JP2003074376A - Temperature estimation method for thermal barrier coating - Google Patents

Temperature estimation method for thermal barrier coating

Info

Publication number
JP2003074376A
JP2003074376A JP2001264982A JP2001264982A JP2003074376A JP 2003074376 A JP2003074376 A JP 2003074376A JP 2001264982 A JP2001264982 A JP 2001264982A JP 2001264982 A JP2001264982 A JP 2001264982A JP 2003074376 A JP2003074376 A JP 2003074376A
Authority
JP
Japan
Prior art keywords
temperature
thermal conductivity
correlation
porosity
operating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001264982A
Other languages
Japanese (ja)
Other versions
JP4801295B2 (en
Inventor
Tomoharu Fujii
智晴 藤井
Takeshi Takahashi
高橋  毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2001264982A priority Critical patent/JP4801295B2/en
Publication of JP2003074376A publication Critical patent/JP2003074376A/en
Application granted granted Critical
Publication of JP4801295B2 publication Critical patent/JP4801295B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To nondestructively inspect an operating temperature of such a high temperature part with a thermal barrier coating (TBC) applied to a surface as a gas turbine component part. SOLUTION: A correlation is computed between a secular change in thermal conductivity of a TBC applied to a surface of a high temperature part, an operating time t (exposure time) and an operating temperature T (exposure temperature), and according to the correlation, the operating temperature T of the TBC is estimated from measured values of thermal conductivity before and after an operation and the operating time t. An expression of a Larson- Miller parameter (LMP) type is used to represent a unique correlation between the thermal conductivity, the operating time t and the operating temperature T.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、遮熱コーティング
(Thermal Barrier Coating、以下「TBC」と称す
る)の温度推定方法に関する。さらに詳述すると、本発
明は、例えばガスタービン高温部品のように部品表面に
TBCが施され、運転中における温度の実測が困難な部
品の温度を推定する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature estimation method for a thermal barrier coating (hereinafter referred to as "TBC"). More specifically, the present invention relates to a technique for estimating the temperature of a component, such as a gas turbine high temperature component, for which the surface of the component is subjected to TBC and it is difficult to measure the temperature during operation.

【0002】[0002]

【従来の技術】ガスタービンのように高温で運転され、
しかも回転体をもつ発電機器においては運転中の部品温
度を実測することが一般に困難である。そこで従来は、
試運転期間中に、静止部品に対しては熱電対、回転体に
対してはテレメータや放射温度計によって温度を測定す
る試みが行われてきた。
2. Description of the Related Art Operated at a high temperature like a gas turbine,
Moreover, it is generally difficult to actually measure the component temperature during operation in a power generator having a rotating body. So conventionally,
During the test run, attempts have been made to measure the temperature with a thermocouple for stationary components and a telemeter or radiation thermometer for rotating bodies.

【0003】しかし、このような測定方法は、ケーシン
グの改造や温度計の取り付けなどを伴うことから多大な
労力を要するばかりでなく、営業運転中は安全の観点か
ら測定できないという欠点がある。
However, such a measuring method requires a great deal of labor because it involves modification of the casing and attachment of a thermometer, and has the drawback that it cannot be measured from the viewpoint of safety during commercial operation.

【0004】このため、このような実測方法に代え、運
転中の部品温度を推定する方法が採用されている。例え
ば動翼については、部品の材料組織中に存在するγ’相
が部品の運転時間tや運転温度Tと相関を持って徐々に
肥大化していく性質を利用して部品温度が推定されてい
る。この場合、部品等を高温雰囲気下に曝露し、そのと
きの動翼材中のγ’相の大きさと曝露条件(曝露時間、
曝露温度)との相関式を実験室的に求め、この相関式に
実機部品の破壊検査から得られたγ’相の大きさと部品
運転時間tを入力して当該部位の運転温度Tを推定する
手法が試みられている。
Therefore, instead of such an actual measurement method, a method of estimating the temperature of components during operation is adopted. For example, for a moving blade, the component temperature is estimated by utilizing the property that the γ ′ phase existing in the material structure of the component gradually increases in size in correlation with the operating time t and the operating temperature T of the component. . In this case, the components are exposed to a high temperature atmosphere, and the size of the γ'phase in the blade material and the exposure conditions (exposure time,
Correlation formula with exposure temperature) is obtained in a laboratory, and the operating temperature T of the relevant part is estimated by inputting the size of the γ'phase and the component operation time t obtained from the destructive inspection of the actual machine parts to this correlation formula. The method is being tried.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このよ
うな推定方法によると、高価な部品を破壊しなくてはな
らないため、部品コスト、検査コストが高額となってし
まう。
However, according to such an estimation method, expensive parts must be destroyed, resulting in high parts cost and inspection cost.

【0006】そこで、本発明は、ガスタービン構成部品
など表面にTBCが施された高温部品の運転温度を非破
壊で調べることができるTBC(遮熱コーティング)の
温度推定方法を提供することを目的とする。
Therefore, an object of the present invention is to provide a TBC (thermal barrier coating) temperature estimation method capable of nondestructively examining the operating temperature of a high temperature component such as a gas turbine component having TBC on its surface. And

【0007】[0007]

【課題を解決するための手段】ここで、本願発明者ら
は、高温部品の表面に耐熱目的で施されているTBCは
初期の施工状態においてその内部に大小の気孔をもつが
高温での使用により焼結が進行し、内部の気孔が減少し
て熱伝導率や気孔率が経年的に変化するという性質に着
目した。そして、種々の実験の結果、曝露温度が高いほ
ど気孔率の減少割合が大きくなること、気孔率は曝露時
間の増加とともに減少していく傾向があること、熱伝導
率の場合と同様に、200時間までに急激に気孔率が変
化し、その後は緩やかに変化する傾向があることを知見
し、また、焼結による非溶着部の減少と、加熱による結
晶構造の変化が遮熱性能の経年劣化を引き起こすことも
知見した。さらには、高温下に曝露された場合、どの曝
露条件においても経年材(劣化材)は初期材よりも熱伝
導率が大きく、曝露時間が同じ場合で比較すると曝露温
度が高いほど初期材に対する熱伝導率の増加割合が大き
くなっていることを知見した。また、焼結による熱伝導
率の増加が起こるのは、1000℃以上であると考えられ
た。そして、種々の検討の結果、これらの性質から、初
期状態に対する熱伝導率の変化(あるいは気孔率の変
化)と運転時間tおよび運転温度Tの相関が得られるこ
とを知見するに至った。
The inventors of the present invention have found that TBC, which is applied to the surface of high temperature parts for the purpose of heat resistance, has large and small pores inside in the initial working state, but is used at high temperature. As a result, we focused on the property that the sintering progresses, the internal pores decrease, and the thermal conductivity and porosity change over time. As a result of various experiments, the higher the exposure temperature is, the larger the reduction rate of the porosity is, the porosity tends to decrease with the increase of the exposure time, and as with the case of the thermal conductivity, 200%. It was found that the porosity changes rapidly by the time and then gradually changes.The decrease in non-welded parts due to sintering and the change in the crystal structure due to heating also deteriorate the heat shielding performance over time. It was also found to cause. Furthermore, when exposed to high temperatures, the aged material (deteriorated material) has a higher thermal conductivity than the initial material under any of the exposure conditions. It was found that the rate of increase in conductivity was large. It was also considered that the increase in thermal conductivity due to sintering occurred at 1000 ° C or higher. As a result of various studies, it has been found from these properties that a change in the thermal conductivity (or a change in the porosity) with respect to the initial state and a correlation between the operating time t and the operating temperature T can be obtained.

【0008】本願発明はかかる知見に基づくもので、請
求項1記載の遮熱コーティング(TBC)の温度推定方
法は、ガスタービン構成部品など高温部品の表面に施さ
れた遮熱コーティングの熱伝導率の経年的な変化と運転
時間tおよび運転温度Tとの相関を求め、この相関に基
づいて運転前および運転後の熱伝導率の測定値と運転時
間tとから遮熱コーティングの運転温度Tを推定するも
のである。
The present invention is based on such knowledge, and the temperature estimation method of the thermal barrier coating (TBC) according to claim 1 is the thermal conductivity of the thermal barrier coating applied to the surface of a high temperature component such as a gas turbine component. Of the thermal barrier coating from the measured values of the thermal conductivity before and after the operation and the operating time t based on this correlation. It is an estimate.

【0009】この場合、熱伝導率と運転時間tおよび運
転温度Tとの相関に基づき、実機部品の測定から得られ
た熱伝導率と運転時間tとから運転温度Tを推定するこ
とができる。したがって、本発明と、公知あるいは新規
の非破壊によるTBCの熱伝導率測定法(例えばフォト
サーマル赤外検知法)を組み合わせることにより、今ま
で測定が困難であったガスタービン高温部品の運転温度
を非破壊で調べられるようになり、低コストでの部品の
保守管理が可能となる。
In this case, the operating temperature T can be estimated based on the correlation between the thermal conductivity and the operating time t and the operating temperature T from the thermal conductivity and the operating time t obtained from the measurement of the actual machine parts. Therefore, by combining the present invention with a known or novel nondestructive TBC thermal conductivity measurement method (for example, photothermal infrared detection method), the operating temperature of a gas turbine high temperature component, which has been difficult to measure up to now, can be obtained. It enables non-destructive inspection and enables low-cost maintenance of parts.

【0010】また、相関は、請求項2記載の発明のよう
に、熱伝導率の変化とLMPとの関係を示す一次式 λ/λas sprayed =a×LMP+b (ただしλは運転後における熱伝導率、λas sprayed
は運転前における熱伝導率、a,bはTBC(遮熱コー
ティング)材料の焼結状況により定まる定数、LMPは
ラーソンミラーパラメータでLMP=(T+273.15)(log
10t+C)、Tは運転温度、tは運転時間、Cは定数)で
表すことができる。この場合、熱伝導率と運転時間tお
よび運転温度Tとの相関が一義的に表され、この相関式
に実機部品の測定から得られた熱伝導率を入力し、併せ
て運転時間tを入力することで残りの運転温度Tを演算
し推定することができる。
Further, the correlation is a linear expression λ / λ as sprayed = a × LMP + b (where λ is the heat conduction after the operation), which represents the relationship between the change in the thermal conductivity and the LMP, as in the second aspect of the invention. Rate, λ as sprayed
Is the thermal conductivity before operation, a and b are constants determined by the sintering condition of the TBC (thermal barrier coating) material, and LMP is the Larson Miller parameter LMP = (T + 273.15) (log
10 t + C), T is operating temperature, t is operating time, and C is constant). In this case, the correlation between the thermal conductivity and the operating time t and the operating temperature T is uniquely expressed, and the thermal conductivity obtained from the measurement of the actual machine parts is input to this correlation formula, and the operating time t is also input. By doing so, the remaining operating temperature T can be calculated and estimated.

【0011】請求項3記載の発明では、ガスタービン構
成部品など高温部品の表面に施された遮熱コーティング
における気孔率の経年的な変化と運転時間tおよび運転
温度Tとの相関を求め、この相関に基づいて運転前およ
び運転後の気孔率の測定値と運転時間tとから遮熱コー
ティングの運転温度Tを推定するようにしている。
According to the third aspect of the present invention, the correlation between the secular change in the porosity of the thermal barrier coating applied to the surface of the high temperature component such as the gas turbine component and the operating time t and the operating temperature T is obtained. Based on the correlation, the operating temperature T of the thermal barrier coating is estimated from the measured porosity values before and after the operation and the operating time t.

【0012】この場合、気孔率と運転時間tおよび運転
温度Tとの相関に基づき、実機部品の測定から得られた
気孔率と運転時間tとから運転温度Tを推定することが
できる。
In this case, the operating temperature T can be estimated from the porosity and the operating time t obtained from the measurement of the actual machine parts based on the correlation between the porosity and the operating time t and the operating temperature T.

【0013】また、相関式は、請求項4記載の発明のよ
うに、気孔率の変化とLMPとの関係を示す一次式 P/Pas sprayed =c×LMP+d (ただしPは運転後における気孔率、Pas sprayed
運転前における気孔率、c,dはTBC(遮熱コーティ
ング)材料の焼結状況により定まる定数、LMPはラー
ソンミラーパラメータでLMP=(T+273.15)(log10t
+C)、Tは運転温度、tは運転時間、Cは定数)で表
すことができる。この場合、気孔率と運転時間tおよび
運転温度Tとの相関が一義的に表され、この相関式に実
機部品の測定から得られた気孔率を入力し、併せて運転
時間tを入力することで残りの運転温度Tを演算し推定
することができる。
The correlation equation is the linear expression P / P as sprayed = c × LMP + d (where P is the porosity after the operation), which represents the relationship between the change in the porosity and the LMP, as in the invention of claim 4. , P as sprayed is the porosity before operation, c and d are constants determined by the sintering condition of the TBC (thermal barrier coating) material, and LMP is the Larson Miller parameter LMP = (T + 273.15) (log 10 t
+ C), T is an operating temperature, t is an operating time, and C is a constant). In this case, the correlation between the porosity and the operating time t and the operating temperature T is uniquely expressed, and the porosity obtained from the measurement of the actual machine parts is input to this correlation formula, and the operating time t is also input. Can calculate and estimate the remaining operating temperature T.

【0014】[0014]

【発明の実施の形態】以下、本発明を図面に示す実施の
形態の一例に基づいて詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below based on an example of an embodiment shown in the drawings.

【0015】図1〜図4に本発明のTBCの温度推定方
法を説明するための図を示す。この温度推定方法は、ガ
スタービン構成部品など高温部品の表面に施されたTB
Cにおける熱伝導率(または気孔率)の経年的な変化と
運転時間tおよび運転温度Tとの相関を求め、この相関
に基づいて運転前と運転後の熱伝導率(または気孔率)
の測定値と運転時間tとからTBCの運転温度Tを演算
し推定するものである。
1 to 4 are diagrams for explaining the temperature estimating method of the TBC according to the present invention. This temperature estimation method is based on the TB applied to the surface of high temperature parts such as gas turbine components.
The correlation between the secular change in the thermal conductivity (or porosity) at C and the operating time t and the operating temperature T is obtained, and the thermal conductivity (or porosity) before and after the operation is calculated based on this correlation.
The operating temperature T of the TBC is calculated and estimated from the measured value and the operating time t.

【0016】この場合、相関式は、熱伝導率(または気
孔率)の変化とLMP(ラーソンミラーパラメータ)と
の関係を示す一次式として数式1または数式2のように
表すことができる。
In this case, the correlation equation can be expressed as Equation 1 or Equation 2 as a linear equation showing the relationship between the change in thermal conductivity (or porosity) and the LMP (Larson Miller parameter).

【数1】λ/λas sprayed =a×LMP+b[ Formula 1] λ / λ as sprayed = a × LMP + b

【数2】P/Pas sprayed =c×LMP+d ただし、ここで、λ/λas sprayed は熱伝導率の変
化、P/Pas sprayed は気孔率の変化、a,b,c,
dはTBC材料の焼結状況により定まる定数であり、 LMP=(T+273.15)(log10t+C) LMP:ラーソンミラーパラメータ C:定数(熱伝導率変化の場合は14、気孔率変化の場合
は32) である。なお、as sprayedという添字は初期材(または
運転前の状態)であることを示す。また、本実施形態で
は熱伝導率変化(または気孔率変化)を運転後および運
転前における熱伝導率(または気孔率変化)の比として
表している。
Where P / P as sprayed = c × LMP + d, where λ / λ as sprayed is the change in thermal conductivity, P / P as sprayed is the change in porosity, a, b, c,
d is a constant determined by the sintering condition of the TBC material, LMP = (T + 273.15) (log 10 t + C) LMP: Larson Miller parameter C: constant (14 when the thermal conductivity changes, when the porosity changes) 32) The subscript as sprayed indicates that it is an initial material (or a state before operation). Further, in the present embodiment, the change in thermal conductivity (or change in porosity) is expressed as the ratio of the thermal conductivity (or change in porosity) after operation and before operation.

【0017】これら一次式によれば、熱伝導率(または
気孔率)と運転時間tおよび運転温度Tとの相関が直線
グラフ上に一義的に表され、熱伝導率(または気孔率)
と運転時間tとから運転温度Tを演算し推定することが
可能となる。
According to these linear expressions, the correlation between the thermal conductivity (or porosity) and the operating time t and the operating temperature T is uniquely expressed on a straight line graph, and the thermal conductivity (or porosity) is obtained.
The operating temperature T can be calculated and estimated from the operating time t and the operating time t.

【0018】ここで、LMPを利用した相関式は例えば
以下のようにサンプルを用いて求められる。まず、実機
(例えばガスタービン動翼)に施されるTBCと同様の
方法で、熱伝導率および気孔率を測定するためのTBC
試料を作成する。そしてこのTBC試料の使用前初期材
と、曝露条件(曝露時間および曝露温度)をパラメータ
として電気炉等で数通りの条件で曝露された曝露材とに
ついて、それぞれ熱伝導率と気孔率を測定し、初期材に
対する曝露材の熱伝導率および気孔率の変化と曝露時間
tおよび曝露温度Tとの相関式を得る。
Here, the correlation equation using LMP is obtained by using samples as follows, for example. First, a TBC for measuring thermal conductivity and porosity in the same manner as TBC applied to an actual machine (for example, a gas turbine rotor blade).
Make a sample. Then, the thermal conductivity and the porosity of the TBC sample before use were measured and the exposed material exposed under several conditions in an electric furnace using the exposure conditions (exposure time and exposure temperature) as parameters, respectively. A correlation equation between the change in the thermal conductivity and the porosity of the exposed material with respect to the initial material and the exposure time t and the exposure temperature T is obtained.

【0019】ここでいう「曝露」とは、表面にTBCが
施されたTBC試料を炉などで高温雰囲気下に曝すこと
であり、ガスタービンに適用可能な適正数値を得るた
め、ガスタービンにおける実際の運転状況に即した曝露
条件(曝露時間、曝露温度)で行われる。
The term "exposure" as used herein means exposing a TBC sample whose surface is TBC to a high temperature atmosphere in a furnace or the like. The exposure conditions (exposure time, exposure temperature) are set according to the operating conditions of.

【0020】ここで、TBCの熱伝導率の変化は焼結の
進行による気孔率の変化によって引き起こされると考え
られることから、TBC内における挙動がアレニウス型
の式に従うと仮定し、初期材に対する曝露材の熱伝導率
の変化の速度を以下の数式3を使って表す。
Since it is considered that the change in the thermal conductivity of TBC is caused by the change in the porosity due to the progress of sintering, it is assumed that the behavior in TBC follows the Arrhenius type equation, and the exposure to the initial material is assumed. The rate of change of the thermal conductivity of the material is expressed using the following mathematical formula 3.

【数3】 ただし、A,Qはそれぞれ頻度因子と見掛けの活性化エ
ネルギーであり、ともに反応条件に固有な定数である。
また、Tは曝露温度[℃]である。
[Equation 3] However, A and Q are a frequency factor and an apparent activation energy, respectively, and both are constants specific to the reaction conditions.
Further, T is the exposure temperature [° C].

【0021】次に数式3を変形してNext, by modifying Equation 3,

【数4】 [Equation 4]

【0022】ここで、初期材に対する曝露材の熱伝導率
の変化の速度が1/tに比例することを考慮して数式4
を変形すると、以下の数式5が得られる。
Here, considering that the rate of change of the thermal conductivity of the exposed material with respect to the initial material is proportional to 1 / t, Equation 4
By transforming, the following formula 5 is obtained.

【数5】Q/R=(T+273.15)(log10t+C) ただし、Cは定数である。## EQU5 ## Q / R = (T + 273.15) (log 10 t + C) where C is a constant.

【0023】この数式5の右辺は、金属材料に対してク
リープ破断強度と曝露温度、破断時間の関係を整理する
ために一般的に用いられているラーソンミラーパラメー
タと一致している。そこで、このラーソンミラーパラメ
ータを用いてある温度(例えば950℃)における熱伝導
率比を表すことにより、熱伝導率の経年的な変化と運転
時間tおよび運転温度Tとの相関を一次式で表すことが
できる。この場合、このようにして得られた相関式に熱
伝導率の測定値と運転時間tとを入力(代入)して演算
することにより、TBCにおける運転温度Tを一義的に
推定することができる。また、気孔率についても、熱伝
導率と同様、気孔率変化と運転時間tおよび運転温度T
との相関を一次式で表し、気孔率の測定値と運転時間t
とを入力(代入)して演算することによりTBCにおけ
る運転温度Tを一義的に推定することができる。
The right side of the equation (5) is in agreement with the Larson-Miller parameter which is generally used for arranging the relationship between creep rupture strength, exposure temperature and rupture time for metallic materials. Therefore, by using this Larson-Miller parameter to represent the thermal conductivity ratio at a certain temperature (for example, 950 ° C.), the correlation between the temporal change of the thermal conductivity and the operating time t and the operating temperature T is expressed by a linear expression. be able to. In this case, the operating temperature T in the TBC can be uniquely estimated by inputting (substituting) the measured value of the thermal conductivity and the operating time t to the correlation expression thus obtained. . As for the porosity, the change in porosity, the operating time t, and the operating temperature T are similar to the thermal conductivity.
The correlation with and is expressed by a linear expression, and the measured porosity and the operating time t
By inputting (substituting) and calculating, the operating temperature T in the TBC can be uniquely estimated.

【0024】本実施形態の温度推定方法によれば、ガス
タービン構成部品をはじめとする高温部品の任意の部位
に適用することで対象部品の局所の運転温度Tを求める
ことができるし、さらには、運転温度Tを複数点求める
ことによって部品の温度分布を求めることもできる。
According to the temperature estimation method of this embodiment, the local operating temperature T of the target component can be obtained by applying it to any part of the high temperature component such as the gas turbine component, and further, It is also possible to obtain the temperature distribution of the parts by obtaining the operating temperature T at a plurality of points.

【0025】なお、本実施形態はTBC内における挙動
がアレニウス型の式に従うとの仮定の下に相関を求める
ものだがこれは好適な一例に過ぎない。ここでは詳しく
言及しないが、例えば焼結速度、曝露温度T、曝露時間
tの関係がよく整理できる別の式が得られればそれらの
式を使って相関式を求めることもできる。
In this embodiment, the correlation is calculated under the assumption that the behavior in the TBC follows the Arrhenius type equation, but this is only a preferable example. Although not mentioned in detail here, if other equations that can well organize the relationship between the sintering rate, the exposure temperature T, and the exposure time t are obtained, the correlation equation can be obtained using these equations.

【0026】[0026]

【実施例】上述の温度推定方法を実際にガスタービン燃
焼器に施されたTBCの運転前後の熱伝導率測定に適用
した実施例を具体的数値を挙げて以下に示す。ここで
は、8wt%イットリア部分安定化ジルコニア(8wt
%YSZ)の溶射粉末から大気圧プラズマ溶射で作成さ
れたTBCを実機想定温度に曝露し、相関式を求め、実
機燃焼器で12000時間使用されたTBCの運転温度Tを
演算により推定した。まず、上述の数式5に表されたラ
ーソンミラーパラメータを用い、曝露温度950℃におけ
る相関式(数式6、数式7)を得た。
EXAMPLE An example in which the above-mentioned temperature estimation method is applied to the measurement of the thermal conductivity before and after the operation of the TBC actually applied to the gas turbine combustor will be shown below with specific numerical values. Here, 8 wt% yttria partially stabilized zirconia (8 wt%
The TBC prepared by atmospheric pressure plasma spraying from the thermal sprayed powder of (YSZ) was exposed to the assumed temperature of the actual machine, the correlation equation was obtained, and the operating temperature T of the TBC used for 12000 hours in the actual machine combustor was estimated by calculation. First, using the Larson-Miller parameters expressed in the above-mentioned mathematical expression 5, correlation equations (mathematical expressions 6 and 7) at an exposure temperature of 950 ° C. were obtained.

【数6】 λ/λas sprayed = 1.25×10-4 LMP−1.40(6) λ / λ as sprayed = 1.25 × 10 -4 LMP-1.40

【数7】 P/Pas sprayed =−1.89×10-5 LMP+1.80 ただし、 λ:熱伝導率(950℃における値) P:気孔率 T:曝露温度(または運転温度) t:曝露時間(または運転時間) C:定数(熱伝導率変化の場合は14、気孔率変化の場合
は32) LMP:ラーソンミラーパラメータ なお、相関式(数式6、数式7)を求める段階において
は曝露時間および曝露温度が代数tおよびTとなり、求
められた相関式を実機に適用する段階においては実機に
おける運転時間と運転温度がtおよびTとなる。
## EQU7 ## P / P as sprayed = -1.89 × 10 -5 LMP + 1.80, where λ: thermal conductivity (value at 950 ° C.) P: porosity T: exposure temperature (or operating temperature) t: exposure time ( Or operating time) C: Constant (14 in case of change in thermal conductivity, 32 in case of change in porosity) LMP: Larson-Miller parameter In addition, exposure time and exposure at the stage of obtaining the correlation equations (6, 7) The temperature becomes the algebra t and T, and the operation time and the operation temperature in the actual machine become t and T at the stage of applying the obtained correlation equation to the actual machine.

【0027】以上のように数式が求められた結果、熱伝
導率については図1、気孔率については図2に示すよう
に、LMPと熱伝導率変化λ/λas sprayed (あるい
はLMPと気孔率変化P/Pas sprayed )の関係を一
次関数として表すことができた。
As a result of obtaining the mathematical formulas as described above, as shown in FIG. 1 for thermal conductivity and FIG. 2 for porosity, LMP and change in thermal conductivity λ / λ as sprayed (or LMP and porosity). The relationship of change P / P as sprayed ) could be expressed as a linear function.

【0028】また、初期材と曝露材で得られた熱伝導率
と気孔率の相関を回帰分析等により求め、相関式を得る
と数式8のようになり、図3に示すように一次関数とし
て表すことができた。
Further, when the correlation between the thermal conductivity and the porosity obtained in the initial material and the exposed material is obtained by regression analysis or the like, and the correlation equation is obtained, the equation 8 is obtained, and as a linear function as shown in FIG. I was able to represent it.

【数8】λ=−0.383P+4.42[Equation 8] λ = -0.383P + 4.42

【0029】続いて、これら3つの数式(数式6〜数式
8)を使用し、図4に示すフローに従いガスタービンの
TBCの運転温度(運転中におけるTBC部分の温度)
Tを推定した。この場合、公知または新規の非破壊での
熱伝導率測定法を用いれば実際のTBCを施した部品か
らガスタービンで運転される前(初期材)の熱伝導率λ
as sprayed と運転後(経年材)の熱伝導率λをステッ
プ1、ステップ2として示すように測定することが可能
だが、実際には、TBCを模擬したTBC試験片を使用
して熱伝導率を測定した。ここでは熱伝導率のみ測定し
たが、TBCの気孔率の変化を利用して運転温度Tを求
める場合には初期材のTBCの気孔率
(Pas sprayed )も測定しておくようにする(ステッ
プ3)。
Next, using these three equations (Equation 6 to Equation 8), the operating temperature of the TBC of the gas turbine (temperature of the TBC portion during operation) according to the flow shown in FIG.
T was estimated. In this case, if a known or new non-destructive thermal conductivity measurement method is used, the thermal conductivity λ of the component subjected to the actual TBC before being operated in the gas turbine (initial material)
It is possible to measure the thermal conductivity λ after as sprayed and after operation (aged material) as shown in Step 1 and Step 2. However, in reality, the thermal conductivity was measured using a TBC test piece simulating TBC. It was measured. Although only the thermal conductivity is measured here, the porosity (P as sprayed ) of the TBC of the initial material is also measured when the operating temperature T is obtained by utilizing the change in the porosity of TBC (step 3).

【0030】これらの測定を終えた後、第1の方法とし
て、初期材の熱伝導率λas sprayed と経年材の熱伝導率
λを数式6に代入し(ステップ4)、さらに運転時間t
を代入して運転温度Tを推定した(ステップ5)。な
お、気孔率の変化を利用する場合には、第2の方法とし
て、経年材の熱伝導率λを数式8に代入して経年材の気
孔率Pを計算し(ステップ6、ステップ7)、この経年
材の気孔率P、初期材の気孔率Pas sprayed 、運転時
間tを数式7に代入して(ステップ8、ステップ9)運
転温度Tを推定するようにする。また、初期材の気孔率
as sprayedが測定不能な場合は、運転前後で熱伝導率
変化が無い部分の熱伝導率λを数式7に代入し、得られ
た気孔率Pを初期材の気孔率Pと仮定することで対応可
能である。
After completing these measurements, the first method is
And the thermal conductivity of the initial material λas sprayed And thermal conductivity of aged wood
Substituting λ into Equation 6 (step 4), and further operating time t
Was substituted to estimate the operating temperature T (step 5). Na
When using the change in porosity, use the second method.
Substituting the thermal conductivity λ of the aged material into Equation 8
Calculate the porosity P (step 6, step 7)
Porosity P of material, Porosity P of initial materialas sprayed, While driving
Substituting the time t into Equation 7 (steps 8 and 9)
The temperature T is estimated. Also, the porosity of the initial material
Pas sprayedIf is not measurable, thermal conductivity before and after operation
Substituting the thermal conductivity λ of the part that has no change into Equation 7,
This can be done by assuming that the porosity P is the porosity P of the initial material.
Noh.

【0031】ここで、温度によって熱伝導率λがどのよ
うに変化するかプロットしていくと、初期材、燃焼器入
口部(低温部)、燃焼器中間部(高温部)ともにほぼ直
線状に並ぶことがわかった。ただし、この結果は非破壊
で測定したものではなく、破壊して得られた試験片によ
る測定結果である。第1の方法による計算結果を表1
に、第2の方法による計算結果を表2に示す。運転前の
気孔率Pは不明であるため、前述の方法(仮定する方
法)により求めた。
Here, by plotting how the thermal conductivity λ changes depending on the temperature, the initial material, the combustor inlet portion (low temperature portion), and the combustor intermediate portion (high temperature portion) are almost linear. I found that they line up. However, this result is not a non-destructive measurement, but a measurement result of a test piece obtained by destruction. Table 1 shows the calculation results by the first method.
Table 2 shows the calculation results obtained by the second method. Since the porosity P before operation is unknown, it was determined by the above-mentioned method (assumed method).

【表1】 [Table 1]

【表2】 [Table 2]

【0032】この結果、燃焼器中間部の推定値として、
第1の方法と第2の方法とでほぼ同等の値が得られた。
数式6〜8の適用温度範囲としては焼結が開始する1000
℃以上となることを考慮すると、特に1000℃以上の使用
環境においては、本願の手法によりTBCの実際の運転
温度Tを精度よく推定することが可能であることが確認
された。
As a result, as the estimated value of the middle part of the combustor,
Almost equivalent values were obtained by the first method and the second method.
As for the applicable temperature range of the formulas 6 to 8, sintering starts 1000
Considering that the temperature is higher than or equal to ℃, it has been confirmed that it is possible to accurately estimate the actual operating temperature T of the TBC by the method of the present application, especially in a usage environment of higher than or equal to 1000 ℃.

【0033】なお、上述の実施例は本発明の好適な形態
の一例ではあるがこれに限定されるものではなく本発明
の要旨を逸脱しない範囲において種々変形実施可能であ
る。例えば本実施形態ではフォトサーマル赤外検知法な
どによって実測した熱伝導率を用いるようにしたが、場
合によっては、熱拡散率、低圧比熱、熱膨張率を公知の
測定装置で測定し、これらから演算により求めた熱伝導
率を用いてもよい。また、初期材の熱伝導率が既知の場
合にはこの既知の値を用いることによって運転温度Tを
推定することができる。また、上述の説明では、具体的
な適用例としてガスタービンを挙げて説明したが、本願
発明は、ガスタービン構成部品以外の高温部品にも適用
可能である。
The above-described embodiment is an example of the preferred embodiment of the present invention, but the present invention is not limited to this, and various modifications can be made without departing from the gist of the present invention. For example, in the present embodiment, the thermal conductivity measured by the photothermal infrared detection method or the like is used, but in some cases, the thermal diffusivity, the low-pressure specific heat, and the thermal expansion coefficient are measured by a known measuring device, and the You may use the thermal conductivity calculated | required by calculation. When the thermal conductivity of the initial material is known, the operating temperature T can be estimated by using this known value. Further, in the above description, the gas turbine is described as a specific application example, but the present invention is also applicable to high temperature components other than the gas turbine component.

【0034】[0034]

【比較例】6wt%YSZ、20wt%YSZ、8wt
%YSZ(中空状粉)の3種類のTBCについて、表3
に示す曝露条件と熱伝導率の測定値および数式6で使用
されているものと同じCの値を用いて、各TBCの初期
材に対する劣化材の熱伝導率比と曝露条件の関係を求め
た。その結果を図6に示す。この図から、8wt%YS
Zと8wt%YSZ(中空状粉)は、ほぼ同様の傾向を
示し、曝露後の遮熱性能の劣化が最も少ないことがわか
った。
[Comparative Example] 6 wt% YSZ, 20 wt% YSZ, 8 wt
Table 3 for three types of TBC of% YSZ (hollow powder)
The relationship between the thermal conductivity ratio of the deteriorated material to the initial material of each TBC and the exposure condition was obtained by using the exposure condition and the measured value of the thermal conductivity shown in (4) and the same value of C as used in Equation 6. . The result is shown in FIG. From this figure, 8 wt% YS
It was found that Z and 8 wt% YSZ (hollow powder) showed almost the same tendency, and that the heat shield performance after exposure was the least.

【表3】 このように、ラーソンミラーパラメータ型の式を用いる
ことで、各種TBC候補材の遮熱性能変化を比較するこ
とが可能であり、この手法は、新しいTBC候補材の選
定時における判断基準として使用できるものと考えられ
る。
[Table 3] Thus, by using the Larson-Miller parameter type formula, it is possible to compare changes in the heat shield performance of various TBC candidate materials, and this method can be used as a judgment criterion when selecting a new TBC candidate material. It is considered to be a thing.

【0035】[0035]

【発明の効果】以上の説明より明らかなように、請求項
1記載の遮熱コーティング(TBC)の温度推定方法に
よると、熱伝導率の変化と運転時間tおよび運転温度T
との相関に基づき、高温部品の運転温度Tを非破壊で精
度よく推定することができる。これによれば、信頼性の
高い温度情報が得られるのでガスタービン構成部品をは
じめとする高温部品の保守管理を低コストで適切に行っ
て健全性を維持し、ガスタービンなどの運転信頼性の向
上を図ることができる。
As is apparent from the above description, according to the method of estimating the temperature of the thermal barrier coating (TBC) according to the first aspect, the change of the thermal conductivity, the operating time t and the operating temperature T.
Based on the correlation with, the operating temperature T of the high temperature component can be accurately estimated in a non-destructive manner. According to this, reliable temperature information can be obtained, so maintenance of high-temperature parts such as gas turbine components can be appropriately performed at low cost to maintain soundness, and operational reliability of gas turbines can be maintained. It is possible to improve.

【0036】また、今まで測定が困難であったガスター
ビン高温部品の運転温度を非破壊で調べられるようにな
り、低コストでの部品の保守管理が可能となる。
Further, the operating temperature of the gas turbine high temperature component, which has been difficult to measure up to now, can be inspected nondestructively, and the maintenance management of the component can be performed at low cost.

【0037】請求項2記載のTBCの温度推定方法によ
ると、特定の相関式を利用し、この式に熱伝導率と運転
時間tとを代入することで運転温度Tを推定することが
できる。
According to the temperature estimating method for TBC of the second aspect, the operating temperature T can be estimated by using a specific correlation equation and substituting the thermal conductivity and the operating time t into this equation.

【0038】さらに、請求項3記載のTBCの温度推定
方法によると、気孔率の変化と運転時間tおよび運転温
度Tとの相関に基づき、高温部品の運転温度Tを非破壊
で精度よく推定することができる。これによれば、信頼
性の高い温度情報が得られるのでガスタービン構成部品
をはじめとする高温部品の保守管理を低コストで適切に
行って健全性を維持し、ガスタービンなどの運転信頼性
の向上を図ることができる。
Further, according to the temperature estimating method of the TBC of the third aspect, the operating temperature T of the high temperature component can be accurately estimated nondestructively based on the correlation between the change in the porosity and the operating time t and the operating temperature T. be able to. According to this, reliable temperature information can be obtained, so maintenance of high-temperature parts such as gas turbine components can be appropriately performed at low cost to maintain soundness, and operational reliability of gas turbines can be maintained. It is possible to improve.

【0039】また、今まで測定が困難であったガスター
ビン高温部品の運転温度を非破壊で調べられるようにな
り、低コストでの部品の保守管理が可能となる。
Further, it becomes possible to nondestructively check the operating temperature of the gas turbine high temperature component which has been difficult to measure up to now, and the maintenance management of the component can be performed at low cost.

【0040】請求項4記載のTBCの温度推定方法によ
ると、特定の相関式を利用し、この式に気孔率と運転時
間tとを代入することで運転温度Tを推定することがで
きる。
According to the temperature estimating method of the TBC described in claim 4, the operating temperature T can be estimated by using a specific correlation equation and substituting the porosity and the operating time t into this equation.

【図面の簡単な説明】[Brief description of drawings]

【図1】熱伝導率変化と曝露条件の相関例を示すグラフ
である。
FIG. 1 is a graph showing an example of the correlation between changes in thermal conductivity and exposure conditions.

【図2】気孔率変化と曝露条件の相関例を示すグラフで
ある。
FIG. 2 is a graph showing an example of correlation between changes in porosity and exposure conditions.

【図3】熱伝導率λと気孔率Pの相関例を示すグラフで
ある。
FIG. 3 is a graph showing an example of correlation between thermal conductivity λ and porosity P.

【図4】TBCの運転温度推定の流れを示すフローであ
る。
FIG. 4 is a flowchart showing a flow of operating temperature estimation of TBC.

【図5】ガスタービン燃焼器のTBCの熱伝導率λを測
定した一結果を示すグラフである。
FIG. 5 is a graph showing a result of measuring the thermal conductivity λ of TBC of the gas turbine combustor.

【図6】各TBCの遮熱性能劣化状況の比較を示すグラ
フである。
FIG. 6 is a graph showing a comparison of heat shield performance deterioration states of TBCs.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G040 AA01 AB08 BA10 BA26 CA01 CA02 3G002 EA05    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 2G040 AA01 AB08 BA10 BA26 CA01                       CA02                 3G002 EA05

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ガスタービン構成部品など高温部品の表
面に施された遮熱コーティングにおける熱伝導率の経年
的な変化と運転時間tおよび運転温度Tとの相関を求
め、この相関に基づいて運転前および運転後の前記熱伝
導率の測定値と前記運転時間tとから前記遮熱コーティ
ングの運転温度Tを推定することを特徴とする遮熱コー
ティングの温度推定方法。
1. A correlation between a secular change in thermal conductivity of a thermal barrier coating applied to the surface of a high temperature component such as a gas turbine component and an operating time t and an operating temperature T is obtained, and operation is performed based on this correlation. A method for estimating the temperature of a thermal barrier coating, comprising estimating an operating temperature T of the thermal barrier coating from the measured values of the thermal conductivity before and after the operation and the operating time t.
【請求項2】 前記相関は、前記熱伝導率の変化とLM
Pとの関係を示す一次式 λ/λas sprayed =a×LMP+b (ただしλは運転後における熱伝導率、λas sprayed
は運転前における熱伝導率、a,bは遮熱コーティング
材料の焼結状況により定まる定数、LMPはラーソンミ
ラーパラメータでLMP=(T+273.15)(log10t+C)、
Tは運転温度、tは運転時間、Cは定数)で表されるこ
とを特徴とする請求項1記載の遮熱コーティングの温度
推定方法。
2. The correlation is a change in the thermal conductivity and the LM.
A linear expression λ / λ as sprayed = a × LMP + b (where λ is the thermal conductivity after operation, λ as sprayed)
Is the thermal conductivity before operation, a and b are constants determined by the sintering condition of the thermal barrier coating material, LMP is the Larson Miller parameter, LMP = (T + 273.15) (log 10 t + C),
The method of claim 1, wherein T is an operating temperature, t is an operating time, and C is a constant.
【請求項3】 ガスタービン構成部品など高温部品の表
面に施された遮熱コーティングにおける気孔率の経年的
な変化と運転時間tおよび運転温度Tとの相関を求め、
この相関に基づいて運転前および運転後の前記気孔率の
測定値と前記運転時間tとから前記遮熱コーティングの
運転温度Tを推定することを特徴とする遮熱コーティン
グの温度推定方法。
3. The correlation between the secular change in the porosity of the thermal barrier coating applied to the surface of a high temperature component such as a gas turbine component and the operating time t and the operating temperature T is calculated,
A temperature estimation method for a thermal barrier coating, wherein the operating temperature T of the thermal barrier coating is estimated from the measured porosity values before and after the operation and the operating time t based on this correlation.
【請求項4】 前記相関は、前記気孔率の変化とLMP
との関係を示す一次式 P/Pas sprayed =c×LMP+d (ただしPは運転後における気孔率、Pas sprayed
運転前における気孔率、c,dは遮熱コーティング材料
の焼結状況により定まる定数、LMPはラーソンミラー
パラメータでLMP=(T+273.15)(log10t+C)、Tは
運転温度、tは運転時間、Cは定数)で表されることを
特徴とする請求項3記載の遮熱コーティングの温度推定
方法。
4. The correlation is the change in porosity and LMP.
P / P as sprayed = c × LMP + d (where P is the porosity after the operation, P as sprayed is the porosity before the operation, and c and d are determined by the sintering condition of the thermal barrier coating material) 4. The intercept according to claim 3, wherein LMP is a Larson Miller parameter, LMP = (T + 273.15) (log 10 t + C), T is operating temperature, t is operating time, and C is constant. Thermal coating temperature estimation method.
JP2001264982A 2001-08-31 2001-08-31 Temperature estimation method for thermal barrier coating Expired - Fee Related JP4801295B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001264982A JP4801295B2 (en) 2001-08-31 2001-08-31 Temperature estimation method for thermal barrier coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001264982A JP4801295B2 (en) 2001-08-31 2001-08-31 Temperature estimation method for thermal barrier coating

Publications (2)

Publication Number Publication Date
JP2003074376A true JP2003074376A (en) 2003-03-12
JP4801295B2 JP4801295B2 (en) 2011-10-26

Family

ID=19091509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001264982A Expired - Fee Related JP4801295B2 (en) 2001-08-31 2001-08-31 Temperature estimation method for thermal barrier coating

Country Status (1)

Country Link
JP (1) JP4801295B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119344A1 (en) * 2008-03-26 2009-10-01 三菱重工業株式会社 Method of estimating material property value of ceramic, method of estimating material property value of heat-insulating coating material, method of estimating remaining life of heat-insulating coating material, method of estimating remaining life of high-temperature member, and apparatus for obtaining material property value
US7632012B2 (en) 2005-09-01 2009-12-15 Siemens Energy, Inc. Method of measuring in situ differential emissivity and temperature
WO2016075953A1 (en) * 2014-11-12 2016-05-19 三菱重工業株式会社 Temperature estimation method for high-temperature member, metastable tetragonal phase content measurement method, and degradation determination method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0712709A (en) * 1993-06-24 1995-01-17 Hitachi Ltd Deterioration diagnostic method and device for gas turbine coating vane
JPH0813069A (en) * 1994-07-05 1996-01-16 Hitachi Ltd Ni-based alloy for heat resistant structural material and gas turbine using the same
JPH08254530A (en) * 1994-12-19 1996-10-01 Hitachi Ltd Method and system for estimation of life by nondestruction of ceramic member
JPH08271501A (en) * 1995-03-30 1996-10-18 Hitachi Ltd Residual service life evaluation method for high temperature member
JPH1161438A (en) * 1997-08-27 1999-03-05 Toshiba Corp Heat shielding coating member and its production
JPH11271211A (en) * 1998-03-20 1999-10-05 Hitachi Ltd Ceramic coating life estimating method and remaining life evaluating system
JP2001228105A (en) * 2000-02-15 2001-08-24 Toshiba Corp Characteristic evaluating device for thermally insulating coating and charcteristic evaluating method tehrefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0712709A (en) * 1993-06-24 1995-01-17 Hitachi Ltd Deterioration diagnostic method and device for gas turbine coating vane
JPH0813069A (en) * 1994-07-05 1996-01-16 Hitachi Ltd Ni-based alloy for heat resistant structural material and gas turbine using the same
JPH08254530A (en) * 1994-12-19 1996-10-01 Hitachi Ltd Method and system for estimation of life by nondestruction of ceramic member
JPH08271501A (en) * 1995-03-30 1996-10-18 Hitachi Ltd Residual service life evaluation method for high temperature member
JPH1161438A (en) * 1997-08-27 1999-03-05 Toshiba Corp Heat shielding coating member and its production
JPH11271211A (en) * 1998-03-20 1999-10-05 Hitachi Ltd Ceramic coating life estimating method and remaining life evaluating system
JP2001228105A (en) * 2000-02-15 2001-08-24 Toshiba Corp Characteristic evaluating device for thermally insulating coating and charcteristic evaluating method tehrefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7632012B2 (en) 2005-09-01 2009-12-15 Siemens Energy, Inc. Method of measuring in situ differential emissivity and temperature
US8192077B2 (en) 2005-09-01 2012-06-05 Siemens Energy, Inc. Method of measuring in situ differential emissivity and temperature
WO2009119344A1 (en) * 2008-03-26 2009-10-01 三菱重工業株式会社 Method of estimating material property value of ceramic, method of estimating material property value of heat-insulating coating material, method of estimating remaining life of heat-insulating coating material, method of estimating remaining life of high-temperature member, and apparatus for obtaining material property value
US8370084B2 (en) 2008-03-26 2013-02-05 Mitsubishi Heavy Industries, Ltd. Method for estimating physical property of ceramic, method for estimating physical property of thermal barrier coating, method for estimating remaining lifetime of thermal barrier coating, method for estimating remaining lifetime of high-temperature member, and physical property acquiring apparatus
WO2016075953A1 (en) * 2014-11-12 2016-05-19 三菱重工業株式会社 Temperature estimation method for high-temperature member, metastable tetragonal phase content measurement method, and degradation determination method
JP2016095144A (en) * 2014-11-12 2016-05-26 三菱重工業株式会社 Temperature estimation method on high-temperature member, content measurement method of metastable tetragonal phase and deterioration determination method

Also Published As

Publication number Publication date
JP4801295B2 (en) 2011-10-26

Similar Documents

Publication Publication Date Title
Aleksanoglu et al. Determining a critical strain for APS thermal barrier coatings under service relevant loading conditions
WO2009119344A1 (en) Method of estimating material property value of ceramic, method of estimating material property value of heat-insulating coating material, method of estimating remaining life of heat-insulating coating material, method of estimating remaining life of high-temperature member, and apparatus for obtaining material property value
Kakuda et al. Non-destructive thermal property measurements of an APS TBC on an intact turbine blade
JP2001330542A (en) Fatigue life evaluation method and fatigue lift evaluation device for coated component of gas turbine
US9927348B2 (en) Indirectly determining exhaust gas parameters
JP2007057346A (en) Damage evaluation system of heat barrier coating and damage evaluation method
JP4801295B2 (en) Temperature estimation method for thermal barrier coating
JP2022027670A (en) Estimation method for high-chromium steel creep residual life
Nicholas et al. Predicting crack growth under thermo-mechanical cycling
JPH09195795A (en) Remaining life evaluation method for gas turbine stationary blade and device thereof
JP2010008403A (en) Method, apparatus and program for evaluating heat shield performance of coating layer
Rinaldi et al. Assessment of the spent life fraction of gas turbine blades by coating life modeling and photostimulated luminescence piezospectroscopy
Kim et al. A cumulative oxide growth model considering the deterioration history of thermal barrier coatings
US20140358452A1 (en) Method for estimating crack length progressions
JP2804701B2 (en) Gas turbine coating blade deterioration diagnosis method and apparatus
JPH0254514B2 (en)
JP2009282020A (en) Method, apparatus and program for evaluating heat shielding performance of coating layer
Vijaya Lakshmi et al. Condition Assessment of Strain-Gauged Aero Engine Compressor Stator Vanes Using Eddy Current Testing
JP3519703B2 (en) Temperature estimation method for high temperature parts
Keller A practical approach to implementing linear elastic fracture mechanics in gas turbine rotor disk analyses
JPH08160035A (en) Method and apparatus for controlling life of high temperature part of gas turbine
Saputo et al. Coupled thermal and mechanical analysis of thermal barrier coatings under gradient exposure
Pilgrim et al. Thermal Profiling of Automotive Turbochargers in Durability Tests
Pilgrim et al. Thermal Profiling of Automotive Turbochargers in Durability Tests
JPH11271211A (en) Ceramic coating life estimating method and remaining life evaluating system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080229

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100714

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110516

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110805

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees