JP2003073719A - Method for controlling surplus air in metal-oxide reducing furnace - Google Patents

Method for controlling surplus air in metal-oxide reducing furnace

Info

Publication number
JP2003073719A
JP2003073719A JP2001266701A JP2001266701A JP2003073719A JP 2003073719 A JP2003073719 A JP 2003073719A JP 2001266701 A JP2001266701 A JP 2001266701A JP 2001266701 A JP2001266701 A JP 2001266701A JP 2003073719 A JP2003073719 A JP 2003073719A
Authority
JP
Japan
Prior art keywords
furnace
oxygen gas
amount
total amount
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001266701A
Other languages
Japanese (ja)
Inventor
Shoji Kitabayashi
庄治 北林
Koji Matsui
宏司 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2001266701A priority Critical patent/JP2003073719A/en
Publication of JP2003073719A publication Critical patent/JP2003073719A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PROBLEM TO BE SOLVED: To supply a reasonable quantity of surplus air without employing an analyzer. SOLUTION: This method comprises measuring a quantity of a material fed into the furnace with time, which contains metallic oxide, calculating total amount of difference between the oxygen gas, which is released from the material passing in the furnace out of the measured materials, and the oxygen gas which is consumed, and supplying the furnace with surplus air so as to offset fluctuations of the total amount of the calculated difference.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は金属酸化物還元炉の
余剰空気制御方法に関し、特に酸素分析計等を用いるこ
となく適正に炉内への余剰空気量を制御できる方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling excess air in a metal oxide reduction furnace, and more particularly to a method for properly controlling the amount of excess air in the furnace without using an oxygen analyzer or the like.

【0002】[0002]

【従来の技術】製鋼ダストや粉鉱等の再利用を図るため
に、金属酸化物たる製鋼ダスト等にバインダや還元材を
混入して混練した後、ペレットに造粒し、これを例えば
回転炉床式の金属酸化物還元炉(以下、還元炉という)
へ供給して、加熱・還元等の熱処理をすることが行なわ
れている。この場合、炉内を通過する間に、バインダや
還元材から可燃性ガスが生じ、また炉内の還元帯では還
元性雰囲気を保つためにバーナを空燃比1未満で燃焼さ
せているため、COなどを含む可燃性ガスが燃焼するこ
となく炉内から排出される。このような可燃性ガスを排
ガス路へ流出させると、排ガス路中に設けられた熱交換
器や冷却塔内で侵入空気と混合して爆発するおそれがあ
る。そこで、従来は、排ガス路を接続した還元炉の加熱
帯に余剰空気を供給して、排ガス路へ流出する前に可燃
性ガスを予め燃焼させておく。ここで、余剰空気が適正
値より少ない場合には排ガス路中での爆発の危険が残
り、逆に適正値より多い場合には還元炉内に過剰な空気
が入ることになるから炉内温度の低下をきたし、いずれ
も好ましくない。これを防止するために余剰空気の供給
は、排ガス路の上流端に酸素分析計やCO分析計を設置
して、図6に示すように、酸素(O2)ガス濃度が所定
の値Doになる空気量Foに制御し、これによってCO
等の可燃性ガス濃度が十分に小さく、かつ炉内温度や熱
効率の低下、あるいは排ガス量の増大を来さないように
している。
2. Description of the Related Art In order to reuse steel-making dust, powder ore, etc., a binder and a reducing material are mixed with steel-making dust, which is a metal oxide, and kneaded, and then granulated into pellets. Floor-type metal oxide reduction furnace (hereinafter referred to as reduction furnace)
And heat treatment such as heating and reduction is performed. In this case, a combustible gas is generated from the binder and the reducing material while passing through the furnace, and the burner is burned with an air-fuel ratio of less than 1 in order to maintain a reducing atmosphere in the reducing zone of the furnace. Combustible gas containing, for example, is discharged from the furnace without burning. When such a flammable gas is caused to flow into the exhaust gas passage, there is a risk that it will explode by being mixed with invading air in a heat exchanger or a cooling tower provided in the exhaust gas passage. Therefore, conventionally, surplus air is supplied to the heating zone of the reduction furnace to which the exhaust gas passage is connected to burn the combustible gas in advance before flowing out to the exhaust gas passage. Here, if the excess air is less than the appropriate value, the danger of explosion in the exhaust gas passage remains, and if it is more than the appropriate value, excess air will enter the reduction furnace, so It causes a decrease and both are not preferable. To prevent this, the excess air is supplied by installing an oxygen analyzer or a CO analyzer at the upstream end of the exhaust gas passage so that the oxygen (O2) gas concentration reaches a predetermined value Do as shown in FIG. The amount of air Fo is controlled to CO
The combustible gas concentration is sufficiently low, and the furnace temperature and thermal efficiency are not lowered, or the amount of exhaust gas is not increased.

【0003】[0003]

【発明が解決しようとする課題】しかし、分析計を使用
することは、これが比較的高価であるためコスト高にな
るとともに、分析計に付随するフィルタの目詰まりを解
消する等のために分析計の保守・調整に手間取るという
問題があった。
However, the use of an analyzer is costly because it is relatively expensive, and the analyzer is used for eliminating clogging of filters associated with the analyzer. There was a problem that it took time to maintain and adjust.

【0004】そこで、本発明はこのような課題を解決す
るもので、分析計を使用することなく、適正量の余剰空
気を供給することができる金属酸化物還元炉の余剰空気
制御方法を提供することを目的とする。
Therefore, the present invention solves such a problem, and provides a surplus air control method for a metal oxide reduction furnace which can supply an appropriate amount of surplus air without using an analyzer. The purpose is to

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明では、金属酸化物を含む材料の炉内への供給
量を経時的に測定し、測定された上記材料のうち炉内を
通過中の材料が放出する酸素ガスと消費する酸素ガスの
差の総量を算出して、当該差の総量の変動を相殺するよ
うに余剰空気を炉内へ供給する。この場合、上記放出す
る酸素ガスと消費する酸素ガスの差の総量の算出は、単
位質量の材料が炉内を通過する間に放出する酸素ガス量
と消費する酸素ガス量の経時変化を求め、これらに各時
刻で炉内へ投入された材料量を乗じたものを加算して行
うことができる。また、上記放出する酸素ガスと消費す
る酸素ガスの差の総量の算出に、上記材料の供給量を測
定した後に当該材料が実際に炉内へ投入されるまでの遅
れ時間を導入することができる。
In order to achieve the above object, in the present invention, the supply amount of a material containing a metal oxide into a furnace is measured over time, and the measured amount of the above material in the furnace is measured. The total amount of the difference between the oxygen gas released by the material passing through and the consumed oxygen gas is calculated, and surplus air is supplied into the furnace so as to cancel the variation in the total amount of the difference. In this case, the calculation of the total amount of the difference between the oxygen gas to be released and the oxygen gas to be consumed is obtained by determining the change over time in the amount of oxygen gas to be released and the amount of oxygen gas to be consumed while the material of unit mass passes through the furnace It can be performed by adding these to the product of the amount of material charged into the furnace at each time. Further, in the calculation of the total amount of the difference between the released oxygen gas and the consumed oxygen gas, it is possible to introduce a delay time until the material is actually put into the furnace after measuring the supply amount of the material. .

【0006】本発明においては、還元炉の炉内を通過中
の材料が放出する酸素ガスと消費する酸素ガスの差の総
量を算出して、当該差の総量の変動を相殺するように余
剰空気を炉内へ供給するようにしているから、酸素分析
計を使用することなく、還元炉の排ガス出口における酸
素ガス総量(酸素ガス濃度)を適正な一定値に維持する
ことができる。したがって、金属酸化物を含む材料の還
元処理を低コストで行うことができるとともに、フィル
タの目詰まりを解消する等のような保守・調整の手間も
削減することができる。
In the present invention, the total amount of the difference between the oxygen gas released by the material passing through the furnace of the reduction furnace and the oxygen gas consumed is calculated, and excess air is added so as to cancel the variation in the total amount. Since it is supplied into the furnace, the total amount of oxygen gas (oxygen gas concentration) at the exhaust gas outlet of the reduction furnace can be maintained at an appropriate constant value without using an oxygen analyzer. Therefore, the reduction treatment of the material containing the metal oxide can be carried out at low cost, and the maintenance and adjustment work for eliminating the clogging of the filter can be reduced.

