JP2003081979A - New method for preparing organometallic compound - Google Patents

New method for preparing organometallic compound

Info

Publication number
JP2003081979A
JP2003081979A JP2001277512A JP2001277512A JP2003081979A JP 2003081979 A JP2003081979 A JP 2003081979A JP 2001277512 A JP2001277512 A JP 2001277512A JP 2001277512 A JP2001277512 A JP 2001277512A JP 2003081979 A JP2003081979 A JP 2003081979A
Authority
JP
Japan
Prior art keywords
reaction
compound
carbon
indium
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001277512A
Other languages
Japanese (ja)
Other versions
JP3905340B2 (en
Inventor
Kazuhiko Takai
和彦 高井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2001277512A priority Critical patent/JP3905340B2/en
Publication of JP2003081979A publication Critical patent/JP2003081979A/en
Application granted granted Critical
Publication of JP3905340B2 publication Critical patent/JP3905340B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for preparing an organometallic compound such as an organogallium or an organoaluminum compound under mild conditions such as at room temperature by activating a metal such as gallium or aluminum with the addition of a catalytic amount of a different metal from gallium and aluminum. SOLUTION: The method for preparing the organometallic compound comprising reacting an organohalogen compound with a metal having a stronger reducing power than indium in the presence of a catalytic amount of indium or an indium compound and a reaction reagent for forming a carbon-carbon bond are provided. The preparing method in which the reaction is carried out in the coexistence of a raw material for the carbon-carbon bond forming reaction and a method for forming carbon-carbon bond through a Barbier reaction are provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば、カルボニ
ル化合物への求核付加反応や、アルキンへの付加反応等
の炭素−炭素結合生成反応に用いられる、有機ガリウム
反応剤、有機アルミニウム反応剤等の有機金属化合物の
新規調製法に関する。
TECHNICAL FIELD The present invention relates to an organogallium reagent, an organoaluminum reagent, etc. used for a carbon-carbon bond forming reaction such as a nucleophilic addition reaction to a carbonyl compound and an addition reaction to an alkyne. To a novel method for preparing the organometallic compound.

【0002】[0002]

【従来の技術】有機合成反応には、多くの金属が用いら
れており、マグネシウムを使ったGrignard反応や、亜鉛
を使ったRefomatsky反応などがよく知られている。金属
を用いる反応は有機合成において極めて有効な手段の一
つであるが、金属表面は酸化皮膜で覆われているため、
金属をそのままで用いても反応が進行しない場合が多
く、通常、金属を反応に用いるには活性化しなければな
らないという問題点がある。例えば、金属マンガンはそ
のままではほとんど還元力を示さないので、1つの方法
としては、Riekeの活性化法で、マンガン(2)塩をリ
チウムナフタレニドで還元し、臭化ベンジルを還元でき
る活性なマンガンを得ている。また、本発明者らは、マ
ンガン金属に触媒量の塩化鉛(2)とMeSiClを
作用させるマンガン金属の活性化を先に見出している。
微量の異種金属の添加が、金属の活性化に効果があると
いう例である。ガリウム金属を用いる場合の例として
は、例えば、塩化鉛(2)を添加する方法(J.Chem.So
c.,Perkin Trans.1,1995,189-191)やヨウ化カリウムを
添加する方法(Tetrahedron Letters,Vol.35,No.50,943
3-9434,1994)等、いくつかの方法が知られているが、
何れの場合も常温では殆ど反応が進行せず、何れも加熱
条件を必要としているが、高温では副反応等が伴うため
製造し難く、且つ効率も悪い。
2. Description of the Related Art Many metals are used in organic synthesis reactions, and Grignard reaction using magnesium and Refomatsky reaction using zinc are well known. The reaction using a metal is one of the most effective means in organic synthesis, but since the metal surface is covered with an oxide film,
In many cases, the reaction does not proceed even if the metal is used as it is, and normally, there is a problem that the metal must be activated before it can be used in the reaction. For example, since metal manganese shows almost no reducing power as it is, one method is to use Rieke's activation method to reduce manganese (2) salt with lithium naphthalenide to reduce benzyl bromide. You are getting manganese. Further, the inventors of the present invention have previously found activation of manganese metal by causing catalytic amounts of lead chloride (2) and Me 3 SiCl to act on the manganese metal.
In this example, the addition of a very small amount of a different metal is effective in activating the metal. As an example of using gallium metal, for example, a method of adding lead chloride (2) (J. Chem. So
c., Perkin Trans.1,1995,189-191) and the method of adding potassium iodide (Tetrahedron Letters, Vol.35, No.50,943).
3-9434,1994) etc., some methods are known,
In either case, the reaction hardly progresses at room temperature and all require heating conditions, but at high temperatures, it is difficult to manufacture because of side reactions and the like, and the efficiency is poor.

【0003】[0003]

【発明が解決しようとする課題】本発明は、例えば、有
機ガリウム反応剤、有機アルミニウム反応剤等の有機金
属化合物を、ガリウムやアルミニウム等と異なる金属を
触媒量添加することにより、ガリウム、アルミニウム等
の金属を活性化して、室温等の穏やかな条件下でこれを
調製する方法を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention provides, for example, gallium, aluminum, etc. by adding a catalytic amount of a metal different from gallium, aluminum, etc. to an organometallic compound such as an organic gallium reactant, an organic aluminum reactant, etc. The purpose of the present invention is to provide a method for activating the metal of the above and preparing it under mild conditions such as room temperature.

【0004】[0004]

【課題を解決するための手段】本発明は、有機ハロゲン
化合物を触媒量のインジウム又はインジウム化合物の存
在下、インジウムよりも還元力の強い金属と反応させる
ことを特徴とする有機金属化合物の製造法に関する。
The present invention is a method for producing an organometallic compound, which comprises reacting an organohalogen compound with a metal having a reducing power higher than that of indium in the presence of a catalytic amount of indium or an indium compound. Regarding

【0005】また、本発明は、上記製造法により得られ
た炭素−炭素結合生成反応に用いる反応試薬に関する。
The present invention also relates to a reaction reagent used in the carbon-carbon bond forming reaction obtained by the above-mentioned production method.

【0006】更に、本発明は、炭素−炭素結合生成反応
に用いる原料化合物の共存下に当該製造反応を行う上記
製造法に関する。
Further, the present invention relates to the above-mentioned production method in which the production reaction is carried out in the presence of a raw material compound used in the carbon-carbon bond formation reaction.

【0007】更にまた、本発明は、炭素−炭素結合生成
反応に用いる原料化合物の共存下に、上記製造法を実施
することを特徴とする、バルビエ型反応による炭素−炭
素結合生成方法に関する。
Furthermore, the present invention relates to a method for producing a carbon-carbon bond by a Barbie type reaction, characterized in that the above-mentioned production method is carried out in the coexistence of a raw material compound used for a carbon-carbon bond producing reaction.

【0008】即ち、本発明者は、ガリウム金属、或いは
アルミニウム金属に、触媒量のインジウム金属を加えた
懸濁液を10℃に冷却して攪拌し、これに更に、臭化ア
リルを滴下、攪拌することにより、ガリウム或いはアル
ミニウム金属は消失して、アリルガリウムブロマイド、
或いはアリルアルミニウムブロマイドが生成することを
見出し(NMRにて確認)、また、このグリニャール型の
ガリウム、アルミニウム試薬(反応剤)は、室温で長期
安定であり、力ルボニル化合物、アセチレンなどへの付
加反応も高収率でおこない得ることを確認し、更には、
本方法を採用することにより、グリニャール型試薬のみ
ならず、次ステップの付加反応を試薬調製と同時におこ
なう バルビエ(Barbier)型反応をも有効に行ない得る
ことを見出し、本発明を完成するに到った。本発明に係
る有機ガリウム試薬、有機アルミニウム試薬等を用いる
ことにより、従来の金属系反応剤では合成が困難であっ
た、種々の有用な有機化合物が、新規に、或いはより容
易に、高選択的に得られるようになる。
That is, the inventors of the present invention cooled the suspension obtained by adding a catalytic amount of indium metal to gallium metal or aluminum metal to 10 ° C. and agitated the mixture, and then added dropwise allyl bromide and agitated the mixture. By doing so, gallium or aluminum metal disappears, and allyl gallium bromide,
Alternatively, it was found that allylaluminum bromide was produced (confirmed by NMR), and this Grignard-type gallium and aluminum reagent (reactant) are stable at room temperature for a long period of time, and are addition reactions to carbonyl compounds and acetylene. Was confirmed to be possible with high yield, and further,
By adopting this method, it was found that not only the Grignard type reagent but also the Barbier type reaction in which the addition reaction of the next step is performed simultaneously with the reagent preparation can be effectively performed, and the present invention has been completed. It was By using the organogallium reagent, the organoaluminum reagent, etc. according to the present invention, various useful organic compounds, which have been difficult to synthesize with conventional metal-based reagents, can be newly or more easily and highly selective. Will be obtained.

【0009】[0009]

【発明の実施の形態】本発明で用いられる有機ハロゲン
化合物としては、例えば下記一般式[1] R−X [1] (式中、Rは、置換基を有していてもよい炭化水素基を
表し、Xはハロゲン原子を表す。)で示される1種以上
の化合物が挙げられる。一般式[1]において、Rで表
される置換基を有していてもよい炭化水素基の炭化水素
基としては、例えば、アルキル基、アルケニル基、アル
キニル基、アラルキル基、アリール基等が挙げられる。
アルキル基としては、例えば、炭素数が1〜20、好ま
しくは1〜10、より好ましくは1〜6の直鎖状、分枝
状又は環状のアルキル基が挙げられ、より具体的には、
例えば、メチル基、エチル基、プロピル基、イソプロピ
ル基、ブチル基、イソブチル基、第二級ブチル基、第三
級ブチル基、ペンチル基、ヘキシル基、シクロプロピル
基、シクロペンチル基、シクロヘキシル基、シクロオク
チル基等が挙げられる。アルケニル基としては、例え
ば、前記した炭素数2以上のアルキル基に1個以上の二
重結合などの不飽和基を有するものが挙げられ、より具
体的には、ビニル基、アリル基、1−プロペニル基、イ
ソプロペニル基、2−ブテニル基、1,3−ブタジエニ
ル基、2−ペンテニル基、2−ヘキセニル基、シクロプ
ロペニル基、シクロペンテニル基、シクロヘキセニル基
等が挙げられる。アルキニル基としては、例えば、前記
した炭素数2以上のアルキル基に1個以上の三重結合な
どの不飽和基を有するものが挙げられ、より具体的に
は、エチニル基、1−プロピニル基、2−プロピニル基
等が挙げられる。アラルキル基としては、例えば、炭素
数7〜30、好ましくは7〜20、より好ましくは7〜
15の単環、多環又は縮合環式のアラルキル基が挙げら
れ、より具体的には、例えば、ベンジル基、フェネチル
基、ナフチルメチル基、ナフチルエチル基等が挙げられ
る。アリール基としては、例えば、炭素数6〜30、好
ましくは6〜20、より好ましくは6〜14の単環、多
環又は縮合環式の芳香族炭化水素基が挙げられ、より具
体的には、例えば、フェニル基、トリル基、キシリル
基、ナフチル基、メチルナフチル基、アントリル基、フ
ェナントリル基、ビフェニル基等が挙げられる。これら
アルキル基、アルケニル基、アルキニル基、アラルキル
基、アリール基等の置換基としては、当該反応に支障を
来さないものであればどのような基でも良いが、例えば
メトキシカルボニル基、エトキシカルボニル基等のアル
コキシカルボニル基、例えばメトキシ基、エトキシ基等
のアルコキシ基等が挙げられる。
BEST MODE FOR CARRYING OUT THE INVENTION Examples of the organic halogen compound used in the present invention include the following general formula [1] R—X [1] (wherein R is a hydrocarbon group which may have a substituent). And X represents a halogen atom). In the general formula [1], examples of the hydrocarbon group represented by R, which may have a substituent, include an alkyl group, an alkenyl group, an alkynyl group, an aralkyl group, and an aryl group. To be
Examples of the alkyl group include a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and more specifically,
For example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, secondary butyl group, tertiary butyl group, pentyl group, hexyl group, cyclopropyl group, cyclopentyl group, cyclohexyl group, cyclooctyl group. Groups and the like. Examples of the alkenyl group include those having an unsaturated group such as one or more double bonds in the above-mentioned alkyl group having 2 or more carbon atoms, and more specifically, a vinyl group, an allyl group, 1- Examples thereof include a propenyl group, an isopropenyl group, a 2-butenyl group, a 1,3-butadienyl group, a 2-pentenyl group, a 2-hexenyl group, a cyclopropenyl group, a cyclopentenyl group and a cyclohexenyl group. Examples of the alkynyl group include those having an unsaturated group such as a triple bond in the above-mentioned alkyl group having 2 or more carbon atoms, and more specifically, an ethynyl group, a 1-propynyl group, a 2 A propynyl group and the like. The aralkyl group has, for example, 7 to 30 carbon atoms, preferably 7 to 20 carbon atoms, and more preferably 7 to 20 carbon atoms.
Examples thereof include 15 monocyclic, polycyclic or condensed ring aralkyl groups, and more specific examples thereof include a benzyl group, a phenethyl group, a naphthylmethyl group and a naphthylethyl group. Examples of the aryl group include monocyclic, polycyclic or condensed ring aromatic hydrocarbon groups having 6 to 30 carbon atoms, preferably 6 to 20 carbon atoms, more preferably 6 to 14 carbon atoms, and more specifically. Examples thereof include phenyl group, tolyl group, xylyl group, naphthyl group, methylnaphthyl group, anthryl group, phenanthryl group and biphenyl group. As the substituents of these alkyl group, alkenyl group, alkynyl group, aralkyl group, aryl group and the like, any group may be used as long as it does not interfere with the reaction, for example, methoxycarbonyl group, ethoxycarbonyl group. And alkoxy groups such as methoxy group and ethoxy group.

【0010】一般式[1]において、Xで表されるハロ
ゲン原子としては、例えば、塩素、臭素、ヨウ素等が挙
げられるが、臭素が特に好ましい。一般式[1]で示さ
れる有機ハロゲン化合物の具体例としては、例えば、ア
リルブロマイド(臭化アリル)、ブロモ酢酸エステル、
ベンジルブロマイド等が好ましいものとして挙げられる
が、勿論これらに限定されるものではない。
In the general formula [1], examples of the halogen atom represented by X include chlorine, bromine and iodine, with bromine being particularly preferable. Specific examples of the organic halogen compound represented by the general formula [1] include, for example, allyl bromide (allyl bromide), bromoacetic acid ester,
Benzyl bromide and the like can be mentioned as preferable ones, but of course, it is not limited thereto.

【0011】本発明に係る反応は、金属インジウムの存
在下において最も効果的に進行するが、例えば塩化イン
ジウム等のインジウム化合物の存在下においても反応は
効果的に進行する。これら金属インジウム又はインジウ
ム化合物の使用量は所謂触媒量で十分である。
The reaction according to the present invention proceeds most effectively in the presence of indium metal, but the reaction also proceeds effectively in the presence of an indium compound such as indium chloride. A so-called catalytic amount is sufficient as the amount of the metal indium or indium compound used.

【0012】本発明で用いられる、インジウムよりも還
元力の強い金属としては、例えばガリウム、アルミニウ
ム等が挙げられる。
Examples of the metal having a stronger reducing power than indium used in the present invention include gallium and aluminum.

【0013】本発明において、インジウムよりも還元力
の強い金属としてガリウムを用いた場合に得られる有機
金属化合物としては、例えば下記一般式[2]
In the present invention, as an organometallic compound obtained when gallium is used as a metal having a stronger reducing power than indium, for example, the following general formula [2]

【化3】 (式中、R,R,Rは、それぞれ独立して置換基
を有していてもよい炭化水素基を表す。)で示される有
機ガリウム反応剤(有機ガリウム試薬)が挙げられる。
また、インジウムよりも還元力の強い金属としてアルミ
ニウムを用いた場合に得られる有機金属化合物として
は、例えば下記一般式[3]
[Chemical 3] (In the formula, R 1 , R 2 , and R 3 each independently represent a hydrocarbon group which may have a substituent.), And an organic gallium reagent (organic gallium reagent).
Further, as an organometallic compound obtained when aluminum is used as a metal having a stronger reducing power than indium, for example, the following general formula [3]

【化4】 (式中、R,R,Rは前記と同じ。)で示される
有機アルミニウム反応剤(有機アルミニウム試薬)が挙
げられる。なお、一般式[2]及び[3]において、R
,R,Rで表される置換基を有していてもよい炭
化水素基の定義及び具体例は、前記一般式[1]におけ
るRのそれと全く同じである。
[Chemical 4] (In the formula, R 1 , R 2 , and R 3 are the same as above.), And an organoaluminum reactant (organoaluminum reagent). In the general formulas [2] and [3], R
The definition and specific examples of the optionally substituted hydrocarbon group represented by 1 , R 2 and R 3 are the same as those of R in the above general formula [1].

【0014】本発明に係る反応は、10℃前後の比較的
低温で反応が十分に進行し、対応する有機金属化合物が
高収率で得られる。反応に用いられる溶媒としては、例
えばジエチルエーテル、テトラヒドロフラン(THF)
等のエーテル系溶媒や、ジメチルホルムアミド(DM
F)、例えばベンゼン、トルエン等の芳香族炭化水素系
溶媒等が挙げられるが、これらに限定されるものではな
い。反応時間は、通常数10分〜数時間程度である。な
お、反応に用いる1種以上の有機ハロゲン化合物とイン
ジウムよりも還元力の強い金属との使用割合は、例えば
当該金属としてガリウム又はアルミニウムを用いた場合
には、当該金属2当量に対し、有機ハロゲン化合物の使
用量は合計で3当量乃至その1〜1.2倍量程度であ
る。
In the reaction according to the present invention, the reaction sufficiently proceeds at a relatively low temperature of around 10 ° C., and the corresponding organometallic compound can be obtained in a high yield. Examples of the solvent used in the reaction include diethyl ether, tetrahydrofuran (THF)
Ether solvents such as dimethylformamide (DM
F), for example, aromatic hydrocarbon solvents such as benzene and toluene, but not limited to these. The reaction time is usually several tens of minutes to several hours. The ratio of the one or more organic halogen compound used in the reaction and the metal having a reducing power higher than that of indium is, for example, when gallium or aluminum is used as the metal, the organic halogen is used with respect to 2 equivalents of the metal. The total amount of the compound used is 3 equivalents to 1 to 1.2 times the amount.

【0015】本発明に係る有機金属化合物、即ち、例え
ば有機ガリウム反応剤、有機アルミニウム反応剤等は、
炭素−炭素結合を生成する種々の有機合成反応、例え
ば、当該反応剤のカルボニル化合物への求核付加反応や
当該反応剤のアルキンへの付加反応等に効果的に供せら
れる。即ち、より具体的には、例えばアリルガリウム反
応剤、アリルアルミニウム反応剤等は、アルデヒドやケ
トン等のカルボニル化合物に付加してホモアリルアルコ
ールを与える。また、これらの反応剤は、室温下、アミ
ンの添加により速やかにアセチレンに付加し、1,4−
ジエンを与える。ここで用いられるアミンとしては、例
えば、トリエチルアミンやジイソプロピルエチルアミン
のような嵩高いアミンが好ましい。
The organometallic compound according to the present invention, that is, an organogallium reactant, an organoaluminum reactant, etc., is
It can be effectively used for various organic synthetic reactions for forming a carbon-carbon bond, for example, nucleophilic addition reaction of the reaction agent to a carbonyl compound and addition reaction of the reaction agent to an alkyne. That is, more specifically, for example, an allyl gallium reagent, an allyl aluminum reagent, etc. are added to a carbonyl compound such as an aldehyde or a ketone to give homoallyl alcohol. Further, these reactants are rapidly added to acetylene by addition of amine at room temperature to give 1,4-
Give the diene. The amine used here is preferably a bulky amine such as triethylamine or diisopropylethylamine.

【0016】本発明に係る有機金属化合物は、本発明の
製造方法により製造、単離した後、これを反応剤(反応
試薬)として炭素−炭素結合生成反応に供してもよいが
(所謂グリニャール型反応)、次ステップの炭素−炭素
結合生成反応を試薬調製と同時に行う所謂バルビエ(Ba
rbier)型反応によりこれを行うこともまた可能であ
る。このような場合には、当該有機金属化合物製造反応
を炭素−炭素結合生成反応に用いる原料化合物の共存下
に行えばよい。即ち、例えば、本発明に係る有機金属化
合物の、アルデヒドやケトン等のカルボニル化合物への
求核付加反応により、ホモアリルアルコールを製造しよ
うとする場合には、当該アルデヒド類やケトン類の共存
下に当該有機金属化合物製造反応を行えばよいし、ま
た、例えば、アルキンに本発明に係る有機金属化合物を
付加して1,4−ジエン類を得ようとする場合には、当
該アルキン類の共存下に当該有機金属化合物製造反応を
行えばよい。なお、後者の場合には、反応系にトリエチ
ルアミンやジイソプロピルエチルアミン等のアミンを添
加することが望ましい。
The organometallic compound according to the present invention may be produced and isolated by the production method of the present invention and then used as a reaction agent (reaction reagent) in a carbon-carbon bond forming reaction (so-called Grignard type). Reaction), the so-called Barbier (Ba
It is also possible to do this by a rbier) type reaction. In such a case, the organometallic compound production reaction may be carried out in the coexistence of the raw material compound used for the carbon-carbon bond formation reaction. That is, for example, in the case of producing a homoallyl alcohol by a nucleophilic addition reaction of an organometallic compound according to the present invention with a carbonyl compound such as an aldehyde or a ketone, in the coexistence of the aldehyde or the ketone, The organometallic compound-producing reaction may be carried out, and, for example, when the organometallic compound according to the present invention is added to an alkyne to obtain 1,4-dienes, the alkynes may coexist. Then, the reaction for producing the organometallic compound may be performed. In the latter case, it is desirable to add an amine such as triethylamine or diisopropylethylamine to the reaction system.

【0017】[0017]

【実施例】以下、実験例、実施例により本発明をより詳
細に説明するが、本発明はこれら実験例、実施例により
何ら限定されるものではない。
The present invention will be described in more detail with reference to experimental examples and examples, but the present invention is not limited to these experimental examples and examples.

【0018】実験例1 ガリウム金属の活性化を、シクロドデカノンのバルビエ
型のアリル化をプローブとして、種々の金属塩を添加し
て反応を行ない検討した。その結果、ガリウム金属の活
性化にインジウム金属の添加が有効であることを見出し
た。そこで、ガリウムに対するインジウムおよび臭化ア
リルの当量を検討した。ガリウム0.75当量、インジ
ウム金属0.15当量、臭化アリル1.5当量を用い、
THF溶媒中、25℃で反応させたところ、アリル化体
の収率は95%という結果を得た。なお、インジウム金
属のみで反応を行なってもその収率は38%と、両者を
使うより低い結果が得られている。ガリウム金属を使用
したこれらの実験結果を表1に、また、反応スキームを
以下に示す。
Experimental Example 1 Activation of gallium metal was examined by adding various metal salts and using the barbie type allylation of cyclododecanone as a probe. As a result, they have found that the addition of indium metal is effective in activating the gallium metal. Therefore, the equivalents of indium and allyl bromide to gallium were examined. Gallium 0.75 equivalent, indium metal 0.15 equivalent, allyl bromide 1.5 equivalent,
When the reaction was carried out at 25 ° C. in a THF solvent, the yield of the allylated product was 95%. Even if the reaction is carried out only with indium metal, the yield is 38%, which is lower than that obtained by using both. The results of these experiments using gallium metal are shown in Table 1, and the reaction scheme is shown below.

【化5】 [Chemical 5]

【0019】[0019]

【表1】 [Table 1]

【0020】実験例2 臭化アリルを用いるバルビエ型反応において、反応の進
行状況と温度を調べたところ、興味深い結果が観察され
た。反応は、シクロドデカノンに対して、臭化アリルを
1.5当量用い、THF溶媒中で2時間反応させた。ガ
リウム金属のみを用いた場合、温度を上げると反応が進
行するようになったが、70℃でも収率は28%どまり
であった。ガリウムとインジウムの5:1の系でも高温
で収率が高くなるが、55℃で90%を越える収率とな
った。反応温度を下げると収率は徐々に低下したが、1
0℃になると、逆に収率が82%に急上昇した。反応ス
キームを以下に示す。
Experimental Example 2 In the Barbie type reaction using allyl bromide, the progress of the reaction and the temperature were examined, and interesting results were observed. In the reaction, 1.5 equivalents of allyl bromide was used with respect to cyclododecanone, and the reaction was carried out in a THF solvent for 2 hours. When only gallium metal was used, the reaction started to proceed when the temperature was raised, but the yield was only 28% even at 70 ° C. Although the yield of gallium and indium of 5: 1 also increased at high temperature, the yield exceeded 90% at 55 ° C. When the reaction temperature was lowered, the yield gradually decreased, but 1
On the contrary, at 0 ° C., the yield rapidly increased to 82%. The reaction scheme is shown below.

【化6】 また、これらの実験結果を図1に示す。なお、図1中、
−×−はガリウム金属のみの系、また、−●−はガリウ
ム/インジウム=5/1の系における結果をそれぞれ示
す。
[Chemical 6] The results of these experiments are shown in FIG. In addition, in FIG.
-X- shows the result in the system of only gallium metal, and-●-shows the result in the system of gallium / indium = 5/1.

【0021】実験例3 先の結果からインジウム金属は触媒量でよいのではない
かと考え、その当量数を減らしてみた。反応はバルビエ
型でシクロドデカノンに対して臭化アリルを1.5当量
用い、10℃で5時間反応させた。ガリウム金属に対し
てインジウム金属を10mol%、5mol%、1mol%と減
らしても、収率90%以上で反応は進行した。また、イ
ンジウム金属を添加しないと予想通り、反応は全く進行
しなかった。なお、インジウム金属のみでの収率は64
%と、ガリウム−インジウムの系よりも低かった。これ
らの実験結果を表2に、また、反応スキームを以下に示
す。
Experimental Example 3 From the above results, it was considered that indium metal may be used in a catalytic amount, and the number of equivalents was reduced. The reaction was a Barbie type reaction using 1.5 equivalents of allyl bromide to cyclododecanone, and the reaction was carried out at 10 ° C. for 5 hours. Even if indium metal was reduced to 10 mol%, 5 mol%, and 1 mol% with respect to gallium metal, the reaction proceeded at a yield of 90% or more. In addition, the reaction did not proceed at all as expected without adding indium metal. The yield of indium metal alone is 64.
%, Which was lower than that of the gallium-indium system. The results of these experiments are shown in Table 2 and the reaction scheme is shown below.

【化7】 [Chemical 7]

【0022】[0022]

【表2】 [Table 2]

【0023】実験例4 アリルガリウム化合物を先に調製し、グリニャール型の
反応が行なえないかを検討した。アルゴン雰囲気下、ガ
リウム(0.90mmol)と触媒量のインジウム(0.04
5mmol)をTHF溶媒中10℃で攪拌した。臭化アリル
(1.5mmol)を加え、2時間攪拌したところ、ガリウム
とインジウムの金属粉末は完全に消え、無色透明の溶液
が得られた。ここにシクロドデカノン(1.0mmol)を加
えると、ほぼ定量的に付加反応が進行した。このことか
ら、反応はバルビエ型だけでなくグリニャール型でも行
なえることが判った。ベンズアルデヒドでは反応はどち
らで行なっても高収率で付加体が得られた。シクロヘキ
サンカルバルデヒドではバルビエ型で反応させると副生
成物が生じたため収率が58%に低下したが、グリニャ
ール型で行なうことで副生成物を抑えることができた。
このようなメチルケトンでもグリニャール型とバルビエ
型ともに高収率で付加体を得た。なおこの反応は、TH
F溶媒中、熱をかけずに10℃で行なった。これらの実
験結果を表3及び表4に、また、反応スキームをそれぞ
れ以下に示す。
Experimental Example 4 An allylgallium compound was prepared first, and it was examined whether a Grignard type reaction could be carried out. Under argon atmosphere, gallium (0.90 mmol) and catalytic amount of indium (0.04
5 mmol) was stirred in THF solvent at 10 ° C. Allyl bromide
(1.5 mmol) was added, and the mixture was stirred for 2 hours. The metal powders of gallium and indium disappeared completely, and a colorless transparent solution was obtained. When cyclododecanone (1.0 mmol) was added thereto, the addition reaction proceeded almost quantitatively. From this, it was found that the reaction can be carried out not only with the Barbier type but also with the Grignard type. With benzaldehyde, the adduct was obtained in high yield regardless of the reaction. With cyclohexanecarbaldehyde, a by-product was produced when the reaction was carried out in the Barbier type, so the yield was reduced to 58%, but by using the Grignard type, the by-product could be suppressed.
Even with such a methyl ketone, an adduct was obtained in high yield for both Grignard type and Barbie type. This reaction is TH
Performed in solvent F at 10 ° C. without heat. The results of these experiments are shown in Tables 3 and 4, and the reaction schemes are shown below.

【化8】 [Chemical 8]

【化9】 [Chemical 9]

【0024】[0024]

【表3】 [Table 3]

【0025】[0025]

【表4】 [Table 4]

【0026】なお、上記実験において、触媒量のインジ
ウム金属の添加で、臭化アリルを加えたときに、ガリウ
ム金属が全て溶け、グリニャール型で反応が行えたこと
から、アリルガリウム種が生じていることが示唆され
る。この反応のメカニズムは次のように考えられる。
In the above experiment, when allyl bromide was added by adding a catalytic amount of indium metal, the gallium metal was completely dissolved and the reaction could be performed in Grignard type, so that allyl gallium species are generated. It is suggested. The mechanism of this reaction is considered as follows.

【化10】 即ち、ガリウムに触媒量のインジウムを加えると、イン
ジウム粉末表面が金属光沢を帯びる。このことは、活性
なインジウム金属が徴量生じたことを示唆する。反応で
は、このインジウムにより臭化アリルが還元され、先ず
アリルインジウム種が生成する。次に3価のガリウムと
のトランスメタル化(金属交換)によりアリルガリウム
種が生じるとともに、3価のインジウムが再生する。3
価のインジウムはガリウム金属によって還元され、元の
インジウム金属が再生すると考えられる。
[Chemical 10] That is, when a catalytic amount of indium is added to gallium, the surface of the indium powder has a metallic luster. This suggests that active indium metal was produced. In the reaction, allyl bromide is reduced by this indium, and allyl indium species are first produced. Next, allyl gallium species are generated by transmetallization (metal exchange) with trivalent gallium, and trivalent indium is regenerated. Three
It is considered that the valent indium is reduced by the gallium metal and the original indium metal is regenerated.

【0027】実験例5 重THF中でアリルガリウム種を調製し、HNMRを
測定した。結果を図2に示す。アリル位のメチレンが、
2.0ppmと1.7ppmにほぼ1対2のダブレットとして
観測されたことからこのようなアリルガリウム種が調製
できたと考えられる。
Experimental Example 5 Allylgallium species was prepared in deuterated THF and 1 HNMR was measured. The results are shown in Figure 2. Methylene at the allylic position
It was considered that such an allyl gallium species could be prepared because it was observed as a doublet of about 1: 2 at 2.0 ppm and 1.7 ppm.

【0028】実験例6 アリルガリウムの安定性 調製したアリルガリウム種の安定性を調べた。臭化アリ
ルに対してガリウム金属を0.67当量、インジウム金
属を0.033当量加え、THF溶媒中、10℃で2時
間攪拌し、完全に金属を消失させ、アリルガリウム種を
調製した。これを室温、アルゴン雰囲気下で保存した。
調製したアリルガリウム種に対して、ノナナールを1当
量加えて反応させ、その収率を比較した。アリルガリウ
ムを調製した直後のものと1ヶ月間室温で保存したもの
とで、収率に全く変化がなかった(前者:75%、後
者:77%)ことから、アリルガリウム種は室温では熱
的に安定でつぶれないことが判った。
Experimental Example 6 Stability of Allyl Gallium The stability of the prepared allyl gallium species was investigated. 0.67 equivalents of gallium metal and 0.033 equivalents of indium metal were added to allyl bromide, and the mixture was stirred in a THF solvent at 10 ° C. for 2 hours to completely eliminate the metal and prepare an allyl gallium species. It was stored at room temperature under an argon atmosphere.
One equivalent of nonanal was added to the prepared allyl gallium species for reaction, and the yields were compared. The yields of the allyl gallium immediately after it was prepared and those stored at room temperature for 1 month did not change at all (former: 75%, latter: 77%). I found that it was stable and could not be crushed.

【0029】実施例1 アリルガリウムの調製 アルゴン雰囲気下、ガリウム金属(0.13g,1.8m
mol)、インジウム金属(10mg,0.090mmol)のTH
F(7mL)懸濁液を10℃に冷却し、10分間攪拌した。
そこへ臭化アリル(0.26mL,3.0mmol)を滴下し、
2時間攪拌したところ、ガリウム金属は消失し見えなく
なった。
Example 1 Preparation of Allyl Gallium In an argon atmosphere, gallium metal (0.13 g, 1.8 m) was prepared.
mol), TH of indium metal (10 mg, 0.090 mmol)
The F (7 mL) suspension was cooled to 10 ° C. and stirred for 10 minutes.
Allyl bromide (0.26 mL, 3.0 mmol) was added dropwise thereto,
After stirring for 2 hours, the gallium metal disappeared and became invisible.

【0030】実施例2 アリルガリウムのカルボニル化
合物への付加反応 実施例1と同様にして得られたアリルガリウムに、シク
ロドデカノン(0.37g,2.0mmol)のTHF(3mL)
溶液を加え、10℃で攪拌した。5時間後、反応混合物
を氷水にあけ、後処理した。水層をエーテル(5mL×
3)で抽出し、有機層をまとめて、無水硫酸マグネシウ
ムで乾燥後、減圧下(1Torr)で溶媒を留去した。粗生成
物をシリカゲルカラムクロマトグラフィー(ヘキサン/
酢酸エチル=100/1)により精製し、1−アリルシ
クロドデカノール0.44g(1.98mmol,収率99
%)を得た。
Example 2 Addition Reaction of Allylgallium to Carbonyl Compound To allylgallium obtained in the same manner as in Example 1, cyclododecanone (0.37 g, 2.0 mmol) in THF (3 mL) was added.
The solution was added and stirred at 10 ° C. After 5 hours, the reaction mixture was poured into ice water and worked up. The aqueous layer is ether (5 mL x
After extraction in 3), the organic layers were combined, dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure (1 Torr). The crude product was subjected to silica gel column chromatography (hexane /
Purified with ethyl acetate = 100/1), 0.44 g (1.98 mmol, yield 99) of 1-allylcyclododecanol
%).

【0031】実施例3 アリルガリウムの末端アセチレ
ンへの付加反応(グリニャール型反応) 実施例1と同様にして得られたアリルガリウムに、4−
フェニル−1−ブチン(0.13g,1.0mmol)のTH
F(2mL)溶液とジイソプロピルエチルアミン(0.17m
L,1.0mmol)を加え、25℃で攪拌した。2時間後、
反応混合物を希塩酸(6M)にあけ、後処理した。水層を
へキサン(5mL×3)で抽出し、食塩水で洗浄後、無水
硫酸マグネシウムで乾燥した。減圧下(1Torr)で溶媒を
留去し、粗生成物をシリカゲルカラムクロマトグラフィ
ー(ヘキサン)により精製し、2−(2−フェニルエチル)
−1,4−ペンタジエン0.17g(0.97mmol,収
率97%)を得た。
Example 3 Addition Reaction of Allyl Gallium to Terminal Acetylene (Grignard Type Reaction) Allyl gallium obtained in the same manner as in Example 1 was
Phenyl-1-butyne (0.13 g, 1.0 mmol) TH
F (2mL) solution and diisopropylethylamine (0.17m
L, 1.0 mmol) was added, and the mixture was stirred at 25 ° C. Two hours later,
The reaction mixture was poured into dilute hydrochloric acid (6M) and worked up. The aqueous layer was extracted with hexane (5 mL × 3), washed with brine and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure (1 Torr), and the crude product was purified by silica gel column chromatography (hexane) to give 2- (2-phenylethyl).
0.17 g (0.97 mmol, yield 97%) of -1,4-pentadiene was obtained.

【0032】実施例4 アリルアルミニウムの調製 アルゴン雰囲気下、アルミニウム金属(アルミニウムホ
イルを2−3mm四方に切って用いた。49mg,1.8mm
ol)、インジウム金属(10mg,0.090mmol)のTH
F(7mL)懸濁液を10℃に冷却し、10分間攪拌した。
そこへ臭化アリル(0.26mL,3.0mmol)を滴下し、
30分間攪拌したところ、アルミニウム金属は消失し見
えなくなった。
Example 4 Preparation of Allylaluminum Aluminum metal (aluminum foil was cut into 2-3 mm square pieces and used in an argon atmosphere. 49 mg, 1.8 mm
ol), indium metal (10 mg, 0.090 mmol) TH
The F (7 mL) suspension was cooled to 10 ° C. and stirred for 10 minutes.
Allyl bromide (0.26 mL, 3.0 mmol) was added dropwise thereto,
After stirring for 30 minutes, aluminum metal disappeared and became invisible.

【0033】実施例5 アリルアルミニウムのカルボニ
ル化合物への付加反応(グリニャール型反応) 実施例4と同様にして得られたアリルアルミニウムに、
シクロドデカノン(0.37g,2.0mmol)のTHF
(3mL)溶液を加え、10℃で攪拌した。30分後、反応
混合物を氷水にあけ、後処理した。水層をエーテル(5m
L×3)で抽出し、有機層をまとめて、無水硫酸マグネ
シウムで乾燥後、減圧下(1Torr)で溶媒を留去した。粗
生成物をシリカゲルカラムクロマトグラフィー(ヘキサ
ン/酢酸エチル=100/1)により精製し、1−アリ
ルシクロドデカノール0.44g(1.97mmol,収率
98%)を得た。
Example 5 Addition Reaction of Allylaluminum to Carbonyl Compound (Grignard Type Reaction) Allylaluminum obtained in the same manner as in Example 4 was
Cyclododecanone (0.37g, 2.0mmol) in THF
(3 mL) solution was added and stirred at 10 ° C. After 30 minutes, the reaction mixture was poured into ice water and worked up. The aqueous layer is ether (5m
The organic layers were combined, dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure (1 Torr). The crude product was purified by silica gel column chromatography (hexane / ethyl acetate = 100/1) to obtain 0.44 g (1.97 mmol, yield 98%) of 1-allylcyclododecanol.

【0034】実施例6 アリルアルミニウムのカルボニ
ル化合物への付加反応(バルビエ型付加反応) アルゴン雰囲気下、アルミニウム金属(49mg,1.8m
mol)及びインジウム金属(10mg,0.090mmol)のT
HF(7mL)懸濁液を10℃に冷却し、10分間攪拌し
た。そこへ、シクロドデカノン(0.37g,2.0mmo
l)のTHF(3mL)溶液を加え、さらに15分間攪拌し
た。次いで、臭化アリル(0.26mL,3.0mmol)を滴
下し、そのまま5時間攪拌した。金属が完全に消えたこ
とを確認して、反応混合物を氷水にあけ、後処理した。
水層をエーテル(5mL×3)で抽出し、有機層をまとめ
て、無水硫酸マグネシウムで乾燥後、減圧下(1Torr)で
溶媒を留去した。粗生成物をシリカゲルカラムクロマト
グラフィー(ヘキサン/酢酸エチル=100/1)により
精製し、1−アリルシクロドデカノール0.45g
(1.98mmol,収率99%)を得た。
Example 6 Addition Reaction of Allylaluminum to Carbonyl Compound (Barbier Type Addition Reaction) Aluminum metal (49 mg, 1.8 m) under an argon atmosphere.
mol) and indium metal (10 mg, 0.090 mmol) T
The HF (7 mL) suspension was cooled to 10 ° C. and stirred for 10 minutes. There, cyclododecanone (0.37g, 2.0mmo
A solution of 1) in THF (3 mL) was added, and the mixture was stirred for 15 minutes. Then, allyl bromide (0.26 mL, 3.0 mmol) was added dropwise, and the mixture was stirred as it was for 5 hours. After confirming that the metal had completely disappeared, the reaction mixture was poured into ice water and worked up.
The aqueous layer was extracted with ether (5 mL × 3), the organic layers were combined, dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure (1 Torr). The crude product was purified by silica gel column chromatography (hexane / ethyl acetate = 100/1) to give 0.45 g of 1-allylcyclododecanol.
(1.98 mmol, yield 99%) was obtained.

【0035】[0035]

【発明の効果】本発明は、例えば、有機ガリウム反応
剤、有機アルミニウム反応剤等の有機金属化合物をイン
ジウムを触媒量添加することにより、当該金属を活性化
して、室温等の穏やかな条件下で調製する方法を提供す
るものであり、このようにして得られた本発明に係る有
機金属化合物、例えば有機ガリウム反応剤、有機アルミ
ニウム反応剤等は、炭素−炭素結合を生成する種々の有
機合成反応、例えば、当該反応剤のカルボニル化合物へ
の求核付加反応や当該反応剤のアルキンへの付加反応等
に効果的に供せられる。本発明に係る有機ガリウム試
薬、有機アルミニウム試薬等を用いることにより、従来
の金属系反応剤では合成が困難であった、種々の有用な
有機化合物が、新規に、或いはより容易に、高選択的に
得られるようになる。本発明に係る有機金属化合物は、
本発明の製造方法により製造、単離した後、これを反応
剤(反応試薬)として炭素−炭素結合生成反応に供して
もよいが(所謂グリニャール型反応)、次ステップの炭
素−炭素結合生成反応を試薬調製と同時に行う所謂バル
ビエ(Barbier)型反応によりこれを行うこともまた可
能である。
INDUSTRIAL APPLICABILITY According to the present invention, for example, an organometallic compound such as an organogallium reactant or an organoaluminum reactant is activated by adding indium in a catalytic amount to activate the metal under mild conditions such as room temperature. The organometallic compound according to the present invention thus obtained, for example, an organogallium reactant, an organoaluminum reactant, etc., provides a method for preparing, and various organic synthetic reactions for forming a carbon-carbon bond. For example, it can be effectively used for a nucleophilic addition reaction of the reactant to a carbonyl compound, an addition reaction of the reactant to an alkyne, and the like. By using the organogallium reagent, the organoaluminum reagent, etc. according to the present invention, various useful organic compounds, which have been difficult to synthesize with conventional metal-based reagents, can be newly or more easily and highly selective. Will be obtained. The organometallic compound according to the present invention,
After being produced and isolated by the production method of the present invention, it may be subjected to a carbon-carbon bond forming reaction as a reactant (reaction reagent) (so-called Grignard type reaction), but the carbon-carbon bond forming reaction of the next step. It is also possible to do this by means of the so-called Barbier type reaction, which is carried out simultaneously with the preparation of the reagents.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、臭化アリルを用いるバルビエ型反応に
おいて、ガリウム金属のみの系、及びガリウム/インジ
ウム=5/1の系それぞれについて、反応の進行状況と
温度との関係について調べた結果を示す。
FIG. 1 is a result of examining the relationship between the progress of the reaction and the temperature in the Barbie type reaction using allyl bromide in the system containing only gallium metal and the system containing gallium / indium = 5/1. Indicates.

【図2】図2は、本発明の方法により、重THF中でア
リルガリウム種を調製し、HNMRを測定した結果を
示す。
FIG. 2 shows the results of 1 H NMR measurement of allyl gallium species prepared in deuterated THF by the method of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C07C 33/30 C07C 33/30 35/205 35/205 C07F 5/06 C07F 5/06 C // C07B 61/00 300 C07B 61/00 300 Fターム(参考) 4G069 AA02 BB02A BB02B BB08A BC18A BC18B BD12A CB25 CB68 4H006 AA01 AB84 FC22 FC74 FE12 4H039 CA93 CD20 4H048 AA02 AA03 AB81 AC22 BA09 VA80 VA85 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C07C 33/30 C07C 33/30 35/205 35/205 C07F 5/06 C07F 5/06 C // C07B 61 / 00 300 C07B 61/00 300 F term (reference) 4G069 AA02 BB02A BB02B BB08A BC18A BC18B BD12A CB25 CB68 4H006 AA01 AB84 FC22 FC74 FE12 4H039 CA93 CD20 4H048 AA02 AA03 AB81 AC22 BA09 VA80VA

Claims (18)

【特許請求の範囲】[Claims] 【請求項1】 有機ハロゲン化合物を触媒量のインジウ
ム又はインジウム化合物の存在下、インジウムよりも還
元力の強い金属と反応させることを特徴とする有機金属
化合物の製造法。
1. A method for producing an organometallic compound, which comprises reacting an organohalogen compound with a metal having a stronger reducing power than indium in the presence of a catalytic amount of indium or an indium compound.
【請求項2】 有機ハロゲン化合物が下記一般式[1] R−X [1] (式中、Rは、置換基を有していてもよい炭化水素基を
表し、Xはハロゲン原子を表す。)で示される1種以上
の化合物である、請求項1に記載の製造法。
2. An organic halogen compound is represented by the following general formula [1] R—X [1] (wherein, R represents a hydrocarbon group which may have a substituent, and X represents a halogen atom). The manufacturing method of Claim 1 which is one or more types of compounds shown by these.
【請求項3】 インジウムよりも還元力の強い金属がガ
リウムであり、有機金属化合物が有機ガリウム反応剤で
ある、請求項1又は2に記載の製造法。
3. The method according to claim 1, wherein the metal having a stronger reducing power than indium is gallium, and the organometallic compound is an organogallium reactant.
【請求項4】 有機ガリウム反応剤が下記一般式[2] 【化1】 (式中、R,R,Rは、それぞれ独立して置換基
を有していてもよい炭化水素基を表す。)で示される化
合物である、請求項3に記載の製造法。
4. An organic gallium reactant is represented by the following general formula [2]: The production method according to claim 3, wherein the compound is a compound represented by the formula (wherein R 1 , R 2 and R 3 each independently represent a hydrocarbon group which may have a substituent).
【請求項5】 インジウムよりも還元力の強い金属がア
ルミニウムであり、有機金属化合物が有機アルミニウム
反応剤である、請求項1又は2に記載の製造法。
5. The method according to claim 1, wherein the metal having a stronger reducing power than indium is aluminum, and the organometallic compound is an organoaluminum reactant.
【請求項6】 有機アルミニウム反応剤が下記一般式
[3] 【化2】 (式中、R,R,Rは、それぞれ独立して置換基
を有していてもよい炭化水素基を表す。)で示される化
合物である、請求項5に記載の製造法。
6. The organoaluminum reactant is represented by the following general formula [3]: The production method according to claim 5, which is a compound represented by the formula (wherein R 1 , R 2 and R 3 each independently represent a hydrocarbon group which may have a substituent).
【請求項7】 一般式[1]で示される有機ハロゲン化
合物が臭化アリルである請求項1〜6の何れかに記載の
製造法。
7. The method according to claim 1, wherein the organic halogen compound represented by the general formula [1] is allyl bromide.
【請求項8】 請求項1〜7の何れかに記載の製造法に
より得られた炭素−炭素結合生成反応に用いる反応試
薬。
8. A reaction reagent used in the carbon-carbon bond forming reaction obtained by the production method according to claim 1.
【請求項9】 炭素−炭素結合生成反応が当該反応試薬
のカルボニル化合物への求核付加反応である請求項8に
記載の反応試薬。
9. The reaction reagent according to claim 8, wherein the carbon-carbon bond formation reaction is a nucleophilic addition reaction of the reaction reagent to a carbonyl compound.
【請求項10】 炭素−炭素結合生成反応が当該反応試
薬のアルキンへの付加反応である請求項8に記載の反応
試薬。
10. The reaction reagent according to claim 8, wherein the carbon-carbon bond formation reaction is an addition reaction of the reaction reagent to an alkyne.
【請求項11】 炭素−炭素結合生成反応に用いる原料
化合物の共存下に当該製造反応を行う請求項1〜7の何
れかに記載の製造法。
11. The production method according to claim 1, wherein the production reaction is carried out in the presence of a raw material compound used in the carbon-carbon bond formation reaction.
【請求項12】 炭素−炭素結合生成反応に用いる原料
化合物がカルボニル化合物である請求項11に記載の製
造法。
12. The production method according to claim 11, wherein the starting compound used in the carbon-carbon bond formation reaction is a carbonyl compound.
【請求項13】 炭素−炭素結合生成反応に用いる原料
化合物がアルキンである請求項11に記載の製造法。
13. The production method according to claim 11, wherein the raw material compound used in the carbon-carbon bond formation reaction is an alkyne.
【請求項14】 アミンの存在下に反応を行う、請求項
13に記載の製造法。
14. The production method according to claim 13, wherein the reaction is carried out in the presence of an amine.
【請求項15】 炭素−炭素結合生成反応に用いる原料
化合物の共存下に、請求項1〜7の何れかに記載の製造
法を実施することを特徴とする、バルビエ型反応による
炭素−炭素結合生成方法。
15. A carbon-carbon bond by a Barbier type reaction, characterized in that the production method according to any one of claims 1 to 7 is carried out in the coexistence of a raw material compound used for a carbon-carbon bond formation reaction. Generation method.
【請求項16】 カルボニル化合物の共存下に、請求項
1〜7の何れかに記載の製造法を実施することを特徴と
する、バルビエ型反応による有機金属化合物のカルボニ
ル化合物への求核付加方法。
16. A method for nucleophilic addition of an organometallic compound to a carbonyl compound by a Barbie type reaction, which comprises carrying out the production method according to claim 1 in the presence of a carbonyl compound. .
【請求項17】 アルキンの共存下に、請求項1〜7の
何れかに記載の製造法を実施することを特徴とする、バ
ルビエ型反応による有機金属化合物のアルキンへの付加
方法。
17. A method for adding an organometallic compound to an alkyne by a Barbier type reaction, which comprises carrying out the production method according to claim 1 in the presence of an alkyne.
【請求項18】 アミンの存在下に反応を行う、請求項
17に記載の付加方法。
18. The addition method according to claim 17, wherein the reaction is carried out in the presence of an amine.
JP2001277512A 2001-09-13 2001-09-13 New preparation method of organometallic compounds Expired - Fee Related JP3905340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001277512A JP3905340B2 (en) 2001-09-13 2001-09-13 New preparation method of organometallic compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001277512A JP3905340B2 (en) 2001-09-13 2001-09-13 New preparation method of organometallic compounds

Publications (2)

Publication Number Publication Date
JP2003081979A true JP2003081979A (en) 2003-03-19
JP3905340B2 JP3905340B2 (en) 2007-04-18

Family

ID=19102027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001277512A Expired - Fee Related JP3905340B2 (en) 2001-09-13 2001-09-13 New preparation method of organometallic compounds

Country Status (1)

Country Link
JP (1) JP3905340B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006347932A (en) * 2005-06-15 2006-12-28 Univ Of Tokushima Method for producing tertiary alcohol
CN102240540A (en) * 2011-05-11 2011-11-16 北京化工大学 Flaky gallium-containing nano photocatalyst and use thereof in light degradation of organic pollutants
JP2019504079A (en) * 2016-01-22 2019-02-14 大鵬薬品工業株式会社 Method for preparing high purity cyclohexenone long chain alcohol
CN110642670A (en) * 2018-06-26 2020-01-03 浙江中山化工集团股份有限公司 Production method of 1- (4-chlorphenyl) -3-butene-1-ol

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006347932A (en) * 2005-06-15 2006-12-28 Univ Of Tokushima Method for producing tertiary alcohol
CN102240540A (en) * 2011-05-11 2011-11-16 北京化工大学 Flaky gallium-containing nano photocatalyst and use thereof in light degradation of organic pollutants
JP2019504079A (en) * 2016-01-22 2019-02-14 大鵬薬品工業株式会社 Method for preparing high purity cyclohexenone long chain alcohol
US11485696B2 (en) 2016-01-22 2022-11-01 Taiho Pharmaceutical Co., Ltd. Manufacturing method for high-purity cyclohexenone long-chain alcohol
CN110642670A (en) * 2018-06-26 2020-01-03 浙江中山化工集团股份有限公司 Production method of 1- (4-chlorphenyl) -3-butene-1-ol

Also Published As

Publication number Publication date
JP3905340B2 (en) 2007-04-18

Similar Documents

Publication Publication Date Title
JPS6113449B2 (en)
JP3659995B2 (en) Production of alkylcyclopentadienes
JPS649978B2 (en)
JP2003081979A (en) New method for preparing organometallic compound
JP4163763B2 (en) Method for alkylating cyclopentadiene compounds
JP4649733B2 (en) Method for producing acetophenone compound containing trifluoromethyl group
JPH0471896B2 (en)
KR100515585B1 (en) Fulvene-based compound and method for preparing thereof
JPS6212770B2 (en)
JP2827050B2 (en) 4-tert-butoxy-4'-fluorobiphenyl and process for producing the same
JP4286694B2 (en) Novel Grignard reagent and method for producing aliphatic alkynyl Grignard compound using the same
JP4034040B2 (en) Fluorine-containing diene compounds
JP4203192B2 (en) Process for producing nitrophenylphenol compounds
JP4978762B2 (en) Method for producing cyclohex-3-en-1-ol derivative
JP4313365B2 (en) Method for producing fulvene compound and method for producing ansa-type metallocene compound using the same
JPH02160739A (en) Production of m-tert-butoxystyrene
JPS6320212B2 (en)
JPH10130178A (en) Production of gem-difluoroolefins, zirconocene for the production, and production thereof
JP4243397B2 (en) Novel unsaturated secondary alcohol and process for producing the same
JPS6358812B2 (en)
JP3941338B2 (en) 6-hydroxy-2-naphthylcarbinol and method for producing the same
JP2000136152A (en) Diene compound and its production
JP3878701B2 (en) Process for producing 4-hydroxy-1-alkynes
JPH0463866B2 (en)
JP3922607B2 (en) Process for producing p- or m-hydroxyalkylbenzene and intermediates thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070111

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140119

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees