JP2003080419A - Aerial discharge working method - Google Patents

Aerial discharge working method

Info

Publication number
JP2003080419A
JP2003080419A JP2001271332A JP2001271332A JP2003080419A JP 2003080419 A JP2003080419 A JP 2003080419A JP 2001271332 A JP2001271332 A JP 2001271332A JP 2001271332 A JP2001271332 A JP 2001271332A JP 2003080419 A JP2003080419 A JP 2003080419A
Authority
JP
Japan
Prior art keywords
discharge
machining
gas
pulse
τon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001271332A
Other languages
Japanese (ja)
Other versions
JP4530591B2 (en
Inventor
Masanori Kunieda
正典 国枝
Yukinori Miyoshi
幸徳 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sodick Co Ltd
Original Assignee
Sodick Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sodick Co Ltd filed Critical Sodick Co Ltd
Priority to JP2001271332A priority Critical patent/JP4530591B2/en
Publication of JP2003080419A publication Critical patent/JP2003080419A/en
Application granted granted Critical
Publication of JP4530591B2 publication Critical patent/JP4530591B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve a problem of conventional aerial discharge work that the work is unstable and working speed cannot be increased because a working clearance is narrow and because of re-attachment of working chips to an electrode and a working body, etc., even though working and removing quantity for one discharge is roughly the same as that of a conventional submerged discharge work in rough work more than medium work. SOLUTION: The aerial discharge work is made to continue by supplying a discharge pulse a product of pulse duration and a discharge electric current amplitude value of which is larger to the clearance under a down time condition to be a larger duty factor and maintaining a transition state of sub-continuous arc discharge to increase as the working and removing quantity of the working body immediately before gas to chemically react with the working body in supplied gas and the working body continuously cause chemical reaction suddenly changes and increases.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、加工電極と被加工
体とが対向して形成する放電間隙に流体状の加工媒体を
流通介在させた状態で、加工電圧をパルス的に繰り返し
印加し放電を発生させて被加工体を加工する放電加工方
法の、前記加工媒体として被加工体材と化学反応をする
ガスを含有する気体を使用する気中放電加工方法の改良
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a discharge in which a machining voltage is repeatedly applied in a pulsed manner while a fluid machining medium is circulated in a discharge gap formed between a machining electrode and a workpiece. The present invention relates to an improvement of an electric discharge machining method for generating an arc and machining a workpiece by using an electric discharge machining method in which a gas containing a gas that chemically reacts with a workpiece material is used as the machining medium.

【0002】[0002]

【従来の技術】斯種の気中放電加工方法については、例
えば本発明者等が発表した、 (1)1998年精密工学会誌、VOL.64、No.
12、PP1735〜1738、「気中放電加工」や、
本発明者等の出願になる (2)特願平8−71,071号(特開平9−239,
622号公報参照)「気中放電加工方法」等に詳しく開
示されている。そして、かかる気中放電加工方法によれ
ば、 工具電極の消耗が非常に小さい。 アシストガスの種類により加工特性の向上が図れる。 加工面のダメージが少ない。 加工反力が小さいので、マイクロ加工に有利である。 加工液を用いないので、その処理装置や加工槽を必要
とせず、環境の汚染も少ない。 等の特徴が有り注目されてきていた。即ち、従来形の液
中放電加工方法では、電極消耗が大きく、加工速度が遅
かった仕上げ加工の加工領域において、電極が低消耗乃
至無消耗で加工速度が大きいと注目されていたものであ
る。
2. Description of the Related Art Such an air-electric discharge machining method has been disclosed by the present inventors, for example, (1) 1998 Journal of Precision Engineering, VOL. 64, No.
12, PP1735-1738, "Air EDM",
(2) Japanese Patent Application No. 8-71,071 (Japanese Patent Application Laid-Open No. 9-239,
(See Japanese Patent No. 622), "Electrical discharge machining method" and the like. Further, according to such an air-electric discharge machining method, the wear of the tool electrode is very small. The processing characteristics can be improved depending on the type of assist gas. There is little damage on the machined surface. Since the processing reaction force is small, it is advantageous for micro processing. Since no processing liquid is used, no processing equipment or processing tank is required, and environmental pollution is small. It has been attracting attention because of its features such as. That is, in the conventional submerged electric discharge machining method, attention has been paid to the fact that the electrode is low or non-consumable and has a high machining speed in the machining region of finish machining where the electrode is largely consumed and the machining speed is slow.

【0003】上記気中放電加工の中仕上げ加工以下の仕
上げ加工領域における加工速度(加工除去速度)等の加
工性能は、被加工体材と化学反応をする酸素等のガスと
の反応も相当に寄与しているものと思われるが、上記2
文献中に於ける加工条件等のデータによれば、加工中に
おける単位面積あたりの供給電気エネルギ(平均加工電
流密度A/cm)が、従来形の液中放電加工の場合の
最大平均加工電流密度(25〜30A/cm)に比べ
て相当大きくなっていることの寄与も大きいものと思惟
される。
The machining performance such as the machining speed (machining removal rate) in the finishing machining area below the above-mentioned mid-finishing machining in the air-electric discharge machining is considerably dependent on the reaction between the workpiece material and the gas such as oxygen which chemically reacts. It seems that it has contributed, but above 2
According to the data such as machining conditions in the literature, the electric energy supplied per unit area during machining (average machining current density A / cm 2 ) is the maximum average machining current in the case of conventional submerged electric discharge machining. It is considered that the large contribution to the density (25 to 30 A / cm 2 ) contributes greatly.

【0004】[0004]

【発明が解決しようとする課題】然る所、気中放電加工
における中加工以上の荒加工では、放電パルス1あたり
の加工除去量は、液中放電加工の場合に比べて殆ど差が
無いにもかかわらず、加工屑の滞留、再附着等により放
電間隙が小さく、短絡、または短絡放電の割合が極めて
高くなって、加工状態が安定せず、放電加工間隙の間隙
増大のために高電圧加工電源を使用するとか、間隙の高
応答での制御保持の手段が講じられたが、放電間隙への
電気エネルギの増大や被加工体材の供給ガスとの化学反
応による作用等が、加工除去量等加工性能の向上に旨く
利用される状況に無かった。
However, in rough machining more than medium machining in air electric discharge machining, the amount of machining removed per electric discharge pulse is almost the same as that in liquid electric discharge machining. Despite this, the discharge gap is small due to the retention and reattachment of machining waste, and the ratio of short circuit or short circuit discharge becomes extremely high, the machining state is not stable, and high voltage machining is required to increase the gap of the electric discharge gap. Although a power supply was used or a means for maintaining control of the gap with a high response was taken, the amount of machining removed depends on the increase in electric energy to the discharge gap and the action due to the chemical reaction with the supply gas of the workpiece material. It was not in a situation where it was successfully used to improve processing performance.

【0005】然るに本発明者等は、被加工体材と化学反
応をするガスとの材質組み合わせにもよるが、放電パル
スとなる電圧パルスによる放電間隙への電気エネルギの
供給をある条件のもとで、通常電圧パルス間休止時間
(τOFF)を減少させることにより増加させていく
と、或る加工条件以上で、被加工体材と供給化学反応ガ
スとの化学反応が連続し、放電が連続アーク放電状態の
制御不能の暴走状態となること、そして、前記電気エネ
ルギの供給条件、及び/または前記化学反応条件の制御
によって、前記暴走状態の直前の準暴走、準連続アーク
放電状態の、被加工体材の加工除去量が急激に増大変化
する遷移領域が有ること、そしてこの遷移領域を保つこ
とにより加工が制御可能な超高速の加工となし得る可能
性を見出したことにより本発明は提案される。
However, the inventors of the present invention depend on the material combination of the material to be processed and the gas that chemically reacts with each other, but under certain conditions, the electric energy is supplied to the discharge gap by the voltage pulse as the discharge pulse. Then, when the normal voltage pulse pause time (τOFF) is increased by decreasing it, the chemical reaction between the workpiece material and the supplied chemical reaction gas is continuous under a certain processing condition, and the discharge is continuous arc. The uncontrolled runaway state of the discharge state and the processing of the quasi-runaway immediately before the runaway state and the quasi-continuous arc discharge state by controlling the supply condition of the electric energy and / or the chemical reaction condition. We have found that there is a transition region where the amount of body material removed by machining increases rapidly, and that by maintaining this transition region, it is possible to achieve ultra-high-speed machining with controllable machining. The present invention is proposed.

【0006】[0006]

【課題を解決するための手段】前述の本発明の目的は、
(1)加工電極と被加工体とを微小間隙を隔てて相対向
させ、前記間隙に被加工体材と化学反応をするガスを含
有する気体を強制的に流通せしめた状態で、両者間に休
止時間τOFFを置いて間歇的な電圧パルスを印加して
繰り返し放電パルスを発生させると共に、両者間に前記
対向方向および/または前記対向方向と直角な平面方向
の相対的な加工送りを与えて、被加工体に高速荒加工の
加工条件の加工をする気中放電加工方法において、前記
放電パルスのパルス幅τON(μs)と放電電流振幅値
Ip(A)との積が、より大きい放電パルスを、より大
きいデューティ・ファクタ(τON/τON+τOF
F)となる休止時間τOFF条件で供給して発生させ、
前記放電間隙における供給ガスと被加工体材との化学反
応が連続して生ずるようになって連続アーク放電状態と
なる直前の準連続アーク放電状態であって、被加工体材
の加工除去量が急増変化する遷移領域の加工条件を保っ
て前記の気中放電加工を継続させる気中放電加工方法と
することにより達成される。
The above-mentioned objects of the present invention are as follows.
(1) The machining electrode and the work piece are opposed to each other with a minute gap therebetween, and a gas containing a gas that chemically reacts with the work piece material is forced to flow through the gap, and the two are interposed therebetween. With a pause time τOFF, intermittent voltage pulses are applied to repeatedly generate a discharge pulse, and relative machining feed in the facing direction and / or a plane direction perpendicular to the facing direction is applied between them. In the air electric discharge machining method for machining a workpiece under machining conditions of high speed rough machining, a discharge pulse in which the product of the pulse width τON (μs) of the discharge pulse and the discharge current amplitude value Ip (A) is larger , Larger duty factor (τON / τON + τOF
F) and supply it under the OFF time τ OFF condition,
In a quasi-continuous arc discharge state immediately before a continuous arc discharge state in which a chemical reaction between the supply gas and the work material in the discharge gap occurs continuously, the amount of work removal of the work material is This is achieved by an air-electric discharge machining method in which the above-mentioned air-electric discharge machining is continued while maintaining the machining conditions in the transition region where the abrupt increase changes.

【0007】前述の本発明の目的は、(2)前記放電パ
ルスは、さらにパルス幅に対する放電電流振幅値の比
(Ip/τON衝撃値)が0.5より大きい放電パルス
であって、デューティ・ファクタが0.80よりも大き
い休止時間条件で供給されるものである前記(1)に記
載の気中放電加工方法とすることにより達成される。
The above-mentioned object of the present invention is: (2) The discharge pulse is a discharge pulse having a ratio of the discharge current amplitude value to the pulse width (Ip / τON shock value) of more than 0.5, and the duty pulse This is achieved by the air-electric discharge machining method described in (1) above, in which the factor is supplied under a pause time condition of greater than 0.80.

【0008】前述の本発明の目的は、(3)前記間隙に
流通介在せしめられる気体中の被加工体材と化学反応を
するガスの含有割合を変更して前記放電状態の遷移領域
を制御する前記(1)または(2)に記載の気中放電加
工方法とすることにより達成される。
The above-mentioned object of the present invention is: (3) The transition region of the discharge state is controlled by changing the content ratio of the gas which chemically reacts with the workpiece material in the gas which is circulated in the gap. This is achieved by using the air discharge machining method described in (1) or (2) above.

【0009】前述の本発明の目的は、(4)前記被加工
体の温度を、供給ガスと被加工体材との反応が連続化す
る前の放電状態が前記遷移領域にあるように冷却制御す
る前記(1)、(2)または(3)に記載の気中放電加
工方法とすることにより達成される。
The above-mentioned object of the present invention is (4) cooling control of the temperature of the workpiece so that the discharge state before the reaction between the supply gas and the workpiece material is continuous is in the transition region. This can be achieved by the air discharge machining method described in (1), (2) or (3) above.

【0010】前述の本発明の目的は、(5)前記被加工
体材と化学反応するガスが、被加工体材が鉄材であると
きに酸素で、チタン材であるとき酸素と窒素の両方また
は何れか一方である前記(1)、(2)、(3)または
(4)に記載の気中放電加工方法とすることにより達成
される。
The above-mentioned object of the present invention is: (5) When the gas that chemically reacts with the workpiece is iron, it is oxygen, and when it is titanium, both oxygen and nitrogen, or This can be achieved by the method for air discharge machining according to any one of (1), (2), (3) or (4).

【0011】[0011]

【発明の実施の形態】図1は、本発明の気中放電加工方
法を実施する一実施例の全体構成説明図で、1は筒状加
工電極、2は電極チャック、3はスピンドル主軸を介し
て電極1を中心軸または所望偏倚軸の廻りに回転させる
回転装置、4は加工ヘッド、5は送りねじ、6は加工ヘ
ッドの加工送り及び位置決め用の直流または交流サーボ
モータ、7は該サーボモータ6による電極1先端の送り
位置(現在位置)を検出して検出信号を後述CNC制御
装置に供給するエンコーダ等の送りまたは現在位置等の
送り位置検出装置、8は前記サーボモータ6の回転速度
を検出して検出信号をCNC制御装置に供給する指速発
電機やエンコーダ等の回転速度検出装置、9は被加工
体、10は被加工体9を装置する冷却等温度制御板兼用
の加工テーブル、11は加工テーブルが載置されたxy
クロステーブル、12および13はクロステーブル11
を介し加工テーブル10をxy各軸方向に加工送りおよ
び位置決め送りする前記位置検出および回転速度検出装
置の図示が省略されたxy各軸の加工送りおよび位置決
めサーボモータ、14は前記各サーボモータ6、12、
および13の駆動装置、15は放電加工用のCNC、ま
た、制御装置で、15Aはコンピュータ、15Bはキー
ボード等の入力装置、15Cは紙テープ、磁気テープ、
フロッピィディスク、またはコンパクトディスク等の放
電加工用のデータやプログラム等の外部記憶装置、15
Dは数値制御装置である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an explanatory view of the overall configuration of an embodiment for carrying out the air discharge machining method of the present invention, in which 1 is a cylindrical machining electrode, 2 is an electrode chuck, and 3 is a spindle main shaft. Rotating device for rotating the electrode 1 around a central axis or a desired deviation axis, 4 is a machining head, 5 is a feed screw, 6 is a DC or AC servomotor for machining feed and positioning of the machining head, and 7 is the servomotor 6, a feed position (current position) of the tip of the electrode 1 is detected, and a detection signal is supplied to a CNC controller described later. A rotation speed detecting device such as a finger speed generator or an encoder for detecting and supplying a detection signal to the CNC control device, 9 is a workpiece, 10 is a processing table also serving as a temperature control plate for cooling or the like for mounting the workpiece 9, 1 xy the processing table is placed in
Cross table, 12 and 13 are cross tables 11
The machining feed and positioning servomotors for the xy axes, not shown, of the position detection and rotation speed detection device for machining feed and positioning feed of the machining table 10 in the xy axis directions via the servomotors 6, 14 are the servomotors 6, 12,
Drive devices 13 and 13, 15 is a CNC for electric discharge machining, and a control device, 15A is a computer, 15B is an input device such as a keyboard, 15C is a paper tape, a magnetic tape,
External storage device for electrical discharge machining data or programs such as floppy disk or compact disk, 15
D is a numerical controller.

【0012】また、16は加工電極1と被加工体9間に
間歇的な電圧パルスを供給する放電加工用パルス電源
で、17は直流電圧源、18はFET等のオン・オフ電
子スイッチ素子、19は前記スイッチ素子18および電
圧源17と直列に接続され放電パルスの電流振幅Ip
(A)をFETの並列接続数と共に切り替え設定される
電流制限抵抗、20は前記電子スイッチ素子18のオン
時間τON(μs)および休止時間τOFF(μs)等
をCNC制御装置15からの信号で選択切換設定する電
圧パルス条件設定装置、21は逆電圧防止ダイオード、
22は電極1・被加工体9間の加工間隙の放電加工状態
検出装置である。
Further, 16 is a pulse power source for electric discharge machining for supplying an intermittent voltage pulse between the machining electrode 1 and the workpiece 9, 17 is a DC voltage source, 18 is an ON / OFF electronic switch element such as FET, Reference numeral 19 is connected in series with the switch element 18 and the voltage source 17 and is connected to the current amplitude Ip of the discharge pulse.
(A) is a current limiting resistor that is set to be switched together with the number of FETs connected in parallel, and 20 is a signal from the CNC controller 15 that selects the on time τON (μs) and the rest time τOFF (μs) of the electronic switch element 18. Voltage pulse condition setting device for switching setting, 21 is a reverse voltage prevention diode,
Reference numeral 22 is an electric discharge machining state detection device for a machining gap between the electrode 1 and the workpiece 9.

【0013】また、23はエアコンプレッサまたは圧縮
若しくは液化気体ボンベまたはそれらの組み合わせから
なり、被加工体材と化学反応をするガスを含有する圧縮
気体供給装置、24は必要に応じて設けられる水蒸気除
去のエア・ドライヤ、25は供給圧縮気体の減圧調整
弁。また、23A、24A、および25Aは、必要に応
じてもう1組設けられた圧縮気体供給装置で、混合調整
手段26を介し化学反応をするガスの濃度を所望に制御
設定する。27は被加工体9の温度を検出して検出信号
をCNC制御装置15に供給する1個以上の温度セン
サ、28は温度制御板10に温度制御媒体等を供給する
温度制御装置で、センサ27の検出信号によりCNC制
御装置15は、所定の温度制御を実行させる。
Reference numeral 23 is an air compressor or a compressed or liquefied gas cylinder or a combination thereof, and a compressed gas supply device containing a gas that chemically reacts with the material to be processed, and 24 is a vapor removal device provided as necessary. Air dryer, 25 is a decompression adjusting valve for compressed gas supplied. Further, 23A, 24A, and 25A are another set of compressed gas supply devices provided as necessary, and control and set the concentration of the gas which chemically reacts through the mixing adjusting means 26 as desired. Reference numeral 27 denotes one or more temperature sensors that detect the temperature of the workpiece 9 and supply a detection signal to the CNC control device 15, and 28 denotes a temperature control device that supplies a temperature control medium or the like to the temperature control plate 10. The CNC control device 15 executes a predetermined temperature control according to the detection signal.

【0014】次に、本発明の気中放電加工方法の基にな
った、気中放電加工の現象について説明する。被加工体
として炭素鋼を用い、加工媒体の気体として、被加工体
材と化学反応をするガスは100%の酸素ガスを1.0
MPaで用いる。前記炭素鋼の被加工体は、外径φ7.
0mm、肉厚0.5mmのパイプとし、180rpmで
回転させ、加工電極は銅ブロックとして揺動させ、前記
間歇的な電圧パルス電源16を正極性に接続した。この
電圧パルス電源16による放電間隙への単位時間あたり
の供給エネルギを増大させるには、電圧パルスによる放
電パルスとしてパルス幅τON(μs)と放電電流振幅
Ip(A)との積(Ip×τON)が或る程度以上大き
い値のものであること、そしてこの放電パルスを電圧パ
ルス間休止時間τOFF(μs)を小さい設定に切り換
えていくように時間密度高く供給することが必要であ
る。そして、さらにこの場合、前記の放電パルスは、パ
ルス幅に対する放電電流振幅値の比(Ip/τON衝撃
値)が或る程度大きいものであることが望ましい。な
お、上記した本実験に於ける前記加工電極と被加工体と
の寸法、形状、形態が、被加工体をパイプ状態のものと
するが如く、通常とは逆の設定になっているのは、加工
の進行に伴う何等かのキャビティ形成により、気体のパ
イプ外周からの噴出の状態や加工屑排出等の加工態様の
変化による加工への影響を避けるためである。
Next, the phenomenon of aerial electrical discharge machining, which is the basis of the aerial electrical discharge machining method of the present invention, will be described. Carbon steel is used as the work piece, and the gas that chemically reacts with the work piece material is 1.0% oxygen gas as the working medium gas.
Used at MPa. The carbon steel workpiece has an outer diameter of φ7.
A pipe having a thickness of 0 mm and a wall thickness of 0.5 mm was used, the pipe was rotated at 180 rpm, the machining electrode was swung as a copper block, and the intermittent voltage pulse power supply 16 was positively connected. To increase the energy supplied per unit time to the discharge gap by the voltage pulse power supply 16, the product of the pulse width τON (μs) and the discharge current amplitude Ip (A) (Ip × τON) as the discharge pulse of the voltage pulse. Of a certain value or more, and it is necessary to supply this discharge pulse at a high time density so as to switch the inter-voltage pulse pause time τOFF (μs) to a small setting. Further, in this case, it is desirable that the discharge pulse has a certain ratio of the discharge current amplitude value to the pulse width (Ip / τON shock value). The size, shape, and form of the processing electrode and the work piece in the above-described experiment are set in the opposite manner to the normal one so that the work piece is in a pipe state. This is for avoiding the influence on the processing due to the change of the processing mode such as the state of the gas jetting from the outer circumference of the pipe and the discharge of the processing waste due to the formation of some cavities as the processing progresses.

【0015】図2は、前記放電パルスの幅τON(μ
s)が40μs、該放電パルスの放電電流振幅Ip
(A)を24A:□印、32A:▲印、および40A:
●印に設定した各放電パルスを、放電パルス間休止時間
τOFF(μs)を順次に小さい値に切り換え(横軸)
て行った時の各体積加工速度(cm/min、縦軸)
と放電または加工の状態をプロットしたものである。な
お通常の放電加工では、電圧パルスの幅τON(時間)
と放電パルスの幅τDとは、電圧パルスの印加時から、
放電開始まで遅れ時間τW(μs)があるため一致しな
い(τON=τW+τD)ものであるが、本発明では、
放電電流の振幅値Ip(A)が放電パルスのパルス幅τ
D(μs)の値に対して比較的大きい値に設定されてい
ること、および放電パルス間休止時間τOFF(μs)
が通常に比べてより小さい設定での放電加工となってい
るので、上記遅れ時間τWは通常充分小さいか、殆どτ
W≒0、従って、放電パルスの幅τDは電圧パルスの幅
τONとほぼ同一(τD≒τON)であるから、τON
1つで記載説明することとする。例えば、即ち前記デュ
ーティ・ファクタは、正しくはτD/τW+τD+τO
FFであるが、τON/τON+τOFFと記載して説
明するが如くである。
FIG. 2 shows the width of the discharge pulse τON (μ
s) is 40 μs, the discharge current amplitude Ip of the discharge pulse
(A) shows 24A: □ mark, 32A: ▲ mark, and 40A:
For each discharge pulse set to ●, switch the discharge pulse pause time τOFF (μs) to a smaller value (horizontal axis)
Each volume processing speed (cm 3 / min, vertical axis)
And the state of electric discharge or machining. In normal electrical discharge machining, the voltage pulse width τON (time)
And the width τD of the discharge pulse, from the time of applying the voltage pulse,
Since there is a delay time τW (μs) until the start of discharge, they do not match (τON = τW + τD), but in the present invention,
The amplitude value Ip (A) of the discharge current is the pulse width τ of the discharge pulse.
It is set to a value that is relatively large with respect to the value of D (μs), and the discharge pulse pause time τOFF (μs)
However, the delay time τW is usually sufficiently small, or almost τ.
W≈0, therefore, the width τD of the discharge pulse is almost the same as the width τON of the voltage pulse (τD≈τON), so τON
Only one will be described. For example, namely, the duty factor is properly τD / τW + τD + τO
Although it is FF, it is as described by describing as τON / τON + τOFF.

【0016】図から明らかなように、大きなエネルギの
放電パルスであることを前提として、さらに衝撃値(I
p/τON)の大きい放電パルスのとき程、休止時間τ
OFFが依然、より大きい値で(デューティ・ファクタ
がより小さい値で)あるうちから、放電間隙の放電状態
は、主として被加工体材の鉄と化学反応をする酸素(O
2)とが、前記化学反応を連続または継続して生ずる殆
ど制御不能の暴走連続アーク放電状態になるのに対し、
上記衝撃値(Ip/τON)が一番小さい放電パルス
(□印)のときは、休止時間が3μs(デューティ・フ
ァクタ約0.93)より小さくても、放電間隙へ供給さ
れる単位時間当たりの放電エネルギの密度では、加工電
極および被加工体の温度が、前記化学反応を連続して継
続するまでには上昇していないので、上述暴走状態には
ならないものと思われる。
As is apparent from the figure, the impact value (I
When the discharge pulse has a large p / τ ON), the rest time τ
While OFF is still larger (duty factor is smaller), the discharge state of the discharge gap is mainly due to oxygen (O 2) which chemically reacts with iron of the workpiece.
In contrast to 2), the above-mentioned chemical reaction is continuously or continuously generated, and becomes a runaway continuous arc discharge state that is almost uncontrollable.
When the above-mentioned impact value (Ip / τON) is the smallest discharge pulse (marked with □), even if the pause time is less than 3 μs (duty factor about 0.93), At the density of the discharge energy, it is considered that the runaway state does not occur because the temperatures of the working electrode and the work piece have not risen by the time the chemical reaction continues.

【0017】上述の気中放電加工に於ける放電間隙の暴
走状態は、被加工体の温度より高温になり過度な酸化反
応状態となるためであるから、これを防止乃至は制御す
るためには、被加工体の放電点およびその近傍の温度を
上述以上の高温とならないように冷却するか、放電間隙
を流通する高速気体中の酸素濃度(含有割合)を適度に
低下させるか、或いはまた、前記▲印と●印の放電加工
の放電パルスの電気的条件、放電パルスの衝撃値(Ip
/τON)と放電パルスの供給条件であるデューティ・
ファクタ(τON/τON+τOFF)の両方または一
方を減少制御して、酸化反応をコントロールすればよい
ものと思われる。
The runaway state of the electric discharge gap in the above-mentioned air-electric discharge machining is because the temperature becomes higher than the temperature of the work piece and becomes an excessive oxidation reaction state. Therefore, in order to prevent or control this. , The temperature of the discharge point of the work piece and the vicinity thereof is cooled so as not to reach the above-mentioned high temperature, or the oxygen concentration (content ratio) in the high-speed gas flowing through the discharge gap is appropriately reduced, or, The electrical conditions of the discharge pulse for the electric discharge machining indicated by the ▲ and ● marks, and the impact value (Ip) of the discharge pulse
/ ΤON) and duty that is the supply condition of the discharge pulse
It is considered that the oxidation reaction may be controlled by reducing the factor (τON / τON + τOFF) or both.

【0018】図3は、前述図2中の▲印の気中放電加工
の放電パルスの条件のものを、図2の場合と同一の純酸
素ガス中の加工の場合と、使用気体を酸素が体積百分比
で約21%という空気を使用した場合の各加工状態を対
比して示したものである。即ち、この場合の気中放電加
工の条件は、放電パルスのパルス幅τONが40μs、
放電電流振幅Ipが32Aであるから、エネルギτON
×Ip=1280(A・μs)で、衝撃値Ip/τON
=0.8(A/μs)の放電パルスを供給して気中放電
加工を行なう場合、気体が純酸素ガスである(●印)
と、放電間隙の放電状態が暴走状態に移行する放電パル
スの供給条件は、前述の如く休止時間τOFF=5μs
(デューティ・ファクタ約0.89)であったものであ
る。しかるに、これに対し、酸素ガスの含有割合が約2
1%の空気を用いるようにした場合(▲印)は、前述純
酸素の場合に暴走状態となった休止時間5μs(デュー
ティ・ファクタ約0.89)で、加工除去量が急変増加
し始め、休止時間4μs(デューティ・ファクタ約0.
91)では、前記休止時間5μs時以前の約4倍近くの
加工速度に増大し、放電状態は依然前述の暴走状態には
なっていなかった。
FIG. 3 shows the condition of the discharge pulse of the air-electric discharge machining indicated by ▲ in FIG. 2 in the case of machining in the same pure oxygen gas as in FIG. It is shown by comparing each processing state when air of about 21% in volume percentage is used. That is, the conditions of the air-electric discharge machining in this case are that the pulse width τON of the discharge pulse is 40 μs,
Since the discharge current amplitude Ip is 32 A, the energy τON
× Ip = 1280 (A · μs), impact value Ip / τON
= 0.8 (A / µs) is supplied to perform electric discharge machining in the air, the gas is pure oxygen gas (mark ●)
As described above, the supply condition of the discharge pulse for changing the discharge state of the discharge gap to the runaway state is the rest time τOFF = 5 μs.
(The duty factor is about 0.89). However, in contrast, the oxygen gas content is about 2
When 1% air was used (marked with ▲), the machining removal amount started to suddenly change and increase with a pause time of 5 μs (duty factor of about 0.89), which was a runaway state in the case of pure oxygen. Rest time 4 μs (duty factor approx.
In 91), the machining speed increased to about 4 times that before the pause time of 5 μs, and the discharge state was not yet in the runaway state.

【0019】即ち、気中放電加工に於いては、被加工体
材質と該被加工体材と化学反応をするガスを含有する気
体の前記ガスの種類との組み合わせおよびガスの濃度に
もよるが、放電間隙への放電パルスによる電気エネルギ
の供給を単位時間あたりで増加していった場合、放電間
隙の放電状態が、被加工体材とガスとの化学反応の進行
状態との関係で、気中放電加工の状態から暴走状態に移
行する臨界現象を生ずるものにおいては、その暴走状態
に移行する直前の条件領域に、加工除去量が急激に増加
変化する遷移領域が存在することが判った。従って、こ
の遷移領域を準暴走状態または準連続アーク放電状態と
称呼するが、この場合放電間隙の観察によれば、アーク
柱は被加工体全面に広がっておらず、放電パルス毎に形
成されるアーク柱は局在しており、従って、加工面は局
在したアーク柱により生成された放電痕の累積で形成さ
れていると認められるからで、前記の所謂制御不能な暴
走状態の放電間隙状態とは別異のものである。しかしな
がら、前述の準暴走状態での加工除去量は、放電休止時
間を短くして行って、放電頻度または電気エネルギの密
度が増加した割合を指標等とするものでは説明がつかな
い位大きいものであるが、その理由は、放電点の化学反
応が顕在化した活性化である。
That is, in the air electric discharge machining, it depends on the combination of the material to be machined and the kind of the gas containing the gas which chemically reacts with the material to be machined and the gas concentration. , When the supply of electric energy by the discharge pulse to the discharge gap is increased per unit time, the discharge state of the discharge gap changes depending on the progress state of the chemical reaction between the workpiece material and the gas. It was found that in the critical phenomenon in which the state of medium electric discharge machining shifts to the runaway state, there is a transition region in which the machining removal amount sharply increases and changes in the condition region immediately before the shift to the runaway state. Therefore, this transition region is called a quasi-runaway state or a quasi-continuous arc discharge state. In this case, according to the observation of the discharge gap, the arc column is not spread over the entire surface of the workpiece and is formed at each discharge pulse. The arc column is localized, and therefore, it is recognized that the machined surface is formed by the accumulation of the discharge marks generated by the localized arc column. Is different from. However, the amount of machining removal in the above-mentioned quasi-runaway state is so large that it cannot be explained by using the discharge frequency or the rate of increase in the density of electric energy as an index when the discharge pause time is shortened. However, the reason is the activation in which the chemical reaction at the discharge point becomes apparent.

【0020】次に、前記の準暴走状態による形状加工の
例につき説明する。外径φ4mm、肉厚1mmのCuパ
イプ電極を用い、被加工体炭素鋼ブロックの表面に、幅
6mm、深さ2mmのスリットを、長さ60mmにわた
って加工成形した。電極の回転数は180rpm、揺動
幅は電極肉厚の20%、使用気体は圧縮乾燥空気供給圧
力1MPaで、電圧パルスの条件は、前述図2中の●印
の気中放電加工の電圧パルスτON=40μs、放電電
流振幅Ip=40A(衝撃値1.0)で正極性とし、電
圧パルスの供給条件は休止時間τOFF=5μs(デュ
ーティ・ファクタ約0.89)とした。
Next, an example of shape processing in the above-mentioned quasi-runaway state will be described. A Cu pipe electrode having an outer diameter of 4 mm and a wall thickness of 1 mm was used to form a slit having a width of 6 mm and a depth of 2 mm over a length of 60 mm on the surface of a carbon steel block to be processed. The rotation speed of the electrode is 180 rpm, the swing width is 20% of the electrode thickness, the gas used is compressed dry air supply pressure of 1 MPa, and the voltage pulse conditions are the voltage pulse of the electric discharge machining indicated by ● in FIG. τON = 40 μs, discharge current amplitude Ip = 40 A (impact value 1.0), and a positive polarity, and voltage pulse supply conditions were rest time τOFF = 5 μs (duty factor about 0.89).

【0021】図4は、その結果の加工速度(cm/m
in)と、電極消耗率(E/W%)を、従来の油中加工
の結果と対比して示した。加工面粗度や形状精度等には
未だ改善すべき余地は大きいが、前記電極消耗率は約1
/3、そして加工速度は酸素ガスとの反応による化学的
加工の寄与があるとはいえ、同一電気エネルギあたりで
約15.7倍の超高速になっており、放電荒加工として
の利用の可能性を秘めている。
FIG. 4 shows the resulting processing speed (cm 3 / m
in) and the electrode wear rate (E / W%) are shown in comparison with the results of conventional in-oil processing. There is still much room for improvement in the machined surface roughness and shape accuracy, but the electrode consumption rate is about 1
/ 3, and the machining speed is about 15.7 times ultra-high per the same electric energy, though there is a contribution of chemical processing by the reaction with oxygen gas, and it can be used as electrical discharge rough machining. Has sex.

【0022】鉄系以外の金属でも準暴走状態を用いた高
速化が可能であるか、2〜3の実験を行なった。先ず銅
であるが、銅は熱伝導率が高く鉄に比べ放電箇所での表
面温度は低いので、暴走状態になりにくいことが予想さ
れた。そこで前述最初の実験と同様に銅ブロック電極を
陰極、陽極には銅パイプ被加工体(φ9mm、肉厚0.
5mm)を用いて加工を行なった。このとき、徐々に休
止時間を短くしたときの加工速度を図5に示す。なお、
電気的電圧パルス等の条件は、前述図4のものと同一で
ある(以下同じ)。銅の純酸素加工では、熱伝導率が高
く被加工体の温度がそれほど高温にならないため、予想
通り暴走状態にならなかったが、休止時間τOFF=6
μsから加工速度が急激に速くなることが分った。とこ
ろで観察によると、放電の発光色が青色から緑色へ変化
する。これは酸化反応によって銅の炎色反応が現れたも
のと考えられる。結果として銅の酸素加工において準暴
走状態は存在し、加工の高速化が可能であることが推測
できた。
A few experiments were conducted to see if it is possible to use a metal other than iron-based material to achieve high speed using the quasi-runaway state. First of all, although it is copper, since copper has a high thermal conductivity and a lower surface temperature at the discharge location than iron, it was expected that copper would not easily run into a runaway state. Therefore, similar to the first experiment described above, a copper block electrode is used as a cathode, and a copper pipe work piece (φ 9 mm, wall thickness 0.
5 mm) was used for processing. At this time, the processing speed when the down time is gradually shortened is shown in FIG. In addition,
The conditions such as the electric voltage pulse are the same as those shown in FIG. 4 (the same applies hereinafter). In pure oxygen processing of copper, the thermal conductivity was high and the temperature of the work piece did not rise so much, so the runaway state did not occur as expected, but the rest time τOFF = 6
It was found that the processing speed drastically increased from μs. By observation, the emission color of the discharge changes from blue to green. It is considered that the flame reaction of copper appeared due to the oxidation reaction. As a result, there was a quasi-runaway state in the oxygen processing of copper, and it was speculated that the processing speed could be increased.

【0023】次に、チタンおよびチタン合金材の加工で
あるが、チタンは切削・放電加工を問わず加工の困難な
材料とされている。放電加工においては加工速度が遅い
ことが問題となっている。原因はチタンがねばい性質を
持っており、放電痕が盛り上がるため短絡が多発し、加
工速度の低下に繋がるからである。また、チタンは窒素
との親和力が非常に高い元素であって、酸素ではなく窒
素でも、激しく化学反応を起こし準暴走状態を得ること
が出来ると考えられる。窒素で準暴走加工が可能である
ならば酸素を使うよりも危険度は少なく有利である。そ
こで銅ブロック電極を陰極、陽極にはチタンパイプ被加
工体(φ9mm、肉厚0.5mm)を用いて加工を行な
った。ここで、加工条件は放電電流Ip=40A、放電
パルス幅τON=40μsとした。供給気体が窒素およ
び空気の場合の加工速度を図6に示す。これにより、予
想通り窒素加工においても準暴走状態特有の加工速度の
向上が見られる。また、空気加工の方が遥かに準暴走状
態における加工速度が大きい。ところで、純酸素加工も
行なったが、放電電流値の振幅Ip=4という非常に小
さな値にしても、酸化反応が激しく生じて暴走状態に至
ってしまい、別の制御の必要性を伺わせた。
Next, regarding the processing of titanium and titanium alloy materials, titanium is considered to be a difficult material to be processed regardless of cutting or electric discharge machining. A problem with electric discharge machining is that the machining speed is slow. The reason for this is that titanium has a sticky property, and short-circuiting occurs frequently due to the buildup of discharge marks, leading to a reduction in processing speed. In addition, titanium is an element having a very high affinity with nitrogen, and it is considered that a quasi-runaway state can be obtained by violently causing a chemical reaction with nitrogen instead of oxygen. If quasi-runaway machining with nitrogen is possible, it is less dangerous and advantageous than using oxygen. Therefore, the copper block electrode was used as a cathode and the anode was processed using a titanium pipe work piece (φ 9 mm, wall thickness 0.5 mm). Here, the processing conditions were discharge current Ip = 40 A and discharge pulse width τON = 40 μs. The processing speed when the supply gas is nitrogen and air is shown in FIG. As a result, as expected, an improvement in the processing speed peculiar to the quasi-runaway state can be seen even in the nitrogen processing. Further, the air processing has a much higher processing speed in the quasi-runaway state. By the way, pure oxygen processing was also performed, but even with a very small value of the discharge current value amplitude Ip = 4, the oxidation reaction occurred violently, leading to a runaway state, suggesting the necessity of another control.

【0024】以上述べてきたように、本発明の気中放電
加工方法は、未だ研究開発途上ではあるが、中加工以上
の荒加工における加工速度を格段に増大させ得るもので
あって従来形の石油系の加工液を使用する放電加工方法
に対し、仕上げ加工条件でも電極消耗が殆ど無く加工速
度も大きい等の特徴を有する気中放電加工を、仕上げ加
工から荒加工までの全加工条件にわたって実用可能とす
る可能性を有する有用な発明である。
As described above, the air electric discharge machining method of the present invention is still in the research and development stage, but it is capable of significantly increasing the machining speed in rough machining of medium machining or more, and is of a conventional type. Practical use of aerial electrical discharge machining, which has characteristics such as almost no electrode consumption even under finishing conditions and high machining speed, in comparison with electrical discharge methods that use petroleum-based machining fluids, over all machining conditions from finishing to rough machining. It is a useful invention that has the potential to make it possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の気中放電加工方法を実施する一実施例
装置の全体構成の説明図である。
FIG. 1 is an explanatory diagram of an overall configuration of an apparatus for carrying out an air-electric discharge machining method of the present invention.

【図2】気中放電加工における異なる放電パルスの条件
(電圧パルス幅τON(μs)に対する放電電流振幅値
Ip(A))と、その電圧パルス間休止時間τOFF
(μs)小さくして行なったとき(デューティ・ファク
タを大きくして行なったとき)の、加工速度と放電状態
の説明図。
FIG. 2 shows different discharge pulse conditions (discharge current amplitude value Ip (A) with respect to voltage pulse width τON (μs)) in air-discharge processing, and a pause time τOFF between the voltage pulses.
(Μs) Explanatory drawing of a machining speed and an electric discharge state when it is made small (when the duty factor is made large).

【図3】前記図2において、加工媒体として使用する気
体中の被加工体材と化学反応をするガスの含有割合が相
違したときの、加工速度と放電状態の比較説明図。
FIG. 3 is a comparative explanatory diagram of the machining speed and the discharge state when the content ratio of the gas that chemically reacts with the workpiece material in the gas used as the machining medium in FIG. 2 is different.

【図4】本発明の気中放電加工の加工条件を、被加工体
の形状加工に適用した場合の加速度と電極消耗率を、従
来形の液中加工のそれと対比して示した図。
FIG. 4 is a diagram showing the acceleration and the electrode wear rate when the machining conditions of the air electric discharge machining of the present invention are applied to the shape machining of a workpiece, in comparison with those of the conventional submerged machining.

【図5】本発明の気中放電加工方法を、鉄材以外の材料
銅に適用した場合の可能性を説明するための加工速度特
性図。
FIG. 5 is a machining speed characteristic diagram for explaining the possibility of applying the air electric discharge machining method of the present invention to copper other than iron material.

【図6】図5と同じく、他の材料チタン材に適用した場
合の可能性を説明するための加工速度特性図。
FIG. 6 is a machining speed characteristic diagram for explaining the possibility when applied to another material titanium material, similar to FIG.

【符号の説明】[Explanation of symbols]

1 :加工電極 2 :チャック 3 :回転装置 4 :加工ベッド 5 :送りねじ 6 :サーボモータ 7 :位置検出装置 8 :回転速度検出装置 9 :被加工体 10 :温度制御板兼加工テーブル 11 :クロステーブル 12、13:x、y各軸サーボモータ 14 :サーボモータ駆動装置 15 :CNC制御装置 16 :放電加工用パルス電源 17 :直流電源 18 :スイッチ素子 19 :電流制限荒源 20 :電圧パルス条件設定装置 21 :ダイオード 22 :放電加工状態検出装置 23 :圧縮気体供給装置 24 :エア・ドライヤ 25 :減圧調整弁 26 :混合調整手段 27 :温度センサ 28 :温度制御装置 1: Processing electrode 2: Chuck 3: Rotating device 4: Processing bed 5: Feed screw 6: Servo motor 7: Position detection device 8: Rotational speed detector 9: Workpiece 10: Temperature control plate and processing table 11: Cross table 12, 13: x, y axis servo motors 14: Servo motor drive device 15: CNC control device 16 : Pulse power supply for electrical discharge machining 17: DC power supply 18: Switch element 19: Current limiting source 20: Voltage pulse condition setting device 21: Diode 22: EDM state detection device 23: Compressed gas supply device 24: Air dryer 25: Pressure reducing adjustment valve 26: Mixing adjusting means 27: Temperature sensor 28: Temperature control device

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3C059 AA01 AB01 CG02 CG04 CG07 CG08    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 3C059 AA01 AB01 CG02 CG04 CG07                       CG08

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 加工電極と被加工体とを微小間隙を隔て
て相対向させ、前記間隙に被加工体材と化学反応をする
ガスを含有する気体を強制的に流通せしめた状態で、両
者間に休止時間τOFFを置いて間歇的な電圧パルスを
印加して繰り返し放電パルスを発生させると共に、両者
間に前記対向方向および/または前記対向方向と直角な
平面方向の相対的な加工送りを与えて、被加工体に高速
荒加工の加工条件の加工をする気中放電加工方法におい
て、 前記放電パルスのパルス幅τON(μs)と放電電流振
幅値Ip(A)との積が、より大きい放電パルスを、よ
り大きいデューティ・ファクタ(τON/τON+τO
FF)となる休止時間τOFF条件で供給して発生さ
せ、前記放電間隙における供給ガスと被加工体材との化
学反応が連続して生ずるようになって連続アーク放電状
態となる直前の準連続アーク放電状態であって、被加工
体材の加工除去量が急増変化する遷移領域の加工条件を
保って前記の気中放電加工を継続させることを特徴とす
る気中放電加工方法。
1. A machining electrode and a work piece are opposed to each other with a minute gap therebetween, and a gas containing a gas that chemically reacts with the work piece material is forced to flow through the gap. Intermittent voltage pulses are applied with a pause time τOFF between them to repeatedly generate discharge pulses, and a relative machining feed in the opposing direction and / or a plane direction perpendicular to the opposing direction is applied between them. In the air electric discharge machining method for machining a workpiece under machining conditions of high speed rough machining, the product of the pulse width τON (μs) of the discharge pulse and the discharge current amplitude value Ip (A) is larger Pulse to a larger duty factor (τON / τON + τO
FF), a quasi-continuous arc immediately before a continuous arc discharge state occurs by supplying and generating under a rest time τ OFF condition, and a chemical reaction between the supply gas and the workpiece material continuously occurs in the discharge gap. An aerial electrical discharge machining method, characterized in that the aforesaid electrical discharge machining is continued in a discharge state while maintaining the processing conditions in a transition region where the amount of machining removal of the workpiece material changes rapidly.
【請求項2】 前記放電パルスは、さらにパルス幅に対
する放電電流振幅値の比(Ip/τON衝撃値)が0.
5より大きい放電パルスであって、デューティ・ファク
タが0.80よりも大きい休止時間条件で供給されるも
のであることを特徴とする請求項1に記載の気中放電加
工方法。
2. The discharge pulse has a ratio of discharge current amplitude value to pulse width (Ip / τON impact value) of 0.
The electric discharge machining method according to claim 1, wherein the electric discharge pulse is larger than 5 and is supplied under a pause time condition in which the duty factor is larger than 0.80.
【請求項3】 前記間隙に流通介在せしめられる気体中
の被加工体材と化学反応をするガスの含有割合を変更し
て前記放電状態の遷移領域を制御することを特徴とする
請求項1、または2に記載の気中放電加工方法。
3. The transition region of the discharge state is controlled by changing the content ratio of the gas that chemically reacts with the workpiece material in the gas that is circulated in the gap. Or the electric discharge machining method described in 2.
【請求項4】 前記被加工体の温度を、供給ガスと被加
工体材との反応が連続化する前の放電状態が前記遷移領
域にあるように冷却制御することを特徴とする請求項
1、2、または3に記載の気中放電加工方法。
4. The cooling control of the temperature of the object to be processed is performed so that the discharge state before the reaction between the supply gas and the material to be processed is continuous is in the transition region. 2. The electric discharge machining method according to 2, or 3.
【請求項5】 前記被加工体材と化学反応するガスが、
被加工体材が鉄材であるときに酸素で、チタン材である
とき酸素と窒素の両方または何れか一方とすることを特
徴とする請求項1、2、3、または4に記載の気中放電
加工方法。
5. The gas that chemically reacts with the workpiece material,
5. The air discharge according to claim 1, wherein the material to be processed is oxygen when it is an iron material, and oxygen and / or nitrogen when it is a titanium material. Processing method.
JP2001271332A 2001-09-07 2001-09-07 Air EDM method Expired - Fee Related JP4530591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001271332A JP4530591B2 (en) 2001-09-07 2001-09-07 Air EDM method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001271332A JP4530591B2 (en) 2001-09-07 2001-09-07 Air EDM method

Publications (2)

Publication Number Publication Date
JP2003080419A true JP2003080419A (en) 2003-03-18
JP4530591B2 JP4530591B2 (en) 2010-08-25

Family

ID=19096855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001271332A Expired - Fee Related JP4530591B2 (en) 2001-09-07 2001-09-07 Air EDM method

Country Status (1)

Country Link
JP (1) JP4530591B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4956295A (en) * 1972-09-30 1974-05-31
JPS513096A (en) * 1974-06-24 1976-01-12 Inoue Japax Res KICHUHODENKAKOHOHO
JPS5135273B1 (en) * 1969-07-24 1976-10-01
JPS5459697A (en) * 1977-10-20 1979-05-14 Inoue Japax Res Inc Electric discharge machining method
JPH09239622A (en) * 1996-03-02 1997-09-16 Sodick Co Ltd Aerial electric dischage machining method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5135273B1 (en) * 1969-07-24 1976-10-01
JPS4956295A (en) * 1972-09-30 1974-05-31
JPS513096A (en) * 1974-06-24 1976-01-12 Inoue Japax Res KICHUHODENKAKOHOHO
JPS5459697A (en) * 1977-10-20 1979-05-14 Inoue Japax Res Inc Electric discharge machining method
JPH09239622A (en) * 1996-03-02 1997-09-16 Sodick Co Ltd Aerial electric dischage machining method

Also Published As

Publication number Publication date
JP4530591B2 (en) 2010-08-25

Similar Documents

Publication Publication Date Title
Bhattacharyya et al. Electrochemical micro-machining: new possibilities for micro-manufacturing
US10259062B2 (en) Pulse and gap control for electrical discharge machining equipment
JP2004209637A (en) Multi-axis numerical control electromechanical machining of bladed disk
US6744002B1 (en) Method and apparatus for electrodischarge wire machining
JPH09239622A (en) Aerial electric dischage machining method
JPH027772B2 (en)
JP2003080419A (en) Aerial discharge working method
KR0167091B1 (en) Laser processing method
WO2002034444A1 (en) Power supply for wire electric discharge machining
US6903297B2 (en) Wire electric-discharge machining method and device
WO2002064299A1 (en) Method and apparatus for electrodischarge wire machining
JPWO2003061890A1 (en) Electric discharge machining method and apparatus
JP2006102828A (en) Method and apparatus for gaseous electric discharge machining
JP3799962B2 (en) Surface treatment method for improving chipping resistance
JPH10225824A (en) Discharge surface treatment method, and treatment device
JP2559219B2 (en) Perforation electric discharge machine
JPWO2002034443A1 (en) Wire electric discharge machine
JP2004216496A (en) Aerial discharge machining method
Brar Optimization of machining parameters in dry EDM of EN31 steel
JPH05195258A (en) Plasma etching device
JP2000343334A (en) Deburring device
JPH05185326A (en) Thin hole discharge machining device
WO2002000383A1 (en) Method of electrodischarge wire machining
Dawankar et al. Development and Experimental Investigation of Dry Electric Discharge Machining Process (EDM Process)
JPH025528B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100610

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100608

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees