JP2003075029A - Refrigerating cycle and air conditioner having the same - Google Patents

Refrigerating cycle and air conditioner having the same

Info

Publication number
JP2003075029A
JP2003075029A JP2002209142A JP2002209142A JP2003075029A JP 2003075029 A JP2003075029 A JP 2003075029A JP 2002209142 A JP2002209142 A JP 2002209142A JP 2002209142 A JP2002209142 A JP 2002209142A JP 2003075029 A JP2003075029 A JP 2003075029A
Authority
JP
Japan
Prior art keywords
refrigerant
expander
thin tube
foreign matter
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002209142A
Other languages
Japanese (ja)
Inventor
Yukio Watanabe
幸男 渡辺
Toshio Wakabayashi
寿夫 若林
Hironao Numamoto
浩直 沼本
Shinji Watanabe
伸二 渡辺
Akira Fujitaka
章 藤高
Kanji Haneda
完爾 羽根田
Yoshinori Kobayashi
義典 小林
Yuichi Kusumaru
雄一 薬丸
Shigeto Yamaguchi
成人 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002209142A priority Critical patent/JP2003075029A/en
Publication of JP2003075029A publication Critical patent/JP2003075029A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size

Abstract

PROBLEM TO BE SOLVED: To achieve high reliability in suppressing the problem that foreign substances attach to the exit and entrance portions of a narrow tube, with a simple and low-cost structure, irrespective of the switching operation between a cooling mode and a heating mode. SOLUTION: The refrigerating cycle employs an alternative refrigerant. The inner surface of the narrow tube 3a that constitutes an expander 3 is given a smoothening treatment, mold releasing treatment or hydrophilic treatment. The inner diameter of a connecting portion 3b located between the narrow tube 3a constituting the expander 3 and a circulating path 5 is made larger than that of the narrow tube 3a. The inner surface of the connecting portion 3b is given a rough surface treatment or lipophilic treatment to suppress attachment of foreign substances to the exit and entrance portions of the narrow rube 3a.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、冷凍サイクルとこ
れを備えた空気調和機に関し、特に弗化炭素水素系冷媒
群のうち少なくとも1種または2種以上を混合した混合
冷媒、つまり代替冷媒を用い、圧縮機、凝縮器、膨張
器、および蒸発器を循環路にて環状に接続した冷凍サイ
クルとこれを用いた空気調和機に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerating cycle and an air conditioner equipped with the same, and more particularly to a mixed refrigerant prepared by mixing at least one kind or two or more kinds in a fluorocarbon hydrogen refrigerant group, that is, an alternative refrigerant. The present invention relates to a refrigeration cycle in which a compressor, a condenser, an expander, and an evaporator are annularly connected by a circulation path, and an air conditioner using the same.

【0002】[0002]

【従来の技術】冷凍サイクルに使用する圧縮機、特にメ
ンテナンスフリーな密閉型圧縮機は特開昭62−298
680号公報等で知られているように、密閉容器の内部
に前記混合冷媒とオイルを封入し、冷媒を吸入して圧縮
する圧縮機構と、前記オイルを各機械摺動部に供給する
オイルポンプと、これらを駆動軸によって駆動する電動
機とが配されている。
2. Description of the Related Art A compressor used in a refrigeration cycle, especially a maintenance-free hermetic compressor, is disclosed in Japanese Patent Laid-Open No. 62-298.
As is known from Japanese Patent No. 680, etc., a compression mechanism that seals the mixed refrigerant and oil in a closed container, sucks the refrigerant and compresses it, and an oil pump that supplies the oil to each machine sliding portion. And an electric motor that drives them by a drive shaft.

【0003】一方、冷媒には特定フロンR12や指定フ
ロンR22を用いて冷凍サイクルを構成していた。特定
フロンはそれ以前の冷媒である二酸化硫黄やメチルクロ
ライドと比べて、化学的に安定で可燃性、毒性がなく、
理想的な冷媒として広く利用され、長年に亘って使用さ
れてきた。
On the other hand, a refrigerating cycle has been constituted by using a specific Freon R12 or a designated Freon R22 as the refrigerant. Specified CFCs are chemically stable, non-flammable and non-toxic compared to the previous refrigerants such as sulfur dioxide and methyl chloride,
It is widely used as an ideal refrigerant and has been used for many years.

【0004】ところが近時では、特定フロンが分子中に
塩素原子を含み、これがオゾン層の破壊を引き起こすこ
とが確かめられ、代替フロンの開発および使用が図られ
ている。
Recently, however, it has been confirmed that a specific chlorofluorocarbon contains a chlorine atom in the molecule, which causes destruction of the ozone layer, and development and use of an alternative chlorofluorocarbon has been attempted.

【0005】実用性の高い代替冷媒として、塩素を含ま
ないHFC(Hydro Fluoro Carbo
n)と云った冷媒(これを本明細書では非塩素系冷媒と
いう)が挙げられている「油空圧技術’94.6.」
(日本工業出版発行)。
As a highly practical alternative refrigerant, chlorine-free HFC (Hydro Fluoro Carbo) is used.
n), which is mentioned as a refrigerant (this is referred to as a chlorine-free refrigerant in this specification).
(Published by Nippon Kogyo Publishing).

【0006】ところで、非塩素系冷媒は塩素を含まない
ので従来の特定フロンのような潤滑性は望めない。この
ため、密閉容器に封入するオイルは、非塩素系冷媒と相
溶性のあるものが特に要求される。密閉容器に封入され
ているオイルは、圧縮機構から密閉容器内に吐出されて
くる非塩素系冷媒によって攪拌されるし、電動機の回転
子によっても攪拌される。このとき、オイルは非塩素系
冷媒と相溶性があることによって、密閉容器内に吐出さ
れる冷媒によく随伴し各機械摺動部の細部にまでよく及
ぶので、オイルポンプによるオイルの供給と相まって、
潤滑性能が向上する。このようなオイルには特開平6−
235570号公報等で知られるようにエステル系と云
った合成油が用いられる。
By the way, since the non-chlorine type refrigerant does not contain chlorine, it cannot be expected to have the lubricity as in the conventional specific CFC. Therefore, the oil to be sealed in the closed container is particularly required to be compatible with the chlorine-free refrigerant. The oil enclosed in the airtight container is agitated by the chlorine-free refrigerant discharged into the airtight container from the compression mechanism and also by the rotor of the electric motor. At this time, since the oil is compatible with the non-chlorine type refrigerant, it often accompanies the refrigerant discharged into the closed container and reaches the details of the sliding parts of each machine well. ,
Lubrication performance is improved. Japanese Patent Laid-Open No. 6-
Synthetic oils called ester-based oils are used as known from Japanese Patent No. 235570.

