JP2003070475A - Cellulase gene derived from protozoan symbiotically living with termite - Google Patents

Cellulase gene derived from protozoan symbiotically living with termite

Info

Publication number
JP2003070475A
JP2003070475A JP2001266454A JP2001266454A JP2003070475A JP 2003070475 A JP2003070475 A JP 2003070475A JP 2001266454 A JP2001266454 A JP 2001266454A JP 2001266454 A JP2001266454 A JP 2001266454A JP 2003070475 A JP2003070475 A JP 2003070475A
Authority
JP
Japan
Prior art keywords
protein
cellulase
dna
ala
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001266454A
Other languages
Japanese (ja)
Other versions
JP4224601B2 (en
Inventor
Tetsushi Inoue
徹志 井上
Seiya Okuma
盛也 大熊
Toshiaki Kudo
俊章 工藤
Shigeharu Moriya
繁春 守屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research, Japan Science and Technology Corp filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP2001266454A priority Critical patent/JP4224601B2/en
Publication of JP2003070475A publication Critical patent/JP2003070475A/en
Application granted granted Critical
Publication of JP4224601B2 publication Critical patent/JP4224601B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a cellulase by taking out a cellulase gene from a protozoan symbiotically living with a termite the culture of which is impossible, and by using a genetic engineering technique using the gene. SOLUTION: An mRNA is extracted from a content of the hindgut of Coptotermes formosanus, and a cDNA library is constructed from the mRNA. The cDNA library is screened by the cellulase activity to obtain a recombinant having the cellulase activity, and the new recombinant protein having the cellulase activity is obtained from the transformant transformed by using a recombinant vector including the obtained gene. The recombinant cellulase is derived from Spirotrichonympha leidyi of a protozoan, and the optimum pH, the optimum temperature, the Km value and the Vmax are 6.0, 70 deg.C, 1.9 mg/mL, and 148.2 units/mg-protein, respectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、シロアリ共生原生
動物由来のセルラーゼ活性を有するタンパク質、及び該
タンパク質をコードする遺伝子等に関する。
TECHNICAL FIELD The present invention relates to a protein having cellulase activity derived from termite symbiotic protozoa, and a gene encoding the protein.

【0002】[0002]

【従来の技術】セルロースは、グルコースがβ−1,4
−グリコシド結合でつながった高分子多糖である。従っ
て、これを加水分解すればグルコースが得られ、グルコ
ースの供給源としてセルロースを有効に利用することが
できる。しかし、セルロースは難分解性の物質であり、
セルロース系バイオマスの活用は実用にまでは至ってい
ない。このセルロースを効率よく加水分解し、そこから
エネルギーを取り出すための一連の反応を司るのがセル
ラーゼである。従って、セルラーゼの特性を解明した
り、セルラーゼを効率よく生産することは、セルロース
資源の有効活用に関わる技術の根幹をなすものといい得
ることができ、従来から、微生物由来のセルラーゼ遺伝
子の単離が行われている。例えば、特開平8−5666
3号公報には、セルラーゼ遺伝子をフミコーラ・インソ
レンス(Humicola insolens)株から単離し、セルラー
ゼ遺伝子を宿主である微生物に導入し、発現させること
によって目的とするセルラーゼを得ることが、特開20
00−210081号公報には、バチルス(Bacillus)
属由来の耐熱性アルカリセルラーゼ遺伝子が、それぞれ
記載されている。
2. Description of the Related Art Cellulose contains β-1,4 in glucose.
-A polymeric polysaccharide linked by glycosidic bonds. Therefore, when this is hydrolyzed, glucose is obtained, and cellulose can be effectively used as a glucose supply source. However, cellulose is a persistent substance,
The utilization of cellulosic biomass has not been put to practical use. Cellulase is responsible for a series of reactions for efficiently hydrolyzing this cellulose and extracting energy from it. Therefore, elucidation of the characteristics of cellulase and efficient production of cellulase can be said to be the basis of the technology related to effective utilization of cellulose resources, and isolation of cellulase genes derived from microorganisms has hitherto been performed. Is being done. For example, JP-A-8-5666.
Japanese Patent Laid-Open No. 20-34187 discloses that a cellulase gene is isolated from a Humicola insolens strain, the cellulase gene is introduced into a host microorganism and expressed to obtain a target cellulase.
No. 00-210081 discloses Bacillus.
The thermostable alkaline cellulase genes from the genus are each described.

【0003】他方、木材などのセルロースをエネルギー
源にしているシロアリはセルロース分解酵素(セルラー
ゼ)を消化管にもっており、また、イエシロアリなどの
一部のシロアリの後腸内には原生動物が共生しており、
シロアリは原生動物なしでは生きていくことができない
ことから、原生動物がセルロースの分解に大きな役割を
果たしていると考えられている。この共生原生動物は単
離培養が非常に難しく、原生動物由来のセルラーゼの単
離は今まで成功していない。一方、共生原生動物由来の
セルラーゼ遺伝子については、既知のセルラーゼと相同
性の高い配列は取得されているが、実際に活性のあるセ
ルラーゼとして機能しているかはわかっていない。
On the other hand, termites that use cellulose as an energy source, such as wood, have cellulolytic enzymes (cellulases) in their digestive tracts, and protozoa coexist in the hindgut of some termites such as house termites. And
Since termites cannot survive without protozoa, they are thought to play a major role in the breakdown of cellulose. This symbiotic protozoa is very difficult to isolate and culture, and isolation of cellulase derived from protozoa has not been successful so far. On the other hand, regarding cellulase genes derived from symbiotic protozoa, sequences having high homology with known cellulases have been obtained, but it is not known whether they actually function as active cellulases.

【0004】なお、ヤマトシロアリ又はタカサゴシロア
リ等シロアリ自身のセルラーゼ及び該セルラーゼの遺伝
子は特開平11−46764号公報に開示されており、
該公報には、その酵素化学的性質として、昆虫の唾腺又
は腸で作られ、餌として取り込まれたセルロースを分解
する、分子量が4万〜5万、熱安定性が〜60℃、至適
pHが5.0〜6.0、カルボキシメチルセルロースに
対する比活性が70〜1300ユニット/mgであるこ
とが記載されている。
The cellulase of the termite itself such as Yamato termite or Takasago termite and the gene of the cellulase are disclosed in JP-A-11-46764.
The gazette discloses that, as its enzymatic chemistry, it decomposes cellulose that is made in the salivary glands or intestines of insects and taken in as a bait, has a molecular weight of 40,000 to 50,000, a thermal stability of -60 ° C, and an optimum temperature. It is described that the pH is 5.0 to 6.0 and the specific activity to carboxymethyl cellulose is 70 to 1300 units / mg.

【0005】[0005]

【発明が解決しようとする課題】シロアリと原生動物の
共生系は、自然界において最も効率的にセルロースを利
用している系の1つである。その共生系の根幹をなすの
が共生原生動物であるが、共生原生動物から活性のある
タンパク質を生産することが可能なセルラーゼ遺伝子は
これまでに取り出されていなかった。本発明の課題は、
培養が不可能なシロアリの共生原生動物からセルラーゼ
遺伝子を取り出し、さらにその遺伝子を用いて遺伝子工
学的手法によりセルラーゼを製造する方法を提供するこ
とにある。
The symbiotic system of termites and protozoa is one of the most efficient utilization systems of cellulose in the natural world. The root of the symbiotic system is the symbiotic protozoa, but a cellulase gene capable of producing an active protein from the symbiotic protozoa has not been extracted so far. The object of the present invention is to
It is an object of the present invention to provide a method for producing a cellulase by a genetic engineering method using a cellulase gene extracted from a symbiotic protozoan of a termite that cannot be cultured.

