JP2003073829A - Method for manufacturing vessel of pyrolytic boron nitride - Google Patents

Method for manufacturing vessel of pyrolytic boron nitride

Info

Publication number
JP2003073829A
JP2003073829A JP2001270053A JP2001270053A JP2003073829A JP 2003073829 A JP2003073829 A JP 2003073829A JP 2001270053 A JP2001270053 A JP 2001270053A JP 2001270053 A JP2001270053 A JP 2001270053A JP 2003073829 A JP2003073829 A JP 2003073829A
Authority
JP
Japan
Prior art keywords
container
pbn
boron nitride
pyrolytic boron
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001270053A
Other languages
Japanese (ja)
Other versions
JP4823447B2 (en
Inventor
Masaki Kano
正樹 狩野
Kazuto Hirata
和人 平田
Ryoji Nakajima
亮二 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2001270053A priority Critical patent/JP4823447B2/en
Publication of JP2003073829A publication Critical patent/JP2003073829A/en
Application granted granted Critical
Publication of JP4823447B2 publication Critical patent/JP4823447B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a vessel for PBN (pyrolytic boron nitride) even with a complicated structure or a large size, in high yield, by a CVD method, without causing deformation and fracture in the vessel. SOLUTION: The method for manufacturing the vessel for pyloritic boron nitride comprises depositing pyloritic boron nitride on a heat-resistant base material by a chemical vapor deposition method (a CVD method) and separating the deposited pyloritic boron nitride layer from the above base material, and is characterized by making a relationship of heat expansion coefficient αA of the heat-resistant base material and heat expansion coefficient αB in a vertical direction (a direction (a)) to the growth direction of pyloritic boron nitride to be 0.1×10<-6> / deg.C<(αA-αB)<2.0×10<-6> / deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、化学気相成長法
(以下CVD法という)によって得られる、化合物半導
体引き上げ用ルツボ、分子線エピタキシー用金属蒸発用
ルツボ、結晶育成用ボートなどに用いられる熱分解窒化
ホウ素製容器の製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a crucible for pulling up a compound semiconductor, a crucible for vaporizing a metal for molecular beam epitaxy, a boat for growing a crystal, which is obtained by a chemical vapor deposition method (hereinafter referred to as a CVD method). The present invention relates to a method of manufacturing a container made of decomposed boron nitride.

【0002】[0002]

【従来の技術】熱分解窒化ホウ素(以下PBNと略称す
る)は、耐熱性、強度等の優れた特性から化合物半導体
引き上げ用ルツボ、分子線エピタキシー用金属蒸発用ル
ツボ、結晶育成用成長用治具、放熱板、電気絶縁用部品
等の材料として幅広く使用されてきている。
2. Description of the Related Art Pyrolytic boron nitride (hereinafter referred to as PBN) is a crucible for pulling up a compound semiconductor, a crucible for evaporating a metal for molecular beam epitaxy, and a jig for growing a crystal because of its excellent heat resistance and strength. It has been widely used as a material for heat sinks, parts for electrical insulation, and the like.

【0003】一般に、PBN製容器はCVD法によって
製造され、その形状は製法上の制約から、方形状、筒形
状、板状等の単純形状のものが多い。図1は円筒形のP
BN製容器(ルツボ)を製造する際の断面説明図を示し
たものであり、以下これに従ってPBN製容器の製造方
法について簡単に説明する。まず、図1(a)に示すよ
うに、CVD法により、所望の形状の容器が得られるよ
うに成形された耐熱性基材1上に1700℃以上でPB
Nを蒸着させてPBN層2を堆積し、PBNの蒸着反応
終了後、それらを室温まで冷却して炉から取り出す。こ
の冷却の際、耐熱性基材とPBN層は、それぞれの熱膨
張係数の違いから両者の間に隙間を生じる。この隙間を
利用して、図1(b)に示すように、PBN層を耐熱性
基材から引き抜いて分離することができ、それによって
PBN製容器を得ることができる。
Generally, a PBN container is manufactured by a CVD method, and its shape is often a simple shape such as a rectangular shape, a cylindrical shape, or a plate shape due to restrictions in the manufacturing method. Figure 1 shows a cylindrical P
FIG. 2 is a cross-sectional explanatory view when manufacturing a BN container (crucible), and a method for manufacturing a PBN container will be briefly described below in accordance with this. First, as shown in FIG. 1 (a), PB at 1700 ° C. or higher is performed on a heat-resistant substrate 1 formed by a CVD method so as to obtain a container having a desired shape.
N is vapor-deposited to deposit the PBN layer 2, and after completion of the PBN vapor deposition reaction, they are cooled to room temperature and taken out of the furnace. During this cooling, a gap is created between the heat resistant base material and the PBN layer due to the difference in their respective thermal expansion coefficients. By utilizing this gap, as shown in FIG. 1B, the PBN layer can be pulled out and separated from the heat resistant base material, whereby a PBN container can be obtained.