【0007】[0007]

【発明が解決しようとする課題】しかし、上記のような
条件にて密閉型圧縮機を運転し冷凍サイクルを実行して
いると、膨張器を構成する細管の入口部と出口部とに異
物が付着して比較的早期に冷媒の流れを阻害し、冷凍機
能が低下する。
However, when the hermetic compressor is operated under the above-mentioned conditions and the refrigeration cycle is executed, foreign matter is not caught at the inlet and outlet of the narrow tube constituting the expander. Adhering to them impedes the flow of the refrigerant relatively early, and the refrigeration function deteriorates.

【0008】これにつき、種々に実験し検討した結果、
非塩素系冷媒と相溶性のあるオイルとしてエステル油を
用いているのが原因していることが判明した。冷媒の循
環系の密閉時に水分が侵入していたり、密閉後に何らか
の理由で水分が発生するようなことがあると、エステル
油はこの水分により加水分解されて脂肪酸を生成する。
脂肪酸は循環系各部を腐食させたり、金属石鹸を形成し
てスラッジを生じる。また、エステル油は安定性が低
く、温度が上がると異物が溶解して混入し、温度が下が
ると異物が析出しやすい。細管の入口部では冷媒の流速
が落ちて析出した異物が付着しやすく詰まりやすい。細
管の出口部では温度が下がるので異物が析出しやすく付
着しやすい。
As a result of various experiments and examinations,
It was found that the cause was the use of ester oil as the oil compatible with the non-chlorine type refrigerant. If water invades at the time of sealing the circulation system of the refrigerant or if water is generated for some reason after the sealing, the ester oil is hydrolyzed by the water to produce a fatty acid.
Fatty acids corrode various parts of the circulatory system and form metal soaps to produce sludge. In addition, ester oil has low stability, and when the temperature rises, the foreign matter is dissolved and mixed in, and when the temperature falls, the foreign matter tends to precipitate. At the inlet of the thin tube, the flow velocity of the refrigerant is reduced, and the deposited foreign matter is apt to adhere to and clogging. Since the temperature drops at the outlet of the thin tube, foreign matter is likely to precipitate and adhere.

【0009】上記特開平6−235570号公報は、冷
媒の循環路の途中であって、細管の冷媒の流れ方向にお
ける上流側直前にフィルタを設けて異物を捕捉し、細管
での冷媒の流れ不良や詰まりを解消した冷凍サイクルを
開示している。
In the above-mentioned Japanese Patent Laid-Open No. 6-235570, a filter is provided in the middle of the refrigerant circulation path immediately before the upstream side in the refrigerant flow direction of the narrow tube to trap foreign matter, and the poor refrigerant flow in the thin tube. It discloses a refrigeration cycle that eliminates clogging.

【0010】しかし、フィルタ構造は複雑で高価につく
し、前記細管の出口部で温度低下のために析出して直ぐ
に付着するようなことには対応できない。また、ヒート
ポンプ運転される冷凍サイクルでは冷暖房の切換えによ
り冷媒の流れ方向が逆になる場合、前記フィルタは細管
の両側に設ける必要があるので、さらに高価なものにな
る。
However, the filter structure is complicated and expensive, and it is not possible to cope with the fact that the filter is deposited at the outlet of the thin tube due to a temperature decrease and immediately adheres thereto. Further, in the refrigerating cycle operated by the heat pump, when the flow direction of the refrigerant is reversed due to switching between cooling and heating, the filters need to be provided on both sides of the thin tube, which makes the filter more expensive.

【0011】本発明はこのような問題を解消することを
課題とし、冷房運転と暖房運転の切換えの有無にかかわ
らず、簡単かつ安価な構造で細管の出口部や入口部に異
物が付着する問題を抑制できる信頼性の高い冷凍サイク
ルおよびこれを備えた空気調和機を提供することを目的
とするものである。
An object of the present invention is to solve such a problem, and regardless of whether or not the cooling operation and the heating operation are switched, foreign matter adheres to the outlet or inlet of the thin tube with a simple and inexpensive structure. It is an object of the present invention to provide a highly reliable refrigeration cycle capable of suppressing the above and an air conditioner provided with the same.

【0012】[0012]

【課題を解決するための手段】本発明の冷凍サイクルお
よび空気調和機は、非塩素系冷媒を用い、圧縮機、凝縮
器、膨張器、および蒸発器を循環路にて環状に接続した
冷凍サイクルであって、非塩素系冷媒に相溶性のある合
成油を用いて本冷凍サイクルが冷房および暖房運転の双
方に切換え運転されるとき、冷媒中に混入し、また析出
する異物が、細管の入口部や出口部に付着しやすい。
A refrigeration cycle and an air conditioner of the present invention use a chlorine-free refrigerant, and a refrigeration cycle in which a compressor, a condenser, an expander, and an evaporator are annularly connected by a circulation path. However, when the refrigeration cycle is switched to both cooling and heating operations by using a synthetic oil compatible with a non-chlorine refrigerant, foreign matter mixed in the refrigerant and deposited is the inlet of the thin tube. Easily adheres to the outlet and outlet.

【0013】しかし、本発明は特に、冷媒がどの方向に
流れても細管の入口部や出口部となる端部がこれよりも
広い接続部内に突出して、この突出部の外面と循環路側
の広い接続部の内面との間に冷媒の流れを淀ませて、突
出部の外面および接続部の内面とこれらの間により多く
の異物を付着させてしかも、この付着する異物は細管お
よび接続部での冷媒の主流には影響しないし、細管が閉
塞されるようなことをより長期に防止するので、冷凍サ
イクルの冷凍機能はより長期に安定し信頼性のさらに高
いものとなる。
However, according to the present invention, in particular, no matter which direction the refrigerant flows, the ends of the narrow tube, which are the inlet and the outlet, project into the connecting portion wider than this, and the outer surface of the projecting portion and the wide side on the circulation path side. The flow of the refrigerant is stagnant between the inner surface of the connection part and more foreign matter is adhered to the outer surface of the protruding part and the inner surface of the connection part, and the foreign matter adhered to the inner surface of the projection part and the connection part. Since it does not affect the main flow of the refrigerant and prevents the capillaries from being blocked for a longer period of time, the refrigerating function of the refrigerating cycle is stable for a longer period of time and has higher reliability.

【0014】しかも、膨張器を構成する細管の内面を平
滑処理、離型処理または親水処理して、細管内面の平滑
性によって異物が引っ掛かったり、付着したりし難くく
なるか、細管内面の離型面によって異物が付着しにくく
なるか、または細管の内面の親水性により油性異物の付
着を防止するかすることができ、併せ、膨張器を構成す
る細管と循環路との接続部の内径を細管よりも大きく
し、接続部の内面を粗面処理または親油処理してあり、
粗面とされた広い接続部の内面に積極的に異物を付着さ
せて冷媒内の異物を除去し、かつこの付着異物が冷媒の
流れに影響がないようにして、細管の出入り口部の内面
に異物が付着しにくくなるか、親油性とされた広い接続
部の内面に積極的に油性異物を付着させて冷媒内から除
去し、かつこの付着異物が冷媒の流れに影響がないよう
にして、細管の出入り口部の内面に異物が付着しにくく
なるかするので、冷凍サイクルの信頼性の高いものとな
るし、いずれも構造が特に複雑にならず安価である。
Moreover, the inner surface of the thin tube constituting the expander is subjected to smoothing treatment, mold releasing treatment or hydrophilic treatment so that the smoothness of the inner surface of the thin tube makes it difficult for foreign matter to be caught or attached, or the inner surface of the thin tube is separated. Foreign matter is less likely to adhere due to the mold surface, or oily foreign matter can be prevented from adhering due to the hydrophilicity of the inner surface of the thin tube. It is larger than a thin tube, and the inner surface of the connection part is roughened or lipophilicized,
The foreign matter in the refrigerant is removed by positively adhering the foreign matter to the inner surface of the roughened wide connection part, and the adhered foreign matter does not affect the flow of the refrigerant. It becomes difficult for foreign matter to adhere, or oily foreign matter is positively adhered to the inner surface of the wide connection part made lipophilic to remove it from the inside of the refrigerant, and this adhered foreign matter does not affect the flow of the refrigerant, Since foreign matter is less likely to adhere to the inner surface of the entrance / exit of the thin tube, the refrigeration cycle has high reliability, and the structure is not particularly complicated and is inexpensive.

【0015】前記接続部は、細管および循環路に外嵌め
したものとすることができる。
The connecting portion may be fitted over the thin tube and the circulation path.

【0016】[0016]

【発明の実施の形態】以下、本発明の幾つかの実施の形
態について、幾つかの参考例とともに図1〜図15を参
照しながら説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Some embodiments of the present invention will be described below with reference to FIGS. 1 to 15 together with some reference examples.

【0017】本実施の形態および参考例は、代替冷媒を
用い、図1に示すように圧縮機1、凝縮器2、膨張器
3、および蒸発器4を循環路5にて環状に接続した冷凍
サイクルであって、非塩素系冷媒に相溶性のある合成油
を用いて本冷凍サイクルが冷房運転と暖房運転とに切換
え運転されるかどうかにかかわらず、冷媒中に混在する
異物が、細管の入口部や出口部に付着することがある。
循環路5の途中には冷房運転と暖房運転との切換えのた
めの四方弁20が設けられ、冷房運転時には、冷媒を図
1に示す凝縮器2、膨張器3、および蒸発器4へと矢印
で示す方向に流すのに対し、ヒートポンプ時は冷媒を逆
に流す。これによって、冷房運転時の凝縮器2が蒸発器
として機能し、蒸発器4が凝縮器として機能する。
In this embodiment and the reference example, a refrigerating system is used in which a compressor 1, a condenser 2, an expander 3 and an evaporator 4 are annularly connected by a circulation path 5 as shown in FIG. Foreign matter mixed in the refrigerant, regardless of whether the refrigeration cycle is switched between cooling operation and heating operation by using a synthetic oil that is compatible with a non-chlorine refrigerant, is a cycle. May adhere to the entrance and exit.
A four-way valve 20 for switching between the cooling operation and the heating operation is provided in the middle of the circulation path 5, and during the cooling operation, the refrigerant flows to the condenser 2, the expander 3 and the evaporator 4 shown in FIG. In contrast to the flow in the direction indicated by, the flow of the coolant is reversed in the heat pump. As a result, the condenser 2 functions as an evaporator and the evaporator 4 functions as a condenser during the cooling operation.

【0018】このような冷凍サイクルにおいて、非塩素
系冷媒とこれに相溶性のある合成油として例えばエステ
ル系のオイルを用い、冷房運転または暖房運転すると
き、冷媒中に混入し、また析出する異物が、膨張器3を
構成する細管3aの入口部や出口部となる端部、特に内
面に付着しやすい。そして、このような異物の付着によ
って冷媒の流れが早期に阻害され、あるいは詰まりを起
こして、冷凍サイクル機能が早期に低下することがとき
としてある。
In such a refrigerating cycle, a non-chlorine refrigerant and an ester oil, for example, are used as a synthetic oil compatible with the non-chlorine refrigerant, and foreign substances mixed in or precipitated in the refrigerant during cooling operation or heating operation. However, they are likely to adhere to the ends of the narrow tube 3a constituting the expander 3 that are the inlet and the outlet, especially the inner surface. It is sometimes the case that the flow of the refrigerant is obstructed or clogged due to the adhesion of such foreign matter, and the refrigeration cycle function is deteriorated early.

【0019】(参考例1)しかし、本参考例は、図2に
示すように膨張器3を構成する細管3aと循環路5との
接続部3bに、循環路5側から細管3a側に内径が漸減
するスロープ部6を設けてある。このスロープ部6は、
冷房運転と暖房運転とで冷媒がどの方向に流れても細管
3aの出入り口部となる各端部に広い空間6aを形成し
ていて、この部分の内面に異物が付着しても、この付着
した異物は接続部3bの空間の広さによって、細管3a
および接続部3bでの冷媒の主流には影響しないし、細
管3aが閉塞されるようなことを防止するので、冷凍サ
イクルの冷凍機能は長期に安定し信頼性の高いものとな
る。しかも、細管3aと循環路5との各接続部3bの管
路形状の改良だけで対応できるので構造が簡単で安価な
ものとなる。
(Reference Example 1) However, in this reference example, as shown in FIG. 2, at the connecting portion 3b between the narrow tube 3a constituting the expander 3 and the circulation path 5, the inner diameter is increased from the circulation path 5 side to the narrow tube 3a side. There is provided a slope portion 6 which gradually decreases. This slope part 6
No matter which direction the refrigerant flows in the cooling operation and the heating operation, a wide space 6a is formed at each end that serves as an entrance / exit of the thin tube 3a, and even if foreign matter adheres to the inner surface of this portion, this adheres. Depending on the size of the space of the connecting portion 3b, the foreign matter may be a thin tube 3a.
Also, since it does not affect the main flow of the refrigerant in the connection portion 3b and prevents the thin tube 3a from being blocked, the refrigeration function of the refrigeration cycle becomes stable for a long period of time and has high reliability. Moreover, the structure can be simple and inexpensive because it can be dealt with only by improving the pipe shape of each connecting portion 3b between the thin tube 3a and the circulation path 5.

【0020】さらに、接続部3bは循環路5または細管
3aの一方、または双方に一体形成したものとすること
ができる。しかし、本実施の形態では、接続部3bを別
体としてあり、循環路5と細管3aと接続部3bとの繋
ぎ合わせ構造としたので、接続部3bのスロープ形状を
単独部品の加工にて容易に達成することができる。ま
た、本実施の形態ではこの単独の接続部3bを循環路5
および細管3aの端部に外嵌めして繋いでいるので、こ
の接続構造がそのままスロープ部6を持った接続部3b
による空間をより大きくしていて、前記異物の付着によ
る冷媒の流れへの影響をさらに小さくすることができ、
冷凍サイクルの機能の長期安定に有利である。
Further, the connecting portion 3b may be formed integrally with one or both of the circulation path 5 and the thin tube 3a. However, in the present embodiment, the connecting portion 3b is provided separately, and the circulation path 5, the thin tube 3a, and the connecting portion 3b are connected to each other. Therefore, the slope shape of the connecting portion 3b can be easily processed by a single component. Can be achieved. In addition, in the present embodiment, the independent connecting portion 3b is connected to the circulation path 5
Also, since it is externally fitted and connected to the end of the thin tube 3a, this connecting structure has the connecting portion 3b having the slope portion 6 as it is.
By making the space larger, it is possible to further reduce the influence of the adhesion of the foreign matter on the flow of the refrigerant,
It is advantageous for long-term stability of the function of the refrigeration cycle.

【0021】なお、接続部3bは循環路5および細管3
aとともに、従来通りの銅製としてよく、相互はろう接
によって繋げばよい。しかし、他の材料および接合構造
を採用することもできる。
The connecting portion 3b includes the circulation path 5 and the thin tube 3.
Along with a, they may be made of conventional copper and may be connected to each other by brazing. However, other materials and bonding structures can be employed.

【0022】(参考例2)本参考例は、参考例1の構造
を踏襲しており、同じ部材には同一の符号を付し、重複
する説明は省略する。図3に示すように、膨張器3を構
成する細管3aがこれとの循環路5側の接続部3b内に
突出させてある。冷媒がどの方向に流れても細管3aの
入口部や出口部となる端部がこれよりも大径で広い空間
6aを持った接続部3b内に突出して、この突出端部3
cの外面と循環路5側の広い接続部3bの内面との間の
部分6bに冷媒の流れを淀ませて、これら突出端部3c
の外面および接続部3bの内面と、これらの間の部分6
bにより多くの異物を付着させてしかも、この付着する
異物は細管3aおよび接続部3bでの冷媒の主流には影
響しないし、細管3aが閉塞されるようなことをより長
期に防止するので、冷凍サイクルの冷凍機能は第1の実
施の形態よりも長期に安定し信頼性のさらに高いものと
なる。しかも、細管3aと循環路5との各接続部3bの
接続状態の改良だけで対応できるので構造が簡単で安価
なものとなる。
(Reference Example 2) This reference example follows the structure of Reference Example 1, and the same members are denoted by the same reference numerals and duplicate description will be omitted. As shown in FIG. 3, a thin tube 3a forming the expander 3 is projected into the connecting portion 3b on the circulation path 5 side thereof. No matter which direction the refrigerant flows, the ends of the thin tube 3a, which are the inlet and the outlet, project into the connecting portion 3b having a larger space 6a having a larger diameter, and the projecting end 3
The flow of the refrigerant is stagnated in the portion 6b between the outer surface of c and the inner surface of the wide connection portion 3b on the circulation path 5 side, and these protruding end portions 3c
And the inner surface of the connecting portion 3b and the portion 6 between them.
Since more foreign matter is attached to b, and the foreign matter that is attached does not affect the main flow of the refrigerant in the thin tube 3a and the connecting portion 3b and prevents the thin tube 3a from being blocked for a longer period of time, The refrigerating function of the refrigerating cycle is stable for a longer period of time and has higher reliability than that of the first embodiment. Moreover, the structure can be simple and inexpensive because it can be dealt with only by improving the connection state of each connecting portion 3b between the thin tube 3a and the circulation path 5.

【0023】なお、本参考例は、参考例1を踏襲したも
のとする必要はなく、径の大きい循環路5の端部を閉じ
た端板から径の小さい細管3aの端部を循環路5内に突
出するだけでも、前記した本実施の形態特有の作用効果
を発揮し、冷凍サイクルの機能の長期安定を幾分図るこ
とができる。
In this reference example, it is not necessary to follow the first example, and the end of the circulation path 5 having a large diameter is closed to the end of the thin tube 3a having a small diameter. Even if only it protrudes inward, the action and effect peculiar to the present embodiment described above can be exhibited, and the long-term stability of the function of the refrigeration cycle can be achieved to some extent.

【0024】(参考例3)本参考例は、参考例1、2を
踏襲したものであり、これらと同一の部材に同一符号を
付しながら、本実施の形態に特有の点につき説明する
と、図4に示すように、細管3aの接続部3bへの突出
端部3cを、これの軸線に対して斜めに開口したもので
ある。
Reference Example 3 This reference example is a follow-up of Reference Examples 1 and 2. The following description will be given of points unique to the present embodiment while giving the same reference numerals to the same members. As shown in FIG. 4, the protruding end portion 3c of the thin tube 3a to the connecting portion 3b is opened obliquely with respect to the axis thereof.

【0025】これによって、細管3aの循環路5側の広
い空間6a側への開口面積が大きく、細管3aの出入り
口部となる突出端部3cの開口部に異物が引っ掛かり難
くなるので、構造が複雑になるようなことなく細管3a
の出入り口部での異物の付着防止機能がさらに向上す
る。本参考例も、必ずしも参考例1を踏襲する必要はな
い。
As a result, the opening area of the narrow tube 3a toward the wide space 6a on the circulation path 5 side is large, and it becomes difficult for foreign matter to be caught in the opening of the projecting end portion 3c which is the entrance / exit of the thin tube 3a, so that the structure is complicated. Thin tube 3a
The function of preventing foreign matter from adhering to the entrance / exit of the door is further improved. This reference example does not necessarily have to follow the reference example 1.

【0026】(参考例4)本参考例は、参考例1、2を
踏襲したものであり、これらと同一の部材に同一符号を
付しながら、本実施の形態に特有の点につき説明する
と、図5に示すように、細管3aの突出端部3cの周壁
に孔3dを設けている。
Reference Example 4 This Reference Example follows Reference Examples 1 and 2, and the same reference numerals are given to the same members as those, and the points peculiar to the present embodiment will be described. As shown in FIG. 5, a hole 3d is provided in the peripheral wall of the projecting end 3c of the thin tube 3a.

【0027】これにより、細管3aと循環路5側の広い
接続部3bとの間の冷媒の出入りが前記孔3dによって
円滑化され、しかも、この円滑な冷媒の流れは異物が細
管3aの出入り口部となる突出端部3cに付着するのを
邪魔するので、孔3dを設けるだけの簡単な付加条件に
て、細管3aの出入り口部での異物の付着防止機能をさ
らに向上することができる。本参考例も必ずしも参考例
1を踏襲する必要はない。
Thus, the entrance and exit of the refrigerant between the thin tube 3a and the wide connection portion 3b on the side of the circulation path 5 is smoothed by the hole 3d, and the smooth refrigerant flow is such that foreign matter is introduced into and exited from the thin tube 3a. Since it is prevented from adhering to the protruding end portion 3c, the function of preventing foreign matter from adhering to the entrance / exit portion of the thin tube 3a can be further improved under a simple additional condition of providing the hole 3d. This reference example does not necessarily need to follow the reference example 1.

【0028】(参考例5)本参考例は、参考例1〜4の
冷凍サイクルを踏襲したもので、図6に示すように、膨
張器3を構成する細管が内径の異なる複数のもの、例え
ば3本の細管3e〜3gを並列に接続してある。このよ
うなものでは、冷媒が流れ難い内径の小さな細管3gか
ら順次に詰まるので、細管3e〜3gの全体が早期に詰
まるのを防止して、正常な機能を長期に維持することが
でき、しかも、細管3e〜3gの本数が多くなるだけで
あるし、細管3e〜3gの本数が多くなるのに比例して
細管3e〜3gの必要径がそれぞれ小さくなるので、構
造が特に複雑にならない。
Reference Example 5 This Reference Example follows the refrigeration cycle of Reference Examples 1 to 4, and as shown in FIG. 6, a plurality of thin tubes constituting the expander 3 having different inner diameters, for example, Three thin tubes 3e to 3g are connected in parallel. In such a case, since the refrigerant is clogged in order from the small tube 3g having a small inner diameter where it is difficult to flow, it is possible to prevent the entire thin tubes 3e to 3g from being clogged early and maintain a normal function for a long time. The number of the thin tubes 3e to 3g increases, and the required diameter of the thin tubes 3e to 3g decreases in proportion to the increase in the number of the thin tubes 3e to 3g. Therefore, the structure is not particularly complicated.

【0029】複数の細管3e〜3gと循環路との接続部
3bに、循環路5と細管3e〜3gとの間に循環路5側
から各細管3e〜3g側に内径が漸増して各細管3e〜
3gと一括接続されたスロープ部7を設けてある。この
スロープ部7による循環路5よりも大きな空間7aを利
用して複数の細管3e〜3gを一括接続することができ
るし、前記大きな空間7aにより異物の付着による冷媒
の流れへの影響および詰まりの発生をさらに防止でき
る。
At the connecting portion 3b between the plurality of thin tubes 3e to 3g and the circulation path, the inner diameter is gradually increased from the circulation path 5 side to each thin tube 3e to 3g side between the circulation path 5 and the thin tubes 3e to 3g. 3e ~
A slope portion 7 that is collectively connected to 3 g is provided. A space 7a larger than the circulation path 5 by the slope portion 7 can be used to collectively connect the plurality of thin tubes 3e to 3g, and the large space 7a prevents the foreign matter from adhering to the refrigerant flow and causing clogging. The occurrence can be further prevented.

【0030】しかも、各細管3e〜3gをスロープ部7
内に突出させたことにより、各細管3e〜3gの各突出
端部3cの外面とスロープ部7の内面、およびこれらの
間の部分7bが前記参考例2特有の作用効果を発揮する
ことができる。
Moreover, each thin tube 3e to 3g is connected to the slope portion 7.
By projecting inward, the outer surface of each protruding end portion 3c of each thin tube 3e to 3g and the inner surface of the slope portion 7 and the portion 7b between them can exhibit the action and effect peculiar to the second reference example. .

【0031】これに限らず、参考例3、4の少なくとも
一方特有の構成を併せ採用してもよく、採用した構成に
特有の作用効果を発揮することができる。
The present invention is not limited to this, and at least one of the structures of Reference Examples 3 and 4 may be adopted together, and the action and effect unique to the adopted structure can be exhibited.

【0032】(参考例6)本参考例は、参考例5の径の
違いに代えて図7に示すように長さの違う複数の細管3
h〜3jを並列に接続したものであり、冷媒が流れ難い
長い細管3hから順次に詰まるので、細管3h〜3jの
全体が早期に詰まるのを防止して、正常な機能を長期に
維持することができ、しかも、細管3h〜3jの本数が
多くなるだけであるし、細管3h〜3jの本数が多くな
るのに比例して細管3h〜3jの必要径がそれぞれ小さ
くなるので、構造が特に複雑にならない。
Reference Example 6 In this Reference Example, a plurality of thin tubes 3 having different lengths as shown in FIG.
Since h to 3j are connected in parallel and the long tubes 3h in which the refrigerant is difficult to flow are sequentially clogged, it is possible to prevent the entire thin tubes 3h to 3j from clogging early and maintain a normal function for a long time. In addition, the number of the thin tubes 3h to 3j only increases, and the required diameter of the thin tubes 3h to 3j decreases in proportion to the increase in the number of the thin tubes 3h to 3j. Therefore, the structure is particularly complicated. do not become.

【0033】なお、参考例5、6双方の構成を合成した
実施の形態とすることもでき、この場合、冷媒の流れの
難易を種類分けしやすいし、長い細管を一番細く形成す
ることにより冷媒の流れ難さをより増大し、また、逆に
短い細管を一番太く形成することにより冷媒の流れやす
さをより増大することができる。
It should be noted that an embodiment in which the configurations of both Reference Examples 5 and 6 are combined can be used. In this case, it is easy to classify the difficulty of the flow of the refrigerant and the long thin tube is formed to be the thinnest. It is possible to further increase the difficulty of the refrigerant flow, and conversely, by forming the short thin tube to be the thickest, the ease of the refrigerant flow can be further increased.

【0034】(参考例7)本参考例は、参考例5、6に
代わるもので、図8の(a)に示すように膨張器3を構
成する複数の細管3k、3m、3nがそれぞれに開閉弁
8〜10を持って接続したものであり、使用する細管3
k、3m、3nを開閉弁8〜10の開閉により1つと
し、使用している細管3k、3m、3nの異物が詰まっ
ての閉塞度によって使用する細管3k、3m、3nを順
次切換えるようにしたから、細管3k、3m、3nの全
体が早期に詰まるようなことを防止することができ、前
記切換えの制御は冷凍サイクル自体の動作制御用の制御
手段、例えば図8の(b)に示すようなマイクロコンピ
ュータM.Cを利用するなどして、構造が特に複雑にな
らないで正常な機能を長期に維持することができる。マ
イクロコンピュータM.Cはこのような制御のために、
自動または手動での詰まり信号を受ける都度、開閉弁8
〜9の開いているものを順次に変えて、使用する細管3
k、3m、3nを切換えるようにする。なお、マイクロ
コンピュータM.Cは前記自動切換えのために、使用し
ている各細管3k、3m、3nでの冷媒の通過抵抗等を
冷媒の異常昇圧を内部機能により判別して自動的に詰ま
り信号が得られるようにすることもできる。
Reference Example 7 This Reference Example is an alternative to Reference Examples 5 and 6, in which a plurality of thin tubes 3k, 3m, 3n constituting the expander 3 are respectively provided as shown in FIG. 8 (a). The thin tube 3 to be used, which is connected by holding the on-off valves 8 to 10.
k, 3m, and 3n are made one by opening and closing the opening / closing valves 8 to 10, and the thin tubes 3k, 3m, and 3n to be used are sequentially switched depending on the degree of blockage when foreign matter of the thin tubes 3k, 3m, and 3n being used is clogged. Therefore, it is possible to prevent the entire thin tubes 3k, 3m, 3n from being clogged at an early stage, and the switching control is performed by a control means for controlling the operation of the refrigeration cycle itself, for example, shown in FIG. Microcomputer M. By using C, the normal function can be maintained for a long period of time without making the structure particularly complicated. Microcomputer M. C is for such control,
Open / close valve 8 each time an automatic or manual clogging signal is received
Capillaries to be used by sequentially changing the open ones up to 9
Switch k, 3m, and 3n. The microcomputer M.M. In order to perform the automatic switching, C designates the refrigerant passage resistance and the like in each of the thin tubes 3k, 3m, 3n being used, and determines an abnormal pressurization of the refrigerant by an internal function so that a clogging signal is automatically obtained. You can also

【0035】(参考例8)本参考例は、参考例5〜7に
代わるもので、参考例1の場合同様にヒートポンプ切換
え弁を有した冷凍サイクルに属し、図9に示すように、
膨張器3を構成する細管がそれぞれに一方向弁11、1
2を持った細管3p、3qを、互いの一方向弁11、1
2の向きが逆になるように並列接続した2種類のものか
らなるものであり、冷房運転と暖房運転とで冷媒の流れ
の方向が逆になるのに対応して、前記一方向弁11、1
2の流れ方向の制限により冷房運転時と、暖房運転時と
で冷媒が通る細管を使い分けるので、細管3p、3qに
異物が付着し詰まるようなことを半減することができ、
その分冷凍サイクルの信頼性の高いものとなるし、構造
が複雑にならず安価なものである。
Reference Example 8 This Reference Example, which is an alternative to Reference Examples 5 to 7, belongs to a refrigeration cycle having a heat pump switching valve as in Reference Example 1, and as shown in FIG.
The thin tubes that make up the expander 3 are one-way valves 11 and 1 respectively.
The thin tubes 3p and 3q having 2 are connected to one-way valves 11 and 1
The two-way valve 11 is made up of two types connected in parallel so that the directions of 2 are reversed, and the one-way valve 11, corresponding to the direction of the flow of the refrigerant being reversed in the cooling operation and the heating operation, 1
Since the thin tubes through which the refrigerant flows are used differently during the cooling operation and the heating operation due to the restriction of the flow direction of 2, it is possible to halve the possibility that foreign matter adheres to the thin tubes 3p and 3q and is clogged.
Therefore, the refrigeration cycle is highly reliable, and the structure is not complicated and is inexpensive.

【0036】なお、一方向弁11を持った細管と、一方
向弁12を持った細管とを、太さや長さの違う複数のも
ので構成して、順次に閉塞していくようにもできる。
The thin tube having the one-way valve 11 and the thin tube having the one-way valve 12 may be composed of a plurality of tubes having different thicknesses and lengths so that they can be sequentially closed. .

【0037】(参考例9)本参考例は、参考例1の冷凍
サイクルを踏襲したものであり、図10に示すように、
膨張器3を構成する複数の細管、例えば2本の細管3
r、3sをそれらの間に設けた接続管13を介して直列
に接続し、接続管13の内径を細管3r、3sの内径よ
りも大きくしたものであり、内径が大きく冷媒を淀ませ
て異物を積極的に付着させて冷媒から除去し、細管への
付着を防止するとともに、この異物が冷媒の流れに影響
しないようにする接続管によって細管を分断して、細管
の実際長さを必要長さの数分の1に短くし、細管に異物
がより詰まり難くすることができ、冷凍サイクルの信頼
性の高いものとなるし、いずれも構造が特に複雑になら
ず安価である。
Reference Example 9 This Reference Example follows the refrigeration cycle of Reference Example 1, and as shown in FIG.
A plurality of thin tubes constituting the expander 3, for example, two thin tubes 3
r and 3s are connected in series through a connecting pipe 13 provided between them, and the inner diameter of the connecting pipe 13 is made larger than the inner diameters of the thin tubes 3r and 3s. To prevent the foreign matter from affecting the flow of the refrigerant, and to divide the thin tube by connecting pipes to prevent the foreign matter from affecting the flow of the refrigerant. It can be shortened to a fraction of the length to make it more difficult for foreign matter to be clogged in the thin tube, which makes the refrigeration cycle highly reliable, and in both cases, the structure is not particularly complicated and is inexpensive.

【0038】本参考例にて、参考例2〜8に特有の構造
を採用し、それらに特有の作用効果を発揮するようにも
できる。
In this reference example, it is possible to adopt the structure peculiar to the reference examples 2 to 8 so as to exert the operation effect peculiar to them.

【0039】(実施の形態1)本実施の形態は、参考例
1の冷凍サイクルを踏襲したものであり、図11に示す
ように、膨張器3を構成する細管3aの内面を平滑処理
したものであり、細管3a内面の平滑処理面21の平滑
性によって異物が引っ掛かったり付着したりし難くくな
り、冷凍サイクルの信頼性の高いものとなるし、構造が
特に複雑にならず安価である。平滑処理はブラスト加工
等の磨き処理、メッキ、あるいは既に知られた他の方法
で行うことができる。
(Embodiment 1) This embodiment follows the refrigeration cycle of Reference Example 1, and as shown in FIG. 11, the inner surface of the thin tube 3a constituting the expander 3 is smoothed. Therefore, the smoothness of the smoothed surface 21 on the inner surface of the thin tube 3a makes it difficult for foreign matter to be caught or adhered, which makes the refrigeration cycle highly reliable, and the structure is not particularly complicated and is inexpensive. The smoothing treatment can be performed by polishing treatment such as blasting, plating, or any other method already known.

【0040】(実施の形態2)本実施の形態は、参考例
1、本実施の形態の冷凍サイクルを踏襲したものであ
り、図12に示すように、膨張器3を構成する細管3a
の内面を離型処理したものであり、細管3a内面の離型
層22の離型性によって異物が付着し難くくなり、冷凍
サイクルの信頼性の高いものとなるし、構造が特に複雑
にならず安価である。
(Embodiment 2) This embodiment follows the refrigeration cycle of Reference Example 1 and this embodiment, and as shown in FIG. 12, a thin tube 3a constituting the expander 3 is formed.
Of the inner surface of the thin tube 3a, it becomes difficult for foreign matter to adhere due to the releasability of the release layer 22 on the inner surface of the thin tube 3a, the refrigeration cycle becomes highly reliable, and if the structure is particularly complicated. It is inexpensive.

【0041】離型処理は例えば弗素コーティング処理等
がある。しかし、既に知られる他の方法で行うことがで
きる。
The mold release treatment includes, for example, fluorine coating treatment. However, it can be done by other methods already known.

【0042】(実施の形態3)本実施の形態は、参考例
1の冷凍サイクルを踏襲したものであり、図13に示す
ように、膨張器3を構成する細管3aの内面を親水処理
したものであり、細管3a内面の親水処理層23の親水
性によって油性異物が付着し難くくなり、冷凍サイクル
の信頼性の高いものとなるし、構造が特に複雑にならず
安価である。親水処理は例えば窒素や硫黄原子が多く含
む組成とするのが好適で、窒化処理が適当である。しか
し、既に知られる他の方法で行うことができる。
(Embodiment 3) This embodiment follows the refrigeration cycle of Reference Example 1, and as shown in FIG. 13, the inner surface of the thin tube 3a constituting the expander 3 is hydrophilically treated. Therefore, the hydrophilicity of the hydrophilic treatment layer 23 on the inner surface of the thin tube 3a makes it difficult for oily foreign matter to adhere, which makes the refrigeration cycle highly reliable, and the structure is not particularly complicated and is inexpensive. The hydrophilic treatment preferably has a composition containing a large amount of nitrogen or sulfur atoms, and the nitriding treatment is suitable. However, it can be done by other methods already known.

【0043】(実施の形態4)本実施の形態は、参考例
1の構造を踏襲したものであり、図14に示すように、
膨張器3を構成する細管3aと循環路5との接続部3b
の内径を細管3aよりも大きくし、接続部3bの内面を
粗面処理したものであり、粗面24とされた広い空間6
aを有するスロープ部6の内面に積極的に異物を付着さ
せて冷媒内の異物を除去し、かつこの付着異物が冷媒の
流れに影響がないようにするので、細管3aの出入り口
部の内面に異物が付着しにくくなり、冷凍サイクルの信
頼性の高いものとなるし、構造が特に複雑にならず安価
である。粗面処理は化学エッチングやブラスト処理等に
よって行える。しかし、これらに限られることはなく、
既に知られる他の方法を採用することもできる。本実施
の形態は参考例2〜5、8、実施の形態3のものにも適
用できる。
(Embodiment 4) This embodiment follows the structure of Reference Example 1, and as shown in FIG.
Connection part 3b between thin tube 3a constituting expander 3 and circulation path 5
Has a larger inner diameter than the thin tube 3a, and the inner surface of the connecting portion 3b is roughened.
The foreign matter in the refrigerant is removed by positively adhering the foreign matter to the inner surface of the slope portion 6 having a, and the adhered foreign matter does not affect the flow of the refrigerant. Foreign matter is less likely to adhere, the refrigeration cycle has high reliability, and the structure is not particularly complicated and is inexpensive. The rough surface treatment can be performed by chemical etching, blast treatment, or the like. However, it is not limited to these,
Other methods already known can also be adopted. The present embodiment can be applied to the reference examples 2 to 5, 8 and the third embodiment.

【0044】(実施の形態5)本実施の形態は、実施の
形態4に代わるものであり、図15に示すように膨張器
3の接続部3bの内面を親油処理した親油処理層25を
設けたものであり、親油性とされた広い空間6bを有す
るスロープ部6の内面に積極的に油性の異物を付着させ
て、細管3a等の内面に異物が付着しにくくなるので、
冷凍サイクルの信頼性の高いものとなるし、構造が特に
複雑にならず安価である。親油処理はアルコール系樹脂
等の膜コーティングによって行える。
(Fifth Embodiment) This embodiment is an alternative to the fourth embodiment, and as shown in FIG. 15, a lipophilic treatment layer 25 in which the inner surface of the connecting portion 3b of the expander 3 is subjected to lipophilic treatment. The oily foreign matter is positively adhered to the inner surface of the slope portion 6 having the wide space 6b made lipophilic so that the foreign matter is less likely to adhere to the inner surfaces such as the thin tubes 3a.
The refrigeration cycle has high reliability, and the structure is not particularly complicated and is inexpensive. The lipophilic treatment can be performed by film coating with an alcohol resin or the like.

【0045】[0045]

【発明の効果】請求項1〜3の発明は、以上に説明した
ように、冷房運転と暖房運転とで冷媒がどの方向に流れ
ても細管の入口部や出口部となる端部に異物が付着して
冷媒の流れを阻害したり、細管が閉塞されたりするのを
防止して、冷凍サイクルの冷凍機能を長期に安定させ信
頼性の高いものとすることができるし、構造が特に複雑
にならないので安価でもある。
As described above, according to the invention of claims 1 to 3, no matter what the direction of the refrigerant flows in the cooling operation and the heating operation, foreign matter will be present at the ends of the thin tubes, which are the inlet and the outlet. It is possible to prevent the adhesion of the refrigerant to block the flow of the refrigerant and the blockage of the thin tube, to stabilize the refrigeration function of the refrigeration cycle for a long period of time and to make it highly reliable, and the structure is particularly complicated. It is also cheap because it does not happen.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態および参考例を示すヒート
ポンプタイプである冷凍サイクルの模式図である。
FIG. 1 is a schematic diagram of a heat pump type refrigeration cycle showing an embodiment of the present invention and a reference example.

【図2】本発明の参考例1の循環路と膨張器との接続構
造を示す断面図である。
FIG. 2 is a cross-sectional view showing a connection structure between a circulation path and an expander of Reference Example 1 of the present invention.

【図3】本発明の参考例2の循環路と膨張器との接続構
造を示す断面図である。
FIG. 3 is a cross-sectional view showing a connection structure between a circulation path and an expander of Reference Example 2 of the present invention.

【図4】本発明の参考例3の循環路と膨張器との接続構
造を示す断面図である。
FIG. 4 is a cross-sectional view showing a connection structure between a circulation path and an expander of Reference Example 3 of the present invention.

【図5】本発明の参考例4の循環路と膨張器との接続構
造を示す断面図である。
FIG. 5 is a cross-sectional view showing a connection structure between a circulation path and an expander of Reference Example 4 of the present invention.

【図6】本発明の参考例5の循環路と膨張器との接続構
造を示す断面図である。
FIG. 6 is a cross-sectional view showing a connection structure between a circulation path and an expander of Reference Example 5 of the present invention.

【図7】本発明の参考例6の循環路と膨張器との接続構
造を示す断面図である。
FIG. 7 is a cross-sectional view showing a connection structure between a circulation path and an expander of Reference Example 6 of the present invention.

【図8】本発明の参考例7の循環路と膨張器との接続構
造を示す断面図、および制御手段のブロック図である。
FIG. 8 is a cross-sectional view showing a connection structure between a circulation path and an expander of Reference Example 7 of the present invention, and a block diagram of control means.

【図9】本発明の参考例8の循環路と膨張器との接続構
造を示す断面図である。
FIG. 9 is a cross-sectional view showing a connection structure between a circulation path and an expander of Reference Example 8 of the present invention.

【図10】本発明の参考例9の循環路と膨張器との接続
構造を示す断面図である。
FIG. 10 is a cross-sectional view showing a connection structure between a circulation path and an expander of Reference Example 9 of the present invention.

【図11】本発明の実施の形態1の膨張器を構成する細
管の一部を示す断面図である。
FIG. 11 is a cross-sectional view showing a part of a thin tube forming the expander according to the first embodiment of the present invention.

【図12】本発明の実施の形態2の膨張器を構成する細
管の一部を示す断面図である。
FIG. 12 is a cross-sectional view showing a part of a thin tube forming an expander according to a second embodiment of the present invention.

【図13】本発明の実施の形態3の膨張器を構成する細
管の一部を示す断面図である。
FIG. 13 is a cross-sectional view showing a part of a thin tube forming an expander according to a third embodiment of the present invention.

【図14】本発明の実施の形態4の循環路と膨張器との
接続構造を示す断面図である。
FIG. 14 is a cross-sectional view showing a connection structure between a circulation path and an expander according to a fourth embodiment of the present invention.

【図15】本発明の実施の形態5の循環路と膨張器との
接続構造を示す断面図である。
FIG. 15 is a sectional view showing a connection structure between a circulation path and an expander according to a fifth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 凝縮器 3 膨張器 3a、3e〜3k、3m、3n、3p〜3s 細管 3b 接続部 3c 突出端部 3d 孔 4 蒸発器 5 循環路 6、7 スロープ部 6a、7a 空間 8、9、10 開閉弁 11、12 一方向弁 13 接続管 20 四方弁 21 平滑処理面 22 離型層 23 親水処理層 24 粗面 25 親油処理層 1 compressor 2 condenser 3 expander 3a, 3e to 3k, 3m, 3n, 3p to 3s thin tubes 3b connection part 3c protruding end 3d hole 4 evaporator 5 circuit 6, 7 slope section 6a, 7a space 8, 9, 10 open / close valve 11,12 One-way valve 13 Connection tube 20 four-way valve 21 smoothed surface 22 Release layer 23 Hydrophilic treatment layer 24 rough surface 25 Lipophilic treatment layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 沼本 浩直 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 渡辺 伸二 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 藤高 章 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 羽根田 完爾 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 小林 義典 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 薬丸 雄一 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 山口 成人 大阪府門真市大字門真1006番地 松下電器 産業株式会社内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hironao Numamoto             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Shinji Watanabe             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Akira Fujitaka             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Haneda Kanji             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Yoshinori Kobayashi             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Yuichi Yakumaru             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Yamaguchi Adult             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 非塩素系冷媒を用い、圧縮機、凝縮器、
膨張器、および蒸発器を循環路にて環状に接続した冷凍
サイクルであって、 膨張器を構成する細管の内面を平滑処理、離型処理また
は親水処理をし、膨張器を構成する細管と循環路との接
続部の内径を細管よりも大きくし、接続部の内面を粗面
処理または親油処理したことを特徴とする冷凍サイク
ル。
1. A compressor, a condenser, and a non-chlorine refrigerant are used.
This is a refrigeration cycle in which an expander and an evaporator are connected in a loop by a circulation path, and the inner surface of the narrow tube that constitutes the expander is subjected to smoothing treatment, mold release treatment or hydrophilic treatment to circulate with the narrow tube that constitutes the expander. A refrigeration cycle characterized in that an inner diameter of a connection portion with a passage is made larger than that of a thin tube, and an inner surface of the connection portion is roughened or lipophilicized.
【請求項2】 接続部は細管および循環路に外嵌めした
請求項1に記載の冷凍サイクル。
2. The refrigerating cycle according to claim 1, wherein the connecting portion is fitted onto the narrow tube and the circulation path.
【請求項3】 請求項1、2のいずれか1項に記載の冷
凍サイクルを備えたことを特徴とする空気調和機。
3. An air conditioner comprising the refrigeration cycle according to any one of claims 1 and 2.
JP2002209142A 2002-07-18 2002-07-18 Refrigerating cycle and air conditioner having the same Pending JP2003075029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002209142A JP2003075029A (en) 2002-07-18 2002-07-18 Refrigerating cycle and air conditioner having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002209142A JP2003075029A (en) 2002-07-18 2002-07-18 Refrigerating cycle and air conditioner having the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP32134295A Division JP3540075B2 (en) 1995-12-11 1995-12-11 Air conditioner

Publications (1)

Publication Number Publication Date
JP2003075029A true JP2003075029A (en) 2003-03-12

Family

ID=19195842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002209142A Pending JP2003075029A (en) 2002-07-18 2002-07-18 Refrigerating cycle and air conditioner having the same

Country Status (1)

Country Link
JP (1) JP2003075029A (en)

Similar Documents

Publication Publication Date Title
JP3540075B2 (en) Air conditioner
US6615597B1 (en) Refrigerator
WO2014068833A1 (en) Air conditioner
JP2002107014A (en) Air conditioner
US6006544A (en) Refrigeration cycle
WO2023279614A1 (en) Indoor heat exchanger in-tube self-cleaning control method
JP2009236447A (en) Refrigeration apparatus
JP3708505B2 (en) Refrigeration cycle and air conditioner equipped with the same
JP2003075029A (en) Refrigerating cycle and air conditioner having the same
JP4650049B2 (en) Refrigeration equipment
JPH11190561A (en) Refrigerating system
JP3819678B2 (en) Heat pump air conditioner
JP2020085334A (en) Blockage prevention mechanism of capillary tube in refrigeration cycle
JP2008164254A (en) Coolant piping structure
JP2000146369A (en) Air conditioner
JP2001355931A (en) Heat pump type air conditioner
JPH07139837A (en) Air conditioner
JPH10185334A (en) Refrigerating equipment
JP6935021B2 (en) Air conditioner
JP2001141311A (en) Air-conditioner
JPH0694311A (en) Refrigerating cycle
JP3348597B2 (en) Air conditioner
JPH06159865A (en) Refrigerating cycle
JP2001255041A (en) Refrigeration system
JPH0979701A (en) Air conditioner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050412