JP2003080071A - Catalyst for selectively oxidizing hydrogen and method for dehydrogenating hydrocarbon using the same - Google Patents

Catalyst for selectively oxidizing hydrogen and method for dehydrogenating hydrocarbon using the same

Info

Publication number
JP2003080071A
JP2003080071A JP2001276199A JP2001276199A JP2003080071A JP 2003080071 A JP2003080071 A JP 2003080071A JP 2001276199 A JP2001276199 A JP 2001276199A JP 2001276199 A JP2001276199 A JP 2001276199A JP 2003080071 A JP2003080071 A JP 2003080071A
Authority
JP
Japan
Prior art keywords
catalyst
gas
group
hydrogen
dehydrogenation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001276199A
Other languages
Japanese (ja)
Other versions
JP4048746B2 (en
Inventor
Shin Wajiki
伸 和食
Takahito Nishiyama
貴人 西山
Tomoatsu Iwakura
具敦 岩倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2001276199A priority Critical patent/JP4048746B2/en
Publication of JP2003080071A publication Critical patent/JP2003080071A/en
Application granted granted Critical
Publication of JP4048746B2 publication Critical patent/JP4048746B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PROBLEM TO BE SOLVED: To obtain a catalyst useful for selectively oxidizing hydrogen in a gas containing hydrogen formed by the dehydrogenation reaction of hydrocarbons, hydrocarbons being the raw material and produced unsaturated hydrocarbons. SOLUTION: The solid catalyst contains an element selected from the group of copper and silver of group 11 of the periodic table as an active component and an element selected from the group of antimony and bismuth of group 15 of the periodic table, and is substantially free from elements of the platinum group.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は水素及び炭化水素を
含有するガス中の水素を、酸素で選択的に接触酸化する
ための非白金族系触媒に関するものである。また本発明
は、炭化水素、水素及び酸素を含有するガスを、この触
媒と接触させてガス中の水素を選択的に酸化する方法に
関するものである。
TECHNICAL FIELD The present invention relates to a non-platinum group catalyst for selectively catalytically oxidizing hydrogen in a gas containing hydrogen and hydrocarbons with oxygen. The present invention also relates to a method of bringing a gas containing hydrocarbon, hydrogen and oxygen into contact with this catalyst to selectively oxidize hydrogen in the gas.

【0002】[0002]

【従来の技術】炭化水素をガス状で脱水素触媒に接触さ
せて、オレフィン性不飽和結合を有する炭化水素を製造
することは公知である。例えばスチレンの主たる製造方
法は、エチルベンゼンをガス状で鉄系の脱水素触媒と接
触させて脱水素する方法である。しかしながら、この脱
水素反応は吸熱反応なので、反応の進行と共にガスの温
度が低下する。また、脱水素反応は平衡反応なので、副
生する水素が反応の進行を阻害する。これらの理由によ
り、エチルベンゼンからスチレンへの脱水素反応を高い
反応率で行うことは困難である。
It is known to contact hydrocarbons in gaseous form with a dehydrogenation catalyst to produce hydrocarbons having olefinically unsaturated bonds. For example, the main production method of styrene is a method of dehydrogenating ethylbenzene in a gaseous state by contacting it with an iron-based dehydrogenation catalyst. However, since this dehydrogenation reaction is an endothermic reaction, the temperature of the gas decreases as the reaction progresses. Further, since the dehydrogenation reaction is an equilibrium reaction, hydrogen produced as a by-product hinders the progress of the reaction. For these reasons, it is difficult to carry out the dehydrogenation reaction of ethylbenzene to styrene at a high reaction rate.

【0003】この困難を回避する方法として、脱水素反
応により生成したスチレン、水素及び未反応エチルベン
ゼンを含むガスに、酸素含有ガスを混合して酸化触媒と
接触させ、ガス中の水素を選択的に酸化したのち、再び
脱水素触媒と接触させることが検討されている。この方
法によれば、水素の選択的酸化により反応物の温度が上
昇し、かつ反応の進行を阻害する水素が除去されるの
で、後続する脱水素反応を有利に進行させることができ
る。
As a method for avoiding this difficulty, a gas containing styrene, hydrogen and unreacted ethylbenzene produced by the dehydrogenation reaction is mixed with an oxygen-containing gas and brought into contact with an oxidation catalyst to selectively hydrogen the gas. After oxidation, it is considered to contact with a dehydrogenation catalyst again. According to this method, the temperature of the reaction product is raised by the selective oxidation of hydrogen, and hydrogen that inhibits the progress of the reaction is removed, so that the subsequent dehydrogenation reaction can be advantageously progressed.

【0004】[0004]

【発明が解決しようとする課題】脱水素反応により生成
したガス中の水素を選択的に酸化する触媒としては、一
般に白金族元素を活性成分とするものが好ましいとされ
ており、白金族元素を含む触媒が多数提案されている。
しかしながら、白金族元素は産出量が少なくて極めて高
価なので、白金族元素を含まずに、しかも白金族元素を
含むものと同等の性能を有する触媒が求められている。
本発明はこのような要求に応えようとするものである。
As a catalyst for selectively oxidizing hydrogen in a gas produced by a dehydrogenation reaction, it is generally said that a catalyst containing a platinum group element as an active component is preferable. Many catalysts have been proposed to include.
However, since the platinum group element is small in production and extremely expensive, there is a demand for a catalyst that does not contain the platinum group element and has the same performance as that containing the platinum group element.
The present invention seeks to meet such demands.

【0005】[0005]

【課題を解決するための手段】本発明によれば、活性成
分として元素の周期律表第11族の銅及び銀より成る群
から選ばれた元素と、第15族のアンチモン及びビスマ
スより成る群から選ばれた元素とを含有し、白金族元素
を実質的に含有していない触媒に、炭化水素、水素及び
酸素を含有するガスを接触させることにより、炭化水素
と共存している水素を選択的に酸化することができる。
According to the present invention, an element selected from the group consisting of copper and silver of Group 11 of the Periodic Table of Elements as an active ingredient, and the group consisting of antimony and bismuth of Group 15 of the periodic table. The hydrogen coexisting with the hydrocarbon is selected by bringing the catalyst containing the element selected from the above and containing substantially no platinum group element into contact with the gas containing the hydrocarbon, hydrogen and oxygen. Can be oxidised.

【0006】[0006]

【発明の実施の形態】本発明に係る水素の選択的酸化触
媒は、活性成分として周期律表第11族及び第15族の
元素を含んでいる。第11族の元素としては銅又は銀を
用いるが、特に銅を用いるのが好ましい。所望ならば銅
と銀を併用することもできる。第15族の元素としては
アンチモン又はビスマスを用いるが、ビスマスを用いる
のが好ましい。第15族元素も所望ならばアンチモンと
ビスマスを併用してもよい。
BEST MODE FOR CARRYING OUT THE INVENTION The hydrogen selective oxidation catalyst according to the present invention contains elements of Groups 11 and 15 of the Periodic Table as active components. Copper or silver is used as the Group 11 element, and copper is particularly preferably used. If desired, copper and silver can be used together. Antimony or bismuth is used as the Group 15 element, but bismuth is preferably used. If the Group 15 element is desired, antimony and bismuth may be used in combination.

【0007】触媒には、これらの活性成分に加えて、触
媒活性の適正化及び触媒強度の向上を計るため、耐熱性
無機担体を併用することもできる。耐熱性無機担体とし
てはアルミナ、シリカ、チタニア、酸化ニオブ、酸化タ
ンタルなどを用いるのが好ましいが、これら以外の耐熱
性無機担体、例えば酸化ゲルマニウム、酸化スズ、酸化
ガリウムなどを用いることもできる。所望ならば耐熱性
無機担体はいくつかを併用してもよい。アルミナとして
はγ−アルミナやα−アルミナなどを用いるが、特にα
−アルミナを用いるのが好ましい。シリカ及びチタニア
は結晶性でも無定形であってもよい。酸化ニオブとして
は五酸化ニオブを用いるのが好ましい。耐熱性無機担体
として最も好ましいのはα−アルミナ又は五酸化ニオブ
である。
In addition to these active ingredients, the catalyst may be used in combination with a heat-resistant inorganic carrier in order to optimize the catalytic activity and improve the catalyst strength. As the heat-resistant inorganic carrier, alumina, silica, titania, niobium oxide, tantalum oxide and the like are preferably used, but heat-resistant inorganic carriers other than these, such as germanium oxide, tin oxide and gallium oxide, can also be used. If desired, some heat resistant inorganic carriers may be used in combination. As the alumina, γ-alumina or α-alumina is used, but especially α
-Preference is given to using alumina. Silica and titania may be crystalline or amorphous. As niobium oxide, niobium pentoxide is preferably used. Most preferred as the heat-resistant inorganic carrier is α-alumina or niobium pentoxide.

【0008】触媒は活性成分である第11族元素を0.
001〜10重量%、特に0.05〜5重量%含有して
いるのが好ましい。第11族元素の含有率が低いと触媒
性能が低下する傾向がある。逆に第11族元素の含有率
が10重量%を超えて高くなっても触媒性能には殆んど
影響しない。第11族元素の触媒中での存在形態は不明
であるが、1価又は2価の酸化物として存在するものと
考えられる。一部は0価、すなわち金属として存在する
ことも考えられる。
The catalyst contains a Group 11 element, which is an active ingredient, in an amount of 0.
It is preferable to contain 001 to 10% by weight, particularly 0.05 to 5% by weight. When the content of the Group 11 element is low, the catalytic performance tends to be low. On the contrary, even if the content of the Group 11 element exceeds 10% by weight and becomes high, the catalyst performance is hardly affected. The form of the Group 11 element existing in the catalyst is unknown, but it is considered that it exists as a monovalent or divalent oxide. It is also considered that a part of them is zero-valent, that is, it exists as a metal.

【0009】触媒中の第15族元素の含有量は0.1重
量%以上であるのが好ましい。第15族元素は3〜5価
の状態で存在しているものと考えられるが、アンチモン
は4価又は5価の酸化物として、ビスマスは5価の酸化
物として存在しているのが好ましいと考えられる。触媒
の調製は常法により行うことができる。例えば第15族
元素の化合物を焼成して酸化物とし、次いでこれに第1
1族元素の無機酸塩や有機酸塩を含む溶液を含浸させて
乾燥・焼成することにより触媒を調製することができ
る。また担体付触媒の場合には、前述の耐熱性無機担体
に第15族元素の化合物を含む溶液を含浸させて乾燥・
焼成し、次いでこれに第11族元素の化合物を含む溶液
を含浸させて乾燥・焼成することにより触媒を調製する
ことができる。担体への第15族元素と第11族元素の
担持順序は任意であり、担持操作を交互に複数回行った
り、両者を同時に担持させることもできる。また、所望
ならば第11族元素を担持させたのち、水素その他の還
元剤で処理してもよい。
The content of the Group 15 element in the catalyst is preferably 0.1% by weight or more. The Group 15 element is considered to exist in a trivalent to pentavalent state, but it is preferable that antimony exists as a tetravalent or pentavalent oxide and bismuth exists as a pentavalent oxide. Conceivable. The catalyst can be prepared by a conventional method. For example, a compound of a Group 15 element is fired to form an oxide, which is then
The catalyst can be prepared by impregnating with a solution containing an inorganic acid salt or an organic acid salt of a Group 1 element, followed by drying and firing. In the case of a catalyst with a carrier, the heat-resistant inorganic carrier is impregnated with a solution containing a compound of Group 15 element and dried.
A catalyst can be prepared by calcining, and then impregnating a solution containing a compound of the Group 11 element with the solution and drying and calcining. The order of loading the Group 15 element and the Group 11 element on the carrier is arbitrary, and the loading operation may be alternately performed a plurality of times, or both may be loaded simultaneously. If desired, the Group 11 element may be supported and then treated with hydrogen or another reducing agent.

【0010】本発明に係る触媒を用いる水素の選択的酸
化反応は、通常300〜800℃で行われる。これより
も温度が低いと選択性はあまり変化しないが活性が低下
する。逆に温度が高過ぎると活性は向上するが選択性が
低下する。好ましい反応温度は400〜700℃であ
る。反応圧力は減圧から若干加圧、特に0.0049〜
0.98MPaが好ましい。反応に供するガス中の水素
に対する酸素の比率は、化学量論量ないしはそれ以下と
するのが好ましい。この場合、酸素が全量消費されると
触媒上にコーキングが起こることがあるが、水素の選択
的酸化反応の障害とはならない。
The selective oxidation reaction of hydrogen using the catalyst according to the present invention is usually carried out at 300 to 800 ° C. When the temperature is lower than this, the selectivity does not change so much, but the activity decreases. On the contrary, if the temperature is too high, the activity is improved but the selectivity is decreased. The preferred reaction temperature is 400-700 ° C. The reaction pressure is from reduced pressure to slightly increased pressure, especially from 0.0049 to
0.98 MPa is preferable. The ratio of oxygen to hydrogen in the gas used for the reaction is preferably a stoichiometric amount or less. In this case, although coking may occur on the catalyst when the oxygen is completely consumed, it does not hinder the selective oxidation reaction of hydrogen.

【0011】本発明に係る触媒を用いる水素の選択的酸
化反応の代表的なプロセスでは、先ず脱水素触媒を充填
した第1脱水素反応器に、原料の炭化水素を好ましくは
水蒸気との混合物として高温で供給して、脱水素反応を
生起させる。脱水素反応器から流出した反応生成ガスは
酸素含有ガス、例えば空気を混合して、本発明に係る触
媒を充填した酸化反応器に供給し、水素を選択的に酸化
すると共に反応熱によりガス温度を上昇させる。酸化反
応器から流出した反応生成ガスは、次いで脱水素触媒を
充填した第2脱水素反応器に供給し、残存している原料
炭化水素を脱水素する。なお第2脱水素反応器から流出
した反応生成ガスは、更に酸素含有ガスを混合したのち
第2酸化反応器及び第3脱水素反応器を順次通過させる
ことにより、原料炭化水素の反応率を更に向上させるこ
ともできる。脱水素反応に供する原料炭化水素としては
脱水素により炭素−炭素二重結合を形成し得る任意のも
のを用い得るが、エチルベンゼン、ジエチルベンゼン、
エチルナフタレン、ジエチルナフタレンなどのような、
脱水素可能な炭化水素置換基を有する芳香族化合物を用
いるのが好ましい。特に好ましいのはエチルベンゼンで
あり、常用の鉄系脱水素触媒を充填した脱水素反応器
と、本発明に係る活性成分として第11族元素と第15
族元素とを含有し、かつ白金族元素を実質的に含有しな
い酸化触媒を充填した酸化反応器とを組合せて2〜5段
階の脱水素反応を行わせることにより、エチルベンゼン
から高収率でスチレンを製造することができる。
In a typical process for the selective oxidation of hydrogen using a catalyst according to the present invention, first of all, a first dehydrogenation reactor filled with a dehydrogenation catalyst is mixed with a hydrocarbon as a raw material, preferably as a mixture with steam. Supply at high temperature to cause dehydrogenation reaction. The reaction product gas flowing out from the dehydrogenation reactor is mixed with an oxygen-containing gas such as air and supplied to an oxidation reactor filled with the catalyst according to the present invention to selectively oxidize hydrogen and to generate gas temperature by reaction heat. Raise. The reaction product gas flowing out from the oxidation reactor is then supplied to a second dehydrogenation reactor filled with a dehydrogenation catalyst to dehydrogenate the remaining raw material hydrocarbons. The reaction product gas flowing out from the second dehydrogenation reactor is further mixed with an oxygen-containing gas and then sequentially passed through the second oxidation reactor and the third dehydrogenation reactor to further increase the reaction rate of the raw material hydrocarbons. It can also be improved. As the raw material hydrocarbon to be subjected to the dehydrogenation reaction, any one that can form a carbon-carbon double bond by dehydrogenation can be used, but ethylbenzene, diethylbenzene,
Like ethylnaphthalene, diethylnaphthalene, etc.,
It is preferred to use aromatic compounds having dehydrogenatable hydrocarbon substituents. Particularly preferred is ethylbenzene, a dehydrogenation reactor filled with a conventional iron-based dehydrogenation catalyst, and a Group 11 element and a Group 15 element as active ingredients according to the present invention.
Styrene is obtained in high yield from ethylbenzene by performing a dehydrogenation reaction in 2 to 5 stages in combination with an oxidation reactor containing a group-group element and substantially not containing a platinum-group element. Can be manufactured.

【0012】[0012]

【実施例】以下に実施例により本発明を更に具体的に説
明する。 実施例1 触媒の調製;銅として0.04gの硝酸銅と、ビスマス
として0.04gの硝酸ビスマスとを、8gの35%硝
酸水溶液に溶解して、銅及びビスマスを含有する溶液を
調製した。この溶液をロータリーエバポレーターに入
れ、これに直径3mmの球状のα−アルミナを加えた。
減圧下、60℃に1時間保持して水を蒸発させ、銅及び
ビスマスをα−アルミナに担持させた。このα−アルミ
ナを乾燥器に入れ120℃で3時間乾燥したのち、大気
中で650℃にて3時間焼成し、Cu−Bi/α−Al
23触媒を調製した。
EXAMPLES The present invention will be described in more detail with reference to the following examples. Example 1 Preparation of catalyst: 0.04 g of copper nitrate as copper and 0.04 g of bismuth nitrate as bismuth were dissolved in 8 g of 35% nitric acid aqueous solution to prepare a solution containing copper and bismuth. This solution was put into a rotary evaporator, and spherical α-alumina having a diameter of 3 mm was added thereto.
The mixture was kept at 60 ° C. under reduced pressure for 1 hour to evaporate water, and copper and bismuth were supported on α-alumina. This α-alumina was placed in a drier and dried at 120 ° C. for 3 hours, and then calcined in the air at 650 ° C. for 3 hours to obtain Cu-Bi / α-Al.
A 2 O 3 catalyst was prepared.

【0013】反応;内径6.7mmの石英製反応管に、
触媒とほぼ同粒径の石英チップを充填し、その上に上記
で調製した触媒2mlを充填し、更にその上に上記の石
英チップを充填した。この反応管に、10%の水素を含
む水素−窒素混合ガスを600℃で30分間通して、触
媒の還元処理を行った。次いで反応管に、エチルベンゼ
ン、スチレン、水蒸気、水素、酸素及び窒素を1:0.
4:11.5:0.43:0.18:0.69(モル
比)で含む原料ガスを、常圧下、580℃、SV=65
50hr-1(0℃、1気圧換算)で通して、水素を選択
的に酸化した。反応管流出ガスは冷却器で冷却して可凝
縮成分を凝縮させた。反応開始2時間後に反応管出口ガ
ス及び受器の凝縮液をガスクロマトグラフィーで分析し
た。その結果、酸素反応率は100%で、水素転化率4
0.9%、スチレン及びエチルベンゼン燃焼率1.2%
であった。なお、スチレン及びエチルベンゼン燃焼率と
は、反応管に供給したスチレン及びエチルベンゼンの合
計モル数に対する反応で消失したスチレン及びエチルベ
ンゼンの合計モル数の百分率である。
Reaction: In a quartz reaction tube having an inner diameter of 6.7 mm,
A quartz chip having a particle size substantially the same as that of the catalyst was filled, 2 ml of the catalyst prepared above was filled therein, and the above quartz chip was further filled therein. A hydrogen-nitrogen mixed gas containing 10% hydrogen was passed through the reaction tube at 600 ° C. for 30 minutes to reduce the catalyst. Next, ethylbenzene, styrene, steam, hydrogen, oxygen and nitrogen were added to the reaction tube at 1: 0.
A raw material gas containing 4: 11.5: 0.43: 0.18: 0.69 (molar ratio) was added under normal pressure at 580 ° C. and SV = 65.
Hydrogen was selectively oxidized by passing at 50 hr −1 (0 ° C., 1 atm conversion). The reaction tube outflow gas was cooled by a cooler to condense the condensable components. Two hours after the start of the reaction, the reaction tube outlet gas and the condensate of the receiver were analyzed by gas chromatography. As a result, the oxygen conversion rate was 100% and the hydrogen conversion rate was 4%.
0.9%, styrene and ethylbenzene combustion rate 1.2%
Met. The styrene and ethylbenzene burning rate is the percentage of the total number of moles of styrene and ethylbenzene lost in the reaction with respect to the total number of moles of styrene and ethylbenzene supplied to the reaction tube.

【0014】比較例1 銅として0.04gの硝酸銅を含有する水溶液8gをロ
ータリーエバポレーターに入れ、これに直径3mmの球
状のα−アルミナを加えた。減圧下、60℃に1時間保
持して水を蒸発させ、銅をα−アルミナに担持させた。
このα−アルミナを乾燥器に入れ120℃で3時間乾燥
したのち、大気中で650℃にて3時間焼成し、Cu/
α−Al23触媒を調製した。この触媒を用いた以外は
実施例1と同様にして水素の酸化反応を行った。反応開
始2時間後に反応管出口ガス及び受器の凝縮液をガスク
ロマトグラフィーで分析した。その結果、酸素反応率は
100%で、水素転化率10.5%、スチレン及びエチ
ルベンゼン燃焼率1.5%であった。
Comparative Example 1 8 g of an aqueous solution containing 0.04 g of copper nitrate as copper was placed in a rotary evaporator, and spherical α-alumina having a diameter of 3 mm was added thereto. The mixture was kept under reduced pressure at 60 ° C. for 1 hour to evaporate water, and copper was supported on α-alumina.
This α-alumina was placed in a drier and dried at 120 ° C. for 3 hours, and then calcined in the air at 650 ° C. for 3 hours to obtain Cu /
An α-Al 2 O 3 catalyst was prepared. The hydrogen oxidation reaction was carried out in the same manner as in Example 1 except that this catalyst was used. Two hours after the start of the reaction, the reaction tube outlet gas and the condensate of the receiver were analyzed by gas chromatography. As a result, the oxygen conversion rate was 100%, the hydrogen conversion rate was 10.5%, and the styrene and ethylbenzene combustion rate was 1.5%.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岩倉 具敦 三重県四日市市東邦町1番地 三菱化学株 式会社四日市事業所内 Fターム(参考) 4G069 AA02 AA03 BA01A BA01B BB02A BB02B BC24A BC25A BC25B BC26A BC30A BC31A BC31B BC32A CB07 CB18 CD10 EA02Y EB18Y FC08 4H006 AA02 AC12 BA05 BA13 BA19 BD20 BD60 4H039 CA21 CC10    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Totsuru Iwakura             1 Toho-cho, Yokkaichi-shi, Mie Mitsubishi Chemical Corporation             Ceremony company Yokkaichi office F-term (reference) 4G069 AA02 AA03 BA01A BA01B                       BB02A BB02B BC24A BC25A                       BC25B BC26A BC30A BC31A                       BC31B BC32A CB07 CB18                       CD10 EA02Y EB18Y FC08                 4H006 AA02 AC12 BA05 BA13 BA19                       BD20 BD60                 4H039 CA21 CC10

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 活性成分として、元素の周期律表第11
族の銅及び銀より成る群から選ばれた元素と、第15族
のアンチモン及びビスマスより成る群から選ばれた元素
とを含有し、白金族元素を実質的に含有していないこと
を特徴とする、水素及び炭化水素を含有するガス中の水
素を酸素で選択的に接触酸化するための触媒。
1. A periodic table of elements of No. 11 as an active ingredient.
Characterized by containing an element selected from the group consisting of copper and silver of Group 15 and an element selected from the group consisting of antimony and bismuth of Group 15 and containing substantially no platinum group element A catalyst for selectively catalytically oxidizing hydrogen in a gas containing hydrogen and hydrocarbon with oxygen.
【請求項2】 触媒全体に占める第11族の銅及び銀よ
り成る群から選ばれた元素の割合が0.001〜10重
量%であることを特徴とする請求項1記載の触媒。
2. The catalyst according to claim 1, wherein the proportion of the element selected from the group consisting of copper and silver of Group 11 in the whole catalyst is 0.001 to 10% by weight.
【請求項3】 触媒全体に占める第15族のアンチモン
及びビスマスより成る群から選ばれた元素の割合が、
0.1重量%以上であることを特徴とする請求項1又は
2記載の触媒。
3. The proportion of an element selected from the group consisting of Group 15 antimony and bismuth in the whole catalyst is
The catalyst according to claim 1 or 2, wherein the content is 0.1% by weight or more.
【請求項4】 活性成分として銅及びビスマスを含有し
ていることを特徴とする請求項1ないし3のいずれかに
記載の触媒。
4. The catalyst according to claim 1, which contains copper and bismuth as active components.
【請求項5】 耐熱性無機担体を含有していることを特
徴とする請求項1ないし4のいずれかに記載の触媒。
5. The catalyst according to claim 1, which contains a heat-resistant inorganic carrier.
【請求項6】 請求項1ないし5のいずれかに記載の触
媒に、炭化水素、水素及び酸素を含有するガスを接触さ
せて、ガス中の水素を選択的に酸化することを特徴とす
る、炭化水素と共存する水素の選択的酸化方法。
6. The catalyst according to claim 1 is contacted with a gas containing hydrocarbon, hydrogen and oxygen to selectively oxidize hydrogen in the gas. Method for selective oxidation of hydrogen coexisting with hydrocarbon.
【請求項7】 炭化水素、水素及び酸素を含有するガス
を300〜800℃で触媒と接触させることを特徴とす
る請求項6記載の水素の選択的酸化方法。
7. The method for selective oxidation of hydrogen according to claim 6, wherein a gas containing hydrocarbon, hydrogen and oxygen is brought into contact with the catalyst at 300 to 800 ° C.
【請求項8】 原料炭化水素を含むガスを脱水素触媒と
接触させて未反応の原料炭化水素、脱水素された炭化水
素及び水素を含むガスを生成させる第1脱水素工程、第
1脱水素工程から流出したガスに酸素含有ガスを混合し
たのち請求項1ないし5のいずれかに記載の触媒と接触
させてガス中の水素を選択的に酸化する酸化工程、及び
酸化工程から流出したガスを脱水素触媒と接触させてガ
ス中の原料炭化水素の脱水素を行う第2脱水素工程の3
工程を少なくとも含むことを特徴とする炭化水素の脱水
素方法。
8. A first dehydrogenation step of contacting a gas containing a raw material hydrocarbon with a dehydrogenation catalyst to produce a gas containing an unreacted raw material hydrocarbon, dehydrogenated hydrocarbon and hydrogen, a first dehydrogenation step. An oxygen-containing gas is mixed with the gas flowing out of the process, and then the catalyst is brought into contact with the catalyst according to claim 1 to selectively oxidize hydrogen in the gas. 3 of the second dehydrogenation step of dehydrogenating the raw material hydrocarbons in the gas in contact with the dehydrogenation catalyst
A hydrocarbon dehydrogenation method comprising at least a step.
【請求項9】 エチルベンゼンを含むガスを脱水素触媒
と接触させてエチルベンゼン、スチレン及び水素を含む
ガスを生成させる第1脱水素工程、第1脱水素工程から
流出したガスに酸素含有ガスを混合したのち請求項1な
いし5のいずれかに記載の触媒と接触させてガス中の水
素を選択的に酸化する酸化工程、及び酸化工程から流出
したガスを脱水素触媒と接触させてガス中のエチルベン
ゼンをスチレンに脱水素する第2脱水素工程の3工程を
少なくとも含むことを特徴とするエチルベンゼンの脱水
素によるスチレンの製造方法。
9. A first dehydrogenation step of bringing a gas containing ethylbenzene into contact with a dehydrogenation catalyst to produce a gas containing ethylbenzene, styrene and hydrogen, and mixing the oxygen-containing gas with the gas flowing out from the first dehydrogenation step. Then, the oxidation step of contacting the catalyst according to any one of claims 1 to 5 to selectively oxidize hydrogen in the gas, and the gas discharged from the oxidation step is contacted with a dehydrogenation catalyst to remove ethylbenzene in the gas. A method for producing styrene by dehydrogenation of ethylbenzene, comprising at least three steps of a second dehydrogenation step of dehydrogenating to styrene.
JP2001276199A 2001-09-12 2001-09-12 Catalyst for selectively oxidizing hydrogen, and hydrocarbon dehydrogenation method using the same Expired - Lifetime JP4048746B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001276199A JP4048746B2 (en) 2001-09-12 2001-09-12 Catalyst for selectively oxidizing hydrogen, and hydrocarbon dehydrogenation method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001276199A JP4048746B2 (en) 2001-09-12 2001-09-12 Catalyst for selectively oxidizing hydrogen, and hydrocarbon dehydrogenation method using the same

Publications (2)

Publication Number Publication Date
JP2003080071A true JP2003080071A (en) 2003-03-18
JP4048746B2 JP4048746B2 (en) 2008-02-20

Family

ID=19100940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001276199A Expired - Lifetime JP4048746B2 (en) 2001-09-12 2001-09-12 Catalyst for selectively oxidizing hydrogen, and hydrocarbon dehydrogenation method using the same

Country Status (1)

Country Link
JP (1) JP4048746B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010535208A (en) * 2007-08-03 2010-11-18 ウーデ ゲゼルシャフト ミット ベシュレンクテル ハフツング Regeneration of catalyst for dehydration of alkanes
WO2013114781A1 (en) * 2012-02-02 2013-08-08 Jnc株式会社 Method for producing lower ester

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010535208A (en) * 2007-08-03 2010-11-18 ウーデ ゲゼルシャフト ミット ベシュレンクテル ハフツング Regeneration of catalyst for dehydration of alkanes
WO2013114781A1 (en) * 2012-02-02 2013-08-08 Jnc株式会社 Method for producing lower ester

Also Published As

Publication number Publication date
JP4048746B2 (en) 2008-02-20

Similar Documents

Publication Publication Date Title
JP4185024B2 (en) Catalyst and method for alkane dehydrogenation
JP4933397B2 (en) Integrated catalyst process for converting alkanes to alkenes and catalysts useful in the process
JP5350897B2 (en) Hybrid autothermal catalytic process for the conversion of alkanes to alkenes and catalysts useful therefor
JP2001525246A (en) Catalysts for converting paraffinic hydrocarbons to the corresponding olefins
JP2003053190A5 (en)
JP3912077B2 (en) Hydrogen selective oxidation catalyst, hydrogen selective oxidation method, and hydrocarbon dehydrogenation method
JP4346823B2 (en) Catalyst for oxidation of ethane to acetic acid
CA2534872A1 (en) Catalyst composition and use thereof in ethane oxidation
JP4048746B2 (en) Catalyst for selectively oxidizing hydrogen, and hydrocarbon dehydrogenation method using the same
AU779630B2 (en) Process for the production of olefins
EP1240121B1 (en) Process for the production of olefins
JP3969030B2 (en) Catalyst for selectively oxidizing hydrogen and hydrocarbon dehydrogenation method using the same
EP1240120B8 (en) Process for the production of olefins
DK171414B1 (en) Process for hydrocarbon dehydrogenation
JP3794235B2 (en) Hydrogen selective oxidation catalyst, hydrogen selective oxidation method, and hydrocarbon dehydrogenation method
JP3801352B2 (en) Method for producing oxidation catalyst, oxidation catalyst, and hydrocarbon dehydrogenation method
JP3912074B2 (en) Hydrogen selective oxidation catalyst, hydrogen selective oxidation method, and hydrocarbon dehydrogenation method
JP2000005599A (en) Selective oxidation catalyst of hydrogen, selective oxidizing method of hydrogen and dehydrogenating method of hydrocarbon
JPH0987213A (en) Dehydrogenation of hydrocarbon
TH63588A (en) Catalyst for oxidation or amoxidation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071119

R151 Written notification of patent or utility model registration

Ref document number: 4048746

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term