JP2003083674A - Air separating facility and its liquefied natural gas utilizing method - Google Patents

Air separating facility and its liquefied natural gas utilizing method

Info

Publication number
JP2003083674A
JP2003083674A JP2001276166A JP2001276166A JP2003083674A JP 2003083674 A JP2003083674 A JP 2003083674A JP 2001276166 A JP2001276166 A JP 2001276166A JP 2001276166 A JP2001276166 A JP 2001276166A JP 2003083674 A JP2003083674 A JP 2003083674A
Authority
JP
Japan
Prior art keywords
air
natural gas
liquefied natural
liquid
liquefaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001276166A
Other languages
Japanese (ja)
Inventor
Hiroshi Emi
浩 江見
Minoru Takubo
稔 田窪
Yoshihiro Muro
嘉浩 室
Koichiro Ikeda
耕一郎 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2001276166A priority Critical patent/JP2003083674A/en
Publication of JP2003083674A publication Critical patent/JP2003083674A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • F25J3/04181Regenerating the adsorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0012Primary atmospheric gases, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0035Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
    • F25J1/0037Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work of a return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0221Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop
    • F25J1/0224Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop in combination with an internal quasi-closed refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0234Integration with a cryogenic air separation unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0285Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
    • F25J1/0288Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings using work extraction by mechanical coupling of compression and expansion of the refrigerant, so-called companders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04254Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
    • F25J3/0426The cryogenic component does not participate in the fractionation
    • F25J3/04266The cryogenic component does not participate in the fractionation and being liquefied hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04339Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of air
    • F25J3/04345Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of air and comprising a gas work expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/044Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a single pressure main column system only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/0466Producing crude argon in a crude argon column as a parallel working rectification column or auxiliary column system in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04721Producing pure argon, e.g. recovered from a crude argon column
    • F25J3/04727Producing pure argon, e.g. recovered from a crude argon column using an auxiliary pure argon column for nitrogen rejection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04721Producing pure argon, e.g. recovered from a crude argon column
    • F25J3/04733Producing pure argon, e.g. recovered from a crude argon column using a hybrid system, e.g. using adsorption, permeation or catalytic reaction
    • F25J3/04739Producing pure argon, e.g. recovered from a crude argon column using a hybrid system, e.g. using adsorption, permeation or catalytic reaction in combination with an auxiliary pure argon column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • F25J3/04836Variable air feed, i.e. "load" or product demand during specified periods, e.g. during periods with high respectively low power costs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • F25J3/04842Intermittent process, so-called batch process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/76Refluxing the column with condensed overhead gas being cycled in a quasi-closed loop refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/82Processes or apparatus using other separation and/or other processing means using a reactor with combustion or catalytic reaction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/62Liquefied natural gas [LNG]; Natural gas liquids [NGL]; Liquefied petroleum gas [LPG]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress cost increase in an air separating facility by efficiently utilizing night electric power. SOLUTION: The air liquefying section 20a of the air separating facility effectively utilizes the night electric power for a compressor that consumes a large quantity of electric energy by only operating the compressor at the nighttime. The liquid air produced by means of the section 20a is stored in a liquid air tank 24. The air separating section 20b of the facility is continuously operated day and night and produces a product by utilizing the liquid air stored in the tank 24 at the daytime. Since the capacity of the section 20b can be reduced, cost increase in the air separating facility can be suppressed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、夜間電力を利用し
て空気を成分に分離する空気分離設備およびその液化天
然ガスの利用方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air separation facility for separating air into components by using nighttime electric power and a method of utilizing liquefied natural gas.

【0002】[0002]

【従来の技術】従来から、LNGと略称されることもあ
る液化天然ガスが火力発電用の燃料や都市ガスの原料と
して多く使用されている。天然ガスを燃料とする火力発
電は、一定の出力で連続的に運転するときに高い効率が
得られる。しかしながら、電力の需要は、人間の活動に
合わせて変動し、昼間では多くなり、夜間では少なくな
る傾向にある。このため、総合的なエネルギの有効利用
の面からも、夜間電力の利用が促進され、電力の価格も
政策的に低減されている。
2. Description of the Related Art Conventionally, liquefied natural gas, sometimes abbreviated as LNG, has been widely used as a fuel for thermal power generation and a raw material for city gas. Thermal power generation using natural gas as fuel provides high efficiency when continuously operated at a constant output. However, the demand for electric power fluctuates according to human activities, and tends to increase during the day and decrease during the night. For this reason, the use of nighttime electric power is promoted and the price of electric power is also policy-wise reduced in terms of effective use of total energy.

【0003】エネルギの有効利用の点では、液化天然ガ
スが有する寒冷の利用も重要である。天然ガスは、輸送
の都合上、原産地で冷却して液化されているけれども、
燃料や原料として使用する場合は、気化させる必要があ
る。液化天然ガスを気化させる際には、気化熱を与える
必要がある。液化天然ガスは、−155℃程度の低温で
あるので、気化熱を与える過程は、液化天然ガスから寒
冷を取出す過程ともなる。
From the viewpoint of effective use of energy, it is also important to use the cold contained in liquefied natural gas. Although natural gas is cooled and liquefied at its place of origin for transportation reasons,
When used as a fuel or raw material, it must be vaporized. When vaporizing liquefied natural gas, it is necessary to give heat of vaporization. Since liquefied natural gas has a low temperature of about −155 ° C., the process of applying heat of vaporization is also the process of extracting cold from the liquefied natural gas.

【0004】図9は、液化天然ガスを寒冷源として利用
する空気分離プロセスの概要を示す。図9(a)は、空
気分離プロセス全体を運転している状態を示す。空気分
離プロセスは、前処理1、精留2および液化系3の3つ
の工程からなる。前処理1では原料空気圧縮機(MA
C)を使用し、液化系3では循環窒素圧縮機(RNC)
を使用する。原料空気圧縮機は、大気から取入れる原料
空気を圧縮する。循環窒素圧縮機は、液化窒素LN2、
液化酸素LO2、液化アルゴンLARを得る過程で必要
な圧縮を行う。これらの圧縮機の運転には、多量の電力
を必要とする。液化系3では、寒冷源として液化天然ガ
スLNGも使用し、液化天然ガスは気化熱を得て、天然
ガスNGとして排出される。図9(b)は、液化系3を
停止している運転状態を示す。液化系3を停止すると、
循環窒素圧縮機(RNC)による電力消費がなくなり、
使用電力は減少する。なお、本明細書に添付する図面で
は、停止している部分は破線で示す。
FIG. 9 shows an outline of an air separation process using liquefied natural gas as a cold source. FIG. 9A shows a state in which the entire air separation process is operating. The air separation process consists of three steps: pretreatment 1, rectification 2 and liquefaction system 3. In pretreatment 1, the raw material air compressor (MA
C) is used, and in the liquefaction system 3, a circulating nitrogen compressor (RNC) is used.
To use. The raw material air compressor compresses the raw material air taken from the atmosphere. The circulating nitrogen compressor is liquefied nitrogen LN2,
The necessary compression is performed in the process of obtaining liquefied oxygen LO2 and liquefied argon LAR. The operation of these compressors requires a large amount of electric power. In the liquefaction system 3, liquefied natural gas LNG is also used as a cold source, and the liquefied natural gas obtains heat of vaporization and is discharged as natural gas NG. FIG. 9B shows an operating state in which the liquefaction system 3 is stopped. When the liquefaction system 3 is stopped,
Power consumption by the circulating nitrogen compressor (RNC) has disappeared,
Power consumption is reduced. Note that, in the drawings attached to this specification, a stopped portion is indicated by a broken line.

【0005】図9(a)および図9(b)に示すような
空気分離プロセスの運転に、夜間電力の利用を図るため
には、図9(c)に示すような昼夜一定負荷運転を行う
標準型の使用電力パターンよりも、図9(d)に示すよ
うな夜間型での使用電力パターンの方が好ましいと考え
られる。図9(d)に示すような夜間型では、図9
(a)に示すようなプロセス全体の運転状態は夜間電力
を利用して行い、昼間は図9(b)に示すように液化系
3を停止する。なお、図9(c)および図9(d)で
は、1日当りでは同一量の製品を製造することを前提
に、原料空気圧縮機(MAC)および循環窒素圧縮機
(RNC)の使用電力を次の表1であるとして表示して
いる。すなわち、図9(d)では、前夜22:00から
翌朝8:00までの10時間に、図9(c)における2
4時間分の製造を行うので、原料空気圧縮機(MAC)
および循環窒素圧縮機(RNC)の能力は、それぞれ2
4/10=2.4倍必要となる。
In order to utilize the nighttime electric power in the operation of the air separation process as shown in FIGS. 9 (a) and 9 (b), the constant day / night constant load operation as shown in FIG. 9 (c) is performed. It is considered that the nighttime power consumption pattern shown in FIG. 9D is preferable to the standard power consumption pattern. In the nighttime type shown in FIG.
The operation state of the entire process as shown in (a) is performed by using nighttime electric power, and during the daytime, the liquefaction system 3 is stopped as shown in FIG. 9 (b). 9 (c) and 9 (d), assuming that the same amount of product is manufactured per day, the power consumption of the raw air compressor (MAC) and the circulating nitrogen compressor (RNC) is changed as follows. Table 1 is displayed. That is, in FIG. 9 (d), 2 hours in FIG. 9 (c) during 10 hours from 22:00 the night before to 8:00 the next morning.
Since it is manufactured for 4 hours, the raw material air compressor (MAC)
And the capacity of the circulating nitrogen compressor (RNC) is 2 each.
4/10 = 2.4 times required.

【0006】[0006]

【表1】 [Table 1]

【0007】図10は、図9(a)および図9(b)に
示すような空気分離プロセスを実行しうる空気分離設備
の概略的な構成を示す。図10(a)および図10
(b)は、図9(a)および図9(b)の運転状態にそ
れぞれ対応している。図9の前処理1の工程は、原料空
気圧縮機であるMAC4および冷却器5を使用する。精
留2の工程は、高圧蒸留塔6、低圧蒸留塔7、粗アルゴ
ン塔8、および精製アルゴン塔9を使用する。液化系3
の工程は、循環窒素圧縮機であるRNC10を使用す
る。精製2の工程では、液化アルゴンが製品LAR、液
化窒素が製品LN2、および液化酸素が製品LO2とし
て分離され、液化アルゴン槽11、液化窒素槽12、お
よび液化酸素槽13としてそれぞれ貯留される。図10
(b)に示す昼間の運転状態では、液化天然ガスを寒冷
源として使用しないで、夜間に製造した製品LN2また
は製品LO2を消費して、少量の液化窒素および液化酸
素を製造する。精留2の工程に使用する高圧蒸留塔6、
低圧蒸留塔7、粗アルゴン塔8および精製アルゴン塔9
などの低温状態を維持するためである。
FIG. 10 shows a schematic configuration of an air separation facility capable of performing the air separation process as shown in FIGS. 9 (a) and 9 (b). 10 (a) and 10
9B corresponds to the operating states of FIGS. 9A and 9B, respectively. The process of the pretreatment 1 of FIG. 9 uses MAC4 and cooler 5 which are raw material air compressors. The process of rectification 2 uses a high pressure distillation column 6, a low pressure distillation column 7, a crude argon column 8, and a purified argon column 9. Liquefaction system 3
The process uses a circulating nitrogen compressor, RNC10. In the step of purification 2, liquefied argon is separated as product LAR, liquefied nitrogen is separated as product LN2, and liquefied oxygen is separated as product LO2, and stored as liquefied argon tank 11, liquefied nitrogen tank 12, and liquefied oxygen tank 13, respectively. Figure 10
In the daytime operation state shown in (b), the liquefied natural gas is not used as a cold source, and the product LN2 or the product LO2 produced at night is consumed to produce a small amount of liquefied nitrogen and liquefied oxygen. High-pressure distillation column 6 used in the step of rectification 2,
Low pressure distillation column 7, crude argon column 8 and purified argon column 9
This is to maintain a low temperature condition such as.

【0008】[0008]

【発明が解決しようとする課題】図9(a)に示すよう
な空気分離プロセスを、図9(c)に示す標準型で運転
すると、夜間電力の有効利用を図ることはできない。昼
間には、図9(b)に示すように液化系3を停止すれ
ば、図9(d)に示すように夜間電力の有効利用を図る
ことができる。しかしながら、図9(d)に示すような
夜間の運転だけで、1日に必要な生産量を確保するため
には、図9(c)に示すような標準型の運転の場合より
も、過大な設備能力が必要となり、設備コストが上昇し
てしまう。また夜間と昼間との運転状態の切換にもそれ
ぞれ1時間程度の時間を要するので、必ずしも夜間電力
を効率的に利用しているとはいえない。
When the air separation process as shown in FIG. 9 (a) is operated by the standard type shown in FIG. 9 (c), it is impossible to effectively utilize the nighttime power. During the daytime, by stopping the liquefaction system 3 as shown in FIG. 9B, it is possible to effectively use the nighttime power as shown in FIG. 9D. However, in order to secure the production amount necessary for one day only by operating at night as shown in FIG. 9D, it is more excessive than in the case of standard operation as shown in FIG. 9C. Equipment capacity is required, and the equipment cost increases. Further, it takes about one hour each to switch the operating state between the nighttime and the daytime, so that it cannot be said that the nighttime electric power is used efficiently.

【0009】本発明の目的は、夜間電力を効率的に利用
することができ、設備コストの上昇も抑制することがで
きる空気分離設備およびその液化天然ガスの利用方法を
提供することである。
An object of the present invention is to provide an air separation facility and a method for utilizing liquefied natural gas thereof, which can efficiently utilize nighttime electric power and can suppress an increase in facility cost.

【0010】[0010]

【課題を解決するための手段】本発明は、夜間電力を利
用して液体空気を製造する液化装置と、液化装置によっ
て製造された液体空気を貯留する貯槽と、昼夜連続運転
によって、貯槽に貯留される液体空気を蒸留し、成分の
液体空気を分離する分離装置とを含むことを特徴とする
空気分離設備である。
The present invention is directed to a liquefaction apparatus for producing liquid air by using night-time electric power, a storage tank for storing the liquid air produced by the liquefaction apparatus, and a continuous storage operation in the storage tank for day and night. And a separation device for distilling the liquid air to be separated and separating the component liquid air.

【0011】本発明に従えば、液化装置で夜間電力を利
用し、液体空気を製造して貯槽に貯留し、分離装置を昼
夜連続運転して貯槽に貯留される液体空気を蒸留し、成
分の液体空気を分離する。空気の液化は夜間電力を有効
に利用して夜間のみ行い、成分への分離は昼夜連続して
行うので、一定量を継続して空気を分離し、製品を取出
すことができる。空気分離の能力は、昼夜連続運転で必
要量を生産しうるだけあればよいので、夜間のみ分離す
るような場合に必要となる過大な能力は必要ではなく、
設備コストを低減することができる。
According to the present invention, the liquefaction device uses nighttime electric power to produce liquid air and store it in a storage tank, and the separator is continuously operated day and night to distill the liquid air stored in the storage tank to remove the components. Separate liquid air. Liquefaction of air is performed only at night by effectively utilizing night power, and separation into components is performed continuously day and night. Therefore, a certain amount of air can be continuously separated to take out a product. The air separation capacity need only be able to produce the required amount in day and night continuous operation, so there is no need for the excessive capacity required when separating only at night,
The equipment cost can be reduced.

【0012】また本発明で、前記分離装置は、分離され
た液体窒素の一部を還流させて成分の分離を行う低圧蒸
留塔を含むことを特徴とする。
Further, in the present invention, the separating apparatus is characterized by including a low pressure distillation column for refluxing a part of the separated liquid nitrogen to separate the components.

【0013】本発明に従えば、低圧蒸留塔に分離された
液体窒素の一部を還流させて成分の分離を行い、かつM
/S用に昇圧する必要がないので、高圧蒸留塔を使用し
ないでも成分の分離を行うことができ、精留の工程で使
用する設備費用を低減することができる。
According to the present invention, a part of the liquid nitrogen separated in the low pressure distillation column is refluxed to separate the components, and M
Since it is not necessary to raise the pressure for / S, the components can be separated without using a high pressure distillation column, and the facility cost used in the rectification step can be reduced.

【0014】また本発明で、前記液化装置は、液化天然
ガスを空気液化の寒冷源として利用することを特徴とす
る。
Further, in the present invention, the liquefaction device uses liquefied natural gas as a cold source for air liquefaction.

【0015】本発明に従えば、液化装置で空気を液化す
る際に、圧縮機で圧縮された空気を冷却するために液化
天然ガスの寒冷を利用し、膨張タービンで膨張させるこ
とによって、液化天然ガスの温度よりも低温の液体空気
を効率よく製造することができる。
According to the present invention, when liquefying the air in the liquefying device, the liquefied natural gas is cooled by utilizing the cooling of the liquefied natural gas to expand the liquefied natural gas. Liquid air having a temperature lower than that of gas can be efficiently produced.

【0016】また本発明の前記分離装置では、液化天然
ガスを液体空気の加熱源として用いる熱交換器を備え、
前記液化装置では、該熱交換器で液体空気によって冷却
された液化天然ガスを前記空気液化の寒冷源として利用
することを特徴とする。
Further, in the separation apparatus of the present invention, a heat exchanger using liquefied natural gas as a heating source for liquid air is provided,
In the liquefaction device, liquefied natural gas cooled by liquid air in the heat exchanger is used as a cold source for liquefying the air.

【0017】本発明に従えば、貯槽に貯留されている液
体空気を分離装置に導入する際に、液化天然ガスと熱交
換器で熱交換し、液化天然ガスを加熱源として利用する
ので、液体空気を成分に分離する熱を、液化天然ガスを
さらに低温に冷却することによって得ることができる。
低温に冷却された液化天然ガスは、空気液化の寒冷源と
してさらに有効に利用することができる。
According to the present invention, when the liquid air stored in the storage tank is introduced into the separation device, heat is exchanged with the liquefied natural gas by the heat exchanger and the liquefied natural gas is used as a heating source. The heat of separating air into its components can be obtained by cooling the liquefied natural gas to a lower temperature.
The liquefied natural gas cooled to a low temperature can be used more effectively as a cold source for air liquefaction.

【0018】さらに本発明は、夜間電力を利用して液体
空気を製造し、製造された液体空気を貯槽に貯留してお
き、分離設備を昼夜連続運転して液体空気を蒸留して成
分の液体を分離する空気製造設備で液化天然ガスを利用
する方法であって、液化装置で、液化天然ガスを空気液
化の寒冷源として利用するとともに、分離装置で、液化
天然ガスを液体空気の加熱源として利用し、液体空気を
加熱することによって冷却された液化天然ガスを、液化
天然ガスの貯槽に戻し、液化天然ガス貯槽からのボイル
オフガス発生を抑制することを特徴とする空気分離設備
の液化天然ガスの利用方法である。
Further, according to the present invention, liquid air is produced by using night-time electric power, the produced liquid air is stored in a storage tank, and the separation facility is continuously operated day and night to distill the liquid air to dilute the component liquid. A method for utilizing liquefied natural gas in an air manufacturing facility for separating liquefied air, wherein the liquefied equipment uses liquefied natural gas as a cold source for air liquefaction, and the separation equipment uses liquefied natural gas as a heating source for liquid air. Liquefied natural gas in an air separation facility characterized by returning liquefied natural gas cooled by heating liquid air to a liquefied natural gas storage tank to suppress boil-off gas generation from the liquefied natural gas storage tank. Is how to use.

【0019】本発明に従えば、液化天然ガスを空気液化
の寒冷源として利用し、空気液化をエネルギ効率よく行
うことができる。液化天然ガスは、液体空気よりも高温
であるので、液体空気からの成分分離のための加熱源と
しても有効に利用することができる。液体空気を加熱す
ることによって冷却された液化天然ガスは、過冷却状態
にあるので、液化天然ガスの貯槽に戻せば、液化天然ガ
ス貯槽からのボイルオフガス発生を抑制することができ
る。分離装置は昼間も運転するので、液化天然ガス貯槽
からのボイルオフガス発生抑制を、昼間も有効に行うこ
とができる。ボイルオフガスの発生抑制や、発生したボ
イルオフガスの処理に要するエネルギを節約することが
できるので、夜間電力や液化天然ガスの寒冷源としての
有効利用に加えて、ボイルオフガス抑制も有効に行うこ
とができる。
According to the present invention, liquefied natural gas can be utilized as a cold source for air liquefaction, and air liquefaction can be performed with energy efficiency. Since liquefied natural gas has a higher temperature than liquid air, it can be effectively used as a heat source for separating components from liquid air. Since the liquefied natural gas cooled by heating the liquid air is in a supercooled state, returning it to the liquefied natural gas storage tank can suppress the generation of boil-off gas from the liquefied natural gas storage tank. Since the separator operates even during the daytime, it is possible to effectively suppress boil-off gas generation from the liquefied natural gas storage tank during the daytime. Since it is possible to suppress the generation of boil-off gas and save the energy required for processing the generated boil-off gas, it is possible to effectively control boil-off gas in addition to effectively using it as a cold source for nighttime electricity and liquefied natural gas. it can.

【0020】[0020]

【発明の実施の形態】図1は、本発明の実施の一形態と
して、液化天然ガスを寒冷源として利用する空気分離プ
ロセス20の概要を示す。図1(a)は、空気分離プロ
セス20全体を運転している状態を示す。本実施形態の
空気分離プロセス20は、空気液化(ALU)セクショ
ン20aを使用する工程と、空気分離(ASU)セクシ
ョン20bを使用する工程とに分けられる。空気液化セ
クション20aでは、まず前処理21の工程を行う。空
気分離セクション20bでは、精留22の工程を行う。
空気液化セクション20aでは、さらに液化系23の工
程も行い、液化系23の工程で製造される液体空気は、
貯槽である液体空気タンク24に貯留される。空気分離
セクション20bは、液体空気タンク24に貯留されて
いる液体空気を、液化天然ガスと熱交換するLNG熱交
換器25を備えている。空気液化セクション20aで
は、前処理21の工程に原料空気圧縮機(MAC)が備
えられ、液化系23に循環空気圧縮機(RAC)が備え
られる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an outline of an air separation process 20 utilizing liquefied natural gas as a cold source as one embodiment of the present invention. FIG. 1A shows a state in which the entire air separation process 20 is operating. The air separation process 20 of the present embodiment is divided into a process using an air liquefaction (ALU) section 20a and a process using an air separation (ASU) section 20b. In the air liquefaction section 20a, first, the step of pretreatment 21 is performed. In the air separation section 20b, the step of rectification 22 is performed.
In the air liquefaction section 20a, the process of the liquefaction system 23 is further performed, and the liquid air produced in the process of the liquefaction system 23 is
It is stored in a liquid air tank 24 which is a storage tank. The air separation section 20b includes an LNG heat exchanger 25 that exchanges heat between the liquid air stored in the liquid air tank 24 and the liquefied natural gas. In the air liquefaction section 20a, the raw material air compressor (MAC) is provided in the step of the pretreatment 21, and the liquefaction system 23 is provided with the circulating air compressor (RAC).

【0021】図1(b)は、空気液化セクション20a
を停止して、空気分離セクション20bを運転している
状態を示す。空気液化セクション20aを停止すると、
原料空気圧縮機(MAC)および循環空気圧縮機(RA
C)による電力消費がなくなり、使用電力は減少する。
空気分離セクション20bは、空気液化セクション20
aの液体空気タンク24に貯留されている液体空気を、
LNG熱交換器25で液化天然ガスと熱交換して、液化
天然ガスを冷却する換りに加温される液体空気を精留2
3の工程で使用しながら、空気液化セクション20aの
停止中でも空気分離を続けることができる。
FIG. 1 (b) shows an air liquefaction section 20a.
Is stopped to show the operation of the air separation section 20b. When the air liquefaction section 20a is stopped,
Raw air compressor (MAC) and circulating air compressor (RA
The power consumption by C) is eliminated and the power consumption is reduced.
The air separation section 20b is the air liquefaction section 20.
The liquid air stored in the liquid air tank 24 of a is
The LNG heat exchanger 25 exchanges heat with the liquefied natural gas to cool the liquefied natural gas and rectify the heated liquid air 2
The air separation can be continued while the air liquefaction section 20a is stopped while being used in the third step.

【0022】図1(c)は、本実施形態での使用電力パ
ターンを示す。本実施形態では、電力消費量の多い空気
液化セクション20aを22:00から8:00までの
夜間10時間のみ運転し、電力消費量の少ない空気分離
セクション20bは昼夜一定負荷運転する。昼間と夜間
との時間の区分については、図9(d)と同様である。
本実施形態では、空気液化セクション20aが停止して
いる昼間にも、空気分離セクション20bで使用する液
体空気は、液体空気タンク25に夜間電力を利用して造
り込んでおく。空気分離セクション20bでは、主とし
て循環窒素圧縮機(RNC)が電力を使用し、その電力
は、図9と同様の製品を製造する条件で、1100kW
となる。夜間に運転する原料空気圧縮機(MAC)は、
図9と同一であり、2400kWの電力を使用する。液
化系23の工程では、循環窒素圧縮機(RNC)および
循環空気圧縮機(RAC)を使用し、その電力の合計は
7000kWとなる。したがって、昼間は1100kW
のみ、夜間は1100+2400+7000=1050
0kWの電力を使用する。次の表2は、本実施形態と、
図9(c)および図9(d)に示す従来技術とで、原料
の使用量および製品の生産量とを比較して示す。本実施
形態および図9(d)の原料空気量および液化ガス生産
量と、図9(d)の液体窒素生産量、液体酸素生産量お
よび液体アルゴン生産量とは、夜間の運転期間中のみが
対象となる。本実施形態および図9(c)の液体窒素生
産量、液体酸素生産量および液体アルゴン生産量は、昼
夜一定負荷運転に対応する。
FIG. 1C shows a power consumption pattern in this embodiment. In the present embodiment, the air liquefaction section 20a consuming a large amount of power is operated only for 10 hours at night from 22:00 to 8:00, and the air separation section 20b consuming a small amount of power is operated at a constant load day and night. The division of time between daytime and nighttime is the same as in FIG. 9D.
In the present embodiment, even during the daytime when the air liquefaction section 20a is stopped, the liquid air used in the air separation section 20b is built in the liquid air tank 25 by using nighttime electric power. In the air separation section 20b, the circulating nitrogen compressor (RNC) mainly uses electric power, and the electric power is 1100 kW under the condition that a product similar to that in FIG. 9 is manufactured.
Becomes The material air compressor (MAC) that operates at night is
Same as FIG. 9, using 2400 kW of power. In the process of the liquefaction system 23, a circulating nitrogen compressor (RNC) and a circulating air compressor (RAC) are used, and the total electric power is 7,000 kW. Therefore, 1100kW during the day
Only, 1100 + 2400 + 7000 = 1050 at night
Uses 0 kW of power. The following Table 2 shows the present embodiment,
9 (c) and 9 (d) are shown in comparison with the amount of raw material used and the amount of product produced. The present embodiment and the amount of raw material air and liquefied gas production in FIG. 9 (d) and the amount of liquid nitrogen production, liquid oxygen production and liquid argon production in FIG. 9 (d) are only available during the night operation period. Be the target. The liquid nitrogen production amount, the liquid oxygen production amount, and the liquid argon production amount of this embodiment and FIG. 9C correspond to the constant load operation day and night.

【0023】[0023]

【表2】 [Table 2]

【0024】図2および図3は、図1(a)および図1
(b)に示すような空気分離プロセス20を実行しうる
空気分離設備20cの概略的な構成を、空気分離セクシ
ョン20b側を中心として示す。図2および図3は、図
1(a)および図1(b)の運転状態にそれぞれ対応し
ている。図1の空気液化セクション20aは、原料空気
圧縮機であるMAC26および循環空気圧縮機であるR
AC27で大部分の電力を使用する。空気分離セクショ
ン20bには、LNG熱交換器25の他に、液体窒素過
冷却器28、主熱交換器29、循環窒素圧縮機であるR
NC30、液化アルゴン槽31、液化窒素槽32、液化
酸素槽33、液化天然ガスをLNGタンクに返送するL
NG返送管路34、リボイラ35を備える低圧蒸留塔3
6、還流液体窒素管路37、粗アルゴン塔38、および
精製アルゴン塔39を有する。昼夜連続運転する空気分
離セクション20bでは、RNC30が電力を使用する
主要な負荷となる。
2 and 3 are shown in FIG. 1 (a) and FIG.
A schematic configuration of an air separation facility 20c capable of executing the air separation process 20 as shown in (b) is shown centering on the air separation section 20b side. 2 and 3 correspond to the operating states of FIG. 1 (a) and FIG. 1 (b), respectively. The air liquefaction section 20a in FIG. 1 is a raw air compressor MAC26 and a circulating air compressor R.
AC27 uses most of the power. In the air separation section 20b, in addition to the LNG heat exchanger 25, a liquid nitrogen subcooler 28, a main heat exchanger 29, and a circulating nitrogen compressor R
NC30, liquefied argon tank 31, liquefied nitrogen tank 32, liquefied oxygen tank 33, L for returning liquefied natural gas to the LNG tank
Low-pressure distillation column 3 including NG return pipe 34 and reboiler 35
6, a reflux liquid nitrogen line 37, a crude argon column 38, and a purified argon column 39. In the air separation section 20b that operates continuously day and night, the RNC 30 becomes a main load that uses electric power.

【0025】図4は、図1に示す空気液化セクション2
0aの機器構成の例を示す。また、図5は、図4の動作
条件をシミュレートした結果の一例を、図4の主要な部
分について付すストリーム名でその部分における状態量
として示す。原料空気圧縮機であるMAC26には、空
気フィルタ40を通過して、塵芥などが除去された原料
空気「air1」が導入される。MAC26で圧縮された空
気は、熱交換器41およびスチーム加熱器42を通って
CO除去器43に導かれる。CO除去器43で一酸化炭
素(CO)が除去された圧縮空気は、熱交換器41を介
してグライコール冷却器44で冷却され、M/S吸着器
45で二酸化炭素の除去が行われる。この空気の状態を
「air70」で示し、「Rair3」で示す循環空気と混合され
て、「Fair0」の状態となり、循環空気圧縮機であるR
AC27でさらに圧縮される。
FIG. 4 shows the air liquefaction section 2 shown in FIG.
An example of the device configuration of 0a is shown. Further, FIG. 5 shows an example of a result of simulating the operation condition of FIG. 4 as a state quantity in the stream name given to the main part of FIG. The raw air “air1” from which dust and the like has been removed is introduced into the MAC 26, which is a raw air compressor, after passing through the air filter 40. The air compressed by the MAC 26 is guided to the CO remover 43 through the heat exchanger 41 and the steam heater 42. The compressed air from which carbon monoxide (CO) has been removed by the CO remover 43 is cooled by the Glycol cooler 44 via the heat exchanger 41, and carbon dioxide is removed by the M / S adsorber 45. The state of this air is indicated by "air70" and mixed with the circulating air indicated by "Rair3" to become the state of "Fair0", which is the circulating air compressor R.
It is further compressed by AC27.

【0026】「Rair3」で示す循環空気は、気液分離器
46から「Fair100V」として示すように分離され、循環
空気−LNG熱交換器47a,47b,47cで液化天
然ガスと熱交換して冷却される。冷却された空気は、M
/S吸着器45から出てくる原料空気と混合され、混合
空気は循環空気圧縮機であるRAC27で圧縮される。
RAC27で圧縮された混合空気は、クーラ48で冷却
された後、膨張タービン49によって駆動される負荷コ
ンプレッサ50に導かれて、さらに圧縮される。圧縮さ
れた混合空気は、アフタークーラ51で常温まで冷却さ
れて「Fairt1」に示す圧力約5394kPa(54kg
f/cm2)状態となった後、循環空気−LNG熱交換
器47cの温端に導かれる。
The circulating air indicated by "Rair3" is separated from the gas-liquid separator 46 as indicated by "Fair100V" and cooled by exchanging heat with the liquefied natural gas in the circulating air-LNG heat exchangers 47a, 47b, 47c. To be done. The cooled air is M
The mixed air is mixed with the raw material air coming out of the / S adsorber 45, and the mixed air is compressed by the RAC 27 which is a circulating air compressor.
The mixed air compressed by the RAC 27 is cooled by the cooler 48, then guided to the load compressor 50 driven by the expansion turbine 49, and further compressed. The compressed mixed air is cooled to room temperature by the aftercooler 51 and the pressure shown in "Fairt1" is about 5394 kPa (54 kg).
After becoming the f / cm 2 ) state, the air is guided to the warm end of the circulating air-LNG heat exchanger 47c.

【0027】循環空気−LNG熱交換器47cでは、混
合空気が「Fairt1」の状態で、約−100℃まで冷却さ
れた後、2つに分岐され、一方は膨張タービン49に供
給され、ここで約490kPa(5kgf/cm2)ま
で減圧され、その間に空気液化に必要な寒冷を発生さ
せ、循環空気−LNG熱交換器47aの冷端に入る。残
部の空気は、循環空気−LNG熱交換器47b,47a
でさらに−168℃まで冷却されて、「Fair100」の状
態となり、冷端より排出され、膨張弁52によって減圧
され、その一部は気化して、気液混相の状態で気液分離
器46に供給される。
In the circulating air-LNG heat exchanger 47c, the mixed air is cooled to about -100 ° C in the state of "Fairt1" and then branched into two, one of which is supplied to the expansion turbine 49, where The pressure is reduced to about 490 kPa (5 kgf / cm 2 ), during which cold required for air liquefaction is generated and enters the cold end of the circulating air-LNG heat exchanger 47 a. The remaining air is the circulating air-LNG heat exchangers 47b, 47a.
Is further cooled to −168 ° C. to be in a “Fair 100” state, discharged from the cold end, decompressed by the expansion valve 52, part of which is vaporized, and the gas-liquid separator 46 is in a gas-liquid mixed phase state. Supplied.

【0028】気液分離器46では、液体空気中の蒸気分
が分離され、頂部より排出され、前述の「F100V」で示
すように、膨張タービン50の出口空気と合流して、循
環空気−LNG熱交換器47aの低温端に入る。この空
気は、アフタークーラ51から膨張弁52に向う高圧空
気と向流に流れて、常温まで昇温され、RAC27に前
述の「Rair3」として還流する。
In the gas-liquid separator 46, the vapor component in the liquid air is separated, discharged from the top, and merged with the outlet air of the expansion turbine 50 as indicated by the above-mentioned "F100V" to produce the circulating air-LNG. It enters the low temperature end of the heat exchanger 47a. This air flows countercurrently with the high-pressure air toward the expansion valve 52 from the aftercooler 51, is heated to room temperature, and is recirculated to the RAC 27 as "Rair3" described above.

【0029】空気液化セクション20aに供給される液
化天然ガスは、「LNG1」の状態から2つに分割され、そ
の一方は空気分離セクション20bにおくられ、液体空
気と熱交換して、−168℃まで冷却された「LNG10」
の状態で、循環空気−LNG熱交換器47aの冷端に供
給される。この液化天然ガスは、循環空気−LNG熱交
換器47aを通って、「LNG20」で示すように、−15
5℃まで加温され、ここで残部の液化天然ガスと合流し
て、循環空気−LNG熱交換器47b,47cで「LNG
3」で示すように、約−25℃まで加温されて、ヒータ
53でさらに常温まで加温された後、空気液化セクショ
ン20aから送出される。気液分離器46の底部から抜
出される液体空気は、液体空気タンク24に送られ、貯
留される。
The liquefied natural gas supplied to the air liquefaction section 20a is divided into two from the "LNG1" state, one of which is placed in the air separation section 20b and exchanges heat with the liquid air to -168 ° C. "LNG10" cooled to
In this state, the circulating air is supplied to the cold end of the LNG heat exchanger 47a. This liquefied natural gas passes through the circulating air-LNG heat exchanger 47a, and as shown by "LNG20", is -15.
It is heated to 5 ° C, where it joins with the rest of the liquefied natural gas, and the circulating air-LNG heat exchangers 47b and 47c perform “LNG
As shown by "3", after being heated up to about -25 ° C and further heated to room temperature by the heater 53, it is delivered from the air liquefaction section 20a. The liquid air extracted from the bottom of the gas-liquid separator 46 is sent to and stored in the liquid air tank 24.

【0030】図6は、図1に示す空気分離セクション2
0bの機器構成の例を示す。また、図7は、図6の動作
条件をシミュレートした結果の一例を、図6の主要な部
分について付すストリーム名でその部分における状態量
として示す。空気液化セクション20aの液体空気タン
ク24から供給される原料液体空気は、「Lair0」で示
すように、LNG熱交換器25において、液化天然ガス
と熱交換して、液化天然ガスを−168℃まで冷却した
後、膨張弁54を通って減圧された後、液体窒素過冷却
器28に供給される。液体窒素過冷却器28では、低圧
蒸留塔36のリボイラ35で液化され、他の液体窒素過
冷却器55で過冷却された「RN22」で示す液体窒素によ
って、さらに過冷却されて、「Lair2」の状態で粗アル
ゴン塔38の頂部コンデンサに供給される。
FIG. 6 shows the air separation section 2 shown in FIG.
An example of the device configuration of 0b is shown. Further, FIG. 7 shows an example of a result of simulating the operation condition of FIG. 6 as a state quantity in the stream name attached to the main portion of FIG. The raw material liquid air supplied from the liquid air tank 24 of the air liquefaction section 20a is heat-exchanged with the liquefied natural gas in the LNG heat exchanger 25 as shown by "Lair0", and the liquefied natural gas is heated to -168 ° C. After cooling, the pressure is reduced through the expansion valve 54 and then supplied to the liquid nitrogen subcooler 28. In the liquid nitrogen supercooler 28, the liquid nitrogen, which is liquefied in the reboiler 35 of the low-pressure distillation column 36 and supercooled in another liquid nitrogen supercooler 55, is further supercooled to "Lair2". Is supplied to the top condenser of the crude argon column 38.

【0031】粗アルゴン塔38のコンデンサ頂部から
は、気化した空気の蒸気が排出され、底部からは液体空
気の一部が抜出される。これらは合流して、低圧蒸留塔
36の中部に原料空気として供給される。低圧蒸留塔3
6の頂部からは「PN」で示す高純度の窒素蒸気が排出さ
れ、液体窒素過冷却器55、主熱交換器29を通って常
温まで加熱される。常温まで加熱された窒素ガスは、R
NC30に供給され、ここで「RN20」として示すように
約588kPa(5kgf/cm2)まで昇厚された
後、循環窒素として主熱交換器29の温端に入り、冷却
されて、「RN2」で示すように低圧蒸留塔36のリボイ
ラ35の加熱源として供給される。循環窒素はここで液
化された後、抜出され、前述のように、液体窒素過冷却
器55および液体窒素過冷却器28で充分に過冷却され
て、その一部は製品液体窒素として、系外に送り出さ
れ、残部は減圧された後、低圧蒸留塔36の頂部に還流
液として供給される。
Vaporized vapor of air is discharged from the top of the condenser of the crude argon column 38, and part of liquid air is withdrawn from the bottom. These are combined and supplied to the middle part of the low-pressure distillation column 36 as raw material air. Low pressure distillation column 3
High-purity nitrogen vapor indicated by “PN” is discharged from the top of 6 and is heated to room temperature through the liquid nitrogen subcooler 55 and the main heat exchanger 29. Nitrogen gas heated to room temperature is R
After being supplied to the NC 30 and being increased in thickness to about 588 kPa (5 kgf / cm 2 ) as indicated by “RN20” here, it enters the hot end of the main heat exchanger 29 as circulating nitrogen and is cooled to “RN2”. It is supplied as a heating source of the reboiler 35 of the low-pressure distillation column 36 as shown by. The circulating nitrogen is liquefied here, then extracted, and sufficiently subcooled by the liquid nitrogen subcooler 55 and the liquid nitrogen subcooler 28 as described above, a part of which is used as product liquid nitrogen, After being sent out and the balance being decompressed, it is supplied to the top of the low pressure distillation column 36 as a reflux liquid.

【0032】低圧蒸留塔36の底部からは、「LOX」で
示す高純度の液体酸素が抜出され、製品液体酸素として
系外に送り出される。低圧蒸留塔36の原料空気フィー
ド段と底部の中間からは、「Car」で示すアルゴンリッ
チの酸素蒸気が抜出され、粗アルゴン塔38の底部に供
給される。粗アルゴン塔38に供給された蒸気は、塔内
を上昇する間に、次第にアルゴンが濃縮され、頂部で
は、酸素濃度0.2%以下、窒素数%を含む粗アルゴン
となる。粗アルゴンの大部分は、粗アルゴン塔38のコ
ンデンサで凝縮され、還流液として塔内を流下し、塔底
部から低圧蒸留塔36に戻る。残部の蒸気は、粗アルゴ
ンとして抜き出され、アルゴン熱交換器56で常温まで
加温されてアルゴン精製設備57で酸素を除去された
後、アルゴン熱交換器56で再度冷却されて精製アルゴ
ン塔39に入る。精製アルゴン塔39では、窒素分が除
去され、その底部から高純度液体アルゴンが製品として
抜き出される。残部のガスは、廃窒素として、低圧蒸留
塔36の上部から抜き出され、液体窒素過冷却器55、
主熱交換器29を経て常温まで加温される。この排ガス
は、夜間は空気液化セクション20aのM/S(モレキ
ュラーシーブ)吸着器45の再生に使われ、昼間は大気
中に放出される。
High-purity liquid oxygen indicated by "LOX" is extracted from the bottom of the low-pressure distillation column 36, and is sent out of the system as product liquid oxygen. An argon-rich oxygen vapor indicated by “Car” is extracted from the middle of the feed air feed stage and the bottom of the low-pressure distillation column 36 and supplied to the bottom of the crude argon column 38. The vapor supplied to the crude argon column 38 is gradually enriched in argon while rising in the column, and becomes crude argon containing 0.2% or less of oxygen concentration and several% of nitrogen at the top. Most of the crude argon is condensed in the condenser of the crude argon column 38, flows down in the column as a reflux liquid, and returns to the low-pressure distillation column 36 from the bottom of the column. The remaining vapor is extracted as crude argon, heated to normal temperature in an argon heat exchanger 56 to remove oxygen in an argon refining facility 57, and then cooled again in the argon heat exchanger 56 to produce a purified argon column 39. to go into. In the purified argon column 39, the nitrogen content is removed, and high-purity liquid argon is withdrawn as a product from the bottom part thereof. The remaining gas is extracted as waste nitrogen from the upper part of the low-pressure distillation column 36, and the liquid nitrogen supercooler 55,
It is heated to room temperature via the main heat exchanger 29. This exhaust gas is used for regeneration of the M / S (molecular sieve) adsorber 45 of the air liquefaction section 20a at night, and is released into the atmosphere during the daytime.

【0033】図8は、本実施形態での夜間電力使用パタ
ーンによる経済効果を、図9(c)および図9(d)に
示す従来の電力使用パターンと比較して示す。本実施形
態は、もっぱら夜間電力を利用して液体空気を製造し、
貯留しながら、液体酸素や液体窒素などの製品は、昼夜
を問わずに製造するという、全く新しい考え方に基づい
ている。これによって次のような効果がえられる。 1)空気分離セクション20bの大きさが、通常のプラ
ントの1/2.4と小さくなり、さらに高圧蒸留塔を必
要としないことから、空気分離セクション20bの設備
費を大幅に低減することができる。 2)空気分離セクション20bの設備能力が小さくなる
ことから、消費電力は大幅に低減(1/2.4)され、
高価な昼間電力消費量を大幅に低減することができる。 3)空気分離セクション20bにおいて、低温の液化天
然ガスをより低温の液体空気の加熱源として用い、分離
のエネルギとして利用し、空気分離セクション20bで
の循環窒素量の低減を図り、空気液化セクション20a
では、その冷却された液化天然ガスを空気液化の寒冷源
として利用している。これによって、液化天然ガスを、
空気分離セクション20bおよび空気液化セクション2
0aの双方の電力消費量の低減に貢献させることができ
る。 4)冷却された液化天然ガスは、過冷却状態にあるの
で、液化天然ガスの貯槽に戻せば、液化天然ガス貯槽か
らのボイルオフガス発生を抑制することができる。空気
分離セクション20bは昼間も運転するので、液化天然
ガス貯槽からのボイルオフガス発生抑制を、昼間も有効
に行うことができる。ボイルオフガスの発生抑制や、発
生したボイルオフガスの処理に要するエネルギを節約す
ることができるので、夜間電力や液化天然ガスの寒冷源
としての有効利用に加えて、ボイルオフガス抑制も有効
に行うことができる。
FIG. 8 shows the economic effect of the nighttime power usage pattern of this embodiment in comparison with the conventional power usage pattern shown in FIGS. 9 (c) and 9 (d). In the present embodiment, liquid air is produced exclusively by using night electric power,
While storing, products such as liquid oxygen and liquid nitrogen are based on a completely new concept of manufacturing day and night. This has the following effects. 1) Since the size of the air separation section 20b is as small as 1 / 2.4 of that of a normal plant, and a high pressure distillation column is not required, the equipment cost of the air separation section 20b can be significantly reduced. . 2) Since the equipment capacity of the air separation section 20b becomes small, the power consumption is greatly reduced (1 / 2.4),
Expensive daytime power consumption can be significantly reduced. 3) In the air separation section 20b, low-temperature liquefied natural gas is used as a heating source for lower-temperature liquid air and is used as energy for separation to reduce the amount of circulating nitrogen in the air separation section 20b.
Uses the cooled liquefied natural gas as a cold source for air liquefaction. As a result, liquefied natural gas
Air separation section 20b and air liquefaction section 2
It is possible to contribute to the reduction of the power consumption of both 0a. 4) Since the cooled liquefied natural gas is in a supercooled state, returning it to the liquefied natural gas storage tank can suppress the generation of boil-off gas from the liquefied natural gas storage tank. Since the air separation section 20b operates even during the daytime, it is possible to effectively suppress the generation of boil-off gas from the liquefied natural gas storage tank during the daytime. Since it is possible to suppress the generation of boil-off gas and save the energy required for processing the generated boil-off gas, it is possible to effectively control boil-off gas in addition to effectively using it as a cold source for nighttime electricity and liquefied natural gas. it can.

【0034】[0034]

【発明の効果】以上のように本発明によれば、空気の液
化は夜間電力を有効に利用して夜間のみ行い、成分への
分離は昼夜連続して行うので、一定量を継続して空気を
分離し、製品を取出すことができる。空気分離の能力
は、昼夜連続運転で必要量を生産しうるだけあればよい
ので、夜間のみで短時間で分離するような場合に必要と
なる過大な能力は必要ではなく、設備コストを低減する
ことができる。
As described above, according to the present invention, the liquefaction of air is performed only at night by effectively utilizing the night power, and the separation into components is performed continuously day and night. Can be separated and the product can be taken out. Since the air separation capacity only needs to be able to produce the required amount by continuous operation at day and night, it does not require the excessive capacity that is required when separating in a short time only at night, and reduces equipment costs. be able to.

【0035】また本発明によれば、高圧蒸留塔を使用し
ないでも成分の分離を行うことができ、精留の工程で使
用する設備費用を低減することができる。
Further, according to the present invention, the components can be separated without using a high pressure distillation column, and the facility cost used in the rectification step can be reduced.

【0036】また本発明によれば、液化装置で空気を液
化する際に、圧縮機で圧縮された空気を冷却するために
液化天然ガスの寒冷を利用し、膨張タービンで膨張させ
ることによって、液化天然ガスの温度よりも低温の液体
空気を効率よく製造することができる。
Further, according to the present invention, when liquefying the air in the liquefying device, the refrigeration of the liquefied natural gas is used to cool the air compressed by the compressor, and the liquefied gas is expanded by the expansion turbine. Liquid air having a temperature lower than that of natural gas can be efficiently produced.

【0037】また本発明によれば、貯槽に貯留されてい
る液体空気を成分に分離するために必要な熱を、加熱源
となる液化天然ガスをさらに低温に冷却することによっ
て得ることができ、低温の液化天然ガスを、空気液化の
寒冷源としてさらに有効に利用することができる。
Further, according to the present invention, the heat necessary for separating the liquid air stored in the storage tank into its components can be obtained by further cooling the liquefied natural gas serving as a heating source to a lower temperature, The low temperature liquefied natural gas can be more effectively utilized as a cold source for air liquefaction.

【0038】さらに本発明によれば、液化天然ガスを空
気液化の寒冷源と、液体空気からの成分分離のための加
熱源としても有効に利用することができる。液体空気で
冷却される液化天然ガスは、過冷却状態にあるので、液
化天然ガス貯槽からのボイルオフガス発生を抑制するこ
とができる。分離装置は昼間も運転するので、液化天然
ガス貯槽からのボイルオフガス発生抑制を、昼間も有効
に行うことができる。
Further, according to the present invention, liquefied natural gas can be effectively used as a cold source for liquefying air and as a heating source for separating components from liquid air. Since the liquefied natural gas cooled by the liquid air is in a supercooled state, it is possible to suppress the generation of boil-off gas from the liquefied natural gas storage tank. Since the separator operates even during the daytime, it is possible to effectively suppress boil-off gas generation from the liquefied natural gas storage tank during the daytime.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の一形態である空気分離設備の概
略的な運転形態を示す工程図および使用電力パターンの
グラフである。
FIG. 1 is a process diagram and a graph of a power consumption pattern showing a schematic operation mode of an air separation facility according to an embodiment of the present invention.

【図2】図1の空気分離設備で全体を運転している状態
の装置の構成を示す図である。
FIG. 2 is a diagram showing a configuration of an apparatus in a state where the entire air separation facility of FIG. 1 is operating.

【図3】図1の空気分離設備で空気液化セクション20
aの運転を停止している状態の装置の構成を示す図であ
る。
FIG. 3 is an air liquefaction section 20 of the air separation facility of FIG.
It is a figure which shows the structure of the apparatus in the state which has stopped the driving | operation of a.

【図4】図1の空気液化セクション20aの配管系統図
である。
4 is a piping system diagram of the air liquefaction section 20a of FIG.

【図5】図4の運転状態を示す図表である。FIG. 5 is a chart showing the operating state of FIG.

【図6】図1の空気分離セクション20bの配管系統図
である。
FIG. 6 is a piping system diagram of the air separation section 20b of FIG.

【図7】図6の運転状態を示す図表である。FIG. 7 is a chart showing the operating state of FIG.

【図8】図1の実施形態の効果を、図9と比較して示す
図表である。
8 is a chart showing the effect of the embodiment of FIG. 1 in comparison with FIG.

【図9】従来の空気分離設備の概略的な運転形態を示す
工程図および使用電力パターンのグラフである。
[Fig. 9] Fig. 9 is a process diagram and a graph of a power consumption pattern showing a schematic operation mode of a conventional air separation facility.

【図10】図9の空気分離設備を運転している状態の装
置の構成を示す図である。
FIG. 10 is a diagram showing a configuration of an apparatus in a state where the air separation facility of FIG. 9 is operating.

【符号の説明】[Explanation of symbols]

20 空気分離プロセス 20a 空気液化セクション 20b 空気分離セクション 20c 空気分離設備 21 前処理 22 精留 23 液化系 24 液体空気タンク 25 LNG熱交換器 26 MAC 27 RAC 28,55 液体窒素過冷却器 29 主熱交換器 30 RNC 31 液化アルゴン槽 32 液化窒素槽 33 液化酸素槽 35 リボイラ 36 低圧蒸留塔 38 粗アルゴン塔 39 精製アルゴン塔 47a,47b,47c 循環空気−LNG熱交換器 50 膨張タービン 20 Air separation process 20a Air liquefaction section 20b air separation section 20c air separation equipment 21 Pretreatment 22 rectification 23 Liquefaction system 24 Liquid air tank 25 LNG heat exchanger 26 MAC 27 RAC 28,55 Liquid nitrogen supercooler 29 Main heat exchanger 30 RNC 31 Liquefied argon tank 32 Liquefied nitrogen tank 33 Liquefied oxygen tank 35 Reboiler 36 Low pressure distillation column 38 Crude Argon Tower 39 Purified Argon Tower 47a, 47b, 47c Circulating air-LNG heat exchanger 50 expansion turbine

───────────────────────────────────────────────────── フロントページの続き (72)発明者 室 嘉浩 大阪府大阪市中央区平野町四丁目1番2号 大阪瓦斯株式会社内 (72)発明者 池田 耕一郎 大阪府大阪市中央区平野町四丁目1番2号 大阪瓦斯株式会社内 Fターム(参考) 3E073 DD03 4D047 AA08 AB01 AB02 AB03 CA03 CA07 DA17 EA05    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Muro Yoshihiro             4-1-2 Hirano-cho, Chuo-ku, Osaka-shi, Osaka Prefecture               Within Osaka Gas Co., Ltd. (72) Inventor Koichiro Ikeda             4-1-2 Hirano-cho, Chuo-ku, Osaka-shi, Osaka Prefecture               Within Osaka Gas Co., Ltd. F-term (reference) 3E073 DD03                 4D047 AA08 AB01 AB02 AB03 CA03                       CA07 DA17 EA05

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 夜間電力を利用して液体空気を製造する
液化装置と、 液化装置によって製造された液体空気を貯留する貯槽
と、 昼夜連続運転によって、貯槽に貯留される液体空気を蒸
留し、成分の液体を分離する分離装置とを含むことを特
徴とする空気分離設備。
1. A liquefaction device for producing liquid air using night-time electric power, a storage tank for storing the liquid air produced by the liquefaction device, and a continuous operation day and night to distill the liquid air stored in the storage tank, An air separation facility comprising: a separation device for separating a component liquid.
【請求項2】 前記分離装置は、分離された液体窒素の
一部を還流させて成分の分離を行う低圧蒸留塔を含むこ
とを特徴とする請求項1記載の空気分離設備。
2. The air separation facility according to claim 1, wherein the separation device includes a low-pressure distillation column for refluxing a part of the separated liquid nitrogen to separate the components.
【請求項3】 前記液化装置は、液化天然ガスを空気液
化の寒冷源として利用することを特徴とする請求項1ま
たは2記載の空気分離装置。
3. The air separation device according to claim 1, wherein the liquefaction device uses liquefied natural gas as a cold source for air liquefaction.
【請求項4】 前記分離装置では、液化天然ガスを液体
空気の加熱源として用いる熱交換器を備え、 前記液化装置では、該熱交換器で液体空気によって冷却
された液化天然ガスを前記空気液化の寒冷源として利用
することを特徴とする請求項3記載の空気分離設備。
4. The separation device includes a heat exchanger that uses liquefied natural gas as a heating source for liquid air, and the liquefaction device liquefies the liquefied natural gas cooled by the liquid air in the heat exchanger. 4. The air separation equipment according to claim 3, which is used as a cold source of.
【請求項5】 夜間電力を利用して液体空気を製造し、
製造された液体空気を貯槽に貯留しておき、分離設備を
昼夜連続運転して液体空気を蒸留して成分の液体を分離
する空気製造設備で液化天然ガスを利用する方法であっ
て、 液化装置で、液化天然ガスを空気液化の寒冷源として利
用するとともに、 分離装置で、液化天然ガスを液体空気の加熱源として利
用し、 液体空気を加熱することによって冷却された液化天然ガ
スを、液化天然ガスの貯槽に戻し、液化天然ガス貯槽か
らのボイルオフガス発生を抑制することを特徴とする空
気分離設備の液化天然ガスの利用方法。
5. A liquid air is manufactured by using night power.
A method of using liquefied natural gas in an air production facility that stores the produced liquid air in a storage tank and continuously operates the separation facility day and night to distill the liquid air to separate the component liquid. Liquefied natural gas is used as a cold source for air liquefaction, and in the separation device, liquefied natural gas is used as a heating source for liquid air, and liquefied natural gas cooled by heating liquid air is used as liquefied natural gas. A method for utilizing liquefied natural gas in an air separation facility, which comprises returning to a gas storage tank to suppress boil-off gas generation from the liquefied natural gas storage tank.
JP2001276166A 2001-09-12 2001-09-12 Air separating facility and its liquefied natural gas utilizing method Pending JP2003083674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001276166A JP2003083674A (en) 2001-09-12 2001-09-12 Air separating facility and its liquefied natural gas utilizing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001276166A JP2003083674A (en) 2001-09-12 2001-09-12 Air separating facility and its liquefied natural gas utilizing method

Publications (1)

Publication Number Publication Date
JP2003083674A true JP2003083674A (en) 2003-03-19

Family

ID=19100910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001276166A Pending JP2003083674A (en) 2001-09-12 2001-09-12 Air separating facility and its liquefied natural gas utilizing method

Country Status (1)

Country Link
JP (1) JP2003083674A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104019629A (en) * 2014-05-14 2014-09-03 中国海洋石油总公司 Air separation method capable of being matched with cold energy supply in receiving station

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104019629A (en) * 2014-05-14 2014-09-03 中国海洋石油总公司 Air separation method capable of being matched with cold energy supply in receiving station

Similar Documents

Publication Publication Date Title
JP4733124B2 (en) Cryogenic air separation method for producing pressurized gas products
US5505052A (en) Process and unit for supplying a gas under pressure to an installation that consumes a constituent of air
KR100874680B1 (en) System to increase the production capacity of LNB-based liquefaction equipment in air separation process
JP3086857B2 (en) Method for generating cold, cooling cycle using this method, and air rectification method and apparatus using this method
JP2865274B2 (en) Cryogenic distillation of air for the simultaneous production of oxygen and nitrogen as gaseous and / or liquid products
AU630837B1 (en) Elevated pressure air separation cycles with liquid production
JPH07174461A (en) Manufacture of gaseous oxygen product at supply pressure by separating air
JPH0579753A (en) Method and device to manufacture gas-state oxygen under pressure
JPH08175806A (en) Method and plant for manufacturing gaseous oxygen under pressure
US9360250B2 (en) Process and apparatus for the separation of air by cryogenic distillation
US20150226094A1 (en) Method and device for generating electrical energy
CA2100404C (en) Hybrid air and nitrogen recycle liquefier
US20170211882A1 (en) Production of an air product in an air separation plant with cold storage unit
JPH05203344A (en) Supplying method of oxygen gas adaptable for required condition of various demand ratio pattern
US4932212A (en) Process for the production of crude argon
CN1163386A (en) Process and device for producing nitrogen
JPH1054658A (en) Method and device for producing liquid product from air with various ratio
US20170284735A1 (en) Air separation refrigeration supply method
TW536615B (en) Air separation method to produce gaseous product
JP3208547B2 (en) Liquefaction method of permanent gas using cold of liquefied natural gas
US7219514B2 (en) Method for separating air by cryogenic distillation and installation therefor
JP2003083674A (en) Air separating facility and its liquefied natural gas utilizing method
JPH06249574A (en) Method and equipment for manufacturing oxygen and/or nitrogen under pressure
JP2920392B2 (en) Supercooling method of liquefied nitrogen in air liquefaction separator
JP2873469B2 (en) A device that liquefies and separates and supplies air in response to fluctuations in demand

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091027