JP2003080003A - Device for crystallizing by low pressure steam - Google Patents

Device for crystallizing by low pressure steam

Info

Publication number
JP2003080003A
JP2003080003A JP2001278686A JP2001278686A JP2003080003A JP 2003080003 A JP2003080003 A JP 2003080003A JP 2001278686 A JP2001278686 A JP 2001278686A JP 2001278686 A JP2001278686 A JP 2001278686A JP 2003080003 A JP2003080003 A JP 2003080003A
Authority
JP
Japan
Prior art keywords
steam
temperature
pressure
tank
crystallization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001278686A
Other languages
Japanese (ja)
Inventor
Tetsuya Mita
哲也 見田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TLV Co Ltd
Original Assignee
TLV Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TLV Co Ltd filed Critical TLV Co Ltd
Priority to JP2001278686A priority Critical patent/JP2003080003A/en
Publication of JP2003080003A publication Critical patent/JP2003080003A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a device for crystallizing by low pressure steam, which is able to improve the production efficiency and the quality of a crystal by crystallizing with a large amount of heat of the steam. SOLUTION: A pressure control valve 19 is connected to a steam supplying pipe 15 and a jacket part 6 of a crystallization tank 1 is connected to the steam supplying pipe 15 through a temperature control valve 23. Further, an ejector- type combined pump 16 as a sucking means is connected to the lower part of the jacket part 6 through a communication pipe 25. To the communication pipe 25, a steam trap 27 and a bypath valve 28 are attached. The ejector-type combined pump 16 is constituted by communicating an ejector 26, a tank 31 and a circulation pump 32. The inside of the jacket part 6 is maintained at about atmospheric pressure or a pressure lower than the atmospheric pressure by the ejector-type combined pump 16, and the crystallization tank 1 is heated by steam of about 100 deg.C or of a temperature lower than 100 deg.C.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、食塩やショ糖など
の食品から肥料や医薬品、あるいは希土類等の結晶を分
離生成する晶析装置に関し、特に、加熱源として低圧の
蒸気を用いる晶析装置に関する。 【0002】 【従来の技術】従来の晶析装置は、例えば図2に示すも
のが用いられていた。図2において、晶析を行う晶析槽
1と、この晶析槽1に加熱用の温水を供給する温水タン
ク2と温水ポンプ3、温水ポンプ3の出口側に設けたイ
ンラインミキサー4と、インラインミキサー4に蒸気を
供給する蒸気供給管5からなり、インラインミキサー4
で温水と蒸気が混合されて所定温度の温水となって晶析
槽1の外周を覆うジャケット部6へ供給され、槽1内の
被晶析物を加熱して晶析を行うものである。 【0003】ジャケット部6で加熱により熱を奪われた
温水は管路7とバルブ8を通って再び温水タンク2に至
り、ポンプ3でインラインミキサー4へ送られて循環す
る。温水タンク2には、循環水補給管9を接続すると共
に、インラインミキサー4とジャケット部6の間に温度
センサ10を取り付けて蒸気供給管5のバルブ11の開
閉度合を制御することによって、ジャケット部6へ供給
する温水の温度を所定温度にコントロールするものであ
る。 【0004】 【発明が解決しようとする課題】上記従来の晶析装置で
は、加熱源として温水を使用しているために、装置の初
期の立ち上げに長時間を要する問題、並びに、晶析工程
中に何らかの外乱等によって被晶析物が温度変化を生じ
た場合に、元の設定温度に戻るのに比較的長い時間を要
してしまう問題があった。晶析工程において長時間を要
することは、生産効率の低下につながり、設定温度の不
安定性は結晶品質、例えば、粒径や粒径分布や純度等、
の低下につながるのである。 【0005】温水は熱量として顕熱のみを保有してお
り、その保有熱量が小さいために、装置の初期の立ち上
げや一旦温度変化を生じた後に元の温度に戻るのに時間
を要するのである。一方、蒸気は熱量として潜熱を保有
するためにその保有熱量が温水と比較して格段に大きく
なる。 【0006】本発明の課題は、蒸気の保有する大きな熱
量で晶析を行うことによって、生産効率が向上し、且
つ、結晶品質の向上を図ることのできる晶析装置を得る
ことである。 【0007】 【課題を解決するための手段】上記の課題を解決するた
めに講じた手段は、晶析槽に被晶析物を収容し、当該被
晶析物を加熱部から加熱して晶析を行うものにおいて、
加熱部に蒸気供給管を接続すると共に、加熱部に吸引手
段を接続して、当該吸引手段で加熱部内を大気圧程度又
は大気圧以下の低圧状態に維持することによって、被晶
析物を低圧蒸気で加熱するものである。 【0008】 【発明の実施の形態】加熱部に蒸気供給管と吸引手段を
接続して、晶析槽内の被晶析物を低圧蒸気で加熱するこ
とができることによって、低圧蒸気、即ち、温水と同様
の温度で保有熱量の大きな蒸気で加熱することができ、
晶析生産効率の向上及び結晶品質の向上を図ることがで
きる。 【0009】蒸気、より正確には飽和蒸気は、その圧力
と温度が一義的に定まる。通常大気圧での蒸気の温度は
100度Cであり、大気圧以上の圧力では100度Cを
越え、大気圧以下の真空圧力状態では100度C以下の
温度となる。従って、吸引手段で大気圧以下の圧力状態
とすることによって、蒸気での加熱温度を100度C以
下とすることができる。 【0010】 【実施例】本実施例は図1に示すように、晶析槽1の外
周に且つ一体に加熱部としてのジャケット部6を設け
て、このジャケット部6へ蒸気供給管15と吸引手段1
6を接続した例を示す。 【0011】晶析槽1は円筒タンク状で内部に図示しな
い希土類元素等を含む被晶析物を収容する。晶析槽1の
上部には、槽1内の温度を検出する温度センサ17を取
り付けると共に、槽1内へ沈殿剤を供給する沈殿剤タン
ク18を接続する。また、晶析槽1の側方外周の全周を
覆うジャケット部6を一体に設ける。 【0012】ジャケット部6の上方に蒸気供給管15を
接続する。蒸気供給管15には、圧力制御弁19と復水
供給管20と気液分離セパレータ21と圧力センサ2
2、及び、温度制御弁23とを順次に配置する。圧力制
御弁19と平行にバイパス弁24を取り付ける。圧力セ
ンサ22は圧力制御弁19と電気的に接続する。また、
晶析槽1の上部に取り付けた温度センサ17は温度制御
弁23と電気的に接続する。 【0013】ジャケット部6の下方に連通管25を介し
て、吸引手段16のエゼクタ26と接続する。連通管2
5には、蒸気の凝縮した復水だけを出口側に排出して蒸
気は排出することのないスチームトラップ27と、その
バイパス弁28を平行に取り付ける。連通管25はその
下端がエゼクタ26の吸引室29と接続する。また、連
通管25の下端部には、気液分離セパレータ21から垂
下する復水管30が合流する。 【0014】吸引手段16は本実施例ではエゼクタ26
とタンク31と循環ポンプ32を組み合わせたエゼクタ
式組み合わせポンプとする。タンク31内に循環流体、
通常は常温の水、を所定量溜め置き、この水を循環ホン
プ32でエゼクタ26からタンク31へと循環させてエ
ゼクタ26の吸引作用によって吸引室29に吸引力を発
生して、晶析槽1のジャケット部6内を所定の圧力状
態、即ち、大気圧や大気圧以下の負圧状態、に維持する
ものである。 【0015】タンク31には循環流体補給管33を、バ
ルブ34を介して接続する。エゼクタ26で生じる吸引
力は、エゼクタ26内を流下する流体の温度に相当する
飽和圧力となることから、循環流体補給管33から流体
を補給して流体温度を適宜調節することによって、エゼ
クタ26の吸引力を任意に制御することができるもので
ある。 【0016】例えば、ジャケット部6内に80度Cの低
温蒸気を供給して、被晶析物を加熱する場合、エゼクタ
26の吸引力が80度Cより僅かに低い温度における蒸
気の飽和圧力に相当する圧力の吸引力となるように、循
環流体の温度を調節することにより、所定の温度状態を
維持することができる。循環流体の温度を下げて、エゼ
クタ26の吸引圧力を低くすることにより、加熱蒸気温
度を更に低くすることもできる。 【0017】吸引手段16の循環路14を分岐して余剰
流体排出管35とバルブ36を取り付ける。バルブ36
を開弁することによって、タンク31内の余剰流体を系
外に排出することができるものである。 【0018】循環路14を更に分岐して循環流体取り出
し管37を接続する。循環流体取り出し管37はバルブ
38を介して復水供給管20と連通することによって、
循環流体の一部即ち復水を復水供給管20から蒸気供給
管15内へ噴射して、蒸気供給管15内の蒸気の温度を
飽和温度まで低下させる。 【0019】蒸気供給管15内の蒸気と復水の混合流体
は、気液分離セパレータ21で蒸気と復水が分離され、
復水が復水管30からエゼクタ26に吸引され、一方、
復水の分離された飽和温度の蒸気は温度制御弁23から
ジャケット部6へ供給される。 【0020】晶析槽1内の被晶析物を加熱して晶析を行
う場合、まず、バイパス弁28を開弁すると共に、エゼ
クタ式組み合わせポンプ16を駆動してエゼクタ26の
吸引力によってジャケット部6内を所定の低圧力状態と
する。更に圧力制御弁19と温度制御弁23から所定圧
力・温度の加熱用蒸気をジャケット部6内に供給するこ
とにより、ジャケット部6や晶析槽1が初期の立ち上げ
時で常温まで温度が低下していても蒸気の保有する大き
な熱量で加熱することにより、短時間で所定温度まで上
昇して、立ち上げ時間を短縮することができる。 【0021】ジャケット部6が所定温度になると、晶析
槽1内で晶析が行われる。被晶析物を加熱して熱を奪わ
れた蒸気は凝縮して復水となり、連通管25とスチーム
トラップ27又はバイパス弁28からエゼクタ26に吸
引されタンク31に至る。尚、バイパス弁28は、晶析
を実施している間は全閉状態とすることも、あるいは、
微開状態とすることもできるものである。 【0022】沈殿剤タンク18から晶析槽1内へ沈殿剤
を供給して晶析を行う場合、沈殿剤は一般的に常温程度
と温度が低いために、槽1内へ沈殿剤が供給されると槽
1内の温度が設定温度から1度乃至数度C程度直ちに低
下してしまう。このように外乱によって設定温度が変化
しても、温度センサ17でその温度変化を検出して温度
制御弁23の開度を調節して供給蒸気量を制御すること
により、蒸気の保有する大きな熱量によって変化した温
度を極めて僅かな時間遅れでもって設定温度に戻すこと
ができる。 【0023】本実施例のように希土類の晶析を行う場
合、従来の温水加熱に替えて蒸気加熱とすることによっ
て、設定温度の不安定性が無くなって結晶の粒度分布が
鋭くなり、即ち、結晶の粒径分布のバラツキが小さくな
って所定の粒径範囲に収まる結晶量が多くなり、製品と
して使用することのできる結晶をより多く生産すること
ができ、生産効率を格段に向上させることができる。 【0024】 【発明の効果】本発明の低圧蒸気による晶析装置では、
晶析槽の加熱部に加熱用の蒸気供給管と吸引手段を接続
して、晶析槽内の被晶析物を低圧蒸気で加熱することに
よって、蒸気の大きな保有熱量で加熱することができ、
晶析生産効率の向上及び結晶品質の向上を図ることがで
きる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a crystallization apparatus for separating and producing crystals such as fertilizers, pharmaceuticals, and rare earths from foods such as salt and sucrose. The present invention relates to a crystallizer using low-pressure steam as a source. 2. Description of the Related Art For example, a conventional crystallization apparatus shown in FIG. 2 has been used. In FIG. 2, a crystallization tank 1 for performing crystallization, a hot water tank 2 for supplying hot water for heating to the crystallization tank 1, a hot water pump 3, an inline mixer 4 provided at an outlet side of the hot water pump 3, A steam supply pipe 5 for supplying steam to the mixer 4;
The hot water and the steam are mixed to form hot water of a predetermined temperature, supplied to the jacket portion 6 covering the outer periphery of the crystallization tank 1, and the crystallization target is heated in the tank 1 for crystallization. [0003] The hot water deprived of heat by the heating in the jacket 6 reaches the hot water tank 2 again through the pipe 7 and the valve 8, is sent to the in-line mixer 4 by the pump 3 and circulates. A circulating water supply pipe 9 is connected to the hot water tank 2, and a temperature sensor 10 is attached between the in-line mixer 4 and the jacket section 6 to control the degree of opening and closing of the valve 11 of the steam supply pipe 5 so that the jacket section is opened. The temperature of the hot water supplied to 6 is controlled to a predetermined temperature. [0004] In the above-mentioned conventional crystallization apparatus, since warm water is used as a heating source, it takes a long time to start up the apparatus at an early stage, and a crystallization process is required. If the crystallized material undergoes a temperature change due to some disturbance or the like, there is a problem that it takes a relatively long time to return to the original set temperature. The long time required in the crystallization process leads to a decrease in production efficiency, and the instability of the set temperature causes the crystal quality, for example, particle size, particle size distribution, purity, etc.
It leads to a decrease in [0005] Warm water retains only sensible heat as a calorie, and since the retained calorie is small, it takes time to start up the apparatus or return to the original temperature after a temperature change has occurred once. . On the other hand, since steam has latent heat as a calorific value, its retained calorific value is much larger than that of hot water. An object of the present invention is to provide a crystallizer capable of improving production efficiency and improving crystal quality by performing crystallization with a large amount of heat held by steam. Means taken to solve the above problem are as follows. A crystallization tank contains an object to be crystallized, and the object to be crystallized is heated from a heating unit. In the analysis,
A vapor supply pipe is connected to the heating unit, and a suction unit is connected to the heating unit, and the inside of the heating unit is maintained at a low pressure state of about atmospheric pressure or less than atmospheric pressure by the suction unit, thereby lowering the pressure of the crystallized substance. It is heated by steam. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS By connecting a steam supply pipe and a suction means to a heating section to heat an object to be crystallized in a crystallization tank with low-pressure steam, low-pressure steam, ie, hot water It can be heated with steam having a large amount of heat at the same temperature as
The crystallization production efficiency and the crystal quality can be improved. [0009] Steam, more precisely saturated steam, is uniquely determined by its pressure and temperature. Usually, the temperature of steam at atmospheric pressure is 100 ° C., the temperature exceeds 100 ° C. at a pressure higher than the atmospheric pressure, and the temperature is 100 ° C. or lower at a vacuum pressure lower than the atmospheric pressure. Therefore, the heating temperature of the steam can be set to 100 ° C. or less by setting the suction unit to a pressure state equal to or lower than the atmospheric pressure. In this embodiment, as shown in FIG. 1, a jacket 6 as a heating unit is provided on the outer periphery of the crystallization tank 1 and integrally therewith. Means 1
6 is connected. The crystallization tank 1 has a cylindrical tank shape and contains a crystallized substance containing a rare earth element (not shown) therein. At the upper part of the crystallization tank 1, a temperature sensor 17 for detecting the temperature in the tank 1 is attached, and a precipitant tank 18 for supplying a precipitant into the tank 1 is connected. In addition, a jacket portion 6 that covers the entire periphery of the lateral outer periphery of the crystallization tank 1 is provided integrally. A steam supply pipe 15 is connected above the jacket 6. The steam supply pipe 15 has a pressure control valve 19, a condensate supply pipe 20, a gas-liquid separation separator 21, and a pressure sensor 2.
2, and the temperature control valve 23 are sequentially arranged. A bypass valve 24 is attached in parallel with the pressure control valve 19. The pressure sensor 22 is electrically connected to the pressure control valve 19. Also,
The temperature sensor 17 mounted on the upper part of the crystallization tank 1 is electrically connected to the temperature control valve 23. An ejector 26 of the suction means 16 is connected to a lower portion of the jacket 6 through a communication pipe 25. Communication pipe 2
5, a steam trap 27 which discharges only the condensed water in which the steam is condensed to the outlet side and does not discharge the steam, and a bypass valve 28 thereof are attached in parallel. The lower end of the communication tube 25 is connected to the suction chamber 29 of the ejector 26. A condensate pipe 30 hanging from the gas-liquid separation separator 21 joins the lower end of the communication pipe 25. In this embodiment, the suction means 16 is an ejector 26.
And an ejector-type combination pump in which the tank 31 and the circulation pump 32 are combined. Circulating fluid in the tank 31,
Normally, a predetermined amount of normal-temperature water is stored, and the water is circulated from the ejector 26 to the tank 31 by the circulation pump 32 to generate a suction force in the suction chamber 29 by the suction action of the ejector 26, and the crystallization tank 1 Is maintained at a predetermined pressure state, that is, an atmospheric pressure or a negative pressure lower than the atmospheric pressure. A circulating fluid supply pipe 33 is connected to the tank 31 via a valve 34. Since the suction force generated by the ejector 26 becomes a saturation pressure corresponding to the temperature of the fluid flowing down in the ejector 26, the fluid is replenished from the circulating fluid replenishing pipe 33 and the fluid temperature is appropriately adjusted, so that the ejector 26 The suction force can be arbitrarily controlled. For example, when a low-temperature steam of 80 ° C. is supplied into the jacket portion 6 to heat the material to be crystallized, the suction force of the ejector 26 is reduced to the saturation pressure of the steam at a temperature slightly lower than 80 ° C. A predetermined temperature state can be maintained by adjusting the temperature of the circulating fluid so that a suction force of a corresponding pressure is obtained. By lowering the temperature of the circulating fluid to lower the suction pressure of the ejector 26, the temperature of the heated steam can be further reduced. The circulation path 14 of the suction means 16 is branched and a surplus fluid discharge pipe 35 and a valve 36 are attached. Valve 36
By opening the valve, the excess fluid in the tank 31 can be discharged out of the system. The circulation path 14 is further branched, and a circulation fluid take-out pipe 37 is connected. The circulating fluid outlet pipe 37 communicates with the condensate supply pipe 20 via a valve 38,
A part of the circulating fluid, that is, condensate is injected from the condensate supply pipe 20 into the steam supply pipe 15 to lower the temperature of the steam in the steam supply pipe 15 to the saturation temperature. The mixed fluid of steam and condensate in the steam supply pipe 15 is separated into steam and condensate by a gas-liquid separation separator 21.
Condensate is drawn from the condensate pipe 30 to the ejector 26, while
The separated saturated steam is supplied from the temperature control valve 23 to the jacket 6. When crystallization is performed by heating the material to be crystallized in the crystallization tank 1, first, the bypass valve 28 is opened, and the ejector type combination pump 16 is driven to activate the jacket by the suction force of the ejector 26. The inside of the section 6 is set to a predetermined low pressure state. Further, by supplying heating steam of a predetermined pressure and temperature from the pressure control valve 19 and the temperature control valve 23 into the jacket portion 6, the temperature of the jacket portion 6 and the crystallization tank 1 is lowered to room temperature at the initial startup. Even if the heating is performed, by heating with a large amount of heat held by the steam, the temperature can be raised to a predetermined temperature in a short time and the startup time can be shortened. When the temperature of the jacket 6 reaches a predetermined temperature, crystallization is performed in the crystallization tank 1. The vapor whose heat has been removed by heating the crystallized substance is condensed and condensed, and is condensed. The vapor is sucked into the ejector 26 from the communication pipe 25 and the steam trap 27 or the bypass valve 28 and reaches the tank 31. In addition, the bypass valve 28 may be in a fully closed state during crystallization, or
It can also be in a slightly open state. When crystallization is carried out by supplying a precipitant from the precipitant tank 18 into the crystallization tank 1, the precipitant is supplied into the tank 1 because the temperature of the precipitant is generally as low as room temperature. Then, the temperature in the tank 1 immediately drops by about 1 degree to several degrees C from the set temperature. As described above, even if the set temperature changes due to disturbance, the temperature sensor 17 detects the change in temperature and adjusts the opening of the temperature control valve 23 to control the amount of steam supplied. Can be returned to the set temperature with a very slight time delay. When crystallization of a rare earth element is carried out as in this embodiment, steam heating is used in place of the conventional hot water heating, thereby eliminating the instability of the set temperature and sharpening the crystal particle size distribution. The variation in the particle size distribution of the particles is small, and the amount of crystals falling within a predetermined particle size range increases, so that more crystals that can be used as a product can be produced, and the production efficiency can be significantly improved. . According to the crystallization apparatus using low-pressure steam of the present invention,
By connecting a heating steam supply pipe and suction means to the heating section of the crystallization tank and heating the crystallization target in the crystallization tank with low-pressure steam, it can be heated with a large amount of retained heat of steam. ,
The crystallization production efficiency and the crystal quality can be improved.

【図面の簡単な説明】 【図1】本発明の低温蒸気による晶析装置の実施例を示
す構成図。 【図2】従来例の晶析装置を示す構成図。 【符号の説明】 1 晶析槽 6 ジャケット部 15 蒸気供給管 16 吸引手段 17 温度センサ 19 圧力制御弁 21 気液分離セパレータ 23 温度制御弁 26 エゼクタ 31 タンク 32 循環ポンプ
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a configuration diagram showing an embodiment of a low-temperature steam crystallization apparatus of the present invention. FIG. 2 is a configuration diagram showing a conventional crystallization apparatus. [Description of Signs] 1 Crystallization tank 6 Jacket section 15 Steam supply pipe 16 Suction means 17 Temperature sensor 19 Pressure control valve 21 Gas-liquid separation separator 23 Temperature control valve 26 Ejector 31 Tank 32 Circulation pump

Claims (1)

【特許請求の範囲】 【請求項1】 晶析槽に被晶析物を収容し、当該被晶析
物を加熱部から加熱して晶析を行うものにおいて、加熱
部に蒸気供給管を接続すると共に、加熱部に吸引手段を
接続して、当該吸引手段で加熱部内を大気圧程度又は大
気圧以下の低圧状態に維持することによって、被晶析物
を低圧蒸気で加熱することを特徴とする低圧蒸気による
晶析装置。
Claims 1. A crystallization tank containing an object to be crystallized and heating the object to be crystallized from a heating section, wherein a steam supply pipe is connected to the heating section. At the same time, the suction means is connected to the heating unit, and the inside of the heating unit is maintained at a low pressure of about atmospheric pressure or less than the atmospheric pressure by the suction means, thereby heating the crystallized substance with low-pressure steam. Crystallization equipment using low pressure steam.
JP2001278686A 2001-09-13 2001-09-13 Device for crystallizing by low pressure steam Pending JP2003080003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001278686A JP2003080003A (en) 2001-09-13 2001-09-13 Device for crystallizing by low pressure steam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001278686A JP2003080003A (en) 2001-09-13 2001-09-13 Device for crystallizing by low pressure steam

Publications (1)

Publication Number Publication Date
JP2003080003A true JP2003080003A (en) 2003-03-18

Family

ID=19103015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001278686A Pending JP2003080003A (en) 2001-09-13 2001-09-13 Device for crystallizing by low pressure steam

Country Status (1)

Country Link
JP (1) JP2003080003A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101810937A (en) * 2010-04-08 2010-08-25 葫芦岛辉宏有色金属有限公司 Device for preventing crystallization blockage of discharge hole of salt crystallizer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0979513A (en) * 1995-09-14 1997-03-28 Tlv Co Ltd Low-pressure steam heater by heating medium
JP2000072436A (en) * 1998-09-04 2000-03-07 Mitsubishi Chemicals Corp Production of coarse ammonium sulfate crystal
JP2001136909A (en) * 1999-11-16 2001-05-22 Tlv Co Ltd Steam-heating apparatus for food

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0979513A (en) * 1995-09-14 1997-03-28 Tlv Co Ltd Low-pressure steam heater by heating medium
JP2000072436A (en) * 1998-09-04 2000-03-07 Mitsubishi Chemicals Corp Production of coarse ammonium sulfate crystal
JP2001136909A (en) * 1999-11-16 2001-05-22 Tlv Co Ltd Steam-heating apparatus for food

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101810937A (en) * 2010-04-08 2010-08-25 葫芦岛辉宏有色金属有限公司 Device for preventing crystallization blockage of discharge hole of salt crystallizer
CN101810937B (en) * 2010-04-08 2012-11-28 葫芦岛辉宏有色金属有限公司 Device for preventing crystallization blockage of discharge hole of salt crystallizer

Similar Documents

Publication Publication Date Title
CN108159721B (en) Tryptophan TVR evaporating, concentrating and crystallizing system and method for concentrating and crystallizing by using system
CN105056565B (en) Device and method for evaporation and crystallization of sodium gluconate solution
CN106390496A (en) Energy-saving evaporation equipment of mixed salt solution and control method of equipment
CN106422399A (en) Energy-efficient evaporative concentration and crystallization system for salt solution and control method of system
EP0631799B1 (en) Vacuum concentrating plant
JP2844295B2 (en) Vacuum concentrator
US2793941A (en) Apparatus for growing crystals
JP2003080003A (en) Device for crystallizing by low pressure steam
US4009045A (en) Continuous crystallization process and apparatus
CN106422385A (en) Energy-saving vaporization system for calcium nitrate solution and control method thereof
JP2001082845A (en) Vaporization cooling device
CN211676336U (en) Pharmacy enrichment facility
US2863740A (en) Crystal growing system
CN204034313U (en) A kind of gluconic acid sodium salt crystallization apparatus of efficient, energy-conservation, continuous discharge
US2686712A (en) Apparatus for growing crystals
US2346517A (en) Method of crystallizing material
CN215538451U (en) High-efficient enrichment facility of controllable material temperature of being heated
JP2000004790A (en) Concentration of candy and device therefor
GB835659A (en) Crystallisation apparatus and method of operating the same
CN215691801U (en) Mannitol crystallization auxiliary device
US2472562A (en) Art of dehydrating effervescent liquids
CN218589717U (en) Vacuum type continuous evaporation crystallization device
JPH06300205A (en) Steam heating apparatus
JPS6075300A (en) Method and equipment for continuously producing sugar crystal from sugar solution
CN106975238A (en) A kind of multiple flash evaporation crystallizer of evaporation equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111027

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120724