JP2003073887A - Ferromagnetic zinc oxide film and manufacturing method therefor - Google Patents

Ferromagnetic zinc oxide film and manufacturing method therefor

Info

Publication number
JP2003073887A
JP2003073887A JP2001268226A JP2001268226A JP2003073887A JP 2003073887 A JP2003073887 A JP 2003073887A JP 2001268226 A JP2001268226 A JP 2001268226A JP 2001268226 A JP2001268226 A JP 2001268226A JP 2003073887 A JP2003073887 A JP 2003073887A
Authority
JP
Japan
Prior art keywords
zinc oxide
oxide film
iron
ferromagnetic
iron compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001268226A
Other languages
Japanese (ja)
Inventor
Masanobu Isaki
昌伸 伊▲崎▼
Yoshiji Saijo
義司 西條
Katsuhisa Tanabe
克久 田邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
C Uyemura and Co Ltd
Osaka City
Original Assignee
C Uyemura and Co Ltd
Osaka City
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by C Uyemura and Co Ltd, Osaka City filed Critical C Uyemura and Co Ltd
Priority to JP2001268226A priority Critical patent/JP2003073887A/en
Publication of JP2003073887A publication Critical patent/JP2003073887A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/18Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being compounds
    • H01F10/193Magnetic semiconductor compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Chemically Coating (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PROBLEM TO BE SOLVED: To develop a zinc oxide film, which contains an iron compound therein and shows ferromagnetism in a room temperature. SOLUTION: The manufacturing method comprises forming the zinc oxide film on the surface of a substrate, and treating it by a treatment liquid including a water-soluble iron salt and a reducing agent, to make the above zinc oxide film contain the iron compound; or treating the substrate with an electroless zinc oxide plating solution or an electrolytic zinc oxide plating solution containing the water-soluble iron salt, to form the zinc oxide film containing the iron compound on the surface of the substrate; and includes, after thus having formed the ferromagnetic zinc oxide film, a step of heat treating it under a vacuum, a reducing atmosphere, or non-oxidizing atmosphere.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、室温(25℃)に
おいて強磁性を示す酸化亜鉛皮膜及びその製造方法に関
する。
TECHNICAL FIELD The present invention relates to a zinc oxide film which exhibits ferromagnetism at room temperature (25 ° C.) and a method for producing the same.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】酸化亜
鉛は、禁制帯巾が3.3eVのn型半導体であり、液晶
ディスプレイや太陽電池の透明電極、湿度やガスセンサ
ー、携帯機器の高周波フィルター用表面弾性波素子、紫
外線レーザー発振素子などとして電気・電子産業分野、
ならびに抗菌および環境浄化用光触媒材料として化学工
業分野において不可欠となっている。
2. Description of the Related Art Zinc oxide is an n-type semiconductor with a band gap of 3.3 eV, and is used as a transparent electrode for liquid crystal displays and solar cells, humidity and gas sensors, and high-frequency filters for portable devices. Surface acoustic wave device, ultraviolet laser oscillator device, etc.
In addition, it has become indispensable in the chemical industry as a photocatalytic material for antibacterial and environmental purification.

【0003】これらの諸物性は、電子による電荷移動や
電荷分離現象を用いたものであるが、さらに電子のスピ
ンを制御することができれば、巨大磁気抵抗効果素子や
スピン電界効果トランジスターなどへの応用が可能とな
る。
These properties are based on the phenomenon of charge transfer and charge separation due to electrons, but if the spin of electrons can be controlled further, they will be applied to giant magnetoresistive elements and spin field effect transistors. Is possible.

【0004】このような材料は磁性半導体と呼ばれてい
る。特に、酸化亜鉛系材料において磁性半導体化に成功
すれば、光、電荷、スピンを制御しうる新規な素子の開
発が可能となる。現在、酸化亜鉛皮膜中に、マンガン、
ニッケル、コバルトなどの遷移元素を添加することによ
る作製が試みられているが、強磁性の発現は10K以下
という極低温に限られており、室温では超常磁性的な挙
動を示すにとどまっている。工業的な応用のためには、
室温での強磁性の発現が不可欠であるが、現時点では実
現していなかった。
Such a material is called a magnetic semiconductor. In particular, if a zinc oxide-based material is successfully made into a magnetic semiconductor, it becomes possible to develop a new element capable of controlling light, charge and spin. Currently, manganese,
Fabrication by adding a transition element such as nickel or cobalt has been attempted, but the manifestation of ferromagnetism is limited to an extremely low temperature of 10 K or less, and only exhibits superparamagnetic behavior at room temperature. For industrial applications,
The expression of ferromagnetism at room temperature is essential, but it has not been realized at this time.

【0005】本発明は、かかる要望に応えたもので、室
温で強磁性を示す酸化亜鉛皮膜及びその製造方法を提供
することを目的とする。
The present invention has been made in response to such a demand, and an object thereof is to provide a zinc oxide film exhibiting ferromagnetism at room temperature and a method for producing the same.

【0006】[0006]

【課題を解決するための手段及び発明の実施の形態】本
発明者らは、上記課題に鑑み鋭意検討を行った結果、基
体を無電解酸化亜鉛めっき液又は電気酸化亜鉛めっき液
で処理するなどして基体表面に酸化亜鉛皮膜を形成した
後、この酸化亜鉛皮膜を水溶性鉄塩と還元剤とを含む処
理液で処理するか、或いは、基体を水溶性鉄塩を含有す
る無電解酸化亜鉛めっき液又は電気酸化亜鉛めっき液で
処理して、基体表面に鉄化合物を含有する酸化亜鉛皮膜
を形成することにより、室温で強磁性を示す酸化亜鉛皮
膜が得られることを知見した。
Means for Solving the Problems and Modes for Carrying Out the Invention As a result of intensive studies in view of the above problems, the present inventors have treated the substrate with an electroless zinc oxide plating solution or an electrogalvanic zinc plating solution. To form a zinc oxide film on the surface of the substrate, and then the zinc oxide film is treated with a treatment solution containing a water-soluble iron salt and a reducing agent, or the substrate is electroless zinc oxide containing a water-soluble iron salt. It was found that a zinc oxide film exhibiting ferromagnetism at room temperature can be obtained by forming a zinc oxide film containing an iron compound on the surface of a substrate by treating with a plating solution or an electrogalvanic plating solution.

【0007】従って、本発明により、室温で強磁性を示
す酸化亜鉛磁性半導体の実用化を世界で初めて可能にし
たものである。本酸化亜鉛磁性半導体には、遷移元素で
ある鉄を含有しており、室温で磁気ヒステリシスを示
し、例えば28emu/ccの飽和磁化と約34Oeの
保磁力を示す。即ち、従来のNiOを含有する酸化亜鉛
皮膜などの報告に比べ、260K以上高い温度での強磁
性の発現に成功するとともに、約7倍の大きな飽和磁化
も得たものである。
Therefore, the present invention makes it possible for the first time in the world to commercialize a zinc oxide magnetic semiconductor exhibiting ferromagnetism at room temperature. The present zinc oxide magnetic semiconductor contains iron as a transition element, exhibits magnetic hysteresis at room temperature, and exhibits, for example, a saturation magnetization of 28 emu / cc and a coercive force of about 34 Oe. That is, as compared with the conventional reports of a zinc oxide film containing NiO, etc., it succeeded in developing ferromagnetism at a temperature higher than 260 K and obtained a saturation magnetization about 7 times larger.

【0008】なお、鉄の添加により酸化亜鉛が強磁性を
発現することは理論的には予測されていたが、従来から
酸化亜鉛皮膜の形成に用いられてきた分子線エピタキシ
ー法などの乾式法では、鉄を添加することが難しいた
め、鉄添加酸化亜鉛皮膜の形成に成功していなかった。
これに対し、本発明者らは、水溶液中での電気化学反応
を用いた方法により、酸化亜鉛皮膜中に多量の鉄を導入
することに成功したため、今回の発明に至ったものであ
る。
Although it has been theoretically predicted that zinc oxide exhibits ferromagnetism by the addition of iron, in the dry method such as the molecular beam epitaxy method which has been conventionally used for forming a zinc oxide film. Since it is difficult to add iron, the formation of an iron-added zinc oxide film has not been successful.
On the other hand, the inventors of the present invention succeeded in introducing a large amount of iron into the zinc oxide film by a method using an electrochemical reaction in an aqueous solution, which led to the present invention.

【0009】さらに、本発明の方法では、製膜時ならび
に製膜後の加熱を必ずしも必要としないため、金属、セ
ラミックス、ポリマーなどの種々の素材上に形成するこ
とができる。また、真空排気装置や加熱炉などの大規模
設備を必要とせず、工業的に用いられている電気めっき
設備が使用でき、大面積および複雑形状の製品上にも膜
厚および組成の均一な膜が作製でき、膜厚および組成を
作製条件により容易に制御できるという利点も有してい
る。
Further, since the method of the present invention does not necessarily require heating during film formation and after film formation, it can be formed on various materials such as metals, ceramics and polymers. In addition, it does not require large-scale equipment such as a vacuum exhaust device or heating furnace, and can use industrially used electroplating equipment, and even on a product with a large area and a complicated shape, a film of uniform thickness and composition can be obtained. And has the advantage that the film thickness and composition can be easily controlled by the production conditions.

【0010】即ち、本発明は、下記強磁性酸化亜鉛皮膜
及びその製造方法を提供する。 請求項1:酸化亜鉛皮膜中に鉄化合物を含有してなるこ
とを特徴とする室温で強磁性を示す強磁性酸化亜鉛皮
膜。 請求項2:鉄化合物を全鉄含有量が鉄として皮膜中20
〜50重量%である請求項1記載の強磁性酸化亜鉛皮
膜。 請求項3:鉄化合物として、2価の鉄化合物と3価の鉄
化合物とが共存する請求項1又は2記載の強磁性酸化亜
鉛皮膜。 請求項4:基体表面に酸化亜鉛皮膜を形成した後、この
酸化亜鉛皮膜を水溶性鉄塩と還元剤とを含む処理液で処
理して、上記酸化亜鉛皮膜中に鉄化合物を含有させるこ
とを特徴とする請求項1記載の強磁性酸化亜鉛皮膜の製
造方法。 請求項5:酸化亜鉛皮膜を、電気酸化亜鉛めっき法又は
無電解酸化亜鉛めっき法により作製する請求項4記載の
製造方法。 請求項6:強磁性酸化亜鉛皮膜の形成後、真空下、還元
性雰囲気下又は非酸化性雰囲気下で加熱処理する請求項
4又は5記載の製造方法。 請求項7:基体を水溶性鉄塩を含有する無電解酸化亜鉛
めっき液又は電気酸化亜鉛めっき液で処理して基体表面
に鉄化合物を含有する酸化亜鉛皮膜を形成することを特
徴とする請求項1記載の強磁性酸化亜鉛皮膜の製造方
法。 請求項8:強磁性酸化亜鉛皮膜の形成後、真空下、還元
性雰囲気下又は非酸化性雰囲気下で加熱処理する請求項
7記載の製造方法。
That is, the present invention provides the following ferromagnetic zinc oxide film and its manufacturing method. Claim 1: A ferromagnetic zinc oxide film exhibiting ferromagnetism at room temperature, characterized in that the zinc oxide film contains an iron compound. Claim 2: The total iron content of the iron compound is 20 in the film.
The ferromagnetic zinc oxide film according to claim 1, which is about 50% by weight. Claim 3: The ferromagnetic zinc oxide film according to claim 1 or 2, wherein a divalent iron compound and a trivalent iron compound coexist as the iron compound. Claim 4: After forming a zinc oxide film on the surface of a substrate, the zinc oxide film is treated with a treatment liquid containing a water-soluble iron salt and a reducing agent to contain an iron compound in the zinc oxide film. The method for producing a ferromagnetic zinc oxide film according to claim 1, which is characterized in that. [5] The method according to [4], wherein the zinc oxide film is formed by an electrogalvanizing zinc oxide method or an electroless zinc oxide plating method. [6] The method according to [4] or [5], wherein after the formation of the ferromagnetic zinc oxide film, heat treatment is performed in a vacuum, a reducing atmosphere or a non-oxidizing atmosphere. Claim 7: A substrate is treated with an electroless zinc oxide plating solution containing a water-soluble iron salt or an electrogalvanic zinc plating solution to form a zinc oxide film containing an iron compound on the surface of the substrate. 1. The method for producing a ferromagnetic zinc oxide film according to 1. Claim 8: The manufacturing method according to claim 7, wherein after the formation of the ferromagnetic zinc oxide film, heat treatment is performed in a vacuum, a reducing atmosphere or a non-oxidizing atmosphere.

【0011】以下、本発明につき更に詳しく説明する。The present invention will be described in more detail below.

【0012】本発明において、強磁性酸化亜鉛皮膜が形
成される基体は、特に制限されず、金属、セラミック
ス、ポリマーなど、いずれのものでもよい。形状も板
状、粉末状、繊維状など、いずれのものでもよい。
In the present invention, the substrate on which the ferromagnetic zinc oxide film is formed is not particularly limited and may be any of metal, ceramics, polymer and the like. The shape may be plate-like, powder-like, fiber-like or the like.

【0013】この基体表面上に酸化亜鉛皮膜を形成する
方法としては、湿式法、特に無電解酸化亜鉛めっき法又
は電気酸化亜鉛めっき法によることが好ましいが、スパ
ッタリング法、分子線エピタキシー法、スプレーパイロ
リシス法等の乾式法及びゾルゲル法等の湿式法で作製し
てもよい。この場合、上記基体の前処理法としては、そ
の種類に応じた公知の前処理法を採用することができ、
特に基体が非導電性或いは半導電性の場合、触媒付与処
理を施した後にめっきを行う。
The method for forming the zinc oxide film on the surface of the substrate is preferably a wet method, particularly an electroless zinc oxide plating method or an electrozinc oxide plating method, but a sputtering method, a molecular beam epitaxy method or a spray pyrolysis method. It may be produced by a dry method such as a lysis method or a wet method such as a sol-gel method. In this case, as the pretreatment method for the substrate, a known pretreatment method according to the type can be adopted,
Particularly when the substrate is non-conductive or semi-conductive, the plating is performed after the catalyst application treatment.

【0014】具体的には、無電解酸化亜鉛皮膜を形成す
る場合は、洗浄・表面調整・触媒付与の各処理を含め、
下記工程のように行うことができる。 (1)洗浄:公知の脱脂剤や有機溶媒を使用することが
でき、公知の処理条件を使用することができる。 (2)表面調整:公知の表面調整剤を使用して、基体表
面に電荷を付与する。 (3)触媒付与:基体表面に触媒を付与する(前記触媒
付与工程)。 (4)無電解酸化亜鉛皮膜作製:基体に酸化亜鉛皮膜を
析出させる。
Specifically, in the case of forming an electroless zinc oxide film, it includes cleaning, surface conditioning, and catalyst application treatments.
The following steps can be performed. (1) Washing: A known degreasing agent or an organic solvent can be used, and known processing conditions can be used. (2) Surface conditioning: A known surface conditioning agent is used to impart an electric charge to the substrate surface. (3) Catalyst application: A catalyst is applied to the surface of the substrate (the catalyst application step). (4) Preparation of electroless zinc oxide film: A zinc oxide film is deposited on a substrate.

【0015】この場合、上記表面調整剤としては、主成
分としてカチオン界面活性剤あるいはカチオン性高分子
化合物1〜50g/Lを含有する水溶液を使用すること
ができ、10〜60℃で1〜10分間浸漬処理すること
ができる。
In this case, as the surface conditioner, an aqueous solution containing 1 to 50 g / L of a cationic surfactant or a cationic polymer compound as a main component can be used, and 1 to 10 at 10 to 60 ° C. It can be soaked for a minute.

【0016】上記触媒付与処理は、基体表面に金属パラ
ジウム核、金属銀核等、無電解めっきを可能とする触媒
金属核を形成するものであり、上記基体表面にSn−P
d、Sn−Ag、Sn−Ag−Pdを形成することがで
きる。
The above-mentioned catalyst application treatment forms catalytic metal nuclei such as metallic palladium nuclei, metallic silver nuclei, etc. which enable electroless plating on the surface of the substrate, and Sn-P is formed on the surface of the substrate.
d, Sn-Ag, Sn-Ag-Pd can be formed.

【0017】この場合、非導電性基材上ヘのSn、A
g、Pdの付与方法については、センシタイジング−ア
クチベーティング法、アルカリキャタリスト法、キャタ
リスト−アクセレレーター法等の水溶液による付与方
法、有機金属錯体を付与した後に熱分解を施す方法、ス
パッタリング法等の乾式法等を使用することができる。
とりわけ、水溶液を用いたセンシタイジング−銀活性−
パラジウム活性による付与方法がその工程や水溶液、処
理の条件を制御することにより容易に適用できる。例え
ば、センシタイジング溶液としては、SnCl2、Sn
SO4等の2価の錫塩を塩酸、硫酸等の酸溶液に溶解し
た、2価の錫イオンを1〜50g/L含有し、pH0.
1〜1.5程度の強酸性である溶液を使用し、10〜6
0℃で10秒〜5分間浸漬処理し、次いで、銀イオンを
含有する活性化剤としては銀イオンが0.0001〜
0.5mol/Lであるものを用い、pHは5〜11と
し、液温を15〜60℃として、10秒〜5分間浸漬処
理すればよい。パラジウムを含有する活性化剤として
は、PdCl2、PdSO4等の2価のパラジウム塩を塩
酸、硫酸等の酸溶液に溶解し、2価のPdイオンを0.
01〜1g/L含有し、pHが1〜3である溶液を使用
し、10〜60℃で1秒〜5分間浸漬処理することが好
ましい。長時間浸漬しすぎると、Pd核が凝集し、塊粒
化が生じるおそれがある。
In this case, Sn, A on the non-conductive substrate
g and Pd are applied by an aqueous solution such as a sensitizing-activating method, an alkali catalyst method, a catalyst-accelerator method, a method of applying thermal decomposition after applying an organometallic complex, A dry method such as a sputtering method can be used.
In particular, sensitizing with an aqueous solution-silver activity-
The application method using palladium activity can be easily applied by controlling the process, aqueous solution, and treatment conditions. For example, as the sensitizing solution, SnCl 2 , Sn
A divalent tin salt such as SO 4 is dissolved in an acid solution such as hydrochloric acid or sulfuric acid to contain 1 to 50 g / L of divalent tin ions, and a pH of 0.
Use a strongly acidic solution of about 1 to 1.5,
Immersion treatment is carried out at 0 ° C. for 10 seconds to 5 minutes, and then silver ion-containing activator containing 0.0001 to
What is 0.5 mol / L is used, pH may be set to 5-11, a liquid temperature may be set to 15-60 degreeC, and immersion processing may be performed for 10 seconds-5 minutes. As the activator containing palladium, a divalent palladium salt such as PdCl 2 , PdSO 4 or the like is dissolved in an acid solution such as hydrochloric acid or sulfuric acid, and divalent Pd ion is adjusted to 0.
It is preferable to use a solution containing 0 to 1 g / L and having a pH of 1 to 3 and subjecting it to immersion treatment at 10 to 60 ° C. for 1 second to 5 minutes. If it is soaked for too long, Pd nuclei may be aggregated and agglomerated.

【0018】この場合、上記Sn、Ag、Pdの付与化
工程はそれぞれ1回行うだけでもよく、また複数回を繰
り返してもよい。
In this case, each of the steps of applying Sn, Ag, and Pd may be performed once, or may be repeated a plurality of times.

【0019】Sn、Ag、Pdを上記範囲とすることに
より、触媒核粒子を1500核/μm2以上、好ましく
は2000核/μm2以上、更に好ましくは2500核
/μm 2以上、特には3000核/μm2以上の核密度と
することができる。この場合、高密度Pd核分散層は、
平均表面粗さが0.5nm以下、特に0.3nm以下と
することができ、また、触媒核粒子径は2nm以下、好
ましくは1.5nm以下、更に好ましくは1nm以下と
することができ、高密度で緻密な層を形成し得る。な
お、この高密度Pd核分散層を無電解めっきの触媒層と
して利用する場合には、触媒核の粒子径としては、0.
03nm以上とすることが好ましい。上記核密度、平均
粗さ、平均粒子径は、AFM(原子間力顕微鏡)観察に
より測定し得る。
To make Sn, Ag and Pd within the above range
From 1500 nuclei / μm2Or more, preferably
Is 2000 nuclei / μm2Above, more preferably 2500 nuclei
/ Μm 2Above, especially 3000 nuclei / μm2With the above nuclear density
can do. In this case, the high density Pd nuclear dispersion layer is
The average surface roughness is 0.5 nm or less, particularly 0.3 nm or less.
And the catalyst core particle size is 2 nm or less,
It is preferably 1.5 nm or less, more preferably 1 nm or less.
And can form dense and dense layers. Na
This high-density Pd nuclear dispersion layer is used as a catalyst layer for electroless plating.
When used as a catalyst, the particle size of the catalyst nucleus is 0.
The thickness is preferably 03 nm or more. Above nuclear density, average
Roughness and average particle size are for AFM (atomic force microscope) observation
More measurable.

【0020】なお、Sn、Ag、Pdの重量割合は、I
CP(誘導結合プラズマ発光分光分析装置)にて分析で
きる。
The weight ratio of Sn, Ag and Pd is I
It can be analyzed by CP (inductively coupled plasma emission spectroscopic analyzer).

【0021】上記工程(4)での無電解酸化亜鉛皮膜析
出溶液としては、酸化亜鉛を析出させる液であればよ
く、特に制限されないが、硝酸亜鉛等の亜鉛塩を0.0
1〜0.5mol/L、好ましくは0.05〜0.2m
ol/Lと、ジメチルアミンボラン等のアミンボラン系
還元剤、その他の還元剤を0.001〜0.5mol/
L、好ましくは0.0005〜0.3mol/L、特に
0.0001〜0.2mol/L含有するpH4〜9程
度、特にpH6.5程度の処理液を好適に用いることが
でき、10〜80℃で10〜200分間浸漬処理する方
法が採用し得る。
The electroless zinc oxide film depositing solution in the above step (4) is not particularly limited as long as it is a liquid for depositing zinc oxide, but zinc salt such as zinc nitrate is 0.0
1 to 0.5 mol / L, preferably 0.05 to 0.2 m
ol / L, amine borane-based reducing agents such as dimethylamine borane, and other reducing agents in an amount of 0.001 to 0.5 mol / l.
L, preferably 0.0005 to 0.3 mol / L, particularly 0.0001 to 0.2 mol / L, and a treatment liquid having a pH of about 4 to 9, particularly about 6.5, can be suitably used, and a treatment liquid of 10 to 80 can be suitably used. A method of dipping at 10 ° C. for 10 to 200 minutes can be adopted.

【0022】なお、この場合、酸化亜鉛皮膜の膜厚は
0.005μm以上、好ましくは0.005〜2μmと
することができるが、これに制限されるものではない。
In this case, the thickness of the zinc oxide film can be 0.005 μm or more, preferably 0.005 to 2 μm, but is not limited to this.

【0023】更には、この無電解酸化亜鉛皮膜を陰極と
して、上記組成液から無電解酸化亜鉛皮膜の上に電気酸
化亜鉛皮膜を作製してもよい。
Further, the electroless zinc oxide film may be formed on the electroless zinc oxide film from the above composition liquid by using the electroless zinc oxide film as a cathode.

【0024】この場合、電気酸化亜鉛皮膜析出溶液とし
ては、酸化亜鉛を析出させる液であればよく、特に制限
されないが、硝酸亜鉛等の亜鉛塩0.01〜0.5mo
l/L、好ましくは0.05〜0.2mol/Lを含有
するpH4〜9程度、特にpH6の処理液を好適に用い
ることができ、陽極として亜鉛、カーボン、白金等を用
いて導電性基板1cm2あたり0.1〜20クーロン、
好ましくは1〜10クーロン通電して酸化亜鉛皮膜を得
ることができる。浴温は10〜80℃の範囲で用いられ
る。なお、基体が電気めっき可能な材質がある場合、無
電解酸化亜鉛めっきを省略して電気酸化亜鉛めっきのみ
を行ってもよい。
In this case, the electrolytic zinc oxide film depositing solution is not particularly limited as long as it is a liquid that deposits zinc oxide, but zinc salt such as zinc nitrate 0.01 to 0.5 mo
A treatment liquid containing 1 / L, preferably 0.05 to 0.2 mol / L and having a pH of about 4 to 9, particularly pH 6 can be preferably used, and a conductive substrate using zinc, carbon, platinum or the like as an anode. 1cm 2 per 0.1 to 20 Coulomb,
Preferably, a zinc oxide film can be obtained by energizing for 1 to 10 coulombs. The bath temperature is used in the range of 10 to 80 ° C. If the substrate has a material that can be electroplated, electroless zinc oxide plating may be omitted and only electrogalvanic zinc plating may be performed.

【0025】ここで、2価及び3価の鉄化合物を含有さ
せる酸化亜鉛の皮膜特性としては、その用途に応じて適
宜選択すればよい。
Here, the film characteristics of the zinc oxide containing the divalent and trivalent iron compounds may be appropriately selected according to the application.

【0026】例えば、透明性を利用する場合には、表面
粗さが200nm以下、好ましくは100nm以下、特
に好ましくは10nm以下とすることがよい。このよう
な透明性の特性を有する酸化亜鉛皮膜を形成する場合、
無電解酸化亜鉛めっき法では、触媒付与処理として、セ
ンシタイジング−銀活性化−パラジウム活性化の処理を
用いることができる。この触媒付与工程を行った酸化亜
鉛皮膜は、後述する鉄化合物を含有させる方法を用いて
も、可視光光透過度は55%以上、特に75%以上とす
ることができる。
For example, when utilizing transparency, the surface roughness is preferably 200 nm or less, preferably 100 nm or less, and particularly preferably 10 nm or less. When forming a zinc oxide film having such transparency characteristics,
In the electroless zinc oxide plating method, sensitizing-silver activation-palladium activation treatment can be used as the catalyst application treatment. The zinc oxide film that has been subjected to this catalyst application step can have a visible light transmittance of 55% or more, particularly 75% or more, even when the method of incorporating an iron compound described below is used.

【0027】また、優れた導電性を利用する場合、無電
解酸化亜鉛めっき法又は電気酸化亜鉛めっき法で作製し
た酸化亜鉛皮膜の膜厚は0.05〜0.5μm、特に
0.1〜0.3μmとすることができ、このような酸化
亜鉛皮膜を用いると、比抵抗値を5.0×1010〜1.
0×10-3Ω・cmとすることができる。
Further, when utilizing excellent conductivity, the film thickness of the zinc oxide film produced by the electroless zinc oxide plating method or the electrozinc oxide plating method is 0.05 to 0.5 μm, particularly 0.1 to 0. The thickness can be set to 0.3 μm, and when such a zinc oxide film is used, the specific resistance value is 5.0 × 10 10 to 1.
It can be set to 0 × 10 −3 Ω · cm.

【0028】更に、上記のような比抵抗値の制御として
は、無電解酸化亜鉛めっき法又は電気酸化亜鉛めっき法
での水溶性亜鉛塩濃度、アミンボラン系還元剤濃度等の
浴条件や処理時間等の処理条件を制御する、或いは、皮
膜中のドーパントを制御することで、酸化亜鉛皮膜の比
抵抗値を2.5×1010〜1.0×10-3Ω・cmに制
御することができる。ドーパントによる制御方法におい
て、比抵抗値を上げるには、皮膜中に1価の金属(例え
ば、Na、Li、K、Cu+、Agなど)をドーピング
すればよく、逆に比抵抗値を下げるには、皮膜中に3価
の金属をドーピングすればよい。これら金属のドーピン
グ方法としては、ドーピングする金属を含有する水溶液
中に、酸化亜鉛皮膜を浸漬する方法が採用できる。
Further, in order to control the specific resistance value as described above, the bath conditions such as the concentration of the water-soluble zinc salt and the concentration of the amine borane-based reducing agent in the electroless zinc oxide plating method or the electrozinc oxide plating method, the treatment time, etc. The specific resistance value of the zinc oxide film can be controlled to 2.5 × 10 10 to 1.0 × 10 −3 Ω · cm by controlling the treatment conditions of 1) or by controlling the dopant in the film. . In the control method using a dopant, in order to increase the specific resistance value, it is sufficient to dope a monovalent metal (for example, Na, Li, K, Cu + , Ag, etc.) into the film, and conversely decrease the specific resistance value. For this, a trivalent metal may be doped into the film. As a method of doping these metals, a method of immersing the zinc oxide film in an aqueous solution containing the metal to be doped can be adopted.

【0029】本発明は、このように形成される酸化亜鉛
皮膜に鉄化合物を含有させたものであるが、鉄化合物を
含有させる手段としては、上記酸化亜鉛皮膜を鉄含有溶
液を用いて処理する方法、或いは上記無電解又は電気酸
化亜鉛めっき液に水溶性鉄塩を添加し、このめっき液を
用いてめっきする方法が挙げられる。
In the present invention, the zinc oxide film thus formed contains an iron compound. The means for incorporating the iron compound is to treat the zinc oxide film with an iron-containing solution. Examples of the method include a method of adding a water-soluble iron salt to the electroless or electrogalvanic zinc plating solution, and plating with the plating solution.

【0030】ここで、鉄含有溶液(処理液)として、硝
酸鉄等の水溶性鉄塩を鉄イオン(鉄イオンは2価でも3
価でもよい)として0.001〜0.05mol/L、
特に0.005〜0.03mol/L、ジメチルアミン
ボラン等のアミンボラン系還元剤、次亜リン酸ナトリウ
ム等のリン系還元剤、ヒドラジン、ホルムアルデヒド、
L−アスコルビン酸、フェナントロリンなどの鉄を還元
できる還元剤を0.005〜0.1mol/L、特に
0.01〜0.05mol/Lを含有し、pHを2〜
6、特に2.5〜5に調整した水溶液を使用することが
できる。
Here, as the iron-containing solution (treatment liquid), a water-soluble iron salt such as iron nitrate is added to iron ions (iron ions having a valence of 3
0.001 to 0.05 mol / L,
In particular, 0.005-0.03 mol / L, amine borane-based reducing agents such as dimethylamine borane, phosphorus-based reducing agents such as sodium hypophosphite, hydrazine, formaldehyde,
A reducing agent capable of reducing iron such as L-ascorbic acid and phenanthroline is contained in an amount of 0.005 to 0.1 mol / L, particularly 0.01 to 0.05 mol / L, and a pH of 2 to
It is possible to use an aqueous solution adjusted to 6, especially 2.5 to 5.

【0031】この場合、鉄含有溶液での処理では、3価
の鉄イオンが優先的に酸化亜鉛皮膜中に置換ないし分散
すると考えられる。また、鉄含有溶液には、鉄の還元剤
が含まれていることが重要である。還元剤によって、鉄
含有溶液中の3価の鉄イオンを2価の鉄イオンに還元し
て、2価の鉄イオンを多くし、これによって、2価の鉄
が酸化亜鉛皮膜中に置換ないし分散しやすくなると考え
られる。溶液中の2価の鉄イオン:3価の鉄イオン比率
は、モル比で1:5〜5:1、特に1:3〜3:1であ
ることが好ましい。これはESCAによる測定で確認で
きる。この比率は、鉄含有溶液のDMAB濃度、pHを
制御することによって実現できる。DMAB濃度を高く
すると、溶液中の2価の鉄イオンの比率は高くなる。ま
た、pHを上げると、2価の鉄イオンの比率を高くでき
る。
In this case, it is considered that trivalent iron ions are preferentially substituted or dispersed in the zinc oxide film by the treatment with the iron-containing solution. Further, it is important that the iron-containing solution contains an iron reducing agent. The reducing agent reduces trivalent iron ions in the iron-containing solution to divalent iron ions to increase the amount of divalent iron ions, whereby divalent iron is replaced or dispersed in the zinc oxide film. It will be easier to do. The divalent iron ion: trivalent iron ion ratio in the solution is preferably 1: 5 to 5: 1, and particularly preferably 1: 3 to 3: 1 in terms of molar ratio. This can be confirmed by measurement by ESCA. This ratio can be realized by controlling the DMAB concentration and pH of the iron-containing solution. The higher the DMAB concentration, the higher the proportion of divalent iron ions in the solution. Moreover, if the pH is raised, the ratio of divalent iron ions can be increased.

【0032】かかる処理液を用いて上記酸化亜鉛(めっ
き)皮膜を20〜80℃、特に30〜60℃において、
10〜90分、特に20〜60分浸漬処理すればよい。
処理時間が10分よりも短いと、強磁性を示さないおそ
れがある。これは、2価の鉄が酸化亜鉛皮膜中に十分に
含有されないためと考えられる。また、処理時間が60
分より長いと、酸化亜鉛が持つウルツァイト構造が崩
れ、酸化亜鉛皮膜の特性であるn型半導体特性が失われ
るおそれがあり、また、光透過度が落ちるおそれがあ
る。
The above zinc oxide (plating) film is treated at 20 to 80 ° C., particularly 30 to 60 ° C.
Immersion treatment may be performed for 10 to 90 minutes, particularly 20 to 60 minutes.
If the treatment time is shorter than 10 minutes, the ferromagnetism may not be exhibited. It is considered that this is because divalent iron was not sufficiently contained in the zinc oxide film. Also, the processing time is 60
If the length is longer than this, the wurtzite structure of zinc oxide may be destroyed, the n-type semiconductor characteristics that are characteristics of the zinc oxide film may be lost, and the light transmittance may be reduced.

【0033】また、上記めっき液に水溶性鉄塩を添加し
てめっきする場合は、硝酸鉄等の水溶性鉄塩を鉄イオン
(鉄イオンは2価でも3価でもよい)として0.001
〜0.05g/L、特に0.005〜0.03g/L添
加した上記無電解酸化亜鉛めっき液又は電気酸化亜鉛め
っき液を用い、上記した条件でめっきを行えばよい。
When a water-soluble iron salt is added to the plating solution for plating, the water-soluble iron salt such as iron nitrate is converted into iron ions (the iron ion may be divalent or trivalent) in an amount of 0.001.
.About.0.05 g / L, particularly 0.005 to 0.03 g / L is added to the electroless zinc oxide plating solution or the electrogalvanic zinc plating solution, and plating may be performed under the above conditions.

【0034】このように、酸化亜鉛(めっき)皮膜の形
成後、鉄含有溶液を用いた浸漬処理、或いは水溶性鉄塩
を添加した無電解又は電気酸化亜鉛めっき液を用いため
っき処理により、鉄化合物を含有した酸化亜鉛皮膜が得
られる。
As described above, after the zinc oxide (plating) film is formed, the iron is subjected to an immersion treatment using an iron-containing solution or a plating treatment using an electroless or electrolytic zinc oxide plating solution containing a water-soluble iron salt. A zinc oxide film containing the compound is obtained.

【0035】この鉄含有酸化亜鉛皮膜は、上記処理した
ままの状態で、室温(25℃)において強磁性を有し、
強磁性を発現させるために熱処理等を必要としないもの
である。
This iron-containing zinc oxide film has ferromagnetism at room temperature (25 ° C.) in the as-treated state,
It does not require heat treatment or the like to develop ferromagnetism.

【0036】ここで、本発明の酸化亜鉛皮膜は、上述し
たように、鉄化合物を含むものであり、鉄化合物として
は、酸化鉄(Fe23、Fe34等)のほか、他の2価
の鉄イオン、3価の鉄イオンを含む化合物が挙げられ、
特に2価の鉄化合物と3価の鉄化合物とが共存している
ことが好ましい。また、本発明の酸化亜鉛皮膜は、鉄化
合物以外に金属鉄を含んでいてもよい。
As described above, the zinc oxide film of the present invention contains an iron compound, and as the iron compound, iron oxide (Fe 2 O 3 , Fe 3 O 4, etc.) and other A compound containing divalent iron ion and trivalent iron ion of
In particular, it is preferable that the divalent iron compound and the trivalent iron compound coexist. Further, the zinc oxide film of the present invention may contain metallic iron in addition to the iron compound.

【0037】この場合、この酸化亜鉛皮膜中の鉄含有量
は、20〜50重量%、特に30〜45重量%であるこ
とが好ましく、また室温(25℃)における飽和磁化は
15〜40emu/cc、特に20〜30emu/c
c、保磁力は20〜100Oe、特に50〜80Oeで
あることが好ましい。また、皮膜中の2価の鉄:3価の
鉄(重量比率)は、1:25〜25:1、特に1:10
〜10:1であることが好ましい。なお、この比率は、
ESCA法による測定で確認できる。
In this case, the iron content in the zinc oxide film is preferably 20 to 50% by weight, particularly 30 to 45% by weight, and the saturation magnetization at room temperature (25 ° C.) is 15 to 40 emu / cc. , Especially 20-30 emu / c
c, the coercive force is preferably 20 to 100 Oe, and particularly preferably 50 to 80 Oe. The divalent iron: trivalent iron (weight ratio) in the film is 1:25 to 25: 1, and particularly 1:10.
It is preferably 10: 1. This ratio is
It can be confirmed by measurement by the ESCA method.

【0038】上述したように、鉄化合物含有酸化亜鉛皮
膜は、加熱処理を行わなくても強磁性を有するものであ
るが、非酸化性雰囲気下(真空下、還元性雰囲気下、ア
ルゴン、ヘリウム、窒素などの非酸化性雰囲気下)での
加熱処理を行うことで、磁気特性が向上する。上記真空
雰囲気としては、1×10-2〜1×10-7torrの真
空下であればよい。上記還元性雰囲気としては、水素雰
囲気又は水素を1〜5重量%含有した窒素雰囲気などが
採用できる。
As described above, the iron compound-containing zinc oxide film has ferromagnetism even if it is not heat-treated, but in a non-oxidizing atmosphere (vacuum, reducing atmosphere, argon, helium, The magnetic properties are improved by performing the heat treatment under a non-oxidizing atmosphere such as nitrogen. The vacuum atmosphere may be under a vacuum of 1 × 10 −2 to 1 × 10 −7 torr. As the reducing atmosphere, a hydrogen atmosphere or a nitrogen atmosphere containing 1 to 5% by weight of hydrogen can be adopted.

【0039】加熱処理時間としては、5〜120分、特
に10〜60分とすることができる。加熱温度として
は、150〜800℃とすることができ、好ましくは、
300〜600℃である。加熱によって、酸化亜鉛皮膜
中の2価の鉄含有量は増加し、室温での磁気ヒステリシ
スを示し、飽和磁化20〜60emu/cc、特に30
〜50emu/cc、保磁力150〜500Oe、特に
250〜350Oeが好ましく、VSMによる測定で確
認できる。
The heat treatment time may be 5 to 120 minutes, especially 10 to 60 minutes. The heating temperature may be 150 to 800 ° C., preferably
It is 300-600 degreeC. By heating, the content of divalent iron in the zinc oxide film increases, exhibits magnetic hysteresis at room temperature, and has a saturation magnetization of 20 to 60 emu / cc, especially 30.
˜50 emu / cc, coercive force of 150 to 500 Oe, especially 250 to 350 Oe, which can be confirmed by VSM measurement.

【0040】本発明の強磁性酸化亜鉛皮膜は、基体に析
出させたままで利用することも可能であり、また、基体
から強磁性酸化亜鉛皮膜を水に浸漬し、超音波を照射す
るなどの方法を用いて剥離してもよく、更には剥離した
強磁性酸化亜鉛皮膜を粉粒状に粉砕した後、磁性材料と
して樹脂ペースト中に練合して利用してもよい。
The ferromagnetic zinc oxide film of the present invention can be used as it is deposited on the substrate, and the ferromagnetic zinc oxide film can be immersed in water from the substrate and irradiated with ultrasonic waves. May be used for peeling, or the peeled ferromagnetic zinc oxide film may be pulverized into particles and then kneaded into a resin paste as a magnetic material for use.

【0041】[0041]

【実施例】以下、実施例と比較例を示し、本発明を具体
的に説明するが、本発明は下記の実施例に制限されるも
のではない。
EXAMPLES The present invention will be specifically described below by showing Examples and Comparative Examples, but the present invention is not limited to the following Examples.

【0042】[実施例1]非導電性基板としてソーダライ
ムガラスを用い、下記の工程で触媒を付与した。触媒付与 i.脱脂 基板を下記の脱脂剤溶液に50℃で3分間浸漬処理し
た。 ii.水洗 25℃,15秒間 iii.表面調整 下記表面調整剤溶液に30℃で5分間浸漬処理した。 iv.水洗 25℃,15秒間 v.センシタイジング 下記のセンシタイジング溶液に20℃で1分間浸漬し
た。 vi.水洗 25℃,15秒間 vii.触媒付与 下記の銀活性化溶液に20℃で1分間浸漬した。 viii.水洗 25℃,15秒間 ix.触媒付与 下記のパラジウム活性化溶液に20℃で1分間浸漬し
た。 x.水洗 25℃,15秒間
Example 1 Soda lime glass was used as a non-conductive substrate, and a catalyst was applied in the following steps. Catalyst application i. The degreasing substrate was immersed in the following degreasing agent solution at 50 ° C. for 3 minutes. ii. Rinse with water at 25 ° C. for 15 seconds iii. Surface Conditioning The solution was immersed in the following surface conditioner solution at 30 ° C. for 5 minutes. iv. Washing with water 25 ° C, 15 seconds v. Sensitizing It was immersed in the following sensitizing solution at 20 ° C. for 1 minute. vi. Rinse with water at 25 ° C for 15 seconds vii. Catalysis Addition The above silver activating solution was dipped at 20 ° C. for 1 minute. viii. Rinse with water at 25 ° C for 15 seconds ix. Catalytic Immersion It was immersed in the following palladium activating solution at 20 ° C. for 1 minute. x. Washing with water 25 ℃ for 15 seconds

【0043】次いで、下記無電解ZnOめっき液を用い
てpH6.3、68℃で1時間浸漬処理した。
Next, the following electroless ZnO plating solution was used for immersion treatment at pH 6.3 and 68 ° C. for 1 hour.

【0044】更に、下記鉄含有溶液を用いて50℃で3
0分間の浸漬処理を行った。脱脂剤 上村工業株式会社製アサヒクリーナーC−4000 5g/L表面調整剤 上村工業株式会社製スルカップCD−202 50mL/Lセンシタイジング溶液 SnCl2 15g/L HCl(36%) 45mL/L pH 0.5銀活性化溶液 AgSO4 3g/L pH 7.0パラジウム活性化溶液 PdCl2 1.5g/L HCl(36%) 1.5mL/L pH 2.8無電解ZnOめっき溶液 Zn(NO32 0.1mol/L DMAB 0.005mol/L pH 6.3鉄含有溶液 硝酸鉄 0.1mol/L DMAB 0.03mol/L pH 3.9
Further, using the following iron-containing solution, the solution was heated at 50 ° C. for 3 hours.
Immersion treatment for 0 minutes was performed. Degreasing agent Asahi Cleaner C-4000 5 g / L Surface conditioner Sulcup CD-202 50 mL / L Sensitizing solution SnCl 2 15 g / L HCl (36%) 45 mL / L pH 0. 5 Silver activation solution AgSO 4 3 g / L pH 7.0 Palladium activation solution PdCl 2 1.5 g / L HCl (36%) 1.5 mL / L pH 2.8 Electroless ZnO plating solution Zn (NO 3 ) 2 0.1 mol / L DMAB 0.005 mol / L pH 6.3 Iron-containing solution Iron nitrate 0.1 mol / L DMAB 0.03 mol / L pH 3.9

【0045】上記方法で得られた鉄化合物含有酸化亜鉛
皮膜を25℃、VSMで測定した結果を図1に示す。当
該、鉄化合物含有酸化亜鉛皮膜は、磁気ヒステリシスを
示しており、強磁性であることが分かる。また、X線回
析により酸化亜鉛のピークを示した。飽和磁化は28e
mu/cc、保磁力は約34Oeであった。
The iron compound-containing zinc oxide film obtained by the above method was measured by VSM at 25 ° C. and the results are shown in FIG. The iron compound-containing zinc oxide film exhibits magnetic hysteresis and is found to be ferromagnetic. Moreover, a peak of zinc oxide was shown by X-ray diffraction. Saturation magnetization is 28e
The mu / cc and coercive force were about 34 Oe.

【0046】なお、この鉄化合物含有酸化亜鉛皮膜中の
鉄含有量は、40重量%(ICP測定)であり、このう
ち2価の鉄が4重量%、3価の鉄が36重量%(ESC
A測定)であった。
The iron content in this iron compound-containing zinc oxide film was 40% by weight (ICP measurement), of which divalent iron was 4% by weight and trivalent iron was 36% by weight (ESC).
A measurement).

【0047】[実施例2]実施例1で得た鉄化合物含有
酸化亜鉛皮膜を、真空下(10-5torr)、450℃
で30分間加熱処理した。加熱処理後の鉄化合物含有酸
化亜鉛皮膜の25℃でのVSMによる測定の結果を図1
に示す。磁気ヒステリシスが観察され、飽和磁化約37
emu/cc、保磁力約280Oeであり、磁気特性の
向上が認められた。また、X線回析により、酸化亜鉛の
ピークが観察された。
Example 2 The iron compound-containing zinc oxide film obtained in Example 1 was subjected to vacuum (10 −5 torr) at 450 ° C.
And heat treated for 30 minutes. Fig. 1 shows the results of the VSM measurement of the iron compound-containing zinc oxide film after the heat treatment at 25 ° C.
Shown in. Magnetic hysteresis was observed and saturation magnetization was about 37
It was emu / cc and coercive force was about 280 Oe, and improvement in magnetic properties was confirmed. Further, a peak of zinc oxide was observed by X-ray diffraction.

【0048】[比較例1]実施例1で得た鉄化合物含有酸
化亜鉛皮膜を、大気中で、450℃、30分で加熱処理
した。加熱処理後の鉄化合物含有酸化亜鉛皮膜の25℃
でのVSMによる測定の結果を図1に示す。磁気ヒステ
リシスは認められなかった。
Comparative Example 1 The iron compound-containing zinc oxide film obtained in Example 1 was heat-treated in the air at 450 ° C. for 30 minutes. 25 ° C of iron compound-containing zinc oxide film after heat treatment
FIG. 1 shows the result of the measurement by VSM at the same time. No magnetic hysteresis was observed.

【0049】[実施例3〜9及び比較例2〜4]鉄含有
処理溶液の処理時間及び還元剤を表1のように変化させ
た以外は、実施例1と同様に鉄化合物含有酸化亜鉛皮膜
を作製した。得られた鉄化合物含有酸化亜鉛皮膜につい
て、磁気ヒステリシスの有無(VSM測定)、皮膜中の
2価及び3価の鉄の重量比(ESCA測定)、比抵抗
値、可視光光透過度、酸化亜鉛のピークの有無(X線回
析)を測定した結果を表1に示す。
[Examples 3 to 9 and Comparative Examples 2 to 4] An iron compound-containing zinc oxide film was prepared in the same manner as in Example 1 except that the treatment time of the iron-containing treatment solution and the reducing agent were changed as shown in Table 1. Was produced. Regarding the obtained iron oxide containing zinc oxide film, presence or absence of magnetic hysteresis (VSM measurement), weight ratio of divalent and trivalent iron in the film (ESCA measurement), specific resistance value, visible light transmittance, zinc oxide Table 1 shows the results of measuring the presence or absence of the peak (X-ray diffraction).

【0050】[0050]

【表1】 [Table 1]

【0051】[実施例10〜12]下記ア)〜ウ)に示
す処理法で得た酸化亜鉛皮膜を用い、実施例1と同様に
鉄含有溶液処理を行った鉄化合物含有酸化亜鉛皮膜につ
いて、磁気ヒステリシスの有無(VSM測定)、皮膜中
の2価及び3価の鉄の重量比(ESCA測定)、酸化亜
鉛のピークの有無(X線回析)、比抵抗値、可視光光透
過度を測定した結果を表2に示す。
[Examples 10 to 12] An iron compound-containing zinc oxide film which was treated with an iron-containing solution in the same manner as in Example 1 using the zinc oxide film obtained by the treatment method shown in the following a) to c) was used. Presence of magnetic hysteresis (VSM measurement), weight ratio of divalent and trivalent iron in the film (ESCA measurement), presence of zinc oxide peak (X-ray diffraction), specific resistance value, visible light transmittance The measured results are shown in Table 2.

【0052】[0052]

【表2】 [Table 2]

【0053】〈酸化亜鉛皮膜作製方法〉 ア)ガラス基板上にDCマグネトロンスパッタリング法
を用いて作製。 イ)ソーダライムガラス基板を、公知の表面調整を行っ
た後、下記電気酸化亜鉛めっきを施して作製。 硝酸亜鉛 0.1mol/L DMAB 0.3mol/L pH 6.5 陽極 白金 陰極電流密度 1mA/cm2 浴温 60℃ 処理時間 60分 ウ)ソーダライムガラス基板を、実施例1と同様に前処
理、触媒付与した後、下記無電解酸化亜鉛めっきを施
し、還元雰囲気下において450℃で加熱し、更に下記
電気酸化亜鉛めっきを施して作製。 無電解酸化亜鉛めっき浴 硝酸亜鉛 0.1mol/L ホウ酸 0.3mol/L pH 6.5 浴温 65℃ 処理時間 60分 電気酸化亜鉛めっき浴 硝酸亜鉛 0.1mol/L ホウ酸 0.3mol/L pH 6.5 浴温 65℃ 処理時間 60分 陰極電流密度 1mA/cm2
<Method for Producing Zinc Oxide Film> a) Production using a DC magnetron sputtering method on a glass substrate. B) A soda lime glass substrate was prepared by subjecting the surface of the soda lime to publicly known surface treatment and then performing the following electrogalvanizing plating. Zinc nitrate 0.1 mol / L DMAB 0.3 mol / L pH 6.5 Anode platinum cathode Current density 1 mA / cm 2 Bath temperature 60 ° C. Treatment time 60 minutes c) Soda lime glass substrate was pretreated in the same manner as in Example 1. After applying the catalyst, the following electroless zinc oxide plating was performed, heated at 450 ° C. in a reducing atmosphere, and further subjected to the following electrozinc oxide plating. Electroless zinc oxide plating bath Zinc nitrate 0.1 mol / L boric acid 0.3 mol / L pH 6.5 Bath temperature 65 ° C. Treatment time 60 minutes Electrogalvanic plating bath zinc nitrate 0.1 mol / L Boric acid 0.3 mol / L pH 6.5 Bath temperature 65 ° C. Treatment time 60 minutes Cathode current density 1 mA / cm 2

【0054】[実施例13〜14]下記無電解酸化亜鉛
めっき浴を用いた以外は、実施例1と同じ条件で作製し
た鉄化合物含有酸化亜鉛皮膜の磁気ヒステリシスの有
無、飽和磁化、保磁力(以上、VSM測定)、皮膜中の
2価及び3価の鉄の重量比(ESCA測定)、比抵抗
値、可視光光透過度、酸化亜鉛のピークの有無(X線回
析)を表3に示す。また、得られた鉄化合物含有酸化亜
鉛皮膜を真空下(10-5torr)、450℃で30分
間加熱処理した(実施例14)。実施例13と同様に皮
膜特性を測定した結果を表3に併せて示す。
Examples 13 to 14 The presence or absence of magnetic hysteresis, saturation magnetization, and coercive force of the iron compound-containing zinc oxide film prepared under the same conditions as in Example 1 except that the following electroless zinc oxide plating bath was used. Table 3 shows the VSM measurement), the weight ratio of divalent and trivalent iron in the coating (ESCA measurement), the specific resistance value, the visible light transmittance, and the presence or absence of a zinc oxide peak (X-ray diffraction). Show. The obtained iron compound-containing zinc oxide film was heat-treated under vacuum (10 −5 torr) at 450 ° C. for 30 minutes (Example 14). The results of measuring the film characteristics as in Example 13 are also shown in Table 3.

【0055】[0055]

【表3】 [Table 3]

【0056】無電解酸化亜鉛めっき浴 硝酸亜鉛 0.1 mol/L 硝酸鉄 0.01mol/L DMAB 0.01mol/L pH 5.9 浴温 60℃ 処理時間 60分Electroless zinc oxide plating bath Zinc nitrate 0.1 mol / L Iron nitrate 0.01 mol / L DMAB 0.01 mol / L pH 5.9 Bath temperature 60 ℃ Processing time 60 minutes

【0057】[0057]

【発明の効果】本発明によれば、室温で強磁性を示す酸
化亜鉛皮膜を与える。
According to the present invention, a zinc oxide film exhibiting ferromagnetism at room temperature is provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1、2及び比較例1の皮膜の保磁力と飽
和磁化との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between coercive force and saturation magnetization of films of Examples 1 and 2 and Comparative Example 1.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C25D 5/50 C25D 5/50 5/56 5/56 A 9/08 9/08 H01F 10/14 H01F 10/14 41/26 41/26 H01L 21/285 H01L 21/285 S 301 301Z 21/288 21/288 E Z (72)発明者 伊▲崎▼ 昌伸 奈良県北▲葛▼城郡河合町久美ヶ丘1丁目 4番地1 (72)発明者 西條 義司 大阪府枚方市出口1丁目5番1号 上村工 業株式会社中央研究所内 (72)発明者 田邉 克久 大阪府枚方市出口1丁目5番1号 上村工 業株式会社中央研究所内 Fターム(参考) 4K022 AA02 AA03 AA04 AA05 AA13 AA43 AA44 AA46 BA09 BA15 BA25 BA33 DA01 EA01 EA04 4K024 AA18 AB17 BA01 BA11 BB09 BB12 BB14 BB27 DB01 DB03 DB10 GA16 4M104 BB36 BB39 DD37 DD51 DD52 DD53 DD55 DD78 GG04 GG20 HH16 5E049 AB01 AB09 BA16 BA30 EB06 LC01 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C25D 5/50 C25D 5/50 5/56 5/56 A 9/08 9/08 H01F 10/14 H01F 10 / 14 41/26 41/26 H01L 21/285 H01L 21/285 S 301 301Z 21/288 21/288 EZ (72) Inventor I ▲ Sakino Masanobu Nara Prefecture North ▲ Kumigaoka 1 chome 4 1 (72) Inventor Yoshiji Saijo 1-5-1 Exit Hirakata-shi, Osaka Prefecture Central Research Institute, Uemura Industrial Co., Ltd. (72) Katsuhisa Tanabe 1-5-1 Uemura, Exit 1 Hirakata, Osaka Kogyo Co., Ltd. Central Research Institute F-term (reference) 4K022 AA02 AA03 AA04 AA05 AA13 AA43 AA44 AA46 BA09 BA15 BA25 BA33 DA01 EA01 EA04 4K024 AA18 AB17 BA01 BA11 BB09 BB12 BB14 BB27 DB01 DB03 DB10 GA16 4M104 DD36 BB36 DD52 DD55 DD78 GG04 GG20 HH16 5E049 AB01 AB09 BA16 BA30 EB06 LC01

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 酸化亜鉛皮膜中に鉄化合物を含有してな
ることを特徴とする室温で強磁性を示す強磁性酸化亜鉛
皮膜。
1. A ferromagnetic zinc oxide film exhibiting ferromagnetism at room temperature, characterized by containing an iron compound in the zinc oxide film.
【請求項2】 鉄化合物を含む全鉄含有量が鉄として皮
膜中20〜50重量%である請求項1記載の強磁性酸化
亜鉛皮膜。
2. The ferromagnetic zinc oxide film according to claim 1, wherein the total iron content including the iron compound is 20 to 50% by weight in the film as iron.
【請求項3】 鉄化合物として、2価の鉄化合物と3価
の鉄化合物とが共存する請求項1又は2記載の強磁性酸
化亜鉛皮膜。
3. The ferromagnetic zinc oxide film according to claim 1, wherein a divalent iron compound and a trivalent iron compound coexist as the iron compound.
【請求項4】 基体表面に酸化亜鉛皮膜を形成した後、
この酸化亜鉛皮膜を水溶性鉄塩と還元剤とを含む処理液
で処理して、上記酸化亜鉛皮膜中に鉄化合物を含有させ
ることを特徴とする請求項1記載の強磁性酸化亜鉛皮膜
の製造方法。
4. After forming a zinc oxide film on the surface of the substrate,
2. The production of a ferromagnetic zinc oxide coating according to claim 1, wherein the zinc oxide coating is treated with a treatment liquid containing a water-soluble iron salt and a reducing agent so that the zinc oxide coating contains an iron compound. Method.
【請求項5】 酸化亜鉛皮膜を、電気酸化亜鉛めっき法
又は無電解酸化亜鉛めっき法により作製する請求項4記
載の製造方法。
5. The method according to claim 4, wherein the zinc oxide film is produced by an electrogalvanizing zinc oxide method or an electroless zinc oxide plating method.
【請求項6】 強磁性酸化亜鉛皮膜の形成後、真空下、
還元性雰囲気下又は非酸化性雰囲気下で加熱処理する請
求項4又は5記載の製造方法。
6. After formation of the ferromagnetic zinc oxide film, under vacuum,
The manufacturing method according to claim 4, wherein the heat treatment is performed in a reducing atmosphere or a non-oxidizing atmosphere.
【請求項7】 基体を水溶性鉄塩を含有する無電解酸化
亜鉛めっき液又は電気酸化亜鉛めっき液で処理して基体
表面に鉄化合物を含有する酸化亜鉛皮膜を形成すること
を特徴とする請求項1記載の強磁性酸化亜鉛皮膜の製造
方法。
7. A substrate is treated with an electroless zinc oxide plating solution containing a water-soluble iron salt or an electrolytic zinc oxide plating solution to form a zinc oxide film containing an iron compound on the surface of the substrate. Item 1. A method for producing a ferromagnetic zinc oxide film according to Item 1.
【請求項8】 強磁性酸化亜鉛皮膜の形成後、真空下、
還元性雰囲気下又は非酸化性雰囲気下で加熱処理する請
求項7記載の製造方法。
8. After formation of the ferromagnetic zinc oxide film, under vacuum,
The manufacturing method according to claim 7, wherein the heat treatment is performed in a reducing atmosphere or a non-oxidizing atmosphere.
JP2001268226A 2001-09-05 2001-09-05 Ferromagnetic zinc oxide film and manufacturing method therefor Pending JP2003073887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001268226A JP2003073887A (en) 2001-09-05 2001-09-05 Ferromagnetic zinc oxide film and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001268226A JP2003073887A (en) 2001-09-05 2001-09-05 Ferromagnetic zinc oxide film and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2003073887A true JP2003073887A (en) 2003-03-12

Family

ID=19094241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001268226A Pending JP2003073887A (en) 2001-09-05 2001-09-05 Ferromagnetic zinc oxide film and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2003073887A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040107318A (en) * 2003-06-13 2004-12-20 재단법인 포항산업과학연구원 Electrochemical Preparation Method of ZnO
JP2006225211A (en) * 2005-02-18 2006-08-31 Dainippon Printing Co Ltd Porous body
JP2012144785A (en) * 2011-01-13 2012-08-02 Central Research Institute Of Electric Power Industry Multifunctional material, and method for manufacturing substrate having multifunctional layer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040107318A (en) * 2003-06-13 2004-12-20 재단법인 포항산업과학연구원 Electrochemical Preparation Method of ZnO
JP2006225211A (en) * 2005-02-18 2006-08-31 Dainippon Printing Co Ltd Porous body
JP4742607B2 (en) * 2005-02-18 2011-08-10 大日本印刷株式会社 Porous material
JP2012144785A (en) * 2011-01-13 2012-08-02 Central Research Institute Of Electric Power Industry Multifunctional material, and method for manufacturing substrate having multifunctional layer

Similar Documents

Publication Publication Date Title
Pang et al. Preparation and characterization of electroless Ni–Co–P ternary alloy on fly ash cenospheres
Xu et al. Fabrication and properties of silverized glass fiber by dopamine functionalization and electroless plating
US6406750B1 (en) Process of forming catalyst nuclei on substrate, process of electroless-plating substrate, and modified zinc oxide film
JPH08325743A (en) Deposition of silver layer on nonconductive substrate
Zhu et al. Seedless micropatterning of copper by electroless deposition on self-assembled monolayers
JP2003073887A (en) Ferromagnetic zinc oxide film and manufacturing method therefor
JP4081625B2 (en) Preparation method of transparent zinc oxide film
Li et al. Activation of non-metallic substrates for metal deposition using organic solutions
JP4600623B2 (en) Method for forming electroless zinc oxide film
JP2002170429A (en) Base body having high density catalyst nuclei dispersion layer, and conductive product having modified zinc oxicide film and its manufacturing method
CN115246949B (en) Reduced graphene oxide flexible conductive film and three-step moderate reduction preparation process thereof
CN112501596B (en) Fluorine-free and palladium-silver-free activation method before chemical nickel plating on titanium surface
JP2010047828A (en) Pretreatment method for electroless plating and electroless plating method of substrate
JP2002173602A (en) Antistatic resin composite material and method for producing the same
JP2002192648A (en) Composite material improved in junction strength and method for forming the same
JPH10245682A (en) Formation of wiring and wiring board
WO2002046281A1 (en) Resin composite material and method of forming the same
TW200827470A (en) Process for preparing a nano-carbon material field emission cathode plate
JP2005047752A (en) Method for controlling film structure of zinc oxide film
KR20170030707A (en) Electroless copper plating method using metal particle
JP2002241950A (en) Direct patterning method
JP2002210364A (en) Zinc oxide film having photocatalytic property and method for forming the film
JP2001329381A (en) Plating solution, functional thin film and method for producing functional thin film
JPS62207877A (en) Method for plating plastic with metal
KR101309067B1 (en) Preparing method of metal film