【0007】[0007]

【発明の実施の形態】図1には本発明方法を適用する還
元炉の、材料たるペレットの供給系路を示す。秤量ホッ
パ1から切り出されたペレットは複数の搬送コンベア2
A,2B,2C上に移載されつつ回転炉床式の還元炉3
へ投入され、回転炉床上に積層されて還元炉3の加熱帯
から中間帯、還元帯へと送られ、還元帯の還元性雰囲気
下でペレット中の金属酸化物が金属に還元される。この
過程でペレットから生じる可燃性ガスを含んだ排ガス
は、加熱帯を経て排ガス路へ排出されるが、加熱帯へは
後述する演算によって決定された適正量の余剰空気が供
給されて、排ガス路への流出に先だって可燃性ガスは完
全に燃焼させられる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a feed system of pellets, which is a material, of a reducing furnace to which the method of the present invention is applied. The pellets cut out from the weighing hopper 1 are transferred to a plurality of conveyors 2
Rotary hearth type reduction furnace 3 while being transferred onto A, 2B and 2C
The metal oxide in the pellets is reduced to a metal under the reducing atmosphere of the reduction zone by being fed into the heating zone of the reduction furnace 3 and fed to the intermediate zone and the reduction zone. The exhaust gas containing combustible gas generated from the pellets in this process is discharged to the exhaust gas passage through the heating zone, but the heating zone is supplied with an appropriate amount of excess air determined by the calculation described later, and the exhaust gas passage The flammable gas is completely burned prior to its outflow.

【0008】秤量ホッパ1からコンベア2A上へ切り出
されるペレットの重量m(t)は、造粒条件の変動等に
伴って図2(1)に示すように経時的に変動している。
時刻toにおいて切り出されたペレットはコンベア2A
〜2C上を搬送されて時間Tf後に炉内へ投入され、時
間τの間、炉内に留まって還元処理されて排出される。
図2(2)のIO2M(t)は、単位重量のペレットに含
まれる酸化物から放出される酸素ガス量の経時変化を示
すもので、ペレットが炉内へ投入されるまでは0、炉内
へ投入された後は次第に増加してピークとなり、その後
減少して、炉外へ排出される直前には再び0に近くな
る。また、図2(3)のOO2M(t)は、単位重量のペ
レットから発生する可燃性ガスによって燃焼消費される
酸素ガス量の経時変化を示すもので、上記発生酸素ガス
量と同様の傾向を示し、ペレットが炉内へ投入されるま
では0、炉内へ投入された後は次第に増加してピークと
なり、その後減少して、炉外へ排出される直前には再び
0に近くなる。なお、炉内におけるIO2M(t),OO2M
(t)の変化曲線は実機テスト等によって得られる。
The weight m (t) of the pellets cut out from the weighing hopper 1 onto the conveyor 2A fluctuates with time as shown in FIG. 2 (1) due to fluctuations in granulation conditions and the like.
Pellets cut out at time to are conveyor 2A
After being conveyed over ~ 2C, it is put into the furnace after a time Tf, remains in the furnace for a time τ, is reduced, and is discharged.
The I02M (t) in Fig. 2 (2) shows the change over time in the amount of oxygen gas released from the oxides contained in the pellet of unit weight, and is 0 until the pellet is charged into the furnace. After it is charged into the furnace, it gradually increases and reaches a peak, then decreases, and becomes close to 0 again immediately before being discharged to the outside of the furnace. Further, OO2M (t) in FIG. 2 (3) shows a time-dependent change in the amount of oxygen gas burned and consumed by the combustible gas generated from a unit weight of the pellet, and shows the same tendency as the above-mentioned generated oxygen gas amount. As shown in the figure, it is 0 until the pellets are put into the furnace, and after the pellets are put into the furnace, it gradually increases and reaches a peak, then decreases, and becomes close to 0 again immediately before being discharged out of the furnace. In addition, I02M (t), OO2M in the furnace
The change curve of (t) is obtained by an actual machine test or the like.

【0009】還元炉の排ガス出口における酸素ガス総量
TOは、炉内へ投入されたペレットの総量をMとして、
式(1)で表される。ここで、IO2Bはバーナの燃焼空
気中に含まれる酸素ガス量、OO2Bはバーナの燃料によ
って消費される酸素ガス量、IO2Aは余剰空気中に含ま
れる酸素ガス量である。
The total amount of oxygen gas TO at the exhaust gas outlet of the reduction furnace is represented by M, where M is the total amount of pellets charged into the furnace.
It is represented by formula (1). Here, I02B is the amount of oxygen gas contained in the combustion air of the burner, O02B is the amount of oxygen gas consumed by the fuel of the burner, and I02A is the amount of oxygen gas contained in the excess air.

【0010】 TO=IO2B−OO2B+IO2A+(IO2M−OO2M)×M…(1)[0010]  TO = IO2B-OO2B + IO2A + (IO2M-OO2M) * M ... (1)

【0011】式(1)中の(IO2B−OO2B)は管理可能
な量であり、変動量はペレット由来の酸素ガス収支(I
O2M−OO2M)×Mであるから、この量を正確に算出でき
れば、その変動を相殺するようにIO2A、すなわち余剰
空気量を調節することによって還元炉の排ガス出口にお
ける酸素ガス総量(酸素ガス濃度)TOを適正な一定値
に維持することができる。
In the formula (1), (IO2B-OO2B) is a manageable amount, and the fluctuation amount is the oxygen gas balance (I
O2M-OO2M) x M, so if this amount can be accurately calculated, the total amount of oxygen gas (oxygen gas concentration) at the exhaust gas outlet of the reduction furnace is adjusted by adjusting I02A, that is, the amount of excess air so as to offset the fluctuation. TO can be maintained at an appropriate constant value.

【0012】そこで、以下、(IO2M−OO2M)×Mの項
について検討する。図3(1)には時刻toにおいて切
り出された重量m(to)のペレットが、時間Tf後に
炉内へ供給され、時間τの後に炉の出口に至った時の、
IO2M(t)の経時変化を示す。なお、図3では炉内で
のIO2M(t)の変化曲線を略三角形で近似している。
また、図3(2)〜(4)にはそれぞれ、時刻to+Δ
t,to+2Δt,…,to+τにおいて切り出された
重量m(to+Δt),m(to+2Δt),…,m
(to+τ)のペレットが、時間Tf後に炉内へ供給さ
れ、時間τの後に炉の出口に至った時の、IO2M(t)
の経時変化を示す。
Therefore, the term of (IO2M-OO2M) * M will be examined below. In FIG. 3 (1), when a pellet of weight m (to) cut out at time to is supplied into the furnace after time Tf and reaches the exit of the furnace after time τ,
The time-dependent change of IO2M (t) is shown. In FIG. 3, the change curve of I02M (t) in the furnace is approximated by a substantially triangular shape.
Further, in FIGS. 3 (2) to 3 (4), time to + Δ
Weights m (to + Δt), m (to + 2Δt), ..., M cut out at t, to + 2Δt, ..., To + τ
IO2M (t) when (to + τ) pellets are fed into the furnace after time Tf and reach the exit of the furnace after time τ
Shows the change with time.

【0013】ここで、時刻toにおいて切り出されたペ
レットが炉の出口に至った時刻tを基準にして、この時
の炉内の放出酸素ガス総量TMI(t)を算出すると、
これは各時刻to,to+Δt,to+2Δt,…,t
o+τにおいて切り出されて炉内へ投入された各ペレッ
トから発生する酸素ガス量の総和であり、式(2)で表
わされる。なお、t=to+Tf+τである。
Here, when the total amount of released oxygen gas TMI (t) in the furnace at this time is calculated with reference to the time t when the pellets cut out at the time to reach the exit of the furnace,
This is at each time to, to + Δt, to + 2Δt, ..., T
It is the total amount of oxygen gas generated from each pellet cut out at o + τ and put into the furnace, and is represented by the equation (2). Note that t = to + Tf + τ.

