JP2003083334A - Antifriction bearing - Google Patents

Antifriction bearing

Info

Publication number
JP2003083334A
JP2003083334A JP2001272155A JP2001272155A JP2003083334A JP 2003083334 A JP2003083334 A JP 2003083334A JP 2001272155 A JP2001272155 A JP 2001272155A JP 2001272155 A JP2001272155 A JP 2001272155A JP 2003083334 A JP2003083334 A JP 2003083334A
Authority
JP
Japan
Prior art keywords
hot forging
cage
pair
rivet
annular structures
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001272155A
Other languages
Japanese (ja)
Inventor
Shigeaki Abe
重昭 阿部
Tomoshi Hasegawa
知史 長谷川
Tatsuo Egawa
辰夫 江川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2001272155A priority Critical patent/JP2003083334A/en
Publication of JP2003083334A publication Critical patent/JP2003083334A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • F16C33/3837Massive or moulded cages having cage pockets surrounding the balls, e.g. machined window cages
    • F16C33/3862Massive or moulded cages having cage pockets surrounding the balls, e.g. machined window cages comprising two annular parts joined together
    • F16C33/3868Massive or moulded cages having cage pockets surrounding the balls, e.g. machined window cages comprising two annular parts joined together made from metal, e.g. two cast parts joined by rivets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls

Abstract

PROBLEM TO BE SOLVED: To provide an antifriction bearing capable of reducing the number of working process of a metallic bearing cage, saving production cost and enhancing productivity. SOLUTION: For the antifriction bearing equipped with metallic bearing cage 21 that regulates the interval of a plurality of rolling elements arranged between inner and outer rings, the ball bearing cage 21 consists of a pair of ring structure bodies 23 and 25 connected to butt each other in the axial direction. The pair of ring structure bodies 23 and 25 are formed by hot forging to make outer shell form have concave parts 23b and 25b for pockets on the butted face 23a and 25a and rivet seats 23e and 25e on the outer faces 23c and 25c so that grinding work that requires a great deal of man-power can be minimized.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、内外輪間に、内外
輪間に装備する複数個の転動体相互の間隔を規制する金
属製の保持器を備える転がり軸受に関し、詳しくは、金
属製保持器の製造コストの低減及び生産性の向上を実現
するための改良に係るものである。 【0002】 【従来の技術】転がり軸受では、内外輪間に装備する複
数個の転動体相互の間隔を保持するために、保持器が使
用される。保持器は、内外輪間を周回する環状構造体
に、転動体を収容するポケットを形成した構造で、樹脂
製のものと、金属製のものとが開発されている。 【0003】樹脂製の保持器は、射出成形によって所望
の形状に成形するもので、ポケットの内面を転動体の外
表面に対応した曲面構造にすることも比較的に容易にで
きるが、強度の確保や耐久性の向上が難しい。そのた
め、高負荷や高速回転の転がり軸受では、金属製の保持
器を採用することが一般的である。 【0004】高負荷や高速回転に適した金属製の保持器
としては、比較的に厚肉の環状構造体に、転動体を収容
するポケットを研削加工等で形成するもみ抜き形の保持
器が普及している。図5及び図6は、このようなもみ抜
き形の保持器の製造方法を示したものである。 【0005】図5に示したもみ抜き形の保持器1は、2
分割タイプ深溝玉軸受用のもので、金属製の環状構造体
2に、周方向に一定間隔で、転動体としての玉を収容す
るポケット4を貫通形成したものである。ポケット4の
成形は、図5に示すように、2分割タイプの保持器を仮
組みした後、回転軸Lの方向を環状構造体2の中心軸C
に直交する方向に設定したドリル刃等の切削工具5によ
って行う。このようなもみ抜き形の保持器1の場合、ポ
ケット4は、通常、ストレート穴である。また、図6に
示すように、ポケット形状をストレート穴ではなく保持
器外径側を円筒状に、保持器内径側を円錐状にしたもの
もある。この場合、ドリルによる切削加工を保持器中央
部までとして形成する。 【0006】図7は、2分割タイプの別のもみ抜き形の
保持器を構成する一対の環状構造体の一方を示したもの
である。ここに示した環状構造体6は、同様の構造のも
う一つの環状構造体と軸受の中心軸方向に突き合せて結
合することで、深溝玉軸受用の保持器となる。 【0007】このような2分割タイプの保持器を構成す
る環状構造体6は、一対の環状構造体相互をリベット結
合するためのリベット穴8が環状構造体の幅方向(中心
軸線方向)に沿って貫通形成されると共に、突き合せ面
6aにポケット用の略半球状の凹部9が形成され、更
に、図示はしないが、突き合せ面の反対側に位置する外
側面に、リベットの加締め部の突出を防止するためのリ
ベット座が形成される。凹部9の成形は、図7に示すよ
うに、回転軸Zの方向を環状構造体6の中心軸C1に平
行に設定した切削工具11によって行う。このような2
分割タイプの保持器の場合、凹部9は、収容する転動体
の外面の湾曲状態に相応した球面に形成される。 【0008】 【発明が解決しようとする課題】ところが、上記した各
もみ抜き形の保持器1,6は、ポケット4や凹部9を、
一つずつ、切削工具や研削工具による削り出しで形成し
ているため、加工工程数が多く、加工に多大な時間を要
し、生産性が悪いという問題があった。また、加工コス
トが嵩んで製造コストが高くなるという問題もあった。 【0009】本発明は上記事情に鑑みなされたもので、
金属製の保持器の加工工程数が少なくて済み、生産性の
向上及び製造コストの低減を図ることのできる転がり軸
受を提供することを目的とする。 【0010】 【課題を解決するための手段】上記目的を達成するため
の本発明に係る転がり軸受は、内外輪間に、内外輪間に
装備する複数個の転動体相互の間隔を規制する金属製の
保持器を備える転がり軸受において、前記保持器は、軸
受の中心軸線方向に突き合せて結合される一対の環状構
造体により構成すると共に、一対の環状構造体はリング
状の非鉄金属材料の熱間鍛造によって成形し、且つ、転
動体を収容するポケット用に各環状構造体の突き合せ面
に装備する複数個の凹部や、一対の環状構造体相互を結
合するために各環状構造体の外側面に形成する複数個の
リベット座等の前記環状構造体上の各種凹凸部は熱間鍛
造によって形成し、熱間鍛造の加工精度以上の寸法精度
が要求される箇所にのみ、熱間鍛造よりも加工精度の高
い機械加工による仕上げ加工を実施することを特徴とす
る。 【0011】そして、上記構成によれば、金属製保持器
を構成する一対の環状構造体において、突き合せ面に装
備するポケット用の凹部や、外側面に装備するリベット
座等の多数の凹凸部が、熱間鍛造によって一括して成形
される。従って、複数箇所の凹凸部を手間のかかる研削
加工等の機械加工で一箇所ずつ順に形成していた従来の
もみ抜き形保持器と比較すると、金属製保持器を製造す
る際の加工工程数を大幅に低減させることができる。し
かも、手間のかかる機械加工は、熱間鍛造では必要な寸
法精度を確保することができない部位のみの最小限に抑
えることができるため、生産性の向上及び製造コストの
低減を図ることができる。 【0012】 【発明の実施の形態】以下、添付図面に基づいて本発明
の好適な実施の形態に係る転がり軸受を詳細に説明す
る。図1は本発明に係る転がり軸受で使用する金属製保
持器の一実施形態の斜視図、図2は図1に示した保持器
の分解斜視図、図3は図2に示した各環状構造体を熱間
鍛造する際に鍛造型に投入する非鉄金属製母材の縦断面
図、図4は図3に示した非鉄金属製母材を成形する熱間
鍛造型の概略構成図である。 【0013】この一実施形態の金属製保持器21は、深
溝玉軸受の内外輪間に装備されて、深溝玉軸受の内外輪
間に装備される複数個の転動体(玉)相互の間隔を規制
するもので、図1に示すように、軸受の中心軸線C2方
向に突き合せて結合される一対の環状構造体23,25
により構成される。各環状構造体23,25は、図3に
示すようなリング状の非鉄金属材料製の母材30を、図
4に示す熱間鍛造型40内に納めて、所定の加熱環境下
で加圧する熱間鍛造によって成形する。 【0014】各環状構造体23,25は、転動体を収容
するポケット用の複数個の凹部23b,25bが互いに
対向して形成されると共に、一対の環状構造体23,2
5相互を結合するための複数個のリベット挿通穴23
d,25dが突き合せ面23a,25aに貫通形成され
ている。また、各環状構造体23,25の突き合せ面の
反対側に位置する外側面23c,25cには、各リベッ
ト挿通穴23d,25dに装着したリベットの加締め部
の突出を回避するための座ぐりであるリベット座23
e,25eが形成されている。ポケット用の凹部23
b,25bの内面は、転動体である玉の外径よりも僅か
に大きな直径の球面に成形されている。 【0015】熱間鍛造型40は、図4に示すように、環
状構造体23,25の突き合せ面23a,25aや凹部
23b,25bを成形するための下型41、外側面23
c,25cやリベット座23e,25eを成形するため
の上型42、上下型41,42間に挟まれる中間型43
とから構成されている。そして、中間型43は、更に、
環状構造体23,25の外周面を成形する外型43a
と、環状構造体23,25の内周面を成形する内型43
bとから構成されている。 【0016】前述した複数個の凹部23b,25bやリ
ベット座23e,25eなどの各環状構造体23,25
上の各種凹凸部は、熱間鍛造型40による熱間鍛造によ
って形成している。そして、各環状構造体23,25
は、熱間鍛造の加工精度以上の寸法精度が要求される箇
所にのみ、熱間鍛造よりも加工精度の高い機械加工によ
って仕上げ加工を実施して、所望の寸法精度に仕上げ
る。 【0017】以上の保持器21を使用する転がり軸受で
は、金属製保持器21を構成する一対の環状構造体2
3,25を製造する際、各環状構造体23,25の突き
合せ面23a,25aに装備するポケット用の凹部23
b,25bや、外側面23c,25cに装備するリベッ
ト座23e,25e等の多数の凹凸部が、熱間鍛造によ
って一括して成形される。従って、複数箇所の凹凸部を
手間のかかる研削加工等の機械加工で一箇所ずつ順に形
成していた従来のもみ抜き形保持器を製造する場合と比
較すると、金属製保持器21を製造する際の加工工程数
を大幅に低減させることができる。しかも、手間のかか
る機械加工は、熱間鍛造では必要な寸法精度を確保する
ことができない部位のみの最小限に抑えることができる
ため、生産性の向上及び製造コストの低減を図ることが
できる。 【0018】なお、本発明に係る保持器は、ポケット用
の凹部23b,25bの形状を変更することで、深溝玉
軸受に限らず、各種の転がり軸受に応用できることは言
うまでもない。また、ポケット用の凹部23b,25b
内面の形状は、上記実施の形態で示した球面に限らな
い。凹部23b,25b相互で、円柱状のストレート穴
を形成するようにしてもよい。 【0019】 【発明の効果】本発明の転がり軸受によれば、金属製保
持器を構成する一対の環状構造体において、突き合せ面
に装備するポケット用の凹部や、外側面に装備するリベ
ット座等の多数の凹凸部が、熱間鍛造によって一括して
成形される。従って、複数箇所の凹凸部を手間のかかる
研削加工等の機械加工で一箇所ずつ順に形成していた従
来のもみ抜き形保持器と比較すると、金属製保持器を製
造する際の加工工程数を大幅に低減させることができ
る。しかも、手間のかかる機械加工は、熱間鍛造では必
要な寸法精度を確保することができない部位のみの最小
限に抑えることができるため、生産性の向上及び製造コ
ストの低減を図ることができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention comprises a metal retainer between inner and outer wheels for regulating the distance between a plurality of rolling elements provided between the inner and outer wheels. More specifically, the present invention relates to an improvement for realizing reduction in manufacturing cost and improvement in productivity of a metal cage. 2. Description of the Related Art In a rolling bearing, a retainer is used to maintain a space between a plurality of rolling elements provided between inner and outer rings. The cage has a structure in which a pocket for accommodating a rolling element is formed in an annular structure orbiting between inner and outer rings, and a cage made of resin and a cage made of metal have been developed. A cage made of resin is formed into a desired shape by injection molding, and it is relatively easy to make the inner surface of the pocket a curved surface structure corresponding to the outer surface of the rolling element. It is difficult to secure and improve durability. For this reason, it is common to employ a metal cage for a high-load or high-speed rolling bearing. [0004] As a metal cage suitable for high load and high-speed rotation, there is a machined-type cage in which a pocket for accommodating a rolling element is formed in a relatively thick annular structure by grinding or the like. Widespread. FIG. 5 and FIG. 6 show a method of manufacturing such a machined-type cage. [0005] The machined-type cage 1 shown in FIG.
For a split-type deep groove ball bearing, pockets 4 for accommodating balls as rolling elements are formed through metal annular structure 2 at regular intervals in the circumferential direction. As shown in FIG. 5, the pocket 4 is formed by temporarily assembling a two-piece type retainer and then moving the rotation axis L in the direction of the center axis C of the annular structure 2.
The cutting is performed by a cutting tool 5 such as a drill bit set in a direction perpendicular to the direction of the cutting. In the case of such a machined retainer 1, the pocket 4 is usually a straight hole. In addition, as shown in FIG. 6, there is also a case in which the pocket shape is not a straight hole but a cylindrical shape on the outer diameter side of the cage and a conical shape on the inner diameter side of the cage. In this case, cutting by a drill is formed up to the center of the cage. FIG. 7 shows one of a pair of annular structures constituting another two-piece type cage. The annular structure 6 shown here becomes a retainer for a deep groove ball bearing by being joined to another annular structure having a similar structure in the direction of the center axis of the bearing. In the annular structure 6 constituting such a two-piece type retainer, a rivet hole 8 for rivet-connecting a pair of annular structures is formed along the width direction (central axis direction) of the annular structure. And a substantially hemispherical concave portion 9 for a pocket is formed in the mating surface 6a. Further, although not shown, a caulking portion of a rivet is formed on an outer surface opposite to the mating surface. A rivet seat is formed to prevent the protrusion of the rivet. The recess 9 is formed by a cutting tool 11 in which the direction of the rotation axis Z is set parallel to the central axis C1 of the annular structure 6, as shown in FIG. Such 2
In the case of the split type cage, the concave portion 9 is formed into a spherical surface corresponding to the curved state of the outer surface of the rolling element to be accommodated. [0008] However, each of the cages 1 and 6 of the above-mentioned machined type has a pocket 4 and a concave portion 9.
Since they are formed one by one by a cutting tool or a grinding tool, there are problems that the number of processing steps is large, a large amount of time is required for processing, and productivity is poor. There is also a problem that the processing cost is increased and the production cost is increased. The present invention has been made in view of the above circumstances,
An object of the present invention is to provide a rolling bearing capable of reducing the number of processing steps of a metal cage and improving productivity and reducing manufacturing costs. [0010] In order to achieve the above object, a rolling bearing according to the present invention is a metal for regulating the distance between a plurality of rolling elements provided between inner and outer rings and between inner and outer rings. In a rolling bearing provided with a cage made of a non-ferrous metal material, the cage is formed of a pair of annular structures that are joined while being joined in the central axis direction of the bearing. It is formed by hot forging, and a plurality of recesses provided on the mating surfaces of the respective annular structures for pockets for accommodating the rolling elements, and a plurality of annular structures for connecting the pair of annular structures to each other. Various irregularities on the annular structure such as a plurality of rivet seats formed on the outer side surface are formed by hot forging, and hot forging is performed only at locations where dimensional accuracy higher than the working accuracy of hot forging is required. Machine with higher processing accuracy than It is characterized by performing finishing by mechanical processing. According to the above construction, in the pair of annular structures constituting the metal cage, a large number of concave and convex portions such as pocket concave portions provided on the mating surface and rivet seats provided on the outer side surface. Are collectively formed by hot forging. Therefore, when compared with a conventional machined-type cage in which a plurality of uneven portions are sequentially formed one by one by a time-consuming machining process such as grinding, the number of processing steps when manufacturing a metal cage is reduced. It can be greatly reduced. In addition, complicated machining can be minimized only in a portion where the required dimensional accuracy cannot be ensured by hot forging, so that productivity can be improved and manufacturing cost can be reduced. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a rolling bearing according to a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a perspective view of an embodiment of a metal cage used in a rolling bearing according to the present invention, FIG. 2 is an exploded perspective view of the cage shown in FIG. 1, and FIG. 3 is each annular structure shown in FIG. FIG. 4 is a schematic cross-sectional view of a hot forging die for forming the non-ferrous metal base material shown in FIG. 3 when the body is hot forged. The metal cage 21 of this embodiment is provided between the inner and outer rings of the deep groove ball bearing, and adjusts the interval between a plurality of rolling elements (balls) provided between the inner and outer rings of the deep groove ball bearing. As shown in FIG. 1, a pair of annular structures 23 and 25 joined together in a direction of the center axis C <b> 2 of the bearing.
It consists of. Each of the annular structures 23 and 25 includes a ring-shaped base material 30 made of a non-ferrous metal material as shown in FIG. 3 placed in a hot forging die 40 shown in FIG. 4 and pressed under a predetermined heating environment. It is formed by hot forging. In each of the annular structures 23 and 25, a plurality of pocket recesses 23b and 25b for accommodating rolling elements are formed to face each other, and a pair of annular structures 23 and 2 are formed.
5. A plurality of rivet insertion holes 23 for connecting each other
d and 25d are formed through the butting surfaces 23a and 25a. In addition, seats for avoiding the protrusion of the caulked portion of the rivet mounted in each of the rivet insertion holes 23d, 25d are provided on the outer side surfaces 23c, 25c located on the opposite side of the butting surfaces of the respective annular structures 23, 25. Rivet seat 23
e, 25e are formed. Recess 23 for pocket
The inner surfaces of b and 25b are formed into spherical surfaces having a diameter slightly larger than the outer diameter of the ball as the rolling element. As shown in FIG. 4, the hot forging die 40 includes a lower die 41 for forming butting surfaces 23a, 25a and recesses 23b, 25b of the annular structures 23, 25, and an outer surface 23.
c, 25c and the upper mold 42 for molding the rivet seats 23e, 25e, and the intermediate mold 43 sandwiched between the upper and lower molds 41, 42.
It is composed of And the intermediate mold 43 further
Outer die 43a for forming the outer peripheral surfaces of the annular structures 23 and 25
And an inner mold 43 for forming the inner peripheral surfaces of the annular structures 23 and 25.
b. Each of the annular structures 23, 25 such as the plurality of recesses 23b, 25b and the rivet seats 23e, 25e described above.
The upper various uneven portions are formed by hot forging using a hot forging die 40. Then, each of the annular structures 23, 25
Is performed only at a place where a dimensional accuracy higher than the working accuracy of hot forging is required by a machining process having a higher working accuracy than the hot forging to finish to a desired dimensional accuracy. In the rolling bearing using the cage 21 described above, a pair of annular structures 2 constituting the metal cage 21 are provided.
3 and 25, the pocket recesses 23 provided on the butting surfaces 23a and 25a of the annular structures 23 and 25, respectively.
A large number of uneven portions such as b, 25b and rivet seats 23e, 25e provided on the outer side surfaces 23c, 25c are collectively formed by hot forging. Therefore, when manufacturing the metal cage 21 as compared with the case of manufacturing the conventional machined-type cage in which a plurality of uneven portions are formed one by one in order by machining such as laborious grinding, etc. Can greatly reduce the number of processing steps. In addition, complicated machining can be minimized only in a portion where the required dimensional accuracy cannot be ensured by hot forging, so that productivity can be improved and manufacturing cost can be reduced. It is needless to say that the cage according to the present invention can be applied not only to the deep groove ball bearing but also to various rolling bearings by changing the shape of the pocket recesses 23b and 25b. Also, pocket recesses 23b, 25b
The shape of the inner surface is not limited to the spherical surface described in the above embodiment. A cylindrical straight hole may be formed between the concave portions 23b and 25b. According to the rolling bearing of the present invention, in a pair of annular structures constituting a metal cage, a pocket recess provided on a mating surface and a rivet seat provided on an outer surface. Are formed at once by hot forging. Therefore, when compared with a conventional machined-type cage in which a plurality of uneven portions are sequentially formed one by one by a time-consuming machining process such as grinding, the number of processing steps when manufacturing a metal cage is reduced. It can be greatly reduced. In addition, complicated machining can be minimized only in a portion where the required dimensional accuracy cannot be ensured by hot forging, so that productivity can be improved and manufacturing cost can be reduced.

【図面の簡単な説明】 【図1】本発明に係る転がり軸受で使用する金属製保持
器の一実施形態の斜視図である。 【図2】図1に示した保持器の分解斜視図である。 【図3】図2に示した各環状構造体を熱間鍛造する際
に、鍛造型に投入する非鉄金属製母材の縦断面図であ
る。 【図4】図3に示した非鉄金属製母材を成形する熱間鍛
造型の概略構成図である。 【図5】従来の2分割型の金属製保持器の製造方法を示
す斜視図である。 【図6】従来の2分割型の金属製保持器のポケット形状
が違うものの断面図である。 【図7】従来の2分割型の別の金属製保持器の製造方法
を示す斜視図である。 【符号の説明】 21 保持器 23,25 環状構造体 23a,25a 突き合せ面 23b,25b 凹部 23c,25c 外側面 23d,25d リベット挿通穴 23e,25e リベット座 30 母材 40 熱間鍛造型
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of one embodiment of a metal cage used in a rolling bearing according to the present invention. FIG. 2 is an exploded perspective view of the retainer shown in FIG. FIG. 3 is a longitudinal sectional view of a non-ferrous metal base material put into a forging die when hot forging each annular structure shown in FIG. 2; 4 is a schematic configuration diagram of a hot forging die for forming the non-ferrous metal base material shown in FIG. FIG. 5 is a perspective view showing a method of manufacturing a conventional two-piece metal cage. FIG. 6 is a cross-sectional view of a conventional two-piece metal cage having different pocket shapes. FIG. 7 is a perspective view showing a method for manufacturing another conventional two-piece metal cage. [Description of Signs] 21 Cages 23, 25 Annular structures 23a, 25a Butt surfaces 23b, 25b Recesses 23c, 25c Outer side surfaces 23d, 25d Rivet insertion holes 23e, 25e Rivet seat 30 Base material 40 Hot forging die

フロントページの続き (72)発明者 江川 辰夫 神奈川県藤沢市鵠沼神明1丁目5番50号 日本精工株式会社内 Fターム(参考) 3J101 AA01 AA02 AA12 AA32 AA62 BA21 BA22 BA34 BA45 DA09 DA11 EA01 FA44 4E087 AA10 CB01 HA43 Continuation of front page    (72) Inventor Tatsuo Egawa             1-50-50 Kugenuma Shinmei, Fujisawa City, Kanagawa Prefecture             Nippon Seiko Co., Ltd. F term (reference) 3J101 AA01 AA02 AA12 AA32 AA62                       BA21 BA22 BA34 BA45 DA09                       DA11 EA01 FA44                 4E087 AA10 CB01 HA43

Claims (1)

【特許請求の範囲】 【請求項1】 内外輪間に、内外輪間に装備する複数個
の転動体相互の間隔を規制する金属製の保持器を備える
転がり軸受において、 前記保持器は、軸受の中心軸線方向に突き合せて結合さ
れる一対の環状構造体により構成すると共に、一対の環
状構造体はリング状の非鉄金属材料の熱間鍛造によって
成形し、 且つ、転動体を収容するポケット用に各環状構造体の突
き合せ面に装備する複数個の凹部や、一対の環状構造体
相互を結合するために各環状構造体の外側面に形成する
複数個のリベット座等の前記環状構造体上の各種凹凸部
は熱間鍛造によって形成し、熱間鍛造の加工精度以上の
寸法精度が要求される箇所にのみ、熱間鍛造よりも加工
精度の高い機械加工による仕上げ加工を実施することを
特徴とする転がり軸受。
Claims: 1. A rolling bearing comprising a metal retainer between inner and outer rings for regulating the interval between a plurality of rolling elements provided between the inner and outer rings, wherein the retainer is a bearing. And a pair of annular structures formed by hot forging of a ring-shaped non-ferrous metal material, and for a pocket for accommodating rolling elements. A plurality of recesses provided on the mating surface of each annular structure, and a plurality of rivet seats formed on the outer surface of each annular structure for coupling a pair of annular structures to each other. The upper and lower irregularities are formed by hot forging, and only in places where dimensional accuracy higher than the processing accuracy of hot forging is required, finish processing by machining with higher processing accuracy than hot forging Rolling bearings characterized .
JP2001272155A 2001-09-07 2001-09-07 Antifriction bearing Pending JP2003083334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001272155A JP2003083334A (en) 2001-09-07 2001-09-07 Antifriction bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001272155A JP2003083334A (en) 2001-09-07 2001-09-07 Antifriction bearing

Publications (1)

Publication Number Publication Date
JP2003083334A true JP2003083334A (en) 2003-03-19

Family

ID=19097565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001272155A Pending JP2003083334A (en) 2001-09-07 2001-09-07 Antifriction bearing

Country Status (1)

Country Link
JP (1) JP2003083334A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120027335A1 (en) * 2010-07-29 2012-02-02 Aktiebolaget Skf Bearing Assembly
CN103486138A (en) * 2013-09-29 2014-01-01 清华大学 Retainer of deep-groove ball bearing and deep-groove ball bearing provided with retainer
CN103671495A (en) * 2013-11-25 2014-03-26 上海斐赛轴承科技有限公司 Radial ball bearing with non-metallic riveting retainer and manufacturing method of radial ball bearing
CZ305629B6 (en) * 2014-06-17 2016-01-13 Zkl Hanušovice. A.S. Forging tool for forging brass blanks of roller bearing cages with rough-wrought pockets
WO2019062410A1 (en) * 2017-09-30 2019-04-04 Oppo广东移动通信有限公司 Shell, electronic device, and shell manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120027335A1 (en) * 2010-07-29 2012-02-02 Aktiebolaget Skf Bearing Assembly
US8348514B2 (en) * 2010-07-29 2013-01-08 Aktiebolaget Skf Bearing assembly
CN103486138A (en) * 2013-09-29 2014-01-01 清华大学 Retainer of deep-groove ball bearing and deep-groove ball bearing provided with retainer
CN103671495A (en) * 2013-11-25 2014-03-26 上海斐赛轴承科技有限公司 Radial ball bearing with non-metallic riveting retainer and manufacturing method of radial ball bearing
CZ305629B6 (en) * 2014-06-17 2016-01-13 Zkl Hanušovice. A.S. Forging tool for forging brass blanks of roller bearing cages with rough-wrought pockets
WO2019062410A1 (en) * 2017-09-30 2019-04-04 Oppo广东移动通信有限公司 Shell, electronic device, and shell manufacturing method

Similar Documents

Publication Publication Date Title
US6506121B2 (en) Cage for constant-velocity joint and method for manufacturing the same
WO2017080442A1 (en) Manufacturing method of thin section bearing, machining method of thin section inner wall/outer wall thereof, and precision flexure bearing
JP4263993B2 (en) Method for manufacturing cross roller bearing with lid
WO2006057258B1 (en) Self-aligning roller bearing with retainer and method of manufacturing the retainer for the self-aligning roller bearing
US9360045B2 (en) Double row tapered roller thrust bearing for improved loading capacity
EP1944518A1 (en) Bearing device for wheel
US7281449B2 (en) Connecting rod and bearing-equipped connecting rod
KR20060032199A (en) Bearing ring and wheel bearing unit
CN101970150A (en) Method of manufacturing outer ring, outer ring for double row angular contact bearing, double row angular contact bearing, and bearing device for wheel
CN101578456A (en) Manufacturing method for bearing outer ring
JPH05318013A (en) Manufacture of bearing race
JP2003013962A (en) Ball bearing
JP2003083334A (en) Antifriction bearing
US20030093903A1 (en) Method for manufacturing outer ring and inner ring of bearing
JP3765898B2 (en) Manufacturing method of bearing race
JP4534166B2 (en) Wheel bearing module on wheel carrier
EP1295654B1 (en) Method of manufacturing hub unit for supporting wheel and die for manufacturing the same
JP3799555B2 (en) Ball rolling element
JP4822213B2 (en) Wheel bearing outer race
JPH0410420Y2 (en)
JP2656824B2 (en) Bearing ring of swivel bearing and method of manufacturing the same
JP2003245748A (en) Manufacturing method for extremely small roll bearing
JPH02114223U (en)
CN103415362B (en) The manufacture method of wheel rolling bearing arrangement
CN212838952U (en) Ball type rolling bearing

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060324

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071127