【0006】[0006]

【課題を解決するための手段】本発明者は、上記課題を
解決するために、イエシロアリ250匹の後腸の内容物
からmRNAを抽出し、該mRNAからcDNAライブ
ラリ−を構築し、セルラーゼ活性をもとにスクリーニン
グを行い、セルラーゼ活性を有する組換え体を取得し、
さらに取得された遺伝子を含む組換えベクターによって
形質転換された形質転換体からセルラーゼ活性を有する
新規組換えタンパク質が得られることを見い出し、その
酵素化学的性質を決定し、また、スクリーニングにより
得られた新規セルラーゼ遺伝子が原生動物に由来するこ
とを確認し、本発明を完成するに至った。
In order to solve the above problems, the present inventor extracted mRNA from the contents of the hindgut of 250 termites, constructed a cDNA library from the mRNA, and confirmed cellulase activity. Based on the screening, obtain recombinants with cellulase activity,
Furthermore, it was found that a novel recombinant protein having cellulase activity was obtained from the transformant transformed with the recombinant vector containing the obtained gene, its enzymatic chemistry was determined, and it was obtained by screening. It was confirmed that the novel cellulase gene is derived from protozoa, and the present invention has been completed.

【0007】すなわち本発明は、(a)配列番号2に示さ
れるアミノ酸配列からなるタンパク質や、(b)配列番号
2に示されるアミノ酸配列において、1若しくは数個の
アミノ酸が欠失、置換若しくは付加されたアミノ酸配列
からなり、かつセルラーゼ活性を有するタンパク質をコ
ードするDNA(請求項1)や、配列番号1に示される
塩基配列若しくはその相補的配列又はこれらの配列の一
部若しくは全部を含む配列からなるDNA(請求項2)
や、請求項2記載のDNAとストリンジェントな条件下
でハイブリダイズし、かつセルラーゼ活性を有するタン
パク質をコードするDNA(請求項3)や、配列番号2
に示されるアミノ酸配列からなるタンパク質(請求項
4)や、配列番号2に示されるアミノ酸配列において、
1若しくは数個のアミノ酸が欠失、置換若しくは付加さ
れたアミノ酸配列からなり、かつセルラーゼ活性を有す
るタンパク質(請求項5)に関する。
That is, the present invention relates to (a) a protein consisting of the amino acid sequence shown in SEQ ID NO: 2 or (b) an amino acid sequence shown in SEQ ID NO: 2 in which one or several amino acids are deleted, substituted or added. From a DNA consisting of a selected amino acid sequence and encoding a protein having cellulase activity (claim 1), the nucleotide sequence shown in SEQ ID NO: 1 or its complementary sequence, or a sequence containing a part or all of these sequences. DNA (Claim 2)
Or a DNA that hybridizes with the DNA of claim 2 under stringent conditions and that encodes a protein having cellulase activity (claim 3), or SEQ ID NO: 2
In the protein consisting of the amino acid sequence shown in (claim 4) or the amino acid sequence shown in SEQ ID NO: 2,
The present invention relates to a protein having an amino acid sequence in which one or several amino acids are deleted, substituted or added and having cellulase activity (claim 5).

【0008】また本発明は、請求項4又は5記載のタン
パク質と、マーカータンパク質及び/又はペプチドタグ
とを結合させた融合タンパク質(請求項6)や、請求項
4又は5記載のタンパク質に特異的に結合する抗体(請
求項7)や、抗体がモノクローナル抗体であることを特
徴とする請求項7記載の抗体(請求項8)や、請求項1
〜3のいずれか記載のDNAを含む組換えベクター(請
求項9)や、請求項4又は5記載のタンパク質を発現す
ることができる発現系を含んでなる宿主細胞(請求項1
0)や、請求項10記載の発現系を含んでなる宿主細胞
を培地に培養し、得られる培養物からセルラーゼ活性を
有する組換えタンパク質を採取することを特徴とする組
換えタンパク質の製造方法(請求項11)に関する。
Further, the present invention is specific to a fusion protein (claim 6) in which the protein according to claim 4 or 5 is bound to a marker protein and / or a peptide tag, and the protein according to claim 4 or 5. An antibody that binds to (claim 7), the antibody according to claim 7 (claim 8) characterized in that the antibody is a monoclonal antibody, and claim 1.
Host cell comprising an expression system capable of expressing the recombinant vector (claim 9) containing the DNA according to any one of (1) to (3) or the protein according to claim 4 (claim 1).
0) or a host cell comprising the expression system according to claim 10 is cultured in a medium, and a recombinant protein having cellulase activity is collected from the resulting culture (a method for producing a recombinant protein). Claim 11).

【0009】[0009]

【発明の実施の形態】本発明の対象となるDNAとして
は、配列番号2で示されるアミノ酸配列からなるタンパ
ク質をコードするDNAや、配列番号2で示されるアミ
ノ酸配列において、1若しくは数個のアミノ酸が欠失、
置換若しくは付加されたアミノ酸配列からなり、かつセ
ルラーゼ活性を有するタンパク質をコードするDNA
や、配列番号1に示される塩基配列若しくはその相補的
配列又はこれらの配列の一部若しくは全部を含む配列か
らなるDNAであればどのようなものでもよく、ここ
で、上記セルラーゼ活性を有するタンパク質とは、セル
ロースを加水分解する活性、詳しくは、セルロースの非
結晶領域のβ-1,4-グリコシド結合を切断する活性を
定性的に有するタンパク質をいう。
BEST MODE FOR CARRYING OUT THE INVENTION The DNA which is the subject of the present invention includes a DNA encoding a protein consisting of the amino acid sequence represented by SEQ ID NO: 2 and one or several amino acids in the amino acid sequence represented by SEQ ID NO: 2. Is deleted,
DNA consisting of a substituted or added amino acid sequence and encoding a protein having cellulase activity
Alternatively, any DNA may be used as long as it is composed of the nucleotide sequence shown in SEQ ID NO: 1 or its complementary sequence or a sequence containing a part or all of these sequences. Is a protein that qualitatively has an activity of hydrolyzing cellulose, specifically, an activity of cleaving β-1,4-glycoside bond in an amorphous region of cellulose.

【0010】また、配列番号1に示される塩基配列又は
その相補的配列並びにこれらの配列の一部又は全部を含
む配列からなるDNAをプローブとして、各種DNAラ
イブラリーに対してストリンジェントな条件下でハイブ
リダイゼーションを行ない、該プローブにハイブリダイ
ズするDNAを単離することにより、新規のセルラーゼ
活性を有するタンパク質をコードするDNAを得ること
もできる。こうして得られるDNAも本発明に包含され
る。かかる本発明のDNAを取得するためのハイブリダ
イゼーションの条件としては、例えば、42℃でのハイ
ブリダイゼーション、及び1×SSC、0.1%のSD
Sを含む緩衝液による42℃での洗浄処理を挙げること
ができ、65℃でのハイブリダイゼーション、及び0.
1×SSC、0.1%のSDSを含む緩衝液による65
℃での洗浄処理をより好ましく挙げることができる。な
お、ハイブリダイゼーションのストリンジェンシーに影
響を与える要素としては、上記温度条件以外に種々の要
素があり、当業者であれば、種々の要素を適宜組み合わ
せて、上記例示したハイブリダイゼーションのストリン
ジェンシーと同等のストリンジェンシーを実現すること
が可能である。
Under the stringent condition against various DNA libraries, a DNA consisting of the nucleotide sequence shown in SEQ ID NO: 1 or its complementary sequence and a sequence containing a part or all of these sequences is used as a probe under stringent conditions. It is also possible to obtain a DNA encoding a protein having a novel cellulase activity by hybridizing and isolating a DNA that hybridizes to the probe. The DNA thus obtained is also included in the present invention. The hybridization conditions for obtaining the DNA of the present invention include, for example, hybridization at 42 ° C., 1 × SSC, and 0.1% SD.
Examples include washing treatment with a buffer containing S at 42 ° C., hybridization at 65 ° C., and 0.
65 with 1 × SSC, buffer containing 0.1% SDS
A more preferable example is a washing treatment at ° C. There are various factors other than the above temperature conditions as factors that affect the stringency of hybridization, and those skilled in the art can appropriately combine various factors and are equivalent to the stringency of hybridization described above. It is possible to achieve the stringency of.

