JP2003075490A - Test site for measuring electric wave having multiple fence and standard design method thereof - Google Patents

Test site for measuring electric wave having multiple fence and standard design method thereof

Info

Publication number
JP2003075490A
JP2003075490A JP2001310712A JP2001310712A JP2003075490A JP 2003075490 A JP2003075490 A JP 2003075490A JP 2001310712 A JP2001310712 A JP 2001310712A JP 2001310712 A JP2001310712 A JP 2001310712A JP 2003075490 A JP2003075490 A JP 2003075490A
Authority
JP
Japan
Prior art keywords
fence
sub
height
reflection
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001310712A
Other languages
Japanese (ja)
Inventor
Moichi Shibuya
茂一 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2001310712A priority Critical patent/JP2003075490A/en
Publication of JP2003075490A publication Critical patent/JP2003075490A/en
Pending legal-status Critical Current

Links

Landscapes

  • Building Environments (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem that the application of a reflection wave prevention fence due to the tendency for high performance of the free space such as an EMC site has many advantages as compared with an old method using an electric wave absorber but is not complete, the influence of the irregular reflection of an exposed reflection surface and the diffraction wave in a multi path may not be avoided depending on measurement conditions in the tendency for free space by a single fence, mutual reflection countermeasures are required in a multiple metal fence, and hence a simplified standard design method in a multiple fence system is desired. SOLUTION: A main fence for covering the entire reflection surface is provided in the middle of transmission/reception points, and a sub fence is placed at an optimum position in a shielded region to attain a complete free space. The mutual reflection interference in the metal fence is prevented by the inclination of opposing surfaces. A graphical solution in the standard design method that becomes a criterion of an economical design for VHF-microwaves is created.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、主に、VHFおよ
びマイクロ波帯の電波の電界強度等を計測する試験施設
に関する技術分野に属する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention mainly belongs to the technical field relating to a test facility for measuring electric field strength of VHF and microwave radio waves.

【0002】[0002]

【従来の技術】従来のVHF・マイクロ波帯の計測用テ
ストサイトには、野外設置のオープンサイトと屋内設置
の電波暗室がある。これは、電波伝搬形式上、金属床面
反射型と自由空間型に分けられる。自由空間型サイトの
実現のためには、床(大地)面と周辺(壁、天井、近接
物)の反射波の影響を許容値まで抑制する必要があり、
抑制の手段として電波吸収体による古典的方法と反射波
防止フェンスを使用する新しい方法がある。国際勧告
(CISPR,CENELEC)によれば、測定距離3
m〜10mの自由空間型テストサイトに対する反射波の
影響の許容限度を「サイト減衰量の自由空間偏差4dB
以下」と定め、これをもって実用上「自由空間型サイ
ト」と認めるとしている。本発明の標準設計法は、この
国際勧告規格の達成を目的とするものである。
2. Description of the Related Art Conventional VHF / microwave band measurement test sites include an open site installed outdoors and an anechoic chamber installed indoors. This is classified into a metal floor reflection type and a free space type in terms of radio wave propagation format. In order to realize a free space site, it is necessary to suppress the influence of reflected waves on the floor (ground) surface and the surroundings (walls, ceiling, nearby objects) to an allowable value.
There are two methods of suppression, the classical method using a wave absorber and the new method using a reflected wave prevention fence. According to international recommendations (CISPR, CENELEC), measuring distance 3
The allowable limit of the influence of the reflected wave on the free space type test site of m to 10 m is defined as "free space deviation of site attenuation 4 dB.
It is defined as "below", and this is recognized as a "free space site" for practical use. The standard design method of the present invention aims to achieve this internationally recommended standard.

【0003】反射波防止フェンスを使用して自由空間条
件を実現する方法には、例えば、特許第2014463
号「反射板のある電波暗室」、及び、特開平7−558
63「完全反射型と無反射型兼用のEMCテストサイ
ト」がある。特許第2014463号「反射板のある電
波暗室」は、単一の反射波防止フェンスを設置する形式
である。特開平7−55863「完全反射型と無反射型
兼用のEMCテストサイト」は、表を金属板、裏を電波
吸収板で構成する反射波防止フェンスを複数並列配置す
る多重フェンスの形式である。
A method for realizing a free space condition using a reflected wave prevention fence is disclosed in, for example, Japanese Patent No. 20144463.
No. "Anechoic chamber with reflector" and JP-A-7-558.
There are 63 "Fully reflective and non-reflective EMC test sites". Patent No. 20144463 "Anechoic chamber with a reflector" is a type in which a single reflected wave prevention fence is installed. Japanese Unexamined Patent Publication No. 7-55863, "EMC test site for both full reflection type and non-reflection type", is a multi-fence type in which a plurality of reflected wave prevention fences each having a front side made of a metal plate and a back side made of a radio wave absorption plate are arranged in parallel.

【0004】それらは、電波吸収体に依存する反射波防
止方式に較べれば有利な点が多いが、適用条件により所
要の性能が達成できないばあいがある。本発明は、それ
らの不足部分を補完する改善システムで、実施例と共に
国際勧告規格を前提とする経済的な構造寸法の標準設計
法を提示する。
Although they have many advantages as compared with the reflected wave prevention method which depends on the electromagnetic wave absorber, there are cases where the required performance cannot be achieved depending on the application conditions. The present invention is an improved system that complements those deficiencies, and presents an economical standard design method of structural dimensions, which is premised on the international recommendation standard together with the embodiment.

【0005】[0005]

【発明が解決しようとする課題】図5の(a)に示すよ
うに、反射波防止フェンスによって電波が遮蔽される領
域(9)内の物体は影響がないが、露出面があるばあい
は不正規反射(残留反射)が直接波(3)に干渉妨害を
及ぼす可能性がある。
As shown in FIG. 5 (a), the object in the area (9) where radio waves are blocked by the reflected wave prevention fence is not affected, but if there is an exposed surface, Irregular reflections (residual reflections) can interfere with the direct wave (3).

【0006】単一の反射波防止フェンスの場合、図5の
(b)に示すように、直接波パス(3)の高さが低く距
離が大きい場合は、反射波防止フェンス(辺頂F)と送
信点(1)および受信点(2)の間のP点とQ点の反射
によるマルチ経路の回折波が合成されて、その影響が無
視できないことがある。直接波(3)に干渉を及ぼす回
折波の経路は、(1−P−F−2)、(1−F−Q−
2),(1−P−F−Q−2)の3種類である。
In the case of a single reflected wave prevention fence, as shown in FIG. 5B, when the height of the direct wave path (3) is low and the distance is large, the reflected wave prevention fence (top F) is used. In some cases, multipath diffracted waves due to reflections at points P and Q between the transmission point (1) and the reception point (2) are combined, and their influence cannot be ignored. The paths of the diffracted waves that interfere with the direct wave (3) are (1-P-F-2) and (1-F-Q-
2) and (1-P-F-Q-2).

【0007】単一、多重を問わず、反射波防止フェンス
の設置面が木やプラスチック等の電波を透過する材質
で、その外側に金属面等の反射面(4)がある場合は、
図5の(c)に示すように、反射波がフェンスの底部を
潜り抜けてしまい遮蔽効果を損なうことがある。
Whether the installation surface of the reflected wave prevention fence is single or multiple, and the installation surface of the fence is made of a material such as wood or plastic that transmits radio waves, and there is a reflection surface (4) such as a metal surface on the outside,
As shown in FIG. 5C, the reflected wave may pass through the bottom of the fence, impairing the shielding effect.

【0008】表裏共に金属板の反射波防止フェンスを並
列配置すると、図5の(d)に示すように、フェンス間
と床面の相互反射のために、フェンスによる反射波防止
効果が損なわれる事がある。
When the reflection wave preventing fences made of metal plates are arranged side by side on both the front and back sides, as shown in FIG. 5D, mutual reflection between the fences and the floor surface impairs the reflection wave preventing effect of the fences. There is.

【0009】従来、多重フェンスのある電磁波計測用テ
ストサイトの構造寸法についての標準的な設計法は知ら
れていない。
Conventionally, a standard design method for the structural dimensions of a test site for measuring electromagnetic waves having multiple fences has not been known.

【0010】[0010]

【課題を解決するための手段】送信点(1)と受信点
(2)の間にある反射面(4)の全体が遮蔽できるよう
に1または複数の反射波防止フェンスを設置することに
より、露出反射面による残留反射の発生を防止する。
By installing one or more reflected wave prevention fences so that the entire reflecting surface (4) between the transmitting point (1) and the receiving point (2) can be shielded, Prevents the occurrence of residual reflection due to the exposed reflective surface.

【0011】反射面の全体を遮蔽するフェンスを主フェ
ンス(5)として、その遮蔽領域内に1以上の副フェン
ス(6)を設ける。これにより、マルチ経路の回折波の
発生が防止できる。なお、遮蔽領域内にあるためフェン
ス間の相互反射による干渉の影響は現れない。
A fence for shielding the entire reflecting surface is used as a main fence (5), and one or more sub-fences (6) are provided in the shielding area. This can prevent the generation of multipath diffracted waves. Since it is within the shielding area, the influence of interference due to mutual reflection between fences does not appear.

【0012】多重フェンスの設置底面に、電波を透過さ
せない遮蔽底板(金属板その他)を付設することによ
り、底面の迂回反射が防止できる。
By attaching a shield bottom plate (metal plate or the like) that does not transmit radio waves to the installation bottom surface of the multiple fence, detour reflection of the bottom surface can be prevented.

【0013】複数のフェンスで反射面を遮蔽する場合、
隣接するフェンスの相互反射により遮蔽効果が損なわれ
る事がある。これを防ぐためには、図6(a),(b)
に示すようにフェンスの対抗面の相対角を20度〜60
度にすればよい。
When the reflective surface is shielded by a plurality of fences,
The shielding effect may be impaired due to mutual reflection between adjacent fences. In order to prevent this, FIG. 6 (a), (b)
As shown in, the relative angle of the opposing surface of the fence is 20 degrees to 60 degrees.
Just do it once.

【0014】本発明において使用する反射波防止用フェ
ンスの材料は、VHF帯以上の周波数の電波の透過率が
10%(−20dB)以下、換言すれば、遮蔽率が20
dB以上ならば材質の種類や表面の形状を問わない。例
えば、最も安価で工作が容易な材料はアルミ、銅、鉄の
金属薄板や薄膜で、木板やプラスチック板、布等に貼付
あるいは蒸着したものでもよい。
The material of the fence for preventing reflected waves used in the present invention has a transmittance of radio waves of frequencies above the VHF band of 10% (-20 dB) or less, in other words, a shielding ratio of 20.
The material type and surface shape do not matter as long as they are at least dB. For example, the cheapest material that can be easily manufactured is a thin metal plate or thin film of aluminum, copper, or iron, which may be attached to or vapor-deposited on a wooden board, a plastic board, a cloth, or the like.

【0015】次に、国際勧告規格を目標とする経済設計
の方法を図3、4について示す。 主フェンスの設置法;主フェンスの位置は、フェンスが
ない場合の正規反射点とするのが最も合理的である。そ
のため、送信点(1)と受信点(2)および設置面に下
ろした垂線の足(A)、(B)を結ぶ四辺形の対角線
(8a)と(8b)の交点(F)を頂点として主フェン
ス(5)を設ける。この場合、主フェンスの高さおよび
主フェンスと直接波パス(3)のクリアランス(間隔)
は等しくなる。
Next, a method of economic design aiming at the international recommended standard will be shown with reference to FIGS. How to install the main fence; The most reasonable position of the main fence is the regular reflection point when there is no fence. Therefore, the intersection (F) of the diagonal lines (8a) and (8b) of the quadrangle connecting the transmitting point (1) and the receiving point (2) and the legs (A) and (B) of the perpendicular line drawn down to the installation surface is set as the apex. Provide a main fence (5). In this case, the height of the main fence and the clearance between the main fence and the direct wave path (3)
Are equal.

【0016】送信点高と受信点高の決定法;測定距離
(A−B)はあらかじめ規定するとして,送信点高、受
信点高と主フェンスの高さ(クリアランスに等しい)に
は、互いに拘束関係がある。直接波に対する回折損失を
避けるには、主フェンスとのクリアランスを大きくとる
ことが望ましいが、送受信点高が高くなり経済的ではな
い。そこで、回折損失を最大2dB許容することとし
て、クリアランス(主フェンス高)を適用最低周波数の
フェンス位置における第1フレネルゾーン半径の1/3
に設定する。このための計算は複雑で手数がかかるが、
次のように図的に求めれば比較的容易である。
A method for determining the height of the transmitting point and the height of the receiving point; the measuring distance (AB) is defined in advance, and the height of the transmitting point, the height of the receiving point and the height of the main fence (equal to the clearance) are mutually restricted. I have a relationship. In order to avoid diffraction loss for direct waves, it is desirable to have a large clearance with the main fence, but this is not economical because the height of the transmitting and receiving points becomes high. Therefore, the diffraction loss is allowed up to 2 dB, and the clearance (main fence height) is applied. 1/3 of the radius of the first Fresnel zone at the fence position of the lowest frequency.
Set to. The calculation for this is complicated and time-consuming,
It is relatively easy to obtain graphically as follows.

【0017】図3において、長さ(A−F−B)と(A
−B)の差が、適用最低周波数の波長の1/2になる第
1フレネルゾーンの軌跡(A,Bを焦点とする楕円上の
点、)を求め、その高さの1/3のF点をプロットす
る。Fの各点について、(B−F)の延長上に送信点
(1)、(A−F)の延長上に受信点(2)の位置を仮
に求める。その中から、(F)(1)(2)の適切な組
み合わせを採用する。この作業には、糸による描線が便
利である。例えば、(A−B)=3m、周波数50MH
z(波長6m)ならば(A−F−B)=6mになるの
で、6mに相当する糸の両端をA,B点に固定して、上
向きに楕円を描けば第1フレネルゾーンの軌跡が得られ
る。
In FIG. 3, lengths (A-F-B) and (A
The locus (point on the ellipse with A and B as the focal point) of the first Fresnel zone in which the difference of −B) becomes ½ of the wavelength of the applicable lowest frequency is obtained, and F of 1/3 of the height is obtained. Plot the points. For each point of F, the positions of the transmission point (1) on the extension of (BF) and the position of the reception point (2) on the extension of (AF) are provisionally obtained. From among them, an appropriate combination of (F) (1) (2) is adopted. For this work, drawing with a thread is convenient. For example, (A−B) = 3 m, frequency 50 MH
If z (wavelength 6 m), (A−F−B) = 6 m, so if both ends of the thread corresponding to 6 m are fixed at points A and B and an ellipse is drawn upward, the trajectory of the first Fresnel zone will be can get.

【0018】副フェンスの設置法;マルチ経路の回折波
の発生を抑止するためには、主フェンスと送受信点間の
反射点に副フェンスを置けばよい。そこで、主フェンス
の足と送信点および受信点を結ぶ直線と対角線(8a)
および(8b)との交点を頂点としてそれぞれ副フェン
ス(6a)、副フェンス(6b)を設ける。遮蔽領域の
上限の対角線上に頂点があるので、隣接フェンス間の相
互反射は生じない。通常は、以上の3フェンスで国際勧
告規格が満足できるが、直接波パスの高さが低く測定距
離が大きい場合等、特殊な条件の場合は、さらに副フェ
ンスを追加する必要がある。すなわち、(6a)の足と
送信点を結ぶ直線と対角線(8a)の交点および副フェ
ンス(6b)の足と受信点を結ぶ直線と対角線(8b)
の交点をそれぞれ頂点として副フェンス(6c),(6
d)を設ける。
Sub-fence installation method: In order to suppress the generation of diffracted waves in multiple paths, a sub-fence may be placed at the reflection point between the main fence and the transmission / reception point. Therefore, a straight line connecting the foot of the main fence with the transmitting point and the receiving point and a diagonal line (8a)
The sub-fence (6a) and the sub-fence (6b) are provided with the intersections of (1) and (8b) as vertices. Since there is a vertex on the diagonal of the upper limit of the shielding area, mutual reflection between adjacent fences does not occur. Normally, the above three fences can satisfy the international recommendation standard, but in special cases such as when the height of the direct wave path is low and the measurement distance is large, it is necessary to add an additional fence. That is, the straight line connecting the foot of (6a) and the transmission point and the diagonal line (8a) and the straight line connecting the foot of the sub-fence (6b) and the receiving point and the diagonal line (8b).
The sub-fences (6c), (6
d) is provided.

【0019】直接波パスと主フェンスのクリアランス;
直接波の回折損失は、主フェンスと直接波パスのクリア
ランス(間隔)およびその位置における第1フレネルゾ
ーン半径によって決まる。横に長いフェンスについて
は、クリアランスが第1フレネルゾーン半径の1/2以
上あれば回折損失は無視でき、1/3以上ならば回折損
失は2dB以下である。クリアランスが0、すなわち、
フェンスの上端が直接波パスに接するばあいの回折損失
は約6dBになる。これらの点より、経済的なクリアラ
ンスの標準設計値を、適用する最低周波数の第1フレネ
ルゾーン半径の1/3とした。
Clearance between the direct wave path and the main fence;
The direct wave diffraction loss is determined by the clearance between the main fence and the direct wave path and the radius of the first Fresnel zone at that location. For a fence that is long laterally, if the clearance is 1/2 or more of the radius of the first Fresnel zone, the diffraction loss is negligible, and if it is 1/3 or more, the diffraction loss is 2 dB or less. Clearance is 0, that is,
If the top edge of the fence directly contacts the wave path, the diffraction loss will be about 6 dB. From these points, the standard design value of economical clearance is set to 1/3 of the radius of the first Fresnel zone of the lowest frequency to be applied.

【0020】測定距離が3m、主フェンスが中央にある
場合の第1フレネルゾーン半径は、30MHzでは3.
7m、100MHzでは1.7m、1GHzでは0.5
m。その1/3のクリアランスは、それぞれ、約1.2
m,0.6m,0.17mで、実用上、取扱い容易な設
計値である。
When the measurement distance is 3 m and the main fence is in the center, the first Fresnel zone radius is 3.
1.7m at 7m and 100MHz, 0.5 at 1GHz
m. The 1/3 clearance is about 1.2 each
m, 0.6 m and 0.17 m are design values that are practically easy to handle.

【0021】主、副フェンスの長さ;図4の平面図に示
すように、供試機器からの電波の放射点が横方向に(1
a)〜(1b)に及ぶ場合は、(1a)(1b)と受信
点(2)を結ぶ三角形について、フェンスが外にでる左
右の長さが、それぞれ、フェンスの高さ以上の寸法であ
れば、実用上充分である。
Lengths of the main and sub-fences; as shown in the plan view of FIG. 4, the radiation points of radio waves from the EUT are (1
a) to (1b), if the triangles connecting (1a) and (1b) to the receiving point (2) have right and left lengths outside the fence that are equal to or greater than the height of the fence, respectively. That is, practically enough.

【0022】以上は、経済設計の目安で拘束条件ではな
い。サイトの設置環境や技術的性能の要求に応じて比較
的自由に設計値を変更できるのが本発明の特色である。
The above is a guideline for economic design and is not a constraint. It is a feature of the present invention that the design values can be changed relatively freely according to the installation environment of the site and the requirements of technical performance.

【0023】[0023]

【発明の実施の形態】発明の実施の形態を実施例につい
て図面により説明する。図1、図2は、3フェンスの実
施例である。主フェンスの位置は、標準設計の位置付近
にあるが、高さが標準値より大きく、そのため、設置平
面に対する遮蔽は充分である。副フェンス(6a),
(6b)は、遮蔽領域(9)内にあるので、相互反射の
憂いはなく、マルチ経路の回折防止に役立っている。こ
の形式において、もし、距離(A−B)が3m,送信点
高が2.5m,受信点高が2m、主フェンス高が1.2
mならば、直接波パスに対するクリアランスは、約1m
となる。これは、40MHzの第1フレネルゾーン半径
約3mの1/3に相当するので、経済設計上、40MH
z以上のVHF、マイクロ波帯の自由空間型テストサイ
トとして適用できる。図6は、2フェンスによる反射波
防止の例で、相互反射を避けるため(a)は、垂直面内
で傾斜させたもの。(b)は、水平面内で双方を後退形
に形成したものである。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the invention will be described with reference to the drawings. 1 and 2 are examples of three fences. The position of the main fence is near the position of the standard design, but the height is larger than the standard value, so the shielding against the installation plane is sufficient. Sub-fence (6a),
Since (6b) is within the shielding region (9), there is no concern about mutual reflection, and it is useful for preventing diffraction of multiple paths. In this format, if the distance (A-B) is 3m, the transmitting point height is 2.5m, the receiving point height is 2m, the main fence height is 1.2m.
m, clearance for direct wave path is about 1m
Becomes This corresponds to 1/3 of the radius of the first Fresnel zone of about 3 m at 40 MHz, so it is 40 MH in economic design.
It can be applied as a free space type test site for VHF of z or higher and microwave band. FIG. 6 shows an example of preventing reflected waves by two fences, in which (a) is inclined in a vertical plane to avoid mutual reflection. In (b), both are formed in a receding shape in a horizontal plane.

【0024】[0024]

【実施例】図1、図2に、3フェンス形実施例を示す。
図3、図4に、標準設計法を実施例について示す。図6
に、フェンス相互反射防止形の実施例を示す。
EXAMPLES FIGS. 1 and 2 show a three-fence type embodiment.
3 and 4 show the standard design method for the embodiment. Figure 6
An example of the fence mutual reflection prevention type is shown in FIG.

【0025】[0025]

【発明の効果】主フェンスまたは複数のフェンスによっ
て、直接波の下方の反射面の全体を遮蔽する方式なの
で、露出反射面の不正規反射による干渉の恐れがない。
Since the main fence or a plurality of fences shields the entire reflecting surface below the direct wave, there is no risk of interference due to irregular reflection of the exposed reflecting surface.

【0026】主フェンスの遮蔽領域内に設置する副フェ
ンスによって、マルチ経路の回折波の発生が阻止される
ので、反射波防止効果が高められる。
The sub-fence installed in the shielding area of the main fence prevents the generation of multipath diffracted waves, thus enhancing the effect of preventing reflected waves.

【0027】多重フェンスの底面に遮蔽底板を付設する
ことによって、外部反射面等による迂回反射が防止でき
る。
By attaching a shielding bottom plate to the bottom surface of the multiple fence, it is possible to prevent detour reflection by an external reflection surface or the like.

【0028】複数のフェンスにより反射面を遮蔽する場
合は、隣接する対抗面の相対角を20度〜60度にする
ことによって相互反射干渉が防止できる。
When the reflecting surface is shielded by a plurality of fences, mutual reflection interference can be prevented by setting the relative angle of the adjacent opposing surfaces to 20 to 60 degrees.

【0029】本発明で使用するフェンスは、アルミ板等
の低価格の金属薄板が使用できるので、システム全体が
経済的に構成できる利益が大きい。
Since the fence used in the present invention can use a low-priced metal thin plate such as an aluminum plate, it has a great advantage that the entire system can be economically constructed.

【0030】有限の大きさのフェンスの遮蔽損失は周波
数が高い(波長が短い)ほど大きいので、本発明はマイ
クロ波帯の自由空間化に対して特に効果が著しい。
Since the shielding loss of a fence having a finite size increases as the frequency increases (the wavelength decreases), the present invention is particularly effective for making the microwave band free space.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例で、説明のための側面図FIG. 1 is a side view for explaining an embodiment.

【図2】実施例で、説明のための平面図FIG. 2 is a plan view for explaining the embodiment.

【図3】標準設計法の説明のための側面図FIG. 3 is a side view for explaining the standard design method.

【図4】標準設計法の説明のための平面図FIG. 4 is a plan view for explaining a standard design method.

【図5】解決を必要とする課題の説明図で、(a)露出
面の不正規反射(b)マルチ経路回折 (c)底面迂回
反射 (d)フェンス相互反射
FIG. 5 is an explanatory diagram of a problem that needs to be solved. (A) Irregular reflection of exposed surface (b) Multi-path diffraction (c) Bottom detour reflection (d) Fence mutual reflection

【図6】フェンス相互反射防止形の実施例で、(a)傾
斜形フェンス式(b)後退形フェンス式
FIG. 6 is an embodiment of a fence mutual reflection prevention type, in which (a) an inclined fence type and (b) a retracted fence type

【符号の説明】[Explanation of symbols]

1 送信点 2 受信点 3 直接波パス 4 反射面 5 主フェンス、 6 副フェンス、 7 遮蔽底板 8a,8b 標準設計のための対角線 9 遮蔽領域 A 送信点から設置平面に下ろした垂線の足 B 受信点から設置平面に下ろした垂線の足 1a 供試機器の左端 1b 供試機器の右端 1 transmission point 2 reception points 3 direct wave path 4 Reflective surface 5 main fences, 6 Deputy fence, 7 Shield bottom plate 8a, 8b Diagonal line for standard design 9 Shielding area A Feet of a perpendicular line dropped from the transmitting point to the installation plane B A foot perpendicular to the installation plane from the receiving point 1a Left end of EUT 1b Right edge of EUT

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 電波通路の中間に反射波防止用の主フェ
ンス(5)を置き、主フェンスによる遮蔽領域(9)内
に1以上の副フェンス(6)を設けた多重フェンスのあ
る電波計測用テストサイト
1. A radio wave measurement with a multi-fence in which a main fence (5) for preventing reflected waves is placed in the middle of a radio wave passage, and one or more sub-fences (6) are provided in an area (9) shielded by the main fence. For test site
【請求項2】 主フェンス(5)と副フェンス(6)の
底面に遮蔽底板(7)を付設した請求項1に示す多重フ
ェンスのある電波計測用テストサイト
2. The test site for measuring radio waves with multiple fences according to claim 1, wherein shield bottom plates (7) are attached to the bottom surfaces of the main fence (5) and the sub fence (6).
【請求項3】 送信点(1)と受信点(2)および設置
面に下ろしたそれぞれの垂線の足(A)、(B)を結ぶ
四辺形の対角線の交点を(F)とするとき、設置面上の
(F)の高さが、適用希望最低周波数の(F)位置にお
ける第1フレネルゾーン半径の1/3以上になるように
送信点の高さと受信点の高さを決定する。そこで、
(F)を頂点として、主フェンス(5)を設定する。次
に、主フェンスの足と送信点および受信点を結ぶ直線と
対角線(8a)および(8b)との交点を頂点として、
それぞれ副フェンス(6a)、副フェンス(6b)を設
ける。次に、さらに必要があれば、副フェンス(6a)
の足と送信点を結ぶ直線と対角線(8a)の交点および
副フェンス(6b)の足と受信点を結ぶ直線と対角線
(8b)の交点をそれぞれ頂点として、副フェンス(6
c),(6d)を設ける。このようにして、送信点高、
受信点高、主、副フェンスの位置と高さを決定すること
を特徴とする多重フェンスのある電波計測用テストサイ
トの標準設計方法。
3. A transmission point (1) and a reception point (2), and when the intersection of diagonals of a quadrangle connecting the legs (A) and (B) of the respective perpendiculars drawn to the installation surface is (F), The height of the transmitting point and the height of the receiving point are determined so that the height of (F) on the installation surface becomes 1/3 or more of the radius of the first Fresnel zone at the (F) position of the lowest frequency to be applied. Therefore,
The main fence (5) is set with (F) as the apex. Next, with the intersection of the straight line connecting the foot of the main fence and the transmitting point and the receiving point and the diagonal lines (8a) and (8b) as the apex,
A sub fence (6a) and a sub fence (6b) are provided respectively. Next, if necessary, the secondary fence (6a)
Of the sub-fence (6a) and the diagonal of the sub-fence (8a) and the sub-fence (6b) of the sub-fence (6b).
c) and (6d) are provided. In this way, the transmission point height,
A standard design method for a test site for radio wave measurement with multiple fences characterized by determining the height of the receiving point, the position of the main fence, and the height of the secondary fence.
【請求項4】 隣接するフェンスの対抗面の相対角を2
0度〜60度として、対抗面を非平行化した多重フェン
スのある電波計測用テストサイト
4. The relative angle between opposing surfaces of adjacent fences is 2
Test site for radio wave measurement with multiple fences whose opposing surfaces are non-parallel at 0 to 60 degrees
JP2001310712A 2001-08-31 2001-08-31 Test site for measuring electric wave having multiple fence and standard design method thereof Pending JP2003075490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001310712A JP2003075490A (en) 2001-08-31 2001-08-31 Test site for measuring electric wave having multiple fence and standard design method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001310712A JP2003075490A (en) 2001-08-31 2001-08-31 Test site for measuring electric wave having multiple fence and standard design method thereof

Publications (1)

Publication Number Publication Date
JP2003075490A true JP2003075490A (en) 2003-03-12

Family

ID=19129643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001310712A Pending JP2003075490A (en) 2001-08-31 2001-08-31 Test site for measuring electric wave having multiple fence and standard design method thereof

Country Status (1)

Country Link
JP (1) JP2003075490A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013141067A (en) * 2011-12-28 2013-07-18 Chugoku Electric Power Co Inc:The Radio disturbance determination simulation apparatus and simulation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013141067A (en) * 2011-12-28 2013-07-18 Chugoku Electric Power Co Inc:The Radio disturbance determination simulation apparatus and simulation method

Similar Documents

Publication Publication Date Title
US6137449A (en) Reflector antenna with a self-supported feed
CN106597129B (en) Microwave darkroom
KR100441146B1 (en) Notch type antenna in a mobile communication service repeater
TW409438B (en) Low sidelobe reflector antenna system employing a corrugated subreflector
KR970007981B1 (en) Radio-frequency unechoic chamber
CN108701905B (en) Horn antenna
EP1004151B1 (en) Improved reflector antenna with a self-supported feed
JP2014112909A (en) Sub-reflector of dual-reflector antenna
CN101826658A (en) Reflecting board of base station antenna and base station antenna
CN112702747B (en) Communication visual field obtaining method based on sight line
JP2003075490A (en) Test site for measuring electric wave having multiple fence and standard design method thereof
KR101877228B1 (en) Composite-coupled antenna
CN206411196U (en) A kind of microwave dark room
CN213340708U (en) 5G full-band rectangular wave beam spotlight antenna
CN1147029C (en) Antenna having improved blockage fill-in characteristics
EP2466688A1 (en) Parabolic reflector antenna
CN107682873A (en) Passive covering method outside millimeter wave room
JPH0253337A (en) Anechoic chamber
JP2003086986A (en) Test site for measuring radiowave with tectiform radiowave barrier
EP4395075A1 (en) Frequency-selective reflecting plate and communication relay system
CN108055668A (en) Millimeter wave indoor passive covering method
JPH04276700A (en) Radio wave anechoic chamber
JP2590549Y2 (en) Anechoic chamber
KR200284309Y1 (en) Notch type antenna in a mobile communication service repeater
JPH0728729Y2 (en) Tracking antenna