【0014】 TMI(t)=IO2M(t−to)・m(to)Δt+IO2M(t−to−Δt )・m(to+Δt)・Δt+IO2M(t−to−2Δt)・m(to+2Δt )Δt+…+IO2M(t−to−τ)・m(to+τ)Δt =IO2M(to+Tf+τ−to)・m(to)Δt+IO2M(to+Tf+τ −to−Δt)・m(to+Δt)・Δt+IO2M(to+Tf+τ−to−2 Δt)・m(to+2Δt)Δt+…+IO2M(to+Tf+τ−to−τ)・ m(to+τ)Δt…(2)[0014]  TMI (t) = IO2M (t-to) · m (to) Δt + IO2M (t-to-Δt ) ・ M (to + Δt) ・ Δt + IO2M (t-to-2Δt) ・ m (to + 2Δt ) Δt + ... + IO2M (t-to-τ) · m (to + τ) Δt  = IO2M (to + Tf + τ-to) ・ m (to) Δt + IO2M (to + Tf + τ -To-Δt) ・ m (to + Δt) ・ Δt + IO2M (to + Tf + τ-to-2 Δt) ・ m (to + 2Δt) Δt + ... + IO2M (to + Tf + τ-to-τ) ・ m (to + τ) Δt (2)

【0015】式(2)を連続形式で表現すると式(3)
となる。
When the expression (2) is expressed in a continuous form, the expression (3) is obtained.
Becomes

【0016】[0016]

【数1】 [Equation 1]

【0017】時刻tにおける炉内の消費酸素ガス総量T
MO(t)も同様の計算によって式(4)のように算出
でき、結局、投入されたペレットによる、時刻tにおけ
る還元炉内のペレット由来の酸素ガス収支(放出酸素ガ
スと消費酸素ガスの差の総量)TM(t)は式(5)で
表わされる。
Total oxygen gas consumption T in the furnace at time t
MO (t) can also be calculated by the same calculation as Equation (4), and eventually, the oxygen gas balance (the difference between the released oxygen gas and the consumed oxygen gas) derived from the pellets in the reducing furnace at the time t by the charged pellets. The total amount) TM (t) is represented by the equation (5).

【0018】[0018]

【数2】 [Equation 2]

【0019】[0019]

【数3】 [Equation 3]

【0020】そこで、TM(t)が図4の鎖線で示すよ
うに変動する場合には、これを相殺するように余剰空気
中の酸素ガス量IO2A、すなわち余剰空気量を変化させ
ることにより(図4の破線)、還元炉の排ガス出口にお
ける酸素ガス総量TOを図4の実線で示すように所定の
一定値に維持することができる。
Therefore, when TM (t) fluctuates as shown by the chain line in FIG. 4, the oxygen gas amount IO2A in the excess air, that is, the excess air amount is changed so as to cancel it (see FIG. 4), the total oxygen gas amount TO at the exhaust gas outlet of the reduction furnace can be maintained at a predetermined constant value as shown by the solid line in FIG.

【0021】なお、IO2A、すなわち余剰空気量は酸素
ガス収支TM(t)の変動に対してこれを相殺するよう
に連続的に変更することが好ましいが、図5に示すよう
にステップ的にしか変更できない場合があり、この場合
には酸素ガス総量TOはある程度変動するが、その変動
量は許容範囲内に抑えることができる。
Incidentally, it is preferable that IO2A, that is, the surplus air amount is continuously changed so as to cancel the fluctuation of the oxygen gas balance TM (t), but as shown in FIG. In some cases, it cannot be changed. In this case, the total amount TO of oxygen gas fluctuates to some extent, but the fluctuation amount can be suppressed within an allowable range.

【0022】また、上記実施形態ではIO2M(t)とOO
2M(t)の変化曲線を個別に求めて、発生酸素ガス総量
TMI(t)と消費酸素ガス総量TMO(t)を個別に
算出しているが、実機テスト等で(IO2M(t)−OO2M
(t))の変化曲線を得るようにすれば、TMI(t)
を算出した手順と同様の手順によって酸素ガス収支TM
(t)を直接算出することができる。
In the above embodiment, IO2M (t) and OO
The change curve of 2M (t) is individually calculated, and the total amount of generated oxygen gas TMI (t) and the total amount of consumed oxygen gas TMO (t) are calculated individually. However, in the actual machine test, etc., (IO2M (t) -OO2M
If the change curve of (t) is obtained, TMI (t)
Oxygen gas balance TM by the procedure similar to the procedure for calculating
(T) can be calculated directly.

【0023】[0023]

【発明の効果】以上のように、本発明の金属酸化物還元
炉の余剰空気制御方法によれば、酸素分析計を使用する
ことなく適正量の余剰空気を供給することができるか
ら、低コストで手間を要することなく、排ガス中の可燃
性ガスを完全に燃焼除去することができる。
As described above, according to the surplus air control method for a metal oxide reduction furnace of the present invention, it is possible to supply an appropriate amount of surplus air without using an oxygen analyzer, resulting in low cost. Thus, the combustible gas in the exhaust gas can be completely burned and removed without any trouble.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法を適用する金属酸化物還元炉の材料
供給経路を示す図である。
FIG. 1 is a diagram showing a material supply path of a metal oxide reduction furnace to which the method of the present invention is applied.

【図2】ペレット切り出し量、発生酸素ガス量、消費酸
素ガス量の経時変化を示す図である。
FIG. 2 is a diagram showing changes over time in the pellet cutout amount, the generated oxygen gas amount, and the consumed oxygen gas amount.

【図3】各時刻に切り出されたペレットの発生酸素ガス
量の経時変化を示す図である。
FIG. 3 is a diagram showing changes over time in the amount of oxygen gas generated from pellets cut out at various times.

【図4】酸素ガス収支、余剰空気中の酸素ガス量、排ガ
ス出口の酸素ガス総量の経時変化を示す図である。
FIG. 4 is a diagram showing changes over time in the oxygen gas balance, the amount of oxygen gas in excess air, and the total amount of oxygen gas at the exhaust gas outlet.

【図5】本発明の他の例における、酸素ガス収支、余剰
空気中の酸素ガス量、排ガス出口の酸素ガス総量の経時
変化を示す図である。
FIG. 5 is a diagram showing changes over time in the oxygen gas balance, the amount of oxygen gas in excess air, and the total amount of oxygen gas at the exhaust gas outlet in another example of the present invention.

【図6】炉内へ供給される余剰空気量の変化に対するC
O濃度およびO2濃度の変化を示す図である。
FIG. 6 is a graph showing C with respect to a change in the amount of surplus air supplied into the furnace.
It is a figure which shows the change of O density | concentration and O2 density | concentration.

【符号の説明】[Explanation of symbols]

1…秤量ホッパ、2A,2B,2C…コンベア、3…金
属酸化物還元炉。
1 ... Weighing hopper, 2A, 2B, 2C ... Conveyor, 3 ... Metal oxide reduction furnace.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 金属酸化物を含む材料の炉内への供給量
を経時的に測定し、測定された前記材料のうち炉内を通
過中の材料が放出する酸素ガスと消費する酸素ガスの差
の総量を算出して、当該差の総量の変動を相殺するよう
に余剰空気を炉内へ供給するようにしたことを特徴とす
る金属酸化物還元炉の余剰空気制御方法。
1. A supply amount of a material containing a metal oxide into a furnace is measured with time, and among the measured materials, an oxygen gas released by a material passing through the furnace and an oxygen gas consumed are consumed. A surplus air control method for a metal oxide reduction furnace, comprising calculating a total amount of difference and supplying surplus air into the furnace so as to cancel a variation in the total amount of difference.
【請求項2】 単位質量の材料が炉内を通過する間に放
出する酸素ガス量と消費する酸素ガス量の経時変化を求
め、これらに各時刻で炉内へ投入された材料量を乗じた
ものを加算して、前記放出する酸素ガスと消費する酸素
ガスの差の総量を算出する請求項1に記載の金属酸化物
還元炉の余剰空気制御方法。
2. The change with time of the amount of oxygen gas released and the amount of oxygen gas consumed while a unit mass of material passes through the furnace is determined, and these are multiplied by the amount of material charged into the furnace at each time. The surplus air control method for a metal oxide reduction furnace according to claim 1, wherein the total amount of the difference between the released oxygen gas and the consumed oxygen gas is calculated by adding things.
【請求項3】 前記放出する酸素ガスと消費する酸素ガ
スの差の総量の算出に、前記材料の供給量を測定した後
に当該材料が実際に前記炉内へ投入されるまでの遅れ時
間を導入した請求項1又は2に記載の金属酸化物還元炉
の余剰空気制御方法。
3. In calculating the total amount of difference between the released oxygen gas and the consumed oxygen gas, a delay time after the material supply amount is measured and before the material is actually charged into the furnace is introduced. The method for controlling excess air in a metal oxide reduction furnace according to claim 1 or 2, wherein.
JP2001266701A 2001-09-04 2001-09-04 Method for controlling surplus air in metal-oxide reducing furnace Pending JP2003073719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001266701A JP2003073719A (en) 2001-09-04 2001-09-04 Method for controlling surplus air in metal-oxide reducing furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001266701A JP2003073719A (en) 2001-09-04 2001-09-04 Method for controlling surplus air in metal-oxide reducing furnace

Publications (1)

Publication Number Publication Date
JP2003073719A true JP2003073719A (en) 2003-03-12

Family

ID=19092947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001266701A Pending JP2003073719A (en) 2001-09-04 2001-09-04 Method for controlling surplus air in metal-oxide reducing furnace

Country Status (1)

Country Link
JP (1) JP2003073719A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007246958A (en) * 2006-03-14 2007-09-27 Jfe Steel Kk Method for producing reduced metal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007246958A (en) * 2006-03-14 2007-09-27 Jfe Steel Kk Method for producing reduced metal

Similar Documents

Publication Publication Date Title
AU614467B2 (en) Method and device for controlling nox emissions by vitiation
JP3135892B2 (en) Method of controlling the thermal power of an incinerator
CN103499101B (en) A kind of temperature of hearth of ternary ignition furnace control method and device
KR20200043384A (en) Furnace system and how the furnace works
JP4985857B1 (en) Control method of NOx concentration in exhaust gas in combustion equipment using pulverized coal
CN103499212B (en) Method and device for adjusting temperature of combustion chamber of dual ignition furnace
JP2003073719A (en) Method for controlling surplus air in metal-oxide reducing furnace
CA2671972C (en) Batch waste gasification process
RU2647411C2 (en) Method and system for the frequency change control system of the main exhaust fan in the sintering system
CN108507365A (en) The igniting optimal control method of sintering machine
JP3145998B2 (en) Control method of combustion efficiency
KR20020020268A (en) Apparatus For Controlling Introduced Air In Metal Oxide Reducing Furnace
JPS591983A (en) Method of diagnosing inside of rotary kiln
JP3902737B2 (en) Ammonia injection control method for denitration catalyst device of waste treatment facility
JP2009197077A (en) Method of controlling temperature of carbonized material by water cooling and carbonized material cooling system
JP3209029B2 (en) Granulation method of sintering raw material
JP2637529B2 (en) Furnace temperature and NOx control device
CN110319710A (en) Continuous pusher-type furnace tandem closed-loop control system and its control method
CN112169561B (en) Method for controlling smoke emission
RU2139482C1 (en) Method of control of raw material roasting process in rotary furnace
JPH0790336A (en) Method for controlling combustion of tunnel furnace for sponge iron
JP2002157023A (en) Furnace pressure control system
SU924492A1 (en) Method of automatic control of clinker firing process in rotary furnace
RU2056146C1 (en) Method to purify smoke gasses from nitrogen oxides
RU2013453C1 (en) Method of heating ingots in heating well