JP2003075622A - Diffraction grating, method for processing diffraction grating and optical element - Google Patents

Diffraction grating, method for processing diffraction grating and optical element

Info

Publication number
JP2003075622A
JP2003075622A JP2001268577A JP2001268577A JP2003075622A JP 2003075622 A JP2003075622 A JP 2003075622A JP 2001268577 A JP2001268577 A JP 2001268577A JP 2001268577 A JP2001268577 A JP 2001268577A JP 2003075622 A JP2003075622 A JP 2003075622A
Authority
JP
Japan
Prior art keywords
diffraction grating
grating
optical element
groove
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001268577A
Other languages
Japanese (ja)
Other versions
JP2003075622A5 (en
Inventor
Atsuo Inoue
篤郎 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2001268577A priority Critical patent/JP2003075622A/en
Publication of JP2003075622A publication Critical patent/JP2003075622A/en
Publication of JP2003075622A5 publication Critical patent/JP2003075622A5/ja
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a diffraction grating manufactured by mechanical processing with high accuracy, to provide a method for processing the diffraction grating and to provide an optical element which uses the diffraction grating. SOLUTION: A material of Ge single crystal or Si single crystal is used and grating grooves 2a, 2b to 2n are formed on the (111) plane of the crystal orientation by a fly cut method by using a diamond cutting tool.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、切削加工により製
作した回折格子とその加工方法、および回折格子を用い
た光学要素に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a diffraction grating manufactured by cutting, a method of processing the same, and an optical element using the diffraction grating.

【0002】[0002]

【従来の技術】一般に、回折格子は回折する光の性質に
より、透過型回折格子と反射型回折格子とに分けられて
いる。さらに、格子が配列されている基板の形状により
平面回折格子と凹面回折格子に分けることができる。
2. Description of the Related Art Generally, a diffraction grating is divided into a transmission type diffraction grating and a reflection type diffraction grating depending on the property of diffracted light. Further, it can be divided into a plane diffraction grating and a concave diffraction grating depending on the shape of the substrate on which the gratings are arranged.

【0003】透過型回折格子は、格子溝面を透過する光
の回折を利用するものであり、一方、反射型回折格子
は、平面あるいは凹面の基板上に格子溝を配列し、反射
回折光を利用する回折格子である。
The transmission type diffraction grating utilizes diffraction of light transmitted through the surface of the grating groove, while the reflection type diffraction grating arranges the grating grooves on a flat or concave substrate to reflect the reflected diffraction light. This is the diffraction grating used.

【0004】平面回折格子は、平面基板上に格子構を配
列した回折格子であり、スぺクトルの分光機能をもつ
が、通常結像機能はもたない。そのため、平面回折格子
を使用する分光光学系では、スぺクトル結像のための補
助光学素子の使用が必要不可欠となっている。これに対
して、凹面回折格子は、通常、凹型球面基盤上に格子溝
を配列した回折格子であり、スぺクトルの分散と結像の
両機能を合わせもつ。
The plane diffraction grating is a diffraction grating in which a grating structure is arranged on a plane substrate and has a spectrum spectral function, but usually does not have an image forming function. Therefore, in a spectroscopic optical system using a plane diffraction grating, it is essential to use an auxiliary optical element for spectrum imaging. On the other hand, the concave diffraction grating is usually a diffraction grating in which grating grooves are arranged on a concave spherical substrate, and has both the function of spectrum dispersion and the function of image formation.

【0005】また、位相型回折格子は、格子溝形状を鋸
歯型(ブレーズ型)、正弦波型、矩形波状等にすること
により、格子の1周期内で入射光に位相差を与え、回折
光強度特性を用途に合わせて選択できるようにした回折
格子である。
Further, the phase type diffraction grating gives a phase difference to the incident light within one period of the grating by making the grating groove shape into a sawtooth shape (blaze type), a sine wave shape, a rectangular wave shape, etc. This is a diffraction grating whose intensity characteristics can be selected according to the application.

【0006】単結晶Geや単結晶Siは、赤外光学材料
として優れた特性を有しているので、位相型回折格子用
いられることがある。このうち、ブレーズ型回折格子は
三角断面の格子溝をもった位相型回折格子で、通常、砥
石を用いた研削加工やダイヤモンドバイトを用いたシェ
ービング加工により所定断面形状の格子溝による刻線を
順次形成して製作されている。
Since single crystal Ge and single crystal Si have excellent characteristics as an infrared optical material, they may be used as a phase type diffraction grating. Among them, the blazed type diffraction grating is a phase type diffraction grating having a grating groove of a triangular cross section, and usually, a carving line with a grating groove of a predetermined sectional shape is sequentially formed by grinding using a grindstone or shaving using a diamond cutting tool. Formed and manufactured.

【0007】[0007]

【発明が解決しようとする課題】上述のように、単結晶
Geや単結晶Siの結晶材料によるブレーズ型回折格子
を砥石を用いた機械加工で製作する場合、加工において
は結晶材料特有の脆性モ一ド加工面が優勢となりやす
く、光学素子に要求される形状精度、寸法精度および表
面粗さを得るために、延性モードの加工条件での加工を
実現することが課題となっている。
As described above, when a blazed diffraction grating made of a crystal material such as single crystal Ge or single crystal Si is manufactured by machining using a grindstone, the brittleness peculiar to the crystal material is used. The surface to be machined tends to be dominant, and in order to obtain the shape accuracy, the dimensional accuracy, and the surface roughness required for the optical element, it is an issue to realize the processing under the processing conditions in the ductility mode.

【0008】これまでに行われた実験から、延性モード
と脆性モードとの境界には臨界切り取り厚さが存在する
こと、臨界切り取り厚さは結晶の滑り面の結晶方位と加
工面との関係、結晶軸と切削方向との関係、結晶軸と切
削力方向(工具すくい角と切削方向に依存する)との関
係に依存することが知られている。
From the experiments conducted so far, it was found that there is a critical cut thickness at the boundary between the ductile mode and the brittle mode, and the critical cut thickness is the relationship between the crystal orientation of the sliding surface of the crystal and the processed surface, It is known to depend on the relationship between the crystal axis and the cutting direction and the relationship between the crystal axis and the cutting force direction (depending on the tool rake angle and the cutting direction).

【0009】例えば、加工面を(111)面とし、切削
方向を(111)面内とし工具すくい角を‐20°〜‐
40°とした場合、延性モードの臨界切り取り厚さは
0.1μmであり、全ての切削方向で延性モードとなる
回折格子の機械加工法には、単結晶ダイヤモンドバイト
を工具とする超精密切削加工と、ダイヤモンド砥石など
を工具とする超精密研削加工が考えられる。
For example, the machined surface is the (111) surface, the cutting direction is in the (111) surface, and the tool rake angle is -20 ° to-.
When the angle is 40 °, the critical cutting thickness in ductile mode is 0.1 μm, and for the diffraction grating machining method that becomes ductile mode in all cutting directions, ultra-precision cutting using a single crystal diamond tool as a tool Then, ultra-precision grinding using a diamond grindstone etc. as a tool can be considered.

【0010】前者では、回折格子溝面の分散方向(溝直
交方向)断面形状を有する総型の単結晶ダイヤモンドバ
イトを工具とし工具を分散直交方向(溝方向)と並進運
動させてその形状を転写させるシェービング方式が一般
的である。シェービング加工では数μm〜数+μmの回
折格子溝の溝深さそのものを最大切り取り厚さとする
か、あるいは、臨界切り取り厚さ以下の最大切り取り厚
さを設定して、数十回〜数百回の加工を繰り返すことが
必要となり、結晶材料の延性モード加工は実現不可能で
あった。
In the former case, the shape is transferred by translating the tool in the dispersion orthogonal direction (groove direction) by using a tool of a single crystal diamond tool of a general shape having a cross-sectional shape of the diffraction grating groove surface in the dispersion direction (direction orthogonal to the groove). The shaving method is generally used. In the shaving process, the groove depth itself of several μm to several + μm is set as the maximum cutting thickness, or the maximum cutting thickness less than the critical cutting thickness is set, and the tens of times to several hundreds of times are set. It was necessary to repeat the processing, and ductile mode processing of the crystalline material was impossible.

【0011】後者では、砥石の断面形状が回折格子の溝
面の分散方向(溝直交方向)断面形状に転写されるた
め、砥石の断面形状を回折格子溝面の分散方向(溝直交
方向)断面形状であるV字型に整形(ツルーイング)す
る必要がある。しかし、砥石を構成する砥粒の直径は最
も小さな#20000のものでも1〜2μmであり、ま
た。砥粒間をボンドが埋めていることから、砥石断面先
端の曲率半径を10μm程度以下とすることは不可能で
あった。したがって、研削加工によって製作された回折
格子溝面の分散方向(溝直交方向)断面には、曲率半径
10μm程度の形状誤差が転写され、回折格子の位相誤
差となって、格子定数が数十μmの回折格子では0〜5
0%程度の損失をもたらし、格子定数15μm以下の回
折格子では、損失が過大となるため研削加工の適用は困
難であった。加えて、砥粒の磨耗や欠落による砥石の断
面形状誤差や、研削加工での特有の長時間の加工中に発
生する温度変化など外乱が、回折格子の形状誤差を大き
くしていた。
In the latter case, the cross-sectional shape of the grindstone is transferred to the cross-sectional shape of the groove surface of the diffraction grating (direction orthogonal to the groove), so that the cross-sectional shape of the grindstone is cross-sectional direction of the groove surface of the diffraction grating (direction orthogonal to the groove). It is necessary to shape (truing) into a V-shape which is the shape. However, the diameter of the abrasive grains constituting the grindstone is 1 to 2 μm even for the smallest # 20,000. Since the bond fills the space between the abrasive grains, it was impossible to set the radius of curvature at the tip of the grindstone cross section to about 10 μm or less. Therefore, a shape error with a curvature radius of about 10 μm is transferred to the cross section of the diffraction grating groove surface produced by grinding in the dispersion direction (orthogonal direction), which becomes a phase error of the diffraction grating and the grating constant is several tens of μm. In the diffraction grating of 0-5
A diffraction grating having a loss of about 0% and a grating constant of 15 μm or less has an excessive loss, and thus it is difficult to apply the grinding process. In addition, the cross-sectional shape error of the grindstone due to wear or loss of the abrasive grains, and disturbances such as temperature changes that occur during long-time machining, which is peculiar to the grinding process, increase the shape error of the diffraction grating.

【0012】さらに、研削加工された回折格子溝面の分
散方向(溝直交方向)表面粗さには、砥石作用面の回転
軸を通る断面曲線が転写されるため、砥粒に比較的小さ
な粒径の#4,000を用いた場合で130nmRMS
程度、砥粒に最も小さな粒径の#20,000を用いた
場合でも45nmRMS程度の粗さとなる。回折格子溝
の表面の粗さは、回折格子の位相誤差となって、波長数
μmの近赤外領域では0〜10%の損失を、波長〜数+
μmの赤外領域では0〜40%程度の損失をもたらして
回折効率を低下させていた。
Further, since the cross-sectional curve passing through the rotation axis of the grindstone working surface is transferred to the surface roughness of the grinded diffraction grating groove surface in the dispersion direction (orthogonal direction), the abrasive grains are relatively small. 130 nm RMS with # 4,000 diameter
The roughness is about 45 nm RMS even when # 20,000 having the smallest grain size is used as the abrasive grain. The roughness of the surface of the diffraction grating groove causes a phase error of the diffraction grating, which causes a loss of 0 to 10% in the near infrared region of a wavelength of several μm and a wavelength of several to several +
In the infrared region of μm, a loss of about 0 to 40% was caused to reduce the diffraction efficiency.

【0013】本発明はこれらの事情に基づいてなされた
もので、精度のよい機械加工で製作された回折格子とそ
の加工方法、及び回折格子を用いた光学要素を提供する
ことを目的としている。
The present invention has been made in view of these circumstances, and an object thereof is to provide a diffraction grating manufactured by high-precision machining, a processing method thereof, and an optical element using the diffraction grating.

【0014】[0014]

【課題を解決するための手段】請求項1の発明による手
段によれば、単結晶Geまたは単結晶Siの材料を用
い、結晶方位の(111)面に格子溝が形成されている
ことを特徴とする回折格子である。
According to the first aspect of the present invention, a material of single crystal Ge or single crystal Si is used, and a lattice groove is formed on the (111) plane of the crystal orientation. And the diffraction grating.

【0015】また請求項2の発明による手段によれば、
前記格子溝面の表面粗さが最も滑らかなもので10nm
RMS、格子定数の誤差が±0.1μm以下、分散方向
断面の各部の寸法誤差が±0.2μm以下およびブレー
ズ角の誤差が±0.2°以下のうちの少なくともいずれ
か1つを満足していることを特徴とする回折格子であ
る。
Further, according to the means of the invention of claim 2,
The surface roughness of the lattice groove surface is 10 nm, which is the smoothest.
RMS, lattice constant error of ± 0.1 μm or less, dimensional error of each part in the dispersion direction cross section of ± 0.2 μm or less, and blaze angle error of ± 0.2 ° or less are satisfied, The diffraction grating is characterized in that

【0016】また請求項3の発明による手段によれば、
単結晶Geまたは単結晶Siからなる被加工物をダイヤ
モンドバイトによるフライカット方式により、格子溝を
形成することを特徴とする回折格子の加工方法である。
According to the third aspect of the invention,
It is a method of processing a diffraction grating, characterized in that a grating groove is formed in a work piece made of single crystal Ge or single crystal Si by a fly cutting method using a diamond cutting tool.

【0017】また請求項4の発明による手段によれば、
回折格子と光学素子とが複合されて形成された光学要素
において、前記回折格子は、上記の回折格子を用いている
ことを特徴とする光学要素である。
According to the means of the invention of claim 4,
In an optical element formed by combining a diffraction grating and an optical element, the diffraction grating is an optical element characterized by using the above diffraction grating.

【0018】また請求項5の発明による手段によれば、
前記光学要素はグリズムであることを特徴とする光学要
素である。
According to the means of the invention of claim 5,
The optical element is an optical element characterized by being a grism.

【0019】[0019]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0020】図1は、本発明の単結晶Geを材料とする
透過型または反射型のブレーズ型の回折格子の斜視図で
ある。なお、透過型の回折格子は、格子溝面を透過する
光の回折を利用するものであり、また、反射型の回折格
子は、平面あるいは凹面の基板上に格子溝を配列し、反
射回折光を利用する回折格子である。
FIG. 1 is a perspective view of a transmission or reflection type blazed diffraction grating made of single crystal Ge according to the present invention. The transmission type diffraction grating utilizes diffraction of light transmitted through the grating groove surface, and the reflection type diffraction grating has a structure in which the grating grooves are arranged on a flat or concave substrate to reflect the reflected diffraction light. Is a diffraction grating that utilizes

【0021】ブレーズ型の回折格子1は、単結晶Geの
格子溝面1a(溝加工面)に三角断面の格子溝2a、2
b…2nが形成され、格子溝面1aの結晶方位はへき開
面である(111)面である。Geは脆性材料でへき開
面(111)を有しており、切削方向の違いにより面性
状が異なる方位依存性を持っている。そのため、面精度
の良好な切削方向である例えば(110)面のみに加工
すれば、脆性破壊が起こりにくく、一様で良好な面精度
を得ることができる。
The blazed diffraction grating 1 has a grating groove surface 1a (grooved surface) of single crystal Ge and a triangular groove 2a, 2 having a triangular cross section.
2n are formed, and the crystal orientation of the lattice groove surface 1a is the (111) plane which is a cleavage plane. Ge is a brittle material and has a cleavage plane (111), and its surface properties differ depending on the cutting direction and have an orientation dependency. Therefore, if only the (110) plane, which is the cutting direction with good surface accuracy, is processed, brittle fracture is unlikely to occur, and uniform and good surface accuracy can be obtained.

【0022】図2は、本発明の精密切削加工装置の外観
斜視図で、図3はその加工部の模式斜視図である。精密
切削加工装置5は、ダイヤモンドバイト6を工具とする
フライカット方式の加工装置である。ベッド7の上面に
はツールスピンドル8と、X軸、Y軸およびZ軸の3軸
方向に移動自在な3軸テーブル9が設けられている。ダ
イヤモンドバイト6はツールスピンドル8を構成する回
転軸11に固定された回転するバイトホルダ12の外周
部に取付けられており、ツールスピンドル8の回転の伴
って回転する。このダイヤモンドバイト6は加工する格
子溝2a、2b…2nと同じ外形の総型バイトである。
また、ダイヤモンドバイト6の対向位置には、被加工物
13を保持してX軸、Y軸およびZ軸の3軸方向に移動
自在な3軸テーブル9が配置されている。なお、被加工
物13は3軸テーブル9に設けられたワークホルダ14
にワックスや固定治具によりで固定されている。
FIG. 2 is an external perspective view of the precision cutting processing apparatus of the present invention, and FIG. 3 is a schematic perspective view of the processing section thereof. The precision cutting device 5 is a fly-cut type processing device using the diamond cutting tool 6 as a tool. On the upper surface of the bed 7, a tool spindle 8 and a triaxial table 9 which is movable in the triaxial directions of X axis, Y axis and Z axis are provided. The diamond cutting tool 6 is attached to the outer peripheral portion of a rotating cutting tool holder 12 fixed to a rotating shaft 11 that constitutes the tool spindle 8, and rotates along with the rotation of the tool spindle 8. The diamond cutting tool 6 is a general-purpose cutting tool having the same outer shape as the lattice grooves 2a, 2b ... 2n to be processed.
Further, a triaxial table 9 that holds the workpiece 13 and is movable in three axial directions of the X-axis, the Y-axis, and the Z-axis is arranged at a position facing the diamond cutting tool 6. The workpiece 13 is a work holder 14 provided on the triaxial table 9.
It is fixed with wax or a fixing jig.

【0023】これらの構成により、回転するダイヤモン
ドバイト6と被加工物13は、X軸、Y軸、Z軸の3軸
テーブル9によって相対的に並進運動し、ある一定の切
り込み深さを保持した状態で、被加工物13に形成する
格子溝2a、2b〜2nの分散直交方向(溝方向)に相
対的に並進運動する。
With these configurations, the rotating diamond cutting tool 6 and the work piece 13 are relatively translated by the triaxial table 9 of the X-axis, Y-axis, and Z-axis to maintain a certain cutting depth. In this state, the lattice grooves 2a, 2b to 2n formed in the workpiece 13 are relatively translated in the dispersion orthogonal direction (groove direction).

【0024】次に、ダイヤモンドバイト6の頂角αoお
よびすくい角θの設定方法について説明する。
Next, a method of setting the apex angle αo and the rake angle θ of the diamond cutting tool 6 will be described.

【0025】図4は、ダイヤモンドバイト6の頂角αo
およびすくい角θの設定方法の説明図である。ダイヤモ
ンドバイト6の頂角αoと回折格子1の格子溝2a、2
b…2nの面の分散方向(溝直行方向)断面底の頂角
α、すなわち回転するダイヤモンドバイト6の見かけの
頂角αとの関係は、 αo=2*tan−1{cosθ・tan(α/2)} となる。
FIG. 4 shows the apex angle αo of the diamond bite 6.
It is explanatory drawing of the setting method of and rake angle (theta). The apex angle αo of the diamond bite 6 and the grating grooves 2a, 2 of the diffraction grating 1
b ... 2n in the dispersion direction (perpendicular to the groove) the vertical angle α of the bottom of the cross section, that is, the apparent vertical angle α of the rotating diamond bite 6, is αo = 2 * tan −1 {cos θ · tan (α / 2)}.

【0026】ここで、θはすくい面の最大傾斜方向に沿
ったすくい角であり、その方向はダイヤモンドバイト6
の右切れ刃垂直すくい角と左切れ刃垂直すくい角を等し
い値とするため、αの2等分線の方向と等しく設定す
る。切れ刃垂直すくい角θoとすくい面の最大傾斜方向
に沿ったすくい角θとの関係は、 θ=tan−1[√2*{cos((α/2)‐(π/
4))*sin((α/2)‐(π/4))}−1*t
anθ] 切れ刃垂直すくい角θoは、‐20°〜‐40°の範囲
が適正であり、例えば、θ=20°、α=90°とした
場合、θ=27.24°、αo=83.28°となる。
ダイヤモンドバイト6の切れ刃角度は、形状誤差±0.
1°以下の高精度なものとする。
Here, θ is the rake angle along the maximum inclination direction of the rake face, and the direction is the diamond bite 6
The right rake angle and the left rake angle are set to the same value, so that they are set equal to the direction of the bisector of α. The relationship between the vertical rake angle θo of the cutting edge and the rake angle θ along the maximum inclination direction of the rake surface is θ = tan −1 [√2 * {cos ((α / 2)-(π /
4)) * sin ((α / 2)-(π / 4))} −1 * t
an θ 0 ] The cutting edge vertical rake angle θo is appropriate in the range of −20 ° to −40 °. For example, when θ = 20 ° and α = 90 °, θ = 27.24 ° and αo = 83. It becomes 0.28 °.
The cutting edge angle of the diamond bite 6 is ± 0.
High accuracy of 1 ° or less.

【0027】図5は、図3で示した加工部の模式斜視図
の平面図で、フライカット方式における最大切り取り厚
さ、すくい角の変化量、切削方向の変化量を示してい
る。
FIG. 5 is a plan view of the schematic perspective view of the processing portion shown in FIG. 3, showing the maximum cutting thickness, the rake angle change amount, and the cutting direction change amount in the fly-cut method.

【0028】最大切り取り厚さtは、 t=(F/S)*{2(D/R)一2(D/R)
0.5 ここで、Fは送り速度、Sは工具の回転数、Dは切り込
み深さ、Rは工具の回転半径である。
The maximum cutting thickness t is t = (F / S) * {2 (D / R) -1 (D / R) 2 }
0.5 where F is the feed rate, S is the rotational speed of the tool, D is the depth of cut, and R is the radius of rotation of the tool.

【0029】切り込み深さDを回折格子1の格子溝2
a、2b…2nの溝深さに等しく設定しても、送り速度
F、回転数S、工具回転半径Rを変化させることにより
tを任意に設定することができるので、延性モード切削
の臨界切り取り厚さを実現することが可能である。例え
ば、D=10μmとした場合、F=10mm/min、
S=3000min、R=60mmとすることにより、
t=0.6μmとなる。切削力方向の変化量△ψは、切
削方向の変化量△φと等しく、 △ψ=△φ=cos−l[1−(D/R)] 切り込み深さDを回折格子1の格子溝2a、2b…2n
の溝深さに等しく設定しても、Rを十分に大きく設定す
ることにより、すくい角の変化量△θと切削方向の変化
量△φを十分に小さくすることができる。例えば、D=
10μmとした場合、R=60μmとすることにより、
△ψ=△φ=1°となる。
The cutting depth D is set to the grating groove 2 of the diffraction grating 1.
Even if the groove depths of a, 2b ... 2n are set equal to each other, t can be arbitrarily set by changing the feed rate F, the number of revolutions S, and the tool turning radius R. Therefore, the critical cutting of ductile mode cutting is possible. It is possible to achieve thickness. For example, when D = 10 μm, F = 10 mm / min,
By setting S = 3000 min and R = 60 mm,
It becomes t = 0.6 μm. The change amount Δφ in the cutting force direction is equal to the change amount Δφ in the cutting direction, and Δψ = Δφ = cos −1 [1- (D / R)] The cutting depth D is set to the grating groove 2a of the diffraction grating 1. 2b ... 2n
Even if the groove depth is set to be equal to the groove depth, the rake angle change amount Δθ and the cutting direction change amount Δφ can be made sufficiently small by setting R sufficiently large. For example, D =
When it is set to 10 μm, by setting R = 60 μm,
Δφ = Δφ = 1 °.

【0030】以上に説明した加工方式で被加工物13に
対して切削加工を行うことにより、延性モードの加工が
可能となり。また。ダイヤモンドバイト6の磨耗量は回
折格子1に要求される加工精度に対しては無視できる量
であり、回折格子1の加工精度は精密切削加工装置5の
位置決め精度および動的運動精度、ダイヤモンドバイト
6の形状精度のみによって決定される。
By performing the cutting process on the workpiece 13 by the above-described processing method, the ductile mode can be processed. Also. The wear amount of the diamond cutting tool 6 is negligible with respect to the processing accuracy required for the diffraction grating 1, and the processing accuracy of the diffraction grating 1 is the positioning accuracy and the dynamic motion accuracy of the precision cutting device 5, and the diamond cutting tool 6 It is determined only by the shape accuracy of.

【0031】それらによって、格子溝2a、2b…2n
の面の表面粗さが最も滑らかなものでは10nmRMS
である。また、格子定数の誤差が±0.1μm以下であ
る。分散方向(溝直交方向)断面の各部の寸法誤差が±
0.2μm以下である。ブレーズド回折格子1の場合に
あっては、ブレーズ角の誤差が±0.2°以下であるよ
うな、高精度な回折格子1を得ることが可能であること
を実際の加工により確認した。
By these, the grating grooves 2a, 2b ... 2n
RMS with the smoothest surface roughness is 10 nm RMS
Is. The error of the lattice constant is ± 0.1 μm or less. The dimensional error of each part of the cross section in the dispersion direction (orthogonal to the groove) is ±
It is 0.2 μm or less. In the case of the blazed diffraction grating 1, it was confirmed by actual processing that it is possible to obtain a highly accurate diffraction grating 1 in which the error of the blazed angle is ± 0.2 ° or less.

【0032】図6は、本発明の回折格子1の一例を示し
た斜視図である。格子定数は21μm、ブレーズ角は
5.7°分散直交方向(溝方向)の長さは20mm、分
散方向(溝直交方向)の長さは、18mmである。
FIG. 6 is a perspective view showing an example of the diffraction grating 1 of the present invention. The lattice constant is 21 μm, the blaze angle is 5.7 °, the length in the dispersion orthogonal direction (groove direction) is 20 mm, and the length in the dispersion direction (groove orthogonal direction) is 18 mm.

【0033】図7は、回折格子1の格子溝2a、2b…
2nの面の微分干渉顕微鏡(AMF)写真を模式的に示
したものであり、図8は格子溝2a、2b…2nの分散
方向断面のAMF画像の模式パターンである。格子溝2
a、2b…2nの表面の表面粗さは約10nmRMS格
子定数の誤差は±0.1μm以下、分散方向(溝直交方
向)断面の各部の寸法誤差は±0.2μm以下ブレーズ
角の誤差は±0.2°以下であった。
FIG. 7 shows the grating grooves 2a, 2b ... Of the diffraction grating 1.
2D schematically shows a differential interference microscope (AMF) photograph of a 2n surface, and FIG. 8 is a schematic pattern of an AMF image of a cross section in the dispersion direction of the grating grooves 2a, 2b ... 2n. Lattice groove 2
The surface roughness of the surfaces a, 2b ... It was 0.2 ° or less.

【0034】また、これらの回折格子を用いて光学要素
を形成することもできる。図8は、光学要素であるグリ
ズムの説明図である。グリズム20は、プリズムと回折
格子との両方を利用した単一の分散性光学要素である。
グリズム20aは、第1の表面21と第2の表面22と
を備えたプリズム20aで、回折格子23はプリズム2
0aの第2の表面22の上に形成されている。
Optical elements can also be formed using these diffraction gratings. FIG. 8 is an explanatory diagram of a grism which is an optical element. The grism 20 is a single dispersive optical element that utilizes both prisms and diffraction gratings.
The grism 20a is a prism 20a having a first surface 21 and a second surface 22, and the diffraction grating 23 is the prism 2a.
0a on the second surface 22.

【0035】第1の表面21からプリズム20aに入射
した光は、回折格子23によりさらに分散される。その
結果、分散性光学要素として回折格子23とプリズム2
0aの特性の両方の選択により最適化された分解能を持
つ分散特性が得られる。つまり、プリズム20aのパラ
メータは、選択された形状や材料により決定することが
でき、回折格子23の特性は、回折格子23の数、回折の
オーダーや使用される回折格子23の型により特定でき
る。
The light incident on the prism 20a from the first surface 21 is further dispersed by the diffraction grating 23. As a result, the diffraction grating 23 and the prism 2 serve as dispersive optical elements.
The choice of both of the 0a characteristics results in dispersion characteristics with optimized resolution. That is, the parameters of the prism 20a can be determined by the selected shape and material, and the characteristics of the diffraction grating 23 can be specified by the number of diffraction gratings 23, the order of diffraction, and the type of diffraction grating 23 used.

【0036】なお、光学要素としてはグリズムの他に
も、エシェロンやイマージョングレーティングを形成す
ることもできる。
In addition to the grism, an echelon or an immersion grating can be formed as the optical element.

【0037】[0037]

【発明の効果】本発明によれば、精度のよい機械加工で
製作された回折格子とその加工方法がえられる。
According to the present invention, it is possible to obtain a diffraction grating manufactured by high-precision machining and a processing method thereof.

【0038】また回折格子を用いた高精度の光学要素が
可能である。
Further, a highly accurate optical element using a diffraction grating is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の回折格子の斜視図。FIG. 1 is a perspective view of a diffraction grating of the present invention.

【図2】本発明の精密切削加工装置の外観斜視図。FIG. 2 is an external perspective view of the precision cutting device of the present invention.

【図3】加工部の模式斜視図。FIG. 3 is a schematic perspective view of a processing unit.

【図4】ダイヤモンドバイトの頂角およびすくい角の設
定方法の説明図。
FIG. 4 is an explanatory view of a method for setting a vertex angle and a rake angle of a diamond bite.

【図5】加工部の平面図。FIG. 5 is a plan view of a processed portion.

【図6】本発明の回折格子の一例を示した斜視図。FIG. 6 is a perspective view showing an example of a diffraction grating of the present invention.

【図7】回折格子の格子溝面の微分干渉顕微鏡写真。FIG. 7 is a differential interference microscope photograph of the grating groove surface of the diffraction grating.

【図8】格子溝の分散方向断面のAMF画像の模式図。FIG. 8 is a schematic diagram of an AMF image of a cross section in the dispersion direction of a grating groove.

【図9】本発明のグリズムの説明図。FIG. 9 is an explanatory diagram of a grism of the present invention.

【符号の説明】[Explanation of symbols]

1…回折格子、1a…格子溝面、2a、2b〜2n…格
子溝、5…精密切削加工装置、6…ダイヤモンドバイ
ト、8…ツールスピンドル、9…3軸テーブル、13…
被加工物
DESCRIPTION OF SYMBOLS 1 ... Diffraction grating, 1a ... Lattice groove surface, 2a, 2b-2n ... Lattice groove, 5 ... Precision cutting processing device, 6 ... Diamond tool, 8 ... Tool spindle, 9 ... Triaxial table, 13 ...
Workpiece

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 単結晶Geまたは単結晶Siの材料を用
い、結晶方位の(111)面に格子溝が形成されている
ことを特徴とする回折格子。
1. A diffraction grating comprising a material of single crystal Ge or single crystal Si, wherein a grating groove is formed in the (111) plane of the crystal orientation.
【請求項2】 前記格子溝面の表面粗さが最も滑らかな
もので10nmRMS、格子定数の誤差が±0.1μm
以下、分散方向断面の各部の寸法誤差が±0.2μm以
下およびブレーズ角の誤差が±0.2°以下のうちの少
なくともいずれか1つを満足していることを特徴とする
請求項1記載の回折格子。
2. The surface roughness of the grating groove surface is the smoothest, 10 nm RMS, and the error of the lattice constant is ± 0.1 μm.
The dimensional error of each portion of the cross section in the dispersion direction satisfies at least one of ± 0.2 μm or less and the blaze angle error of ± 0.2 ° or less. Diffraction grating.
【請求項3】 単結晶Geまたは単結晶Siからなる被
加工物をダイヤモンドバイトによるフライカット方式に
より、格子溝を形成することを特徴とする回折格子の加
工方法。
3. A method of processing a diffraction grating, characterized in that a grating groove is formed in a workpiece made of single crystal Ge or single crystal Si by a fly cutting method using a diamond cutting tool.
【請求項4】 回折格子と光学素子とが複合されて形成
された光学要素において、前記回折格子は、請求項1又は
請求項2に記載の回折格子を用いていることを特徴とす
る光学要素。
4. An optical element formed by combining a diffraction grating and an optical element, wherein the diffraction grating uses the diffraction grating according to claim 1 or 2. .
【請求項5】 前記光学要素はグリズムであることを特
徴とする請求項4記載の光学要素。
5. The optical element of claim 4, wherein the optical element is a grism.
JP2001268577A 2001-09-05 2001-09-05 Diffraction grating, method for processing diffraction grating and optical element Pending JP2003075622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001268577A JP2003075622A (en) 2001-09-05 2001-09-05 Diffraction grating, method for processing diffraction grating and optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001268577A JP2003075622A (en) 2001-09-05 2001-09-05 Diffraction grating, method for processing diffraction grating and optical element

Publications (2)

Publication Number Publication Date
JP2003075622A true JP2003075622A (en) 2003-03-12
JP2003075622A5 JP2003075622A5 (en) 2008-10-16

Family

ID=19094536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001268577A Pending JP2003075622A (en) 2001-09-05 2001-09-05 Diffraction grating, method for processing diffraction grating and optical element

Country Status (1)

Country Link
JP (1) JP2003075622A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100418676C (en) * 2004-12-06 2008-09-17 云南北方光学电子集团有限公司 Processing method of zinc selenide and zinc sulfide non spherical surface optical element
CN100418675C (en) * 2004-12-06 2008-09-17 云南北方光学电子集团有限公司 Processing method of germanium single crystal non spherical surface optical element
WO2009057772A1 (en) * 2007-11-02 2009-05-07 Sumitomo Electric Industries, Ltd. Diffractive optical element and method of manufacturing the same
JP2010128473A (en) * 2008-12-01 2010-06-10 Olympus Corp Dispersion element and optical equipment with dispersion element
JP2010134027A (en) * 2008-12-02 2010-06-17 Olympus Corp Wavelength selection switch
JP2010156680A (en) * 2008-12-02 2010-07-15 Olympus Corp Temperature-compensated spectrometer and optical apparatus
EP2466346A1 (en) * 2010-12-20 2012-06-20 Canon Kabushiki Kaisha Manufacturing method of diffraction grating in CdTe or CdZnTe
EP2677351A1 (en) 2012-06-20 2013-12-25 Canon Kabushiki Kaisha Method of manufacturing a diffraction grating
US20130342909A1 (en) * 2012-06-20 2013-12-26 Canon Kabushiki Kaisha Method of manufacturing a diffraction grating
EP2887107A1 (en) 2013-12-20 2015-06-24 Canon Kabushiki Kaisha Diffraction grating and diffraction grating producing method
US9465149B2 (en) 2012-08-13 2016-10-11 Canon Kabushiki Kaisha Diffraction element and method of manufacturing diffraction element
EP3770655A1 (en) 2019-07-23 2021-01-27 Canon Kabushiki Kaisha Diffraction device, spectroscopic apparatus, and manufacturing method of diffraction device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001066442A (en) * 1999-06-22 2001-03-16 Mitsubishi Electric Corp Device for processing grating
JP2001087921A (en) * 1999-09-24 2001-04-03 Canon Inc Working method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001066442A (en) * 1999-06-22 2001-03-16 Mitsubishi Electric Corp Device for processing grating
JP2001087921A (en) * 1999-09-24 2001-04-03 Canon Inc Working method

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100418675C (en) * 2004-12-06 2008-09-17 云南北方光学电子集团有限公司 Processing method of germanium single crystal non spherical surface optical element
CN100418676C (en) * 2004-12-06 2008-09-17 云南北方光学电子集团有限公司 Processing method of zinc selenide and zinc sulfide non spherical surface optical element
WO2009057772A1 (en) * 2007-11-02 2009-05-07 Sumitomo Electric Industries, Ltd. Diffractive optical element and method of manufacturing the same
US8294996B2 (en) 2007-11-02 2012-10-23 Sumitomo Electric Industries, Ltd. Diffractive optical element and method of manufacturing the same
JP2010128473A (en) * 2008-12-01 2010-06-10 Olympus Corp Dispersion element and optical equipment with dispersion element
JP2010134027A (en) * 2008-12-02 2010-06-17 Olympus Corp Wavelength selection switch
JP2010156680A (en) * 2008-12-02 2010-07-15 Olympus Corp Temperature-compensated spectrometer and optical apparatus
US9678253B2 (en) 2010-12-20 2017-06-13 Canon Kabushiki Kaisha Manufacturing method of diffraction grating
EP2466346A1 (en) * 2010-12-20 2012-06-20 Canon Kabushiki Kaisha Manufacturing method of diffraction grating in CdTe or CdZnTe
JP2012145908A (en) * 2010-12-20 2012-08-02 Canon Inc Manufacturing method of diffraction grating
EP2667228A1 (en) 2010-12-20 2013-11-27 Canon Kabushiki Kaisha Diffraction grating
US10168457B2 (en) 2010-12-20 2019-01-01 Canon Kabushiki Kaisha Manufacturing method of diffraction grating
EP2677351A1 (en) 2012-06-20 2013-12-25 Canon Kabushiki Kaisha Method of manufacturing a diffraction grating
JP2014002294A (en) * 2012-06-20 2014-01-09 Canon Inc Method of manufacturing diffraction grating
JP2014002295A (en) * 2012-06-20 2014-01-09 Canon Inc Method of manufacturing diffraction grating
US9372289B2 (en) 2012-06-20 2016-06-21 Canon Kabushiki Kaisha Method of manufacturing a diffraction grating
US20130342908A1 (en) * 2012-06-20 2013-12-26 Canon Kabushiki Kaisha Method of manufacturing a diffraction grating
US9715049B2 (en) 2012-06-20 2017-07-25 Canon Kabushiki Kaisha Method of manufacturing a diffraction grating
US20130342909A1 (en) * 2012-06-20 2013-12-26 Canon Kabushiki Kaisha Method of manufacturing a diffraction grating
US9465149B2 (en) 2012-08-13 2016-10-11 Canon Kabushiki Kaisha Diffraction element and method of manufacturing diffraction element
EP2887107A1 (en) 2013-12-20 2015-06-24 Canon Kabushiki Kaisha Diffraction grating and diffraction grating producing method
EP3770655A1 (en) 2019-07-23 2021-01-27 Canon Kabushiki Kaisha Diffraction device, spectroscopic apparatus, and manufacturing method of diffraction device
US11520090B2 (en) 2019-07-23 2022-12-06 Canon Kabushiki Kaisha Diffraction device, spectroscopic apparatus, and manufacturing method of diffraction device

Similar Documents

Publication Publication Date Title
JP5864920B2 (en) Manufacturing method of diffraction grating
US6537138B2 (en) Method of grinding an axially asymmetric aspherical mirror
JP2003075622A (en) Diffraction grating, method for processing diffraction grating and optical element
US7390242B2 (en) Diamond tool blade with circular cutting edge
Gläbe et al. Diamond machining of micro-optical components and structures
JP6049319B2 (en) Diffraction grating and method of manufacturing diffraction grating
US7178433B2 (en) Processing apparatus, processing method and diamond tool
JP3333679B2 (en) Groove cutting device and groove cutting method
US11520090B2 (en) Diffraction device, spectroscopic apparatus, and manufacturing method of diffraction device
JP2015121605A (en) Diffraction grating, and manufacturing method for the same
JP6049320B2 (en) Diffraction grating and method of manufacturing diffraction grating
JP2022017442A (en) Cutting tool
JP6253724B2 (en) Reflective diffraction element
JP4670249B2 (en) Processing apparatus, processing method, and diamond tool
JP2017156589A (en) Blazed diffraction grating, manufacturing method, spectrometer and transmitter
Qiao et al. Experimental study on the effect of grinding path in tangential ultrasonic-assisted grinding for the curved surfaces of zirconia ceramics
JP5972100B2 (en) Reflective diffraction element
RU2223850C1 (en) Method of abrasive treatment of metal optical mirrors
JP2005096064A (en) Cutting method for axially symmetric diffraction curved surface and article prepared by the same method
US7757373B2 (en) Method and tool head for machining optically active surfaces, particularly surfaces of progressive spectacle lenses, which are symmetrical in pairs
Sakaida et al. Aspheric Cutting of CVD-SiC Molds by PCD milling tool
SK500232019A3 (en) Method and tool for machining the inner walls of channels in brittle materials in the nanometer range
Winger et al. Diamond machining of flats, spherics, and aspherics
Wieczorek et al. Achieving optimal flatness and surface roughness properties for novel x-ray optic structures formed by dicing saws
Venkatesh et al. 6 Precision Micro-and Nanogrinding

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080829

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080829

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101228