【0004】例えば、円筒形状のPBN製容器を製造す
る際に、冷却によって耐熱性基材とPBN層との間に生
じる隙間の大きさは下記の式で求めることができる。 隙間の大きさ=αA×(反応温度−室温)×(反応温度
時の基材の外径)−αB×(反応温度−室温)×(反応
温度時のPBN成形体の内径) ここで、αAは耐熱性基材の熱膨張係数、αBは熱分解窒
化ホウ素成形体の成長方向に対して垂直方向(a方向)
の熱膨張係数を表す。隙間の大きさは、すなわち熱膨張
量の差を表している。
For example, when a cylindrical PBN container is manufactured, the size of the gap generated between the heat resistant base material and the PBN layer by cooling can be calculated by the following formula. Size of gap = α A × (reaction temperature−room temperature) × (outer diameter of base material at reaction temperature) −α B × (reaction temperature−room temperature) × (inner diameter of PBN molded body at reaction temperature) where , Α A is the coefficient of thermal expansion of the heat resistant substrate, α B is the direction perpendicular to the growth direction of the pyrolytic boron nitride compact (direction a)
Represents the coefficient of thermal expansion of. The size of the gap represents the difference in the amount of thermal expansion.

【0005】ところで、このようなPBN製容器が用い
られる分子線エピタキシー(Molecular Be
am Epitaxy、MBEと略称する)法は、10
−6〜10−11Torrの超高真空中で分子線源とな
る原料金属をルツボに投入し、例えば500〜1500
℃に加熱して蒸発させ、対向する基板上にエピタキシャ
ル膜を堆積させて薄膜を製造する方法である。このよう
にMBE法で用いられる金属蒸発用ルツボは超高真空で
高温に加熱されるため、脱ガスが少なく、化学的に安定
で、優れた耐熱性を有するPBN製の金属溶融ルツボが
世界標準的な構成部材として用いられている。MBE法
に用いられるPBN製容器は、一般に円筒形のもの、あ
るいは図2に示すような開口端にリップ部5を有するも
のが用いられている。
By the way, a molecular beam epitaxy (Molecular Be) using such a PBN container is used.
am Epitaxy, abbreviated as MBE) is 10
A raw material metal serving as a molecular beam source is charged into a crucible in an ultrahigh vacuum of −6 to 10 −11 Torr, for example, 500 to 1500.
It is a method of producing a thin film by heating to evaporate and evaporating, and depositing an epitaxial film on the opposing substrate. In this way, the metal evaporation crucible used in the MBE method is heated to a high temperature in an ultra-high vacuum, so there is little degassing, it is chemically stable, and a metal melting crucible made of PBN with excellent heat resistance is the world standard. It is used as a typical component. The PBN container used in the MBE method is generally a cylindrical container or a container having a lip portion 5 at the open end as shown in FIG.

【0006】まず、PBN製容器は、図2に示すよう
に、超高真空の装置内に装着されて、原料金属が投入さ
れる。その後、PBN製容器は遮熱板7で囲まれた高融
点金属製のヒーター6によって加熱されるが、その際、
加熱により溶融した溶融金属3は表面張力の作用によっ
て容器内壁面を伝わってリップ部5に這い上がり、さら
にはPBN製容器の外側に回り込んでヒーター6に接近
する。このとき、PBN製容器4の外側に回り込んだ溶
融金属3が蒸発するとヒーター6に付着し、その結果、
ヒーター6の腐食、変質せしめたり、破損を生じたりす
ると言うトラブルを起こしていた。また、PBN製容器
が高熱により熱変形を起こすと、容器の外側に回り込ん
だ溶融金属とヒーターの接触を招き、ヒーターがショー
トして断線を起こす恐れもあった。
First, as shown in FIG. 2, the PBN container is mounted in an ultrahigh vacuum apparatus and a raw material metal is charged therein. After that, the PBN container is heated by the high melting point metal heater 6 surrounded by the heat shield plate 7. At this time,
The molten metal 3 melted by heating is propagated along the inner wall surface of the container by the action of surface tension and crawls up to the lip portion 5, and further wraps around the outside of the PBN container to approach the heater 6. At this time, when the molten metal 3 that has flown outside the PBN container 4 evaporates, it adheres to the heater 6, and as a result,
There was a problem that the heater 6 was corroded, deteriorated, or damaged. Further, when the PBN container is thermally deformed due to high heat, the molten metal wrapping around the outside of the container may come into contact with the heater, and the heater may be short-circuited and broken.

【0007】そこで、このような問題点を解決するため
に、特開平9−170882号において、ルツボのリッ
プ部の外径端が本体側に折れ曲がっているMBE用分子
線源ルツボが開示されている。このMBE用分子線源ル
ツボは、リップ部外径端に容器側に折れ曲がって形成さ
れた囲いがあり、溶融した原料金属がルツボ内壁を伝わ
って這い上がったとしても、ヒーターへの接近を防ぐこ
とができるため、ヒーターの破損等を防止することがで
き、また、ヒーターのショート等のトラブルも防止する
ことができるものである。
In order to solve such a problem, JP-A-9-170882 discloses a molecular beam source crucible for MBE in which the outer diameter end of the lip portion of the crucible is bent toward the main body. . This MBE molecular beam source crucible has an enclosure formed by bending to the container side at the outer diameter end of the lip part, and prevents the approach to the heater even if the molten raw material metal crawls along the inner wall of the crucible. As a result, it is possible to prevent damage to the heater and prevent troubles such as short-circuit of the heater.

【0008】しかしながら、このようなリップ部の外縁
に囲いを有するようなPBN製容器をCVD法により製
造する場合、図3(a)に示すように、複雑な形状の耐
熱性基材1上にPBN層2を堆積させなければならな
い。そのため、例えば耐熱性基材の凹部に形成されたP
BN層には、冷却の際、耐熱性基材とPBNの熱膨張係
数の違いにより圧縮熱応力が発生し、図3(b)に示す
ようなPBN成形体の変形8を招いていた。
However, when a PBN container having an outer periphery of such a lip portion is manufactured by the CVD method, as shown in FIG. 3 (a), a heat-resistant substrate 1 having a complicated shape is formed. The PBN layer 2 has to be deposited. Therefore, for example, P formed in the concave portion of the heat resistant substrate
When the BN layer was cooled, a compressive thermal stress was generated due to the difference in thermal expansion coefficient between the heat-resistant base material and PBN, resulting in deformation 8 of the PBN compact as shown in FIG. 3 (b).

【0009】さらに、この時、製造するPBN製容器が
大型である場合、PBN層と耐熱性基材との熱膨張量の
差も大きくなり、その結果、冷却の際に破損を招き、所
望の形状を有するPBN製容器を製造することが出来な
いという製造上の問題が発生した。
Further, at this time, when the PBN container to be manufactured is large, the difference in the thermal expansion amount between the PBN layer and the heat resistant base material also becomes large, and as a result, damage is caused at the time of cooling, so that a desired amount is obtained. There was a manufacturing problem that a PBN container having a shape could not be manufactured.

【0010】[0010]

【発明が解決しようとする課題】そこで本発明は上記問
題点に鑑みてなされたものであって、本発明の目的は、
例え複雑な構造を有するPBN製容器、また大型のPB
N製容器であっても、CVD法により、容器の変形や破
損等を生じることなく、高い歩留りで熱分解窒化ホウ素
製容器を製造することができる製造方法を提供すること
にある。
Therefore, the present invention has been made in view of the above problems, and the object of the present invention is to:
For example, a PBN container with a complicated structure, or a large PB
It is an object of the present invention to provide a manufacturing method capable of manufacturing a pyrolytic boron nitride container with a high yield, even if the container is made of N, by the CVD method without causing deformation or damage of the container.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に、本発明による熱分解窒化ホウ素製容器の製造方法
は、化学気相成長法(CVD法)により耐熱性基材上に
熱分解窒化ホウ素を堆積し、その後堆積した熱分解窒化
ホウ素層を前記基材より分離することによって熱分解窒
化ホウ素製容器を製造する方法であって、耐熱性基材の
熱膨張係数αと熱分解窒化ホウ素の成長方向に対して
垂直方向(a方向)の熱膨張係数αの関係が0.1×
10−6/℃<(α−α)<2.0×10−6/℃
となるようにして、熱分解窒化ホウ素製容器を製造する
ことを特徴とするものである(請求項1)。
In order to achieve the above object, a method for producing a pyrolytic boron nitride container according to the present invention comprises a chemical vapor deposition method (CVD method) and a pyrolytic nitriding method on a heat resistant substrate. A method of manufacturing a pyrolytic boron nitride container by depositing boron and then separating the deposited pyrolytic boron nitride layer from the base material, comprising: a thermal expansion coefficient α A of the heat resistant base material; The relationship of the coefficient of thermal expansion α B in the direction perpendicular to the growth direction of boron (direction a) is 0.1 ×.
10 −6 / ° C. <(α A −α B ) <2.0 × 10 −6 / ° C.
In this way, the container made of pyrolytic boron nitride is manufactured (Claim 1).

【0012】このように、耐熱性基材の熱膨張係数α
と熱分解窒化ホウ素の成長方向に対して垂直方向(a方
向)の熱膨張係数αの関係が0.1×10−6/℃<
(α −α)<2.0×10−6/℃となるようにし
て、PBN製容器を製造することによって、複雑な構造
のPBN製容器、また大型のPBN製容器であっても、
冷却の際にPBN層に生じる圧縮熱応力を小さくするこ
とができ、それによって容器の変形や破損を低減し、高
い歩留りで熱分解窒化ホウ素製容器を製造することがで
きる。
Thus, the coefficient of thermal expansion α of the heat resistant substrate isA
And the direction perpendicular to the growth direction of pyrolytic boron nitride (direction a)
Direction) thermal expansion coefficient αBRelationship of 0.1 × 10-6/ ° C <
AB) <2.0 × 10-6/ ° C
To produce a complex structure by manufacturing a PBN container.
PBN container, or even a large PBN container,
To reduce the compressive thermal stress generated in the PBN layer during cooling.
Can reduce the deformation and damage of the container,
It is possible to manufacture pyrolytic boron nitride containers with high yield.
Wear.

【0013】この時、前記耐熱性基材としてグラファイ
ト製の基材を用いることが好ましい(請求項2)。この
ように、耐熱性基材としてグラファイト製の基材を用い
ることによって、耐食性、耐熱性に優れているだけでな
く、上記耐熱性基材の熱膨張係数αと熱分解窒化ホウ
素の熱膨張係数αの関係を0.1×10−6/℃<
(α−α)<2.0×10−6/℃となるように容
易に調整することができる。
At this time, it is preferable to use a graphite base material as the heat resistant base material (claim 2). As described above, by using the graphite base material as the heat resistant base material, not only the corrosion resistance and heat resistance are excellent, but also the thermal expansion coefficient α A of the heat resistant base material and the thermal expansion of the pyrolytic boron nitride. The relationship of the coefficient α B is 0.1 × 10 −6 / ° C <
It can be easily adjusted such that (α A −α B ) <2.0 × 10 −6 / ° C.

【0014】また、本発明の熱分解窒化ホウ素製容器の
製造方法により製造する容器を、少なくとも容器の開口
端にリップ部があり、該リップ部の外縁が折り返されて
いる構造を有するものとすることができ(請求項3)、
さらには、より複雑な構造を有するPBN製容器であっ
ても、容器の変形や破損を生じることなく高い歩留りで
PBN製容器を製造することができる。
The container manufactured by the method for manufacturing a pyrolytic boron nitride container of the present invention has a structure in which at least an opening end of the container has a lip portion and an outer edge of the lip portion is folded back. Can (claim 3),
Further, even if the PBN container has a more complicated structure, the PBN container can be manufactured with a high yield without causing deformation or damage of the container.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態を説明
するが、本発明はこれに限定されるものではない。従
来、容器の外側に折り返し部を有するような複雑な構造
のPBN製容器をCVD法により製造する場合、耐熱性
基板上にPBN層を堆積した後冷却する際に、耐熱性基
材とPBNの熱膨張係数の違いにより、基材の凹部等に
堆積されたPBN層に圧縮熱応力が発生し、PBN成形
体の変形を招いていた。さらに、製造されるPBN製容
器が大型であった場合、PBNと耐熱性基材との膨張量
の差も大きくなり、その結果、PBN層に破損が生じ、
所望の形状を有するPBN製容器を製造することが出来
ないという問題があった。
BEST MODE FOR CARRYING OUT THE INVENTION The embodiments of the present invention will be described below, but the present invention is not limited thereto. Conventionally, when a PBN container having a complicated structure having a folded portion on the outside of the container is manufactured by a CVD method, when a PBN layer is deposited on a heat resistant substrate and then cooled, the heat resistant base material and the PBN are separated from each other. Due to the difference in the coefficient of thermal expansion, compressive thermal stress was generated in the PBN layer deposited in the recesses of the base material, and the PBN compact was deformed. Furthermore, when the PBN container to be manufactured is large, the difference in expansion amount between the PBN and the heat resistant base material becomes large, and as a result, the PBN layer is damaged,
There has been a problem that a PBN container having a desired shape cannot be manufactured.

【0016】そこで、本発明者等は、CVD法により高
温で耐熱性基材上にPBNを堆積し、冷却後堆積したP
BN層を前記基材より分離することによってPBN製容
器を製造する方法において、複雑な構造を有するPBN
製容器、また大型のPBN製容器であっても変形や破損
等を生じることなく、高い歩留りで製造できるようにす
るため、耐熱性基材の熱膨張係数αとPBNの成長方
向に対して垂直方向(a方向)の熱膨張係数αに注目
し、鋭意調査及び検討を重ね、本発明を完成させるに至
った。
Therefore, the present inventors deposited PBN on a heat-resistant substrate at a high temperature by the CVD method, cooled it, and then deposited PBN.
A method of manufacturing a PBN container by separating a BN layer from the base material, comprising a PBN having a complicated structure.
In order to enable the production of high-yield containers without causing deformation or damage, even in the case of large-scale PBN-made containers, the thermal expansion coefficient α A of the heat-resistant base material and the growth direction of PBN By paying attention to the coefficient of thermal expansion α B in the vertical direction (direction a), repeated intensive investigations and studies have led to the completion of the present invention.

【0017】すなわち、耐熱性基材の熱膨張係数α
熱分解窒化ホウ素の成長方向に対して垂直方向(a方
向)の熱膨張係数αの関係が0.1×10−6/℃<
(α−α)<2.0×10−6/℃となるようにし
て、熱分解窒化ホウ素製容器を製造することによって、
複雑な構造のPBN製容器、また大型のPBN製容器で
あっても、容器の変形や破損等を生じることなく、高い
歩留りで熱分解窒化ホウ素製容器を製造することができ
ることを見出した。
That is, the relationship between the thermal expansion coefficient α A of the heat resistant substrate and the thermal expansion coefficient α B in the direction perpendicular to the growth direction of the pyrolytic boron nitride (direction a) is 0.1 × 10 −6 / ° C. <
A −α B ) <2.0 × 10 −6 / ° C. By producing a pyrolytic boron nitride container,
It has been found that even if a PBN container having a complicated structure or a large PBN container is used, a pyrolytic boron nitride container can be manufactured with a high yield without causing deformation or damage of the container.

【0018】例えば、耐熱性基材の熱膨張係数αとP
BN成形体のa方向の熱膨張係数α Bとの差(α−α
)が2.0×10−6/℃を超える場合、冷却時に生
じる耐熱性基材とPBN層との隙間が大きくなり過ぎ、
PBN層が収縮する際に変形が生じてしまう。特に、製
造されるPBN製容器が前述した特開平9−17088
2号に開示されているリップ部の外径端に折り返しを有
するようなルツボ、あるいはさらに複雑な構造を有する
PBN製容器の場合、耐熱性基材の形状も複雑となり、
冷却の際、耐熱性基材の凹部に堆積されたPBN層は、
その収縮に対して耐熱性基材の収縮が大き過ぎるため
に、PBN成形体に強い圧縮熱応力が加わり、変形や破
損を招いてしまう。そのため、耐熱性基材の熱膨張係数
αとPBN成形体のa方向の熱膨張係数αBとの差
(α−α)を2.0×10−6/℃以下、さらには
1.0×10−6/℃以下とするのが好ましい。
For example, the coefficient of thermal expansion α of the heat resistant substrateAAnd P
Thermal expansion coefficient α of BN molded body in a direction BDifference with (αA
B) Is 2.0 × 10-6If it exceeds / ° C, it will be
The gap between the heat resistant base material and the PBN layer becomes too large,
Deformation occurs when the PBN layer contracts. Especially made
The PBN container to be manufactured is the above-mentioned JP-A-9-17088.
No. 2 has a fold-back on the outer diameter end of the lip.
Crucibles that have
In the case of a PBN container, the shape of the heat resistant substrate becomes complicated,
During cooling, the PBN layer deposited in the recess of the heat resistant substrate
The shrinkage of the heat resistant substrate is too large for the shrinkage.
In addition, strong compressive thermal stress is applied to the PBN compact, causing it to deform or break.
It causes a loss. Therefore, the coefficient of thermal expansion of the heat resistant substrate
αAAnd thermal expansion coefficient α of PBN compact in a directionBDifference from
AB) 2.0 x 10-6/ ° C or less,
1.0 x 10-6/ ° C or less is preferable.

【0019】一方、(α−α)の値を0.1×10
−6/℃未満とした場合、耐熱性基材とPBN層との熱
膨張量の差が小さ過ぎるために、両者の間に十分な隙間
を得ることができず、耐熱性基材とPBN層が癒着して
しまい、PBN層を耐熱性基材から分離することができ
なくなることが多いことがわかった。
On the other hand, the value of (α AB ) is 0.1 × 10
When it is less than −6 / ° C., the difference in the amount of thermal expansion between the heat resistant base material and the PBN layer is too small, so that a sufficient gap cannot be obtained between the two, and the heat resistant base material and the PBN layer are not formed. It was found that in many cases, the PBN layer could not be separated from the heat resistant substrate due to the adhesion.

【0020】本発明において用いる耐熱性基材として
は、グラファイト製の基材を用いることが好ましい。グ
ラファイト製基材は、耐食性、耐熱性に優れているだけ
でなく、等方性の熱膨張を示すグラファイトを用いた場
合、その熱膨張係数は4×10 −6〜8×10−6/℃
程度であり、一方、PBNの熱膨張は異方性を示すが、
成長方向に対して垂直方向(a方向)の熱膨張係数は
0.1×10−6〜4×10−6/℃程度であるため、
容易に耐熱性基材の熱膨張係数αと熱分解窒化ホウ素
の成長方向に対して垂直方向の熱膨張係数αの関係
(α−α)を0.1×10−6/℃<(α
α)<2.0×10−6/℃の範囲に調整することが
できる。
As a heat resistant substrate used in the present invention
It is preferable to use a graphite base material. Gu
Lafite substrate has only excellent corrosion resistance and heat resistance
Not with graphite, which exhibits isotropic thermal expansion.
The coefficient of thermal expansion is 4 × 10 -6~ 8 × 10-6/ ° C
While the thermal expansion of PBN shows anisotropy,
The coefficient of thermal expansion in the direction perpendicular to the growth direction (direction a) is
0.1 x 10-6~ 4 x 10-6Since it is about / ° C,
Easily the coefficient of thermal expansion of heat resistant base material αAAnd pyrolytic boron nitride
Expansion coefficient α in the direction perpendicular to the growth direction ofBconnection of
AB) 0.1 x 10-6/ ° C <(αA
αB) <2.0 × 10-6/ ° C range
it can.

【0021】そして、本発明による製造方法で製造する
PBN製容器としては、図4(a)に示したように少な
くとも容器の開口端にリップ部があり、該リップ部の外
縁が折り返されているような複雑な構造を有するPBN
製容器とすることができる。また、図4(b)に示すよ
うに、外縁を折り返して形成されたリップ部のさらに外
側がもう一度逆方向に折り返されているような構造のP
BN製容器、さらにはその外側に連続して第三、第四の
折り返しを有するようなさらに複雑な構造をもつPBN
製容器とすることもできる。さらに、図4(c)に示す
ような、リップ部外縁に形成される折り返しが波形状と
なるような構造を有するPBN製容器とすることも容易
にできる。
As shown in FIG. 4A, the PBN container manufactured by the manufacturing method according to the present invention has a lip portion at least at the opening end of the container, and the outer edge of the lip portion is folded back. PBN with a complicated structure
It can be a container. Further, as shown in FIG. 4 (b), a P part having a structure in which the outer side of the lip portion formed by folding back the outer edge is folded back in the opposite direction once again.
A container made of BN, and further a PBN having a more complicated structure having third and fourth folds continuously on the outside thereof.
It can also be a container. Further, a PBN container having a structure in which the folds formed on the outer edge of the lip portion have a wavy shape as shown in FIG. 4C can be easily formed.

【0022】このように本発明による製造方法で製造さ
れる、リップ部の外縁に折り返しを有するPBN製容器
は、前記MBE法において溶融金属のヒーターへの接近
を防止できるため、溶融金属の付着による高融点金属製
のヒーターの劣化を防ぐことができる。さらには、リッ
プ部外縁の折り返しを増やすことによって、溶融金属の
ヒーターへの接近を一層防止できるだけでなく、リップ
部の強度を上げることができるため、熱による変形を小
さく抑え、溶融金属とヒーターの接触により生じるショ
ート、断線等の危険性も回避することができる。また、
複数の折り返しにより、リップ部の外側に凹部が形成さ
れ、この凹部に容器から這い出した溶融金属を溜めるこ
とができ、確実に溶融金属のヒーターへの接近を防止で
きる。
As described above, the PBN container, which is manufactured by the manufacturing method according to the present invention and has the folds at the outer edge of the lip portion, can prevent the molten metal from approaching the heater in the MBE method. It is possible to prevent deterioration of the heater made of a high melting point metal. Furthermore, by increasing the folding back of the outer edge of the lip, it is possible not only to further prevent molten metal from approaching the heater, but also to increase the strength of the lip, so deformation due to heat is suppressed to a small extent, and the molten metal and heater It is possible to avoid the risk of short circuit, disconnection, etc. caused by contact. Also,
A recess is formed on the outer side of the lip portion by a plurality of turns, and the molten metal crawling out of the container can be stored in the recess, and the molten metal can be reliably prevented from approaching the heater.

【0023】[0023]

【実施例】以下、本発明の実施例および比較例を挙げて
本発明を具体的に説明するが、本発明はこれらに限定さ
れるものではない。 (実施例、比較例)まず、図3に示すような形状を有
し、また熱膨張係数αがそれぞれ4.30、5.3
0、6.10、7.20の4種類であるグラファイト製
基材を用意し、製造されるPBN製容器が外径200m
m、内径150mmでリップ部の幅が25mmの図4
(b)に示した様な形状となるようにグラファイト製基
材の形状を調整し、電気炉内に設置した。
EXAMPLES The present invention will be specifically described below with reference to Examples and Comparative Examples of the present invention, but the present invention is not limited thereto. (Examples and Comparative Examples) First, they have a shape as shown in FIG. 3, and their thermal expansion coefficients α A are 4.30 and 5.3, respectively.
Prepare 4 types of graphite base materials, 0, 6.10, 7.20, and the PBN container manufactured has an outer diameter of 200 m.
Fig. 4 with m, inner diameter of 150 mm and lip width of 25 mm
The shape of the graphite base material was adjusted so as to have the shape shown in (b), and the graphite base material was placed in an electric furnace.

【0024】その後、熱CVD法でアンモニアと三塩化
ホウ素とを反応させて、厚さが1mmとなるようにグラ
ファイト製基材上に堆積した。この時、反応温度を17
50〜1850℃、反応圧力を50〜150Torrの
間の条件で種々変えて反応させることによって、PBN
のa方向の熱膨張係数αを3.20〜4.22の間で
変動させた。PBNを堆積後、これらを室温まで冷却し
て炉より取り出し、グラファイト製基材とPBN層を分
離することによってPBN製容器を製造した。
After that, ammonia was reacted with boron trichloride by the thermal CVD method and deposited on the graphite base material so as to have a thickness of 1 mm. At this time, set the reaction temperature to 17
PBN is obtained by reacting at various temperatures of 50 to 1850 ° C. and a reaction pressure of 50 to 150 Torr.
The coefficient of thermal expansion α B in the a direction of was varied between 3.20 and 4.22. After PBN was deposited, these were cooled to room temperature and taken out of the furnace, and the graphite base material and the PBN layer were separated to manufacture a PBN container.

【0025】表1に、今回作製した各PBN製容器にお
けるグラファイト製基材の熱膨張係数αとPBNのa
方向の熱膨張係数αとの関係を示す。また、それぞれ
の条件において、10個ずつPBN製容器の製造を試
み、その際、PBN製容器が変形していた数、またグラ
ファイト製基材とPBNが癒着し、分離できなかった数
を調べて、同じく表1に示した。
Table 1 shows the thermal expansion coefficient α A of the graphite base material and the a of PBN in each PBN container prepared this time.
The relationship with the thermal expansion coefficient α B in the direction is shown. Also, under each condition, 10 pieces of PBN containers were tried to be manufactured. At that time, the number of deformed PBN containers and the number of graphite base material and PBN that were adhered and could not be separated were examined. Also shown in Table 1.

【0026】[0026]

【表1】 [Table 1]

【0027】表1に示したように、グラファイト製基材
の熱膨張係数αとPBN製容器のa方向の熱膨張係数
αとの関係を0.1×10−6/℃<(α−α
<2.0×10−6/℃となるように調整して製造した
場合(PBN製容器(2)〜(7)、(9)及び(1
0))、PBN成形体が耐熱性基材に癒着することな
く、また変形を生じたものもほとんどなくPBN製容器
を得ることができた。
[0027] As shown in Table 1, the relationship of 0.1 × 10 -6 / ℃ with a direction of the thermal expansion coefficient alpha B in thermal expansion coefficient alpha A and PBN container made of graphite substrate <(alpha A- α B )
When adjusted and manufactured so as to be <2.0 × 10 −6 / ° C. (PBN containers (2) to (7), (9) and (1
0)), a PBN container could be obtained without adhesion of the PBN molded body to the heat resistant substrate and almost no deformation.

【0028】それに対し、(α−α)の関係が0.
1×10−6/℃未満で製造したPBN製容器(1)で
は、PBN成形体と耐熱性基材の癒着が起こり、一方
(α−α)の関係が2.0×10−6/℃を超えて
製造された容器においては、PBN製容器(8)では1
0個中3個、容器(11)では10個中8個、またその
他の容器(12)〜(16)では、得られた全ての容器
に変形または破損が生じていた。
On the other hand, the relationship of (α AB ) is 0.
In the PBN container (1) manufactured at less than 1 × 10 −6 / ° C., the PBN compact and the heat-resistant base material adhere to each other, and the relationship of (α A −α B ) is 2.0 × 10 −6. 1 for PBN container (8) in containers manufactured at temperatures above ℃ / ℃
3 out of 0 containers, 8 out of 10 containers (11), and all of the other containers (12) to (16) were deformed or damaged.

【0029】なお、本発明は、上記実施形態に限定され
るものではない。上記実施形態は単なる例示であり、本
発明の特許請求の範囲に記載された技術的思想と実質的
に同一な構成を有し、同様な作用効果を奏するものは、
いかなるものであっても本発明の技術的範囲に包含され
る。
The present invention is not limited to the above embodiment. The above-described embodiment is merely an example, and it has substantially the same configuration as the technical idea described in the scope of claims of the present invention, and has the same operational effect.
Anything is included in the technical scope of the present invention.

【0030】例えば、上記では、分子線エピタキシーに
用いられる金属蒸発用PBN製容器の製造について例示
して説明したが、本発明はこれには限定されず、化合物
半導体引き上げ用ルツボ、結晶育成用ボート等の種々の
容器を製造する場合にも同様に適用することができる。
For example, in the above, the production of the PBN container for metal evaporation used for molecular beam epitaxy has been described as an example, but the present invention is not limited to this, and the crucible for pulling up the compound semiconductor and the boat for crystal growth. The same can be applied to the case of manufacturing various containers such as.

【0031】[0031]

【発明の効果】以上説明したように、本発明によれば、
複雑な構造の熱分解窒化ホウ素製容器、あるいは大型の
熱分解窒化ホウ素製容器であっても、CVD法によって
製造する際に容器の変形や破損を生じることなく、高い
歩留りで熱分解窒化ホウ素製容器を製造することができ
る製造方法を提供することができる。
As described above, according to the present invention,
Even if a pyrolytic boron nitride container with a complicated structure or a large-sized pyrolytic boron nitride container is used, the pyrolytic boron nitride container can be manufactured with high yield without deformation or damage of the container during the production by the CVD method. A manufacturing method capable of manufacturing a container can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来のPBN製容器の製造工程を示した断面説
明図である。
FIG. 1 is a sectional explanatory view showing a manufacturing process of a conventional PBN container.

【図2】MBE装置にPBN製容器を装着したときの断
面概略図である。
FIG. 2 is a schematic cross-sectional view when a PBN container is attached to the MBE device.

【図3】PBN製容器の製造において、冷却の際に生じ
る容器の変形を表した概略図である。
FIG. 3 is a schematic view showing the deformation of the container that occurs during cooling in the production of the PBN container.

【図4】本発明により製造することができるPBN製容
器の形状を示した断面図である。
FIG. 4 is a cross-sectional view showing the shape of a PBN container that can be manufactured according to the present invention.

【符号の説明】[Explanation of symbols]

1…耐熱性基材、 2…熱分解窒化ホウ素(PBN)
層、3…溶融金属、 4…熱分解窒化ホウ素(PBN)
製容器、5…リップ部、 6…ヒーター、 7…遮熱
板、8…変形部。
1 ... Heat resistant substrate, 2 ... Pyrolytic boron nitride (PBN)
Layer, 3 ... Molten metal, 4 ... Pyrolytic boron nitride (PBN)
Manufacturing container, 5 ... Lip part, 6 ... Heater, 7 ... Heat shield plate, 8 ... Deformation part.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中島 亮二 群馬県安中市磯部2丁目13番1号 信越化 学工業株式会社群馬事業所内 Fターム(参考) 4G077 AA03 BA01 DA07 EG01 HA20 SC11 4K030 AA03 AA13 BA39 CA05 DA08 FA10    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Ryoji Nakajima             2-13-1, Isobe, Annaka-shi, Gunma Shin-Etsu             Gakuin Co., Ltd. Gunma Office F-term (reference) 4G077 AA03 BA01 DA07 EG01 HA20                       SC11                 4K030 AA03 AA13 BA39 CA05 DA08                       FA10

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 化学気相成長法(CVD法)により耐熱
性基材上に熱分解窒化ホウ素を堆積し、その後堆積した
熱分解窒化ホウ素層を前記基材より分離することによっ
て熱分解窒化ホウ素製容器を製造する方法であって、耐
熱性基材の熱膨張係数αと熱分解窒化ホウ素の成長方
向に対して垂直方向(a方向)の熱膨張係数αの関係
が0.1×10−6/℃<(α−α)<2.0×1
−6/℃となるようにして、熱分解窒化ホウ素製容器
を製造することを特徴とする熱分解窒化ホウ素製容器の
製造方法。
1. A pyrolytic boron nitride is deposited on a heat-resistant substrate by a chemical vapor deposition method (CVD method), and then the deposited pyrolytic boron nitride layer is separated from the substrate. A method of manufacturing a container, wherein the thermal expansion coefficient α A of the heat resistant substrate and the thermal expansion coefficient α B in the direction (a direction) perpendicular to the growth direction of the pyrolytic boron nitride are 0.1 ×. 10 −6 / ° C. <(Α A −α B ) <2.0 × 1
A method for producing a pyrolytic boron nitride container, comprising producing a pyrolytic boron nitride container at a temperature of 0 −6 / ° C.
【請求項2】 前記耐熱性基材としてグラファイト製の
基材を用いることを特徴とする請求項1に記載の熱分解
窒化ホウ素製容器の製造方法。
2. The method of manufacturing a pyrolytic boron nitride container according to claim 1, wherein a graphite base material is used as the heat resistant base material.
【請求項3】 請求項1または請求項2に記載の熱分解
窒化ホウ素製容器を製造する方法であって、前記製造す
る熱分解窒化ホウ素製容器を、少なくとも容器の開口端
にリップ部があり、該リップ部の外縁が折り返されてい
る構造を有するものとすることを特徴とする熱分解窒化
ホウ素製容器の製造方法。
3. A method for manufacturing the pyrolytic boron nitride container according to claim 1, wherein the manufactured pyrolytic boron nitride container has a lip portion at least at an opening end of the container. A method for producing a pyrolytic boron nitride container, which has a structure in which an outer edge of the lip portion is folded back.
JP2001270053A 2001-09-06 2001-09-06 Method for producing pyrolytic boron nitride container Expired - Fee Related JP4823447B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001270053A JP4823447B2 (en) 2001-09-06 2001-09-06 Method for producing pyrolytic boron nitride container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001270053A JP4823447B2 (en) 2001-09-06 2001-09-06 Method for producing pyrolytic boron nitride container

Publications (2)

Publication Number Publication Date
JP2003073829A true JP2003073829A (en) 2003-03-12
JP4823447B2 JP4823447B2 (en) 2011-11-24

Family

ID=19095758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001270053A Expired - Fee Related JP4823447B2 (en) 2001-09-06 2001-09-06 Method for producing pyrolytic boron nitride container

Country Status (1)

Country Link
JP (1) JP4823447B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05105557A (en) * 1991-10-11 1993-04-27 Shin Etsu Chem Co Ltd Pyrolytic boron nitride container
JPH06219899A (en) * 1992-08-21 1994-08-09 Ube Ind Ltd Pyrolytic boron nitride film and coated article
JPH09170882A (en) * 1995-12-20 1997-06-30 Shin Etsu Chem Co Ltd Crucible with collar and manufacture thereof
JPH11209875A (en) * 1998-01-23 1999-08-03 Shin Etsu Chem Co Ltd Carbon made reaction furnace and production of pyrolytic boron nitride formed body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05105557A (en) * 1991-10-11 1993-04-27 Shin Etsu Chem Co Ltd Pyrolytic boron nitride container
JPH06219899A (en) * 1992-08-21 1994-08-09 Ube Ind Ltd Pyrolytic boron nitride film and coated article
JPH09170882A (en) * 1995-12-20 1997-06-30 Shin Etsu Chem Co Ltd Crucible with collar and manufacture thereof
JPH11209875A (en) * 1998-01-23 1999-08-03 Shin Etsu Chem Co Ltd Carbon made reaction furnace and production of pyrolytic boron nitride formed body

Also Published As

Publication number Publication date
JP4823447B2 (en) 2011-11-24

Similar Documents

Publication Publication Date Title
US5158750A (en) Boron nitride crucible
US6176925B1 (en) Detached and inverted epitaxial regrowth &amp; methods
EP2075356B1 (en) Method for growing group III nitride semiconductor crystal
JP2520060B2 (en) Boron Nitride Crucible and Method for Manufacturing the Same
CA1073659A (en) Boron nitride crucible
JPH07300666A (en) Production of molecular beam source for silicon evaporation and crucible used for the same
US4058579A (en) Process for producing an improved boron nitride crucible
US6404982B1 (en) High density flash evaporator
JP2003073829A (en) Method for manufacturing vessel of pyrolytic boron nitride
JP3638345B2 (en) Pyrolytic boron nitride container
JPH10189452A (en) Thermal decomposition boron nitride crucible for electric beam epitaxy
JPS605233B2 (en) Method for manufacturing high melting point compound thin film
RU2365842C1 (en) Crucible aluminium evaporator for molecular-beam epitaxy
JPH09170882A (en) Crucible with collar and manufacture thereof
JP3579344B2 (en) Method and apparatus for manufacturing group IIIV nitride film
JP2006103997A (en) Method for manufacturing semiconductor crystal
US20210028083A1 (en) Selectively-pliable chemical vapor deposition (cvd) diamond or other heat spreader
JP2582426B2 (en) Heat-resistant container made of pyrolytic boron nitride and method for producing the same
JP2004197116A (en) Hearth liner for electron beam deposition
JP3778992B2 (en) Heater for vapor phase growth equipment for manufacturing gallium nitride based semiconductor thin films
JP2837049B2 (en) Method for producing multilayer ceramic crucible
JP2002190389A (en) Method and device for manufacturing organic el element
JPH05105557A (en) Pyrolytic boron nitride container
JPH07169689A (en) Crystallization method of semiconductor film
JP2007208199A (en) Molecular beam cell crucible for silicon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110907

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees