metal component is deposited on the enamel surface and corrosion resistance is deteriorated.

【0016】本実施例では、耐熱性を向上させるため
に、熱膨張係数を小さくして、エナメル層中の圧縮応力
がより高温まで残留するように改良した。そのために、
アルカリ成分(NaO+KO+LiO)の含有量
を従来の25%程度から10%強程度に減らした。アル
カリ成分を減らしたことで焼成温度が高くなることが判
明したので、アルカリ土類成分(CaO+BaO+Sr
O)を従来の組成の5%程度から10%程度に増やして
生産性に影響する焼成温度の上昇を小さく抑えた。ま
た、耐熱性の向上に伴い、エナメル被覆鋼としての重要
な要素の1つである密着性の低下が懸念されたので、金
属酸化物(FeO+CoO+NiO+CuO)を増量し
て、密着性を確保した。
In this embodiment, in order to improve the heat resistance, the coefficient of thermal expansion is reduced so that the compressive stress in the enamel layer remains at a higher temperature. for that reason,
The content of the alkaline component (Na 2 O + K 2 O + Li 2 O) was reduced from about 25% of the conventional content to about 10% or more. Since it was found that the firing temperature rises due to the reduction of the alkaline component, the alkaline earth component (CaO + BaO + Sr
O) was increased from about 5% of the conventional composition to about 10% to suppress the increase of the firing temperature which affects the productivity. Further, as the heat resistance was improved, it was feared that the adhesiveness, which is one of the important factors as the enamel-coated steel, would be lowered. Therefore, the amount of metal oxide (FeO + CoO + NiO + CuO) was increased to secure the adhesiveness.

【0017】以上のように、調整を行ったフリットを形
成し、その熱膨張特性と、無歪点(素地金属とエナメル
層との熱膨張差によって形成されるエナメル層中の応力
がゼロとなる温度)を測定した結果を表2に示す。表2
から明らかなように、熱膨張係数と、無歪点に従来のエ
ナメルと比較して、本実施例のエナメルに著しい効果が
現れた。
As described above, the adjusted frit is formed, and its thermal expansion characteristics and the strain-free point (the stress in the enamel layer formed by the difference in thermal expansion between the base metal and the enamel layer becomes zero). The results of measuring the temperature are shown in Table 2. Table 2
As is clear from the above, the enamel of this example showed a remarkable effect in the coefficient of thermal expansion and the strain-free point as compared with the conventional enamel.

【0018】[0018]

【表2】 [Table 2]

【0019】次に、このフリットを表3に示す重量割合
でボールミルに投入し、粉砕して釉薬を得て脱脂処理を
施した鋼板の上に施釉し、810〜850℃で3.5分
焼成してテストピースを作成し、従来のエナメル被覆鋼
と下記に示す各性能を比較した。
Next, this frit was put into a ball mill at the weight ratio shown in Table 3, crushed to obtain a glaze, and the degreased steel sheet was glazed and baked at 810 to 850 ° C. for 3.5 minutes. Then, a test piece was prepared, and the following performances were compared with the conventional enamel-coated steel.

【0020】[0020]

【表3】 [Table 3]

【0021】耐食(耐硫酸性)試験[供試材:100m
m×100mm、膜厚約200μm、各条件でのサンプ
ル数(n)=3]による腐食減量 1)50%HSO、70℃(露点凝縮気液平衡点)
120時間 2)1%HSO、沸騰2時間 3)30%HSO、沸騰18時間 4)50%HSO、沸騰18時間
Corrosion resistance (sulfuric acid resistance) test [Test material: 100 m
m × 100 mm, film thickness of about 200 μm, corrosion loss due to sample number (n) = 3 under each condition 1) 50% H 2 SO 4 , 70 ° C. (dew point condensation vapor-liquid equilibrium point)
120 hours 2) 1% H 2 SO 4 , boiling 2 hours 3) 30% H 2 SO 4 , boiling 18 hours 4) 50% H 2 SO 4 , boiling 18 hours

【0022】[0022]

【表4】 [Table 4]

【0023】耐硫酸性において、従来エナメルと本発明
のエナメルに差異はなく、耐硫酸腐食鋼に比較して優れ
た耐食性を有していることを確認した。
Regarding sulfuric acid resistance, there was no difference between the conventional enamel and the enamel of the present invention, and it was confirmed that the enamel has excellent corrosion resistance as compared with sulfuric acid corrosion resistant steel.

【0024】耐熱試験[供試材:100mm×100m
m、膜厚約200μm、各温度でのサンプル数(n)=
3] 電気炉で、±10℃の温度振幅(回転再生式熱交換装置
の回転に伴うエレメントの温度振幅)を1分サイクルで
与え(0.5rpmの回転再生式熱交換装置)、中心温
度250〜370℃を10℃刻みに実施した。 1)従来のエナメルは、290℃以上、約3,000時
間で微細クラックが観測された。 2)本発明のエナメルは、350℃以上、約3,000
時間で微細クラックが観測された。 従来のエナメルが300℃弱で3,000時間暴露(温
度振幅±10℃)すると、エナメル表面に微細クラック
が観測されたのに比較して、本発明のエナメルでは、同
条件で350℃以上において初めてエナメル表面に微細
なクラックが観測され、明らかに耐熱性の向上が認めら
れた。これは、次項の片面掛けエナメル焼成での熱膨張
差によるエナメル板の変形テストにおいてもエナメルが
引張から圧縮へ変化する温度が従来のエナメルより十分
高いことにも現れている。
Heat resistance test [Material: 100 mm x 100 m
m, film thickness of about 200 μm, number of samples at each temperature (n) =
3] In an electric furnace, a temperature amplitude of ± 10 ° C. (a temperature amplitude of an element accompanying the rotation of the rotary regeneration heat exchange device) was given in a cycle of 1 minute (a rotary regeneration heat exchange device of 0.5 rpm) and a center temperature of 250. ~ 370 ° C was carried out in 10 ° C steps. 1) In the conventional enamel, fine cracks were observed at 290 ° C or higher at about 3,000 hours. 2) The enamel of the present invention has a temperature of 350 ° C. or higher and about 3,000.
Minute cracks were observed over time. When conventional enamel was exposed to a temperature of slightly less than 300 ° C. for 3,000 hours (temperature amplitude ± 10 ° C.), fine cracks were observed on the surface of the enamel, whereas in the enamel of the present invention, at 350 ° C. or higher under the same conditions. For the first time, minute cracks were observed on the surface of the enamel, and the heat resistance was clearly improved. This also shows that the temperature at which the enamel changes from tension to compression is sufficiently higher than that of conventional enamel in the deformation test of the enamel plate due to the difference in thermal expansion in the one-sided enamel firing described in the next section.

【0025】片面掛けエナメル焼成での熱膨張差による
エナメル板の変形[供試材:50mm×10mm、膜厚
約200μm] 1)従来のエナメルは、約250℃でエナメルが引張か
ら圧縮へ変化する。 2)本発明のエナメルは、約390℃でエナメルが引張
から圧縮へ変化する。
Deformation of the enamel plate due to the difference in thermal expansion during single-sided enamel firing [Test material: 50 mm × 10 mm, film thickness about 200 μm] 1) Conventional enamel changes from tension to compression at about 250 ° C. . 2) The enamel of the present invention changes from tension to compression at about 390 ° C.

【0026】熱衝撃試験[供試材:100mm×100
mm、膜厚約200μm、各温度でのサンプル数(n)
=3] 電気炉で、水温+試験温度に10分以上加熱し、水中に
一気に投入する。試験温度300〜500℃の50℃刻
みに実施。各温度10回繰り返した。 1)従来のエナメルは、400℃以上で表面にざらつき
発生と光沢の低下が観測された。 2)本発明のエナメルは、400℃以上で表面にざらつ
き発生と光沢の低下が観測された。
Thermal shock test [Sample material: 100 mm × 100
mm, film thickness about 200 μm, number of samples at each temperature (n)
= 3] In an electric furnace, heat to water temperature + test temperature for 10 minutes or more, and put into water all at once. The test temperature is 300 to 500 ° C in increments of 50 ° C. Each temperature was repeated 10 times. 1) With conventional enamel, it was observed that the surface became rough and the gloss decreased at 400 ° C or higher. 2) With the enamel of the present invention, it was observed that the surface of the enamel was rough and the gloss was decreased at 400 ° C or higher.

【0027】本発明のエナメルには、ピンホール、密着
度(PEI法)、チッピングおよび耐熱衝撃性に従来の
エナメルと差異はなく或いは同等以上であり、また、つ
まとびやコッパヘッドの発生は認められなかった上、エ
ナメルの焼成温度の上昇も不要であった。
The enamel of the present invention has no difference in pinhole, adhesion (PEI method), chipping and thermal shock resistance from the conventional enamel, or is equal to or more than that of the conventional enamel, and it is recognized that knuckles and copper heads are generated. Moreover, it was not necessary to raise the firing temperature of the enamel.

【0028】[0028]

【発明の効果】1)本発明により、従来のエナメルの有
する優れた耐食性を損なうことなく、耐熱性を大幅に向
上させることができた耐食耐熱エナメル被覆鋼を、回転
再生式熱交換装置の低温部から中温部の伝熱エレメント
やバスケット、仕切り、半径方向シール等の各部材の全
温度域に、耐熱性のみ有するエナメル被覆鋼と耐食性エ
ナメル被覆鋼をそれぞれ使い分ける必要もなく適用でき
るようになった。 2)本発明の回転再生式熱交換装置の伝熱エレメント等
の各部材の生産性において、従来のエナメル被覆鋼では
必要不可欠であった母材の酸洗と中和処理工程が不要と
なり、前処理工程が無酸洗で行えるようになり、工程の
単純化と環境への影響が大幅に改善された。
1) According to the present invention, the corrosion-resistant heat-resistant enamel coated steel capable of significantly improving the heat resistance without impairing the excellent corrosion resistance of the conventional enamel is used in the rotary regeneration heat exchanger at low temperature. It is now possible to apply enamel-coated steel that has only heat resistance and corrosion-resistant enamel-coated steel to the entire temperature range of each member such as heat transfer element, basket, partition, radial seal, etc. . 2) In the productivity of each member such as the heat transfer element of the rotary regeneration type heat exchange device of the present invention, the pickling and neutralization treatment steps of the base material, which were indispensable in the conventional enamel-coated steel, are not required. Since the treatment process can be performed without pickling, the process simplification and environmental impact have been greatly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】回転再生式熱交換装置の全体図である。FIG. 1 is an overall view of a rotary regeneration heat exchange device.

【図2】装置のロータの説明図である。FIG. 2 is an explanatory diagram of a rotor of the device.

【図3】装置のバスケットの説明図である。FIG. 3 is an explanatory view of a basket of the device.

【図4】装置の伝熱エレメントの説明図である。FIG. 4 is an explanatory view of a heat transfer element of the device.

【符号の説明】[Explanation of symbols]

1 回転中心軸 2 ロータ 3 仕切り 4 バスケット 5 伝熱エレメント 6 半径方向シール 7 ハウジング 7a 入口ダクト 7b 出口ダクト 8 セクタープレート 1 rotation center axis 2 rotor 3 partitions 4 baskets 5 Heat transfer element 6 radial seal 7 housing 7a Entrance duct 7b Exit duct 8 sector plates

───────────────────────────────────────────────────── フロントページの続き (72)発明者 野口 正 神戸市中央区港島中町二丁目3番4号 ア ルストムパワー株式会社内 (72)発明者 濱田 利平 大阪市北区大淀北二丁目1番27号 日本フ エロー株式会社内 (72)発明者 徳永 文夫 大東市新田旭町2番3号 日本産業株式会 社内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Tadashi Noguchi             2-3-4 Nakamachi, Minatojima, Chuo-ku, Kobe             Rust Power Co., Ltd. (72) Inventor Rihei Hamada             2-1-2 Oyodokita, Kita-ku, Osaka             Hello Co., Ltd. (72) Inventor Fumio Tokunaga             2-3 Nitta-Asahicho, Daito City Japan Industrial Stock Association             In-house

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 回転中心軸と、該回転中心軸のまわりに
回転するロータと、該ロータの半径方向に延びる複数の
仕切りと、これら仕切り間に収容されるバスケットと、
該バスケット内に装填される伝熱エレメントと、上記仕
切りの軸方向縁に沿って延びる複数の半径方向シール
と、上記ロータを収容しこれに加熱流体および被加熱流
体を導く入口ダクト及び出口ダクトを備えたハウジング
とから構成され、上記ロータを回転させると共に上記伝
熱エレメントを介して加熱流体と被加熱流体との間で熱
交換を行わしめる回転再生式熱交換装置において、上記
伝熱エレメント、バスケット、仕切り、半径方向シール
の少なくともいずれか1つがエナメルで被覆され、当該
エナメルの化学組成の重量割合が、SiO+ZrO
+TiOが50〜60%、Al+Bが1
0〜20%、NaO+KO+LiOが10〜15
%、CaO+BaO+SrOが10〜15%、FeO+
CoO+NiO+CuOが1.5〜5.0%から成るこ
とを特徴とする回転再生式熱交換装置。
1. A center of rotation, a rotor rotating about the center of rotation, a plurality of partitions extending in the radial direction of the rotor, and a basket accommodated between the partitions.
A heat transfer element loaded in the basket, a plurality of radial seals extending along an axial edge of the partition, and an inlet duct and an outlet duct for accommodating the rotor and guiding a heating fluid and a heated fluid thereto. A rotary regeneration heat exchange device configured to rotate the rotor and perform heat exchange between a heating fluid and a fluid to be heated via the heat transfer element. , At least one of the partition and the radial seal is covered with enamel, and the weight ratio of the chemical composition of the enamel is SiO 2 + ZrO 2
+ TiO 2 is 50 to 60%, Al 2 O 3 + B 2 O 3 is 1
0~20%, Na 2 O + K 2 O + Li 2 O is 10 to 15
%, CaO + BaO + SrO 10 to 15%, FeO +
CoO + NiO + CuO consists of 1.5-5.0%, The rotation regeneration type heat exchange apparatus characterized by the above-mentioned.
【請求項2】 エナメル被膜中に形成される圧縮応力が
加熱によって引張応力に変化する温度が、350℃以上
であることを特徴とする請求項1に記載の回転再生式熱
交換装置。
2. The rotary regenerative heat exchange device according to claim 1, wherein the temperature at which the compressive stress formed in the enamel coating changes into a tensile stress by heating is 350 ° C. or higher.
JP2001277930A 2001-09-13 2001-09-13 Rotary regenerative heat-exchanger Pending JP2003083689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001277930A JP2003083689A (en) 2001-09-13 2001-09-13 Rotary regenerative heat-exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001277930A JP2003083689A (en) 2001-09-13 2001-09-13 Rotary regenerative heat-exchanger

Publications (1)

Publication Number Publication Date
JP2003083689A true JP2003083689A (en) 2003-03-19

Family

ID=19102377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001277930A Pending JP2003083689A (en) 2001-09-13 2001-09-13 Rotary regenerative heat-exchanger

Country Status (1)

Country Link
JP (1) JP2003083689A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101004968B1 (en) * 2008-06-19 2011-01-04 사카팬코리아 주식회사 Heat exchanging elements for thermal power plant and manufacturing method thereof
KR101095264B1 (en) 2011-08-08 2011-12-20 주식회사백상 The Heating Element Basket
CN104236356A (en) * 2013-06-21 2014-12-24 阿尔斯通技术有限公司 Method of air preheating for combustion power plant and systems comprising the same
KR20220025546A (en) * 2020-08-24 2022-03-03 주식회사 휴마스터 Rotary type heat and mass transfer apparatus
KR20220043450A (en) * 2020-09-29 2022-04-05 주식회사 코펙 Corrosion-resistant enamel composition applicable to corrosion-resistant steel
KR20220129210A (en) 2021-03-16 2022-09-23 주식회사 코펙 Heating element coated with corrosion-resistant enamel composition applicable to corrosion-resistant steel

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63135790A (en) * 1986-11-27 1988-06-08 Mikio Kususe Dc heat exchanger
JPH08259258A (en) * 1995-03-24 1996-10-08 Noritake Co Ltd Leadless glass composition
JPH09221337A (en) * 1996-02-15 1997-08-26 Cerdec Ag Keramische Farben Black glass frit, its production and its application
JP2000095540A (en) * 1998-08-01 2000-04-04 Carl Zeiss:Fa Glass composition without containing lead and cadmium for glazing, enameling or decoration of glass or glass ceramic material, and production of glass ceramic material coated with the glass composition
JP2000171184A (en) * 1998-12-03 2000-06-23 Abb Kk Rotary regenerative heat exchanger
JP2001058848A (en) * 1999-07-08 2001-03-06 Saint Gobain Vitrage New enamel composition, its production and resultant enamel product

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63135790A (en) * 1986-11-27 1988-06-08 Mikio Kususe Dc heat exchanger
JPH08259258A (en) * 1995-03-24 1996-10-08 Noritake Co Ltd Leadless glass composition
JPH09221337A (en) * 1996-02-15 1997-08-26 Cerdec Ag Keramische Farben Black glass frit, its production and its application
JP2000095540A (en) * 1998-08-01 2000-04-04 Carl Zeiss:Fa Glass composition without containing lead and cadmium for glazing, enameling or decoration of glass or glass ceramic material, and production of glass ceramic material coated with the glass composition
JP2000171184A (en) * 1998-12-03 2000-06-23 Abb Kk Rotary regenerative heat exchanger
JP2001058848A (en) * 1999-07-08 2001-03-06 Saint Gobain Vitrage New enamel composition, its production and resultant enamel product

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101004968B1 (en) * 2008-06-19 2011-01-04 사카팬코리아 주식회사 Heat exchanging elements for thermal power plant and manufacturing method thereof
KR101095264B1 (en) 2011-08-08 2011-12-20 주식회사백상 The Heating Element Basket
CN104236356A (en) * 2013-06-21 2014-12-24 阿尔斯通技术有限公司 Method of air preheating for combustion power plant and systems comprising the same
US9841242B2 (en) 2013-06-21 2017-12-12 General Electric Technology Gmbh Method of air preheating for combustion power plant and systems comprising the same
KR20220025546A (en) * 2020-08-24 2022-03-03 주식회사 휴마스터 Rotary type heat and mass transfer apparatus
KR102411586B1 (en) 2020-08-24 2022-06-21 주식회사 휴마스터 Rotary type heat and mass transfer apparatus
KR20220043450A (en) * 2020-09-29 2022-04-05 주식회사 코펙 Corrosion-resistant enamel composition applicable to corrosion-resistant steel
KR102514610B1 (en) 2020-09-29 2023-03-27 주식회사 코펙 Corrosion-resistant enamel composition applicable to corrosion-resistant steel
KR20220129210A (en) 2021-03-16 2022-09-23 주식회사 코펙 Heating element coated with corrosion-resistant enamel composition applicable to corrosion-resistant steel
KR102526876B1 (en) * 2021-03-16 2023-04-28 주식회사 코펙 Heating element coated with corrosion-resistant enamel composition applicable to corrosion-resistant steel

Similar Documents

Publication Publication Date Title
KR102373824B1 (en) Cooking apparatus and manufacturing method thereof
JP2003083689A (en) Rotary regenerative heat-exchanger
CN102392245A (en) Enamelling method of enamel heat transfer element
KR102125655B1 (en) Enamel heating element for ggh and gah of power plant with enamel glaze composition with excellent thermal conductivity and anti-fouling
JPS63282496A (en) Heat exchange element for gas and manufacture thereof
KR102514610B1 (en) Corrosion-resistant enamel composition applicable to corrosion-resistant steel
KR20060094642A (en) Coating having improved high temperature wear resistance
KR20090124826A (en) Method of scaling of deposits on heating elements a heat exchanger for flue gas desulfurization system
CN111040484A (en) High-temperature fire-resistant coating composition and preparation method thereof
CZ293669B6 (en) Heating element for a regenerative heat exchanger and method for producing such a heating element
CN101113879A (en) Corrosion resistant enamel hot pipe
CN107189499A (en) A kind of new type high temperature fireproof coating
JPS5896876A (en) Formation of wear and corrosion resistant film on metallic material
EP1331207A1 (en) Particular compositions of porcelain enamels
KR20090032751A (en) Sox-absorbent for flue gas desulfurization system
KR102526876B1 (en) Heating element coated with corrosion-resistant enamel composition applicable to corrosion-resistant steel
CN212901568U (en) Corrosion-proof chimney
US3014816A (en) Acid-resistant enamel for stainless steel
JP6955561B2 (en) A ceramic composition and a material containing the ceramic composition as part of a heat recovery unit.
JP2660577B2 (en) Flame-retardant heat transfer element assembly for regenerative heat exchange equipment
CN116514404A (en) Composite technology for combining glass heat-insulating paint spray and solar film heat insulation
JPH0510691A (en) Sealing member for gas preheating device and sealing structure for device using the same
JPS6219374B2 (en)
JP6870939B2 (en) Treatment process, oxide formation treatment composition and parts to be treated
KR900005280B1 (en) Anticorrosion hot water heater

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20031226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20031226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040322

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110725