【0011】これら本発明のDNAは、本発明に開示さ
れたDNA配列情報等に基づき、例えば原生動物のケカ
ムリ(Spirotrichonympha leidyi)等のゲノム遺伝子か
ら、PCR又はDNA断片をプローブとするハイブリダ
イゼーションなど公知の方法により調製することができ
る。その他、化学合成によっても調製することができ
る。また、これら本発明のDNAから、セルラーゼ活性
を有する人工変異タンパク質をコードする本発明のDN
A、すなわち、塩基配列レベルやアミノ酸配列レベルで
の本発明の人工変異DNAを得るには、公知の突然変異
手段を用いればよく、例えば市販の突然変異誘発キット
を用いると変異を容易に導入することができる。さら
に、アミノ酸配列に含まれる第1番目のメチオニン(Me
t)が欠失しているものなども、アミノ酸配列の変異に
よるタンパク質に含まれる。
Based on the DNA sequence information disclosed in the present invention, these DNAs of the present invention are publicly known, such as PCR or hybridization using a DNA fragment as a probe, from a genomic gene of a protozoan such as Spirotrichonympha leidyi. It can be prepared by the method of. In addition, it can be prepared by chemical synthesis. In addition, from these DNAs of the present invention, the DN of the present invention encoding an artificial mutant protein having cellulase activity
In order to obtain A, that is, the artificially mutated DNA of the present invention at the nucleotide sequence level or the amino acid sequence level, known mutation means may be used. For example, a commercially available mutagenesis kit is used to easily introduce the mutation. be able to. In addition, the first methionine (Me
Those in which t) is deleted are also included in the protein due to mutation of the amino acid sequence.

【0012】本発明のタンパク質としては、配列番号2
に示されるアミノ酸配列からなるタンパク質や、配列番
号2で示されるアミノ酸配列において、1若しくは数個
のアミノ酸が欠失、置換若しくは付加されたアミノ酸配
列からなり、かつセルラーゼ活性を有するタンパク質で
あれば特に制限されるものではなく、これら本発明のタ
ンパク質はそのDNA配列情報等に基づき公知の方法で
調製することができ、その由来は特に制限されるもので
はない。
The protein of the present invention includes SEQ ID NO: 2
In particular, a protein having the amino acid sequence shown in SEQ ID NO: 2 or a protein having the amino acid sequence shown in SEQ ID NO: 2 in which one or several amino acids are deleted, substituted or added and having cellulase activity The protein of the present invention is not limited and can be prepared by a known method based on the DNA sequence information and the like, and the origin thereof is not particularly limited.

【0013】本発明の融合タンパク質としては、本発明
のタンパク質とマーカータンパク質及び/又はペプチド
タグとが結合しているものであればどのようなものでも
よく、マーカータンパク質としては、従来知られている
マーカータンパク質であれば特に制限されるものではな
く、例えば、アルカリフォスファターゼ、抗体のFc領
域、HRP、GFPなどを具体的に挙げることができ、
また本発明におけるペプチドタグとしては、Mycタ
グ、Hisタグ、FLAGタグ、GSTタグなどの従来
知られているペプチドタグを具体的に例示することがで
きる。かかる融合タンパク質は、常法により作製するこ
とができ、Ni−NTAとHisタグの親和性を利用し
たセルラーゼ活性を有するタンパク質等の精製や、セル
ラーゼ活性を有するタンパク質等に対する抗体の定量用
などとして、また当該分野の研究用試薬としても有用で
ある。
The fusion protein of the present invention may be any one as long as the protein of the present invention is bound to the marker protein and / or peptide tag, and the marker protein is conventionally known. The marker protein is not particularly limited, and specific examples thereof include alkaline phosphatase, Fc region of antibody, HRP, GFP, and the like.
Further, as the peptide tag in the present invention, conventionally known peptide tags such as Myc tag, His tag, FLAG tag and GST tag can be specifically exemplified. Such a fusion protein can be prepared by a conventional method, for purification of a protein having cellulase activity utilizing the affinity of Ni-NTA and His tag, for quantification of an antibody against the protein having cellulase activity, etc., It is also useful as a research reagent in the field.

【0014】本発明のタンパク質に特異的に結合する抗
体としては、モノクローナル抗体、ポリクローナル抗
体、キメラ抗体、一本鎖抗体、ヒト化抗体等の免疫特異
的な抗体を具体的に挙げることができ、これらは上記本
発明のタンパク質、融合タンパク質等の全部又は一部を
抗原として用いて常法により作製することができるが、
その中でもモノクローナル抗体がその特異性の点でより
好ましい。かかるモノクローナル抗体等の抗体は、例え
ば、セルラーゼの特性やその産生機構を明らかにする上
で有用である。
Specific examples of the antibody which specifically binds to the protein of the present invention include immunospecific antibodies such as monoclonal antibody, polyclonal antibody, chimeric antibody, single chain antibody and humanized antibody, These can be prepared by a conventional method using all or part of the above-mentioned protein of the present invention, fusion protein, etc. as an antigen,
Among them, the monoclonal antibody is more preferable in terms of its specificity. Antibodies such as such monoclonal antibodies are useful, for example, for clarifying the characteristics of cellulase and the production mechanism thereof.

【0015】上記の本発明の抗体は、慣用のプロトコー
ルを用いて、動物(好ましくはヒト以外)に本発明のタ
ンパク質又はエピトープを含むその断片を投与すること
により産生され、例えばモノクローナル抗体の調製に
は、連続細胞系の培養物により産生される抗体をもたら
す、ハイブリドーマ法(Nature 256, 495-497, 197
5)、トリオーマ法、ヒトB細胞ハイブリドーマ法(Imm
unology Today 4, 72, 1983)及びEBV−ハイブリド
ーマ法(MONOCLONAL ANTIBODIES AND CANCER THERAPY,
pp.77-96, Alan R.Liss, Inc., 1985)など任意の方法
を用いることができる。
The above-mentioned antibody of the present invention is produced by administering a protein or a fragment thereof containing the epitope of the present invention to an animal (preferably non-human) using a conventional protocol, for example, for preparing a monoclonal antibody. Is a hybridoma method (Nature 256, 495-497, 197) that results in antibodies produced by cultures of continuous cell lines.
5), trioma method, human B cell hybridoma method (Imm
unology Today 4, 72, 1983) and EBV-hybridoma method (MONOCLONAL ANTIBODIES AND CANCER THERAPY,
pp.77-96, Alan R. Liss, Inc., 1985).

【0016】また前記モノクローナル抗体等の抗体に、
例えば、FITC(フルオレセインイソシアネート)又
はテトラメチルローダミンイソシアネート等の蛍光物質
や、 125I、32P、14C、35S又は3H等のラジオアイソ
トープや、アルカリホスファターゼ、ペルオキシダー
ゼ、β−ガラクトシダーゼ又はフィコエリトリン等の酵
素で標識したものや、グリーン蛍光タンパク質(GF
P)等の蛍光発光タンパク質などを融合させた融合タン
パク質を用いることによって、本発明のタンパク質の機
能解析を行うことができる。また本件発明の抗体を用い
る免疫学的測定方法としては、RIA法、ELISA
法、蛍光抗体法、プラーク法、スポット法、血球凝集反
応法、オクタロニー法等の方法を挙げることができる。
In addition, the above-mentioned monoclonal antibody and the like,
For example, FITC (fluorescein isocyanate) or
Is a fluorescent substance such as tetramethylrhodamine isocyanate
Or 125I,32P,14C,35S or3Radio iso such as H
Taupe, alkaline phosphatase, peroxidase
Enzyme, β-galactosidase, phycoerythrin, etc.
Labeled with a green fluorescent protein or green fluorescent protein (GF
P) and other fluorescent proteins, etc.
By using the protein, the protein of the present invention can be produced.
Capability analysis can be performed. In addition, using the antibody of the present invention
As the immunological measurement method, the RIA method and the ELISA method are used.
Method, fluorescent antibody method, plaque method, spot method, hemagglutination reaction
Examples of such methods include a reaction method and an Ouchterlony method.

【0017】本発明の組換えベクターとしては、上記本
発明のDNAを含むベクターであれば特に制限されない
が、本発明のタンパク質を宿主細胞内で発現させること
ができる発現系を含むものが好ましく、例えば、染色
体、エピソーム及びウイルスに由来する発現系、より具
体的には、細菌プラスミド由来、酵母プラスミド由来、
SV40のようなパポバウイルス、ワクシニアウイル
ス、アデノウイルス、鶏痘ウイルス、仮性狂犬病ウイル
ス、レトロウイルス由来のベクター、バクテリオファー
ジ由来、トランスポゾン由来及びこれらの組合せに由来
するベクター、例えば、コスミドやファージミドのよう
なプラスミドとバクテリオファージの遺伝的要素に由来
するものを挙げることができる。この発現系は発現を起
こさせるだけでなく発現を調節する制御配列を含んでい
てもよい。
The recombinant vector of the present invention is not particularly limited as long as it is a vector containing the above-mentioned DNA of the present invention, but preferably one containing an expression system capable of expressing the protein of the present invention in a host cell, For example, expression systems derived from chromosomes, episomes and viruses, more specifically bacterial plasmid derived, yeast plasmid derived,
Vectors derived from papovavirus such as SV40, vaccinia virus, adenovirus, fowlpox virus, pseudorabies virus, retrovirus derived, bacteriophage derived, transposon derived and combinations thereof, for example, plasmids such as cosmid and phagemid. And those derived from genetic elements of bacteriophage. The expression system may include control sequences that regulate as well as direct expression.

【0018】本発明はまた、上記本発明のタンパク質を
発現することができる発現系を含んでなる宿主細胞に関
する。かかる本発明のタンパク質をコードするDNAや
上記発現系を含む組換えベクターの宿主細胞への導入
は、Davisら(BASIC METHODS IN MOLECULAR BIOLOGY, 1
986)及びSambrookら(MOLECULAR CLONING: A LABORATO
RY MANUAL, 2nd Ed., Cold Spring Harbor Laboratory
Press, Cold Spring Harbor, N.Y., 1989)などの多く
の標準的な実験室マニュアルに記載される方法、例え
ば、リン酸カルシウムトランスフェクション、DEAE
−デキストラン媒介トランスフェクション、トランスベ
クション(transvection)、マイクロインジェクション、
カチオン性脂質媒介トランスフェクション、エレクトロ
ポレーション、形質導入、スクレープローディング (sc
rape loading)、弾丸導入(ballisticintroduction)、感
染等により行うことができる。そして、宿主細胞として
は、大腸菌、ストレプトミセス、枯草菌、ストレプトコ
ッカス、スタフィロコッカス等の細菌原核細胞や、酵
母、アスペルギルス等の真菌細胞や、ドロソフィラS
2、スポドプテラSf9等の昆虫細胞や、L細胞、CH
O細胞、COS細胞、HeLa細胞、C127細胞、B
ALB/c3T3細胞(ジヒドロ葉酸レダクターゼやチ
ミジンキナーゼなどを欠損した変異株を含む)、BHK
21細胞、HEK293細胞、Bowes悪性黒色腫細
胞等の動物細胞や、植物細胞等を挙げることができる。
The present invention also relates to a host cell comprising an expression system capable of expressing the above-mentioned protein of the present invention. Introduction of a recombinant vector containing such a DNA encoding the protein of the present invention or the above expression system into a host cell is carried out by Davis et al. (BASIC METHODS IN MOLECULAR BIOLOGY, 1
986) and Sambrook et al. (MOLECULAR CLONING: A LABORATO
RY MANUAL, 2nd Ed., Cold Spring Harbor Laboratory
Press, Cold Spring Harbor, NY, 1989) and many other standard laboratory manual methods such as calcium phosphate transfection, DEAE.
-Dextran mediated transfection, transvection, microinjection,
Cationic lipid-mediated transfection, electroporation, transduction, scrape loading (sc
rape loading, ballistic introduction, infection, etc. The host cells include bacterial prokaryotic cells such as Escherichia coli, Streptomyces, Bacillus subtilis, Streptococcus, Staphylococcus, fungal cells such as yeast and Aspergillus, and Drosophila S.
2, insect cells such as Spodoptera Sf9, L cells, CH
O cells, COS cells, HeLa cells, C127 cells, B
ALB / c3T3 cells (including mutant strains lacking dihydrofolate reductase and thymidine kinase), BHK
21 cells, HEK293 cells, animal cells such as Bowes malignant melanoma cells, plant cells and the like can be mentioned.

【0019】また、本発明の組換えタンパク質の製造方
法としては、上記発現系を含んでなる宿主細胞を培地に
培養し、得られる培養物からセルラーゼ活性を有する組
換えタンパク質を採取する方法であればどのような方法
でもよく、かかる本発明のタンパク質を細胞培養物から
回収し精製する方法としては、硫酸アンモニウム又はエ
タノール沈殿、酸抽出、アニオン又はカチオン交換クロ
マトグラフィー、ホスホセルロースクロマトグラフィ
ー、疎水性相互作用クロマトグラフィー、アフィニティ
ークロマトグラフィー、ハイドロキシアパタイトクロマ
トグラフィー及びレクチンクロマトグラフィーを含めた
公知の方法、好ましくは、高速液体クロマトグラフィー
を用いる方法を挙げることができる。また、上記アフィ
ニティークロマトグラフィーに用いるカラムとしては、
例えば、本発明のタンパク質に対する抗体を結合させた
カラムや、上記本発明のタンパク質に通常のペプチドタ
グを付加した場合は、このペプチドタグに親和性のある
物質を結合したカラムを用いることにより、本発明のタ
ンパク質を得ることができる。上記本発明のタンパク質
の精製方法は、ペプチド合成の際にも適用することがで
きる。
The method for producing the recombinant protein of the present invention may be a method of culturing a host cell containing the above expression system in a medium and collecting a recombinant protein having cellulase activity from the obtained culture. Any method may be used, and examples of the method for recovering and purifying the protein of the present invention from cell culture include ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, and hydrophobic interaction. Known methods including chromatography, affinity chromatography, hydroxyapatite chromatography and lectin chromatography, preferably, high performance liquid chromatography can be used. In addition, as the column used in the affinity chromatography,
For example, by using a column to which an antibody against the protein of the present invention is bound or a column to which the above-mentioned protein of the present invention is added with a normal peptide tag, a column to which a substance having an affinity for this peptide tag is bound is used. The protein of the invention can be obtained. The protein purification method of the present invention can be applied to peptide synthesis.

【0020】[0020]

【実施例】以下、実施例により、本発明をさらに詳細に
説明するが、本発明の技術的範囲はこの実施例により限
定されるものではない。 (1.mRNAの単離)mRNAの単離をするために、
イエシロアリ250匹から後腸を取り出し、その内容物
をSolution U(Trager 1934, Biological Bulletin, Vo
l66: 182-190)に懸濁し、緩やかに遠心分離(300
g、1分)することによって、原生動物分画を得た。さ
らに該原生動物分画に対してSolution Uで2回洗浄を行
い、RNA抽出のための原生動物分画を得た。顕鏡下、
この原生動物分画には3種類の原生動物(Spirotrichon
ympha leidyi、Pseudotrichonympha grassi、Holomasti
gotoides hartmanni)の存在が認められた。RNAの単
離は、ISOGEN(ニッポンジーン社)を用いて指示書に従
って行い、mRNAの精製、単離はOligotex-dT30<Supe
r>(日本ロシュ社)を用いて指示書通りに行い、約3.
9μgのmRNAを得た。
The present invention will be described in more detail with reference to the following examples, but the technical scope of the present invention is not limited to these examples. (1. Isolation of mRNA) In order to isolate mRNA,
The hindgut was removed from 250 house termites and the contents were tested using Solution U (Trager 1934, Biological Bulletin, Vo.
l66: 182-190) and gently centrifuge (300
g, 1 minute) to obtain a protozoan fraction. Further, the protozoan fraction was washed twice with Solution U to obtain a protozoan fraction for RNA extraction. Under the microscope,
This protozoa fraction contains three types of protozoa (Spirotrichon
ympha leidyi, Pseudotrichonympha grassi, Holomasti
The presence of gotoides hartmanni) was confirmed. Isolation of RNA was performed using ISOGEN (Nippon Gene) according to the instructions, and purification and isolation of mRNA was performed using Oligotex-dT30 <Supe.
r> (Nippon Roche) and follow the instructions, and proceed to about 3.
9 μg of mRNA was obtained.

【0021】(2.cDNAライブラリーの構築)cD
NAライブラリーを構築するために、mRNAを鋳型に
oligo dTをプライマーとして、SuperscriptII
(Gibco BRL社)による逆転写によりRNA−DNA複合
体を形成し、さらに回収された第1のcDNA鎖を鋳型
として、第2のcDNA鎖を合成した。得られた二本鎖
cDNAから、λZAPII(STRATAGENE社)を用いて指
示書に従いcDNAライブラリーを調製した。クローニ
ングのためのpackaging lysateは、GIGAPAK III Glod
(STRATAGENE社)を用いて常法により行った。その結
果、3×105個の組換え体ファージを得ることがで
き、増幅後のタイターは、3×109pfu/mlであ
った。
(2. Construction of cDNA library) cD
In order to construct an NA library, mRNA was used as a template, oligo dT was used as a primer, and Superscript II was used.
An RNA-DNA complex was formed by reverse transcription (Gibco BRL), and a second cDNA chain was synthesized using the recovered first cDNA chain as a template. A cDNA library was prepared from the obtained double-stranded cDNA using λZAPII (STRATAGENE) according to the instructions. The packaging lysate for cloning is GIGAPAK III Glod
(STRATAGENE) was used according to a conventional method. As a result, 3 × 10 5 recombinant phages could be obtained, and the titer after amplification was 3 × 10 9 pfu / ml.

【0022】(3.発現スクリーニング)0.5%のカ
ルボキシメチルセルロース(CMC)を含む2×YT培
地を用いて、該組換え体ファージを、8〜12時間37
℃で培養して、プラークを形成させた。その後、プラー
クが形成しているプレートの上に0.1%コンゴレッド
10mlを注ぎ染色し、さらに1M NaCl 10m
lによる脱色を行った。コンゴレッドで染色した後、ハ
ロー(CMCの分解によりコンゴーレッドで染色されな
い円形の部分)を与えるコロニー11個を得た。スクリ
ーニングでハローを与えるクローン11の内、3つのク
ローンについて、λZAPIIベクターキットに含まれ
ているヘルパーファージEXASSIST及びE.coli SOLR菌株
を用いる重複感染により、ブルースクリプト(pBluescr
ipt)ファージミドに転換した。転換されたクローンに
ついて、DNAの塩基配列を決定したところ、3クロー
ンの塩基配列は同一であった。得られたDNAの塩基配
列を配列番号1に、その翻訳産物であるタンパク質のア
ミノ酸配列を配列番号2に示す。
(3. Expression Screening) Using 2 × YT medium containing 0.5% of carboxymethyl cellulose (CMC), the recombinant phages were incubated for 8 to 12 hours.
The plaques were formed by culturing at ℃. Then, 10 ml of 0.1% Congo red was poured and stained on the plate on which plaque was formed, and further 10 mM of 1M NaCl was added.
Decolorization with 1 was performed. After staining with Congo red, 11 colonies giving halo (circular portion not stained with Congo red due to CMC decomposition) were obtained. Of the 11 clones that gave halos in the screening, three clones were bluescript (pBluescr) by superinfection with the helper phage EXASSIST and E. coli SOLR strains contained in the λZAPII vector kit.
ipt) converted to phagemid. When the nucleotide sequences of the converted clones were determined, the nucleotide sequences of the three clones were the same. The nucleotide sequence of the obtained DNA is shown in SEQ ID NO: 1, and the amino acid sequence of the protein that is the translation product thereof is shown in SEQ ID NO: 2.

【0023】(4.セルラーゼ遺伝子の起源の特定)上
記cDNAライブラリーは、3種の原生動物の混合mR
NAから作製されたものであるので、該セルラーゼ遺伝
子がどの原生動物由来のものであるか特定できない。そ
こで、得られたセルラーゼ遺伝子のDNA塩基配列から
このセルラーゼに特異的なプライマー、5'-CTTCAAGGTAT
TGTTGATAC-3'Forward(配列番号3)及び5'-TTAAGCAATG
CTGATCATTA-3'Reverse(配列番号4)を設計し、マイク
ロキャピラリーで分画した3種類それぞれの原生動物2
0〜30個体をテンプレートとして、PCRを試みた。
PCRの条件は、94℃30秒、59℃45秒、72℃
2分で35サイクルとした。PCR産物をアガロースゲ
ル電気泳動で確認した結果(図1)、3種の原生動物の
内、ケカムリ(Spirotrichonympha leidyi)からのみ、D
NAの増幅を確認できた。なお図1中、レーンMはマー
カー、レーン1はPseudotrichonympha grassi、レーン
2はHolomastigotoides hartmanni、レーン3はSpirotr
ichonympha leidyi、レーン4は3種の原生動物の混合
から抽出したDNAをテンプレートにしたPCRの結果
のコントロールである。従って、セルラーゼ遺伝子の由
来はこのケカムリであると結論できた。
(4. Identification of Origin of Cellulase Gene) The above cDNA library is a mixed mR of three protozoa.
Since it was produced from NA, it is not possible to specify which protozoan the cellulase gene is derived from. Then, based on the obtained DNA nucleotide sequence of the cellulase gene, a primer specific to this cellulase, 5'-CTTCAAGGTAT
TGTTGATAC-3'Forward (SEQ ID NO: 3) and 5'-TTAAGCAATG
CTGATCATTA-3'Reverse (SEQ ID NO: 4) was designed and fractionated by microcapillary.
PCR was tried using 0 to 30 individuals as a template.
PCR conditions are 94 ° C for 30 seconds, 59 ° C for 45 seconds, 72 ° C.
There were 35 cycles in 2 minutes. As a result of confirming the PCR product by agarose gel electrophoresis (Fig. 1), among the three protozoa, only from the sponge tree (Spirotrichonympha leidyi), D
The amplification of NA could be confirmed. In FIG. 1, lane M is a marker, lane 1 is Pseudotrichonympha grassi, lane 2 is Holomastigotoides hartmanni, and lane 3 is Spirotr.
ichonympha leidyi, lane 4 is a control for the results of PCR using DNA extracted from a mixture of three protozoa as templates. Therefore, it can be concluded that the origin of the cellulase gene is this kecamuri.

【0024】(5.セルラーゼの大腸菌による発現と精
製)セルラーゼの発現ベクターを作製するため、セルラ
ーゼ遺伝子を含むpBluescriptベクターか
ら、セルラーゼ遺伝子を含むDNA断片をsalI及びsacI
により切り出し、ベクターpET21b(Novagen社)
の対応部位にクローニングした。該ベクターを用い、大
腸菌(BL21(DE3))株に形質転換し、LB液体
培地で37℃、12時間振盪培養した。大腸菌を回収
後、BugBuster Protein Extraction Reagent(Novagen
社)を用いて、指示書通りにタンパクを回収した。さら
に、T7・Tag Affinity Purification Kit(Novagen社)
を用いて、指示書に従い組換えタンパク質を精製した。
組換えタンパク質はSDS−PAGEによって、分子量
約36kDaの単一のバンドとして検出された。さら
に、この組換えタンパク質のセルラーゼ活性を、基質と
してCMCを用いて測定した。この組換えセルラーゼの
最適pHは6.0(図2)、最適温度は70℃(図
3)、Km値は1.9mg/ml、Vmaxは148.
2units/mgタンパク質(1unitは、1分あ
たり1μMのグルコース相当の還元糖を生成する酵素
量)であった。
(5. Expression and Purification of Cellulase by Escherichia coli) In order to prepare an expression vector of cellulase, a DNA fragment containing the cellulase gene was salI and sacI from the pBluescript vector containing the cellulase gene.
Cut out with the vector pET21b (Novagen)
Was cloned into the corresponding site. E. coli (BL21 (DE3)) strain was transformed with the vector and cultured in an LB liquid medium at 37 ° C for 12 hours with shaking. After collecting E. coli, the BugBuster Protein Extraction Reagent (Novagen
The protein was recovered according to the instructions. Furthermore, T7 / Tag Affinity Purification Kit (Novagen)
Was used to purify the recombinant protein according to the instructions.
The recombinant protein was detected by SDS-PAGE as a single band with a molecular weight of approximately 36 kDa. Furthermore, the cellulase activity of this recombinant protein was measured using CMC as a substrate. The optimum pH of this recombinant cellulase is 6.0 (FIG. 2), the optimum temperature is 70 ° C. (FIG. 3), the Km value is 1.9 mg / ml, and the Vmax is 148.
It was 2 units / mg protein (1 unit is the amount of enzyme that produces a reducing sugar equivalent to 1 μM glucose per minute).

【0025】[0025]

【発明の効果】本発明により提供されるシロアリ共生原
生動物に由来する新規なセルラーゼは、単独使用又はす
でに知られているセルラーゼとの併用により、効率的に
セルロースを分解することができることから、洗剤、繊
維加工用製剤、飼料添加剤、消化剤といった種々の産業
用酵素剤として有用である。また、本発明の新規セルラ
ーゼ及びその遺伝子は、セルラーゼの特性を解明する上
で大いに役立つものと期待される。
INDUSTRIAL APPLICABILITY The novel cellulase derived from termite symbiotic protozoa provided by the present invention is capable of efficiently decomposing cellulose when used alone or in combination with already known cellulase. , It is useful as various industrial enzyme agents such as textile processing preparations, feed additives, and digestive agents. In addition, the novel cellulase and its gene of the present invention are expected to be very useful in elucidating the characteristics of cellulase.

【0026】[0026]

【配列表】 SEQUENCE LISTING <110> JAPAN SCIENCE AND TECHNOLOGY CORPORATION RIKEN <120> Coptotermes-symbiosis protozoa-derived from cellulase genes <130> TC-13-1 <140> <141> <160> 4 <170> PatentIn Ver. 2.1 <210> 1 <211> 938 <212> DNA <213> Spirotrichonympha leidyi <220> <221> CDS <222> (1)..(894) <400> 1 ctt caa ggt att gtt gat act tat ggt gcc ctc agc gta tct gga agc 48 Leu Gln Gly Ile Val Asp Thr Tyr Gly Ala Leu Ser Val Ser Gly Ser 1 5 10 15 aaa gtt gtt ggc aag tct ggt tca cct gca gcg ttg cat ggt gtt tca 96 Lys Val Val Gly Lys Ser Gly Ser Pro Ala Ala Leu His Gly Val Ser 20 25 30 ttt ggt tgg cat aat tgg tgg cct gag ttc tac aca gca gac aca gtt 144 Phe Gly Trp His Asn Trp Trp Pro Glu Phe Tyr Thr Ala Asp Thr Val 35 40 45 aaa cat ctt gct gaa gat tgg aaa gcg act gtt ctt cgt gca gca att 192 Lys His Leu Ala Glu Asp Trp Lys Ala Thr Val Leu Arg Ala Ala Ile 50 55 60 ggt gtt gag cct gac gga gga tat ctt caa gat tct tct tta ggt gat 240 Gly Val Glu Pro Asp Gly Gly Tyr Leu Gln Asp Ser Ser Leu Gly Asp 65 70 75 80 caa tgt gca aca act gtg gct gat gct gca att gca aat gga att tat 288 Gln Cys Ala Thr Thr Val Ala Asp Ala Ala Ile Ala Asn Gly Ile Tyr 85 90 95 gtt att ttg gat tgg cat cag cat cgt att aat caa gat gct gct att 336 Val Ile Leu Asp Trp His Gln His Arg Ile Asn Gln Asp Ala Ala Ile 100 105 110 aaa ttt ttc act aaa ttt gtt acc aag tat aaa ggt gtg cct aat gtt 384 Lys Phe Phe Thr Lys Phe Val Thr Lys Tyr Lys Gly Val Pro Asn Val 115 120 125 atc tat gaa ata ttc aat gag cca gaa tca gct aca tgg cca gag gtc 432 Ile Tyr Glu Ile Phe Asn Glu Pro Glu Ser Ala Thr Trp Pro Glu Val 130 135 140 aaa caa tat gct aat gca gtg atc aaa gtg att aga gat att gat cct 480 Lys Gln Tyr Ala Asn Ala Val Ile Lys Val Ile Arg Asp Ile Asp Pro 145 150 155 160 gac gca tta gta ttg gta gga tgt gca aat tgg gat caa aag atc aca 528 Asp Ala Leu Val Leu Val Gly Cys Ala Asn Trp Asp Gln Lys Ile Thr 165 170 175 gaa cca gca gct gat cca ttg gtt ggt ttt gga aat gtt gca tat aca 576 Glu Pro Ala Ala Asp Pro Leu Val Gly Phe Gly Asn Val Ala Tyr Thr 180 185 190 ttg cat ttt tat gca gca aca cat act cag tgg ttg aga gat gat gct 624 Leu His Phe Tyr Ala Ala Thr His Thr Gln Trp Leu Arg Asp Asp Ala 195 200 205 caa aag gca att gat gct gga ttg cct ata ttt gtg agt gaa tgt ggt 672 Gln Lys Ala Ile Asp Ala Gly Leu Pro Ile Phe Val Ser Glu Cys Gly 210 215 220 gga atg gaa tct agt ggt gat gga gct att aat caa aat gag tgg aat 720 Gly Met Glu Ser Ser Gly Asp Gly Ala Ile Asn Gln Asn Glu Trp Asn 225 230 235 240 aat tgg ata tca ttc tta gac aag aat tca att tca tgg gtt gct tgg 768 Asn Trp Ile Ser Phe Leu Asp Lys Asn Ser Ile Ser Trp Val Ala Trp 245 250 255 tca att tct aat aag gct gaa aca tgt tca atg att act aca aca ggt 816 Ser Ile Ser Asn Lys Ala Glu Thr Cys Ser Met Ile Thr Thr Thr Gly 260 265 270 cct gtc aat cct cca tgg cct gat agt ggc tta tct gaa tgg ggc aaa 864 Pro Val Asn Pro Pro Trp Pro Asp Ser Gly Leu Ser Glu Trp Gly Lys 275 280 285 tta gtc aag aaa tta atg atc agc att gct taataaacac tgcctccctt 914 Leu Val Lys Lys Leu Met Ile Ser Ile Ala 290 295 tgaaaaaaaa aaaaaaaaaa aaaa 938 <210> 2 <211> 298 <212> PRT <213> Spirotrichonympha leidyi <400> 2 Leu Gln Gly Ile Val Asp Thr Tyr Gly Ala Leu Ser Val Ser Gly Ser 1 5 10 15 Lys Val Val Gly Lys Ser Gly Ser Pro Ala Ala Leu His Gly Val Ser 20 25 30 Phe Gly Trp His Asn Trp Trp Pro Glu Phe Tyr Thr Ala Asp Thr Val 35 40 45 Lys His Leu Ala Glu Asp Trp Lys Ala Thr Val Leu Arg Ala Ala Ile 50 55 60 Gly Val Glu Pro Asp Gly Gly Tyr Leu Gln Asp Ser Ser Leu Gly Asp 65 70 75 80 Gln Cys Ala Thr Thr Val Ala Asp Ala Ala Ile Ala Asn Gly Ile Tyr 85 90 95 Val Ile Leu Asp Trp His Gln His Arg Ile Asn Gln Asp Ala Ala Ile 100 105 110 Lys Phe Phe Thr Lys Phe Val Thr Lys Tyr Lys Gly Val Pro Asn Val 115 120 125 Ile Tyr Glu Ile Phe Asn Glu Pro Glu Ser Ala Thr Trp Pro Glu Val 130 135 140 Lys Gln Tyr Ala Asn Ala Val Ile Lys Val Ile Arg Asp Ile Asp Pro 145 150 155 160 Asp Ala Leu Val Leu Val Gly Cys Ala Asn Trp Asp Gln Lys Ile Thr 165 170 175 Glu Pro Ala Ala Asp Pro Leu Val Gly Phe Gly Asn Val Ala Tyr Thr 180 185 190 Leu His Phe Tyr Ala Ala Thr His Thr Gln Trp Leu Arg Asp Asp Ala 195 200 205 Gln Lys Ala Ile Asp Ala Gly Leu Pro Ile Phe Val Ser Glu Cys Gly 210 215 220 Gly Met Glu Ser Ser Gly Asp Gly Ala Ile Asn Gln Asn Glu Trp Asn 225 230 235 240 Asn Trp Ile Ser Phe Leu Asp Lys Asn Ser Ile Ser Trp Val Ala Trp 245 250 255 Ser Ile Ser Asn Lys Ala Glu Thr Cys Ser Met Ile Thr Thr Thr Gly 260 265 270 Pro Val Asn Pro Pro Trp Pro Asp Ser Gly Leu Ser Glu Trp Gly Lys 275 280 285 Leu Val Lys Lys Leu Met Ile Ser Ile Ala 290 295 <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:Primer Forward <400> 3 cttcaaggta ttgttgatac 20 <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:Primer Reverse <400> 4 ttaagcaatg ctgatcatta 20[Sequence list]                                SEQUENCE LISTING <110> JAPAN SCIENCE AND TECHNOLOGY CORPORATION       RIKEN <120> Coptotermes-symbiosis protozoa-derived from cellulase       genes <130> TC-13-1 <140> <141> <160> 4 <170> PatentIn Ver. 2.1 <210> 1 <211> 938 <212> DNA <213> Spirotrichonympha leidyi <220> <221> CDS <222> (1) .. (894) <400> 1 ctt caa ggt att gtt gat act tat ggt gcc ctc agc gta tct gga agc 48 Leu Gln Gly Ile Val Asp Thr Tyr Gly Ala Leu Ser Val Ser Gly Ser   1 5 10 15 aaa gtt gtt ggc aag tct ggt tca cct gca gcg ttg cat ggt gtt tca 96 Lys Val Val Gly Lys Ser Gly Ser Pro Ala Ala Leu His Gly Val Ser              20 25 30 ttt ggt tgg cat aat tgg tgg cct gag ttc tac aca gca gac aca gtt 144 Phe Gly Trp His Asn Trp Trp Pro Glu Phe Tyr Thr Ala Asp Thr Val          35 40 45 aaa cat ctt gct gaa gat tgg aaa gcg act gtt ctt cgt gca gca att 192 Lys His Leu Ala Glu Asp Trp Lys Ala Thr Val Leu Arg Ala Ala Ile      50 55 60 ggt gtt gag cct gac gga gga tat ctt caa gat tct tct tta ggt gat 240 Gly Val Glu Pro Asp Gly Gly Tyr Leu Gln Asp Ser Ser Leu Gly Asp  65 70 75 80 caa tgt gca aca act gtg gct gat gct gca att gca aat gga att tat 288 Gln Cys Ala Thr Thr Val Ala Asp Ala Ala Ile Ala Asn Gly Ile Tyr                  85 90 95 gtt att ttg gat tgg cat cag cat cgt att aat caa gat gct gct att 336 Val Ile Leu Asp Trp His Gln His Arg Ile Asn Gln Asp Ala Ala Ile             100 105 110 aaa ttt ttc act aaa ttt gtt acc aag tat aaa ggt gtg cct aat gtt 384 Lys Phe Phe Thr Lys Phe Val Thr Lys Tyr Lys Gly Val Pro Asn Val         115 120 125 atc tat gaa ata ttc aat gag cca gaa tca gct aca tgg cca gag gtc 432 Ile Tyr Glu Ile Phe Asn Glu Pro Glu Ser Ala Thr Trp Pro Glu Val     130 135 140 aaa caa tat gct aat gca gtg atc aaa gtg att aga gat att gat cct 480 Lys Gln Tyr Ala Asn Ala Val Ile Lys Val Ile Arg Asp Ile Asp Pro 145 150 155 160 gac gca tta gta ttg gta gga tgt gca aat tgg gat caa aag atc aca 528 Asp Ala Leu Val Leu Val Gly Cys Ala Asn Trp Asp Gln Lys Ile Thr                 165 170 175 gaa cca gca gct gat cca ttg gtt ggt ttt gga aat gtt gca tat aca 576 Glu Pro Ala Ala Asp Pro Leu Val Gly Phe Gly Asn Val Ala Tyr Thr             180 185 190 ttg cat ttt tat gca gca aca cat act cag tgg ttg aga gat gat gct 624 Leu His Phe Tyr Ala Ala Thr His Thr Gln Trp Leu Arg Asp Asp Ala         195 200 205 caa aag gca att gat gct gga ttg cct ata ttt gtg agt gaa tgt ggt 672 Gln Lys Ala Ile Asp Ala Gly Leu Pro Ile Phe Val Ser Glu Cys Gly     210 215 220 gga atg gaa tct agt ggt gat gga gct att aat caa aat gag tgg aat 720 Gly Met Glu Ser Ser Gly Asp Gly Ala Ile Asn Gln Asn Glu Trp Asn 225 230 235 240 aat tgg ata tca ttc tta gac aag aat tca att tca tgg gtt gct tgg 768 Asn Trp Ile Ser Phe Leu Asp Lys Asn Ser Ile Ser Trp Val Ala Trp                 245 250 255 tca att tct aat aag gct gaa aca tgt tca atg att act aca aca ggt 816 Ser Ile Ser Asn Lys Ala Glu Thr Cys Ser Met Ile Thr Thr Thr Gly             260 265 270 cct gtc aat cct cca tgg cct gat agt ggc tta tct gaa tgg ggc aaa 864 Pro Val Asn Pro Pro Trp Pro Asp Ser Gly Leu Ser Glu Trp Gly Lys         275 280 285 tta gtc aag aaa tta atg atc agc att gct taataaacac tgcctccctt 914 Leu Val Lys Lys Leu Met Ile Ser Ile Ala     290 295 tgaaaaaaaa aaaaaaaaaa aaaa 938 <210> 2 <211> 298 <212> PRT <213> Spirotrichonympha leidyi <400> 2 Leu Gln Gly Ile Val Asp Thr Tyr Gly Ala Leu Ser Val Ser Gly Ser   1 5 10 15 Lys Val Val Gly Lys Ser Gly Ser Pro Ala Ala Leu His Gly Val Ser              20 25 30 Phe Gly Trp His Asn Trp Trp Pro Glu Phe Tyr Thr Ala Asp Thr Val          35 40 45 Lys His Leu Ala Glu Asp Trp Lys Ala Thr Val Leu Arg Ala Ala Ile      50 55 60 Gly Val Glu Pro Asp Gly Gly Tyr Leu Gln Asp Ser Ser Leu Gly Asp  65 70 75 80 Gln Cys Ala Thr Thr Val Ala Asp Ala Ala Ile Ala Asn Gly Ile Tyr                  85 90 95 Val Ile Leu Asp Trp His Gln His Arg Ile Asn Gln Asp Ala Ala Ile             100 105 110 Lys Phe Phe Thr Lys Phe Val Thr Lys Tyr Lys Gly Val Pro Asn Val         115 120 125 Ile Tyr Glu Ile Phe Asn Glu Pro Glu Ser Ala Thr Trp Pro Glu Val     130 135 140 Lys Gln Tyr Ala Asn Ala Val Ile Lys Val Ile Arg Asp Ile Asp Pro 145 150 155 160 Asp Ala Leu Val Leu Val Gly Cys Ala Asn Trp Asp Gln Lys Ile Thr                 165 170 175 Glu Pro Ala Ala Asp Pro Leu Val Gly Phe Gly Asn Val Ala Tyr Thr             180 185 190 Leu His Phe Tyr Ala Ala Thr His Thr Gln Trp Leu Arg Asp Asp Ala         195 200 205 Gln Lys Ala Ile Asp Ala Gly Leu Pro Ile Phe Val Ser Glu Cys Gly     210 215 220 Gly Met Glu Ser Ser Gly Asp Gly Ala Ile Asn Gln Asn Glu Trp Asn 225 230 235 240 Asn Trp Ile Ser Phe Leu Asp Lys Asn Ser Ile Ser Trp Val Ala Trp                 245 250 255 Ser Ile Ser Asn Lys Ala Glu Thr Cys Ser Met Ile Thr Thr Thr Gly             260 265 270 Pro Val Asn Pro Pro Trp Pro Asp Ser Gly Leu Ser Glu Trp Gly Lys         275 280 285 Leu Val Lys Lys Leu Met Ile Ser Ile Ala     290 295 <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Primer Forward <400> 3 cttcaaggta ttgttgatac 20 <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Primer Reverse <400> 4 ttaagcaatg ctgatcatta 20

【図面の簡単な説明】[Brief description of drawings]

【図1】マイクロキャピラリーで分画した3種類それぞ
れの原生動物20〜30個体をテンプレートとして、セ
ルラーゼ遺伝子に特異的なプライマーを使ったPCRの
結果を示す図である。
FIG. 1 is a diagram showing the results of PCR using 20 to 30 individual protozoa of each of the three types of microcapillaries as templates, using primers specific to the cellulase gene.

【図2】組換えセルラーゼのCMCに対する活性のpH
による影響を示す図である。
FIG. 2 pH of activity of recombinant cellulase on CMC
It is a figure which shows the influence by.

【図3】組換えセルラーゼのCMCに対する活性の温度
による影響を示す図である。
FIG. 3 is a graph showing the effect of temperature on the activity of recombinant cellulase on CMC.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C12N 1/21 C12N 9/42 5/10 C12P 21/08 9/42 C12N 15/00 ZNAA // C12P 21/08 5/00 A (72)発明者 大熊 盛也 埼玉県富士見市水谷1−1−24 (72)発明者 工藤 俊章 東京都目黒区平町1−21−20−606 (72)発明者 守屋 繁春 東京都大田区羽田4−4−22 アビオン羽 田303 Fターム(参考) 4B024 AA01 AA03 BA12 BA42 CA04 CA07 DA02 DA05 DA11 EA02 EA03 EA04 FA02 GA01 GA11 HA01 HA03 HA11 4B050 CC01 CC03 CC05 DD20 LL04 LL05 4B064 AG27 CA10 CA20 CC24 DA13 4B065 AA01X AA57X AA86Y AA90X AB01 AB02 BA01 BA08 CA25 CA31 CA43 CA44 CA46 CA57 4H045 AA11 AA20 AA30 BA10 BA41 DA89 EA07 EA20 EA36 EA50 FA72 FA74 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C12N 1/21 C12N 9/42 5/10 C12P 21/08 9/42 C12N 15/00 ZNAA // C12P 21 / 08 5/00 A (72) Inventor Moriya Okuma 1-1-24 Mizutani, Fujimi-shi, Saitama (72) Inventor Toshiaki Kudo 1-2-1-20-606 Hiramachi, Meguro-ku, Tokyo (72) Moriya Shigeharu 4-4-22 Haneda, Ota-ku, Tokyo Avion Haneda 303 F term (reference) 4B024 AA01 AA03 BA12 BA42 CA04 CA07 DA02 DA05 DA11 EA02 EA03 EA04 FA02 GA01 GA11 HA01 HA03 HA11 4B050 CC01 CC03 CC05 DD20 LL04 LL05 4B064 AG27 CA10 CA10 CA27 CA10 CA10 CC24 DA13 4B065 AA01X AA57X AA86Y AA90X AB01 AB02 BA01 BA08 CA25 CA31 CA43 CA44 CA46 CA57 4H045 AA11 AA20 AA30 BA10 BA41 DA89 EA07 EA20 EA36 EA50 FA72 FA74

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 以下の(a)又は(b)のタンパク質をコー
ドするDNA。 (a)配列番号2に示されるアミノ酸配列からなるタンパ
ク質 (b)配列番号2に示されるアミノ酸配列において、1若
しくは数個のアミノ酸が欠失、置換若しくは付加された
アミノ酸配列からなり、かつセルラーゼ活性を有するタ
ンパク質
1. A DNA encoding the following protein (a) or (b). (a) a protein consisting of the amino acid sequence shown in SEQ ID NO: 2 (b) an amino acid sequence shown in SEQ ID NO: 2 in which one or several amino acids have been deleted, substituted or added, and cellulase activity Protein with
【請求項2】 配列番号1に示される塩基配列若しくは
その相補的配列又はこれらの配列の一部若しくは全部を
含む配列からなるDNA。
2. A DNA comprising the nucleotide sequence shown in SEQ ID NO: 1 or its complementary sequence, or a sequence containing a part or all of these sequences.
【請求項3】 請求項2記載のDNAとストリンジェン
トな条件下でハイブリダイズし、かつセルラーゼ活性を
有するタンパク質をコードするDNA。
3. A DNA which hybridizes with the DNA according to claim 2 under stringent conditions and which encodes a protein having cellulase activity.
【請求項4】 配列番号2に示されるアミノ酸配列から
なるタンパク質。
4. A protein consisting of the amino acid sequence shown in SEQ ID NO: 2.
【請求項5】 配列番号2に示されるアミノ酸配列にお
いて、1若しくは数個のアミノ酸が欠失、置換若しくは
付加されたアミノ酸配列からなり、かつセルラーゼ活性
を有するタンパク質。
5. A protein comprising an amino acid sequence shown in SEQ ID NO: 2 in which one or several amino acids are deleted, substituted or added, and having cellulase activity.
【請求項6】 請求項4又は5記載のタンパク質と、
マーカータンパク質及び/又はペプチドタグとを結合さ
せた融合タンパク質。
6. The protein according to claim 4 or 5,
A fusion protein having a marker protein and / or a peptide tag bound thereto.
【請求項7】 請求項4又は5記載のタンパク質に特異
的に結合する抗体。
7. An antibody that specifically binds to the protein according to claim 4 or 5.
【請求項8】 抗体がモノクローナル抗体であることを
特徴とする請求項7記載の抗体。
8. The antibody according to claim 7, wherein the antibody is a monoclonal antibody.
【請求項9】 請求項1〜3のいずれか記載のDNAを
含む組換えベクター。
9. A recombinant vector containing the DNA according to claim 1.
【請求項10】 請求項4又は5記載のタンパク質を発
現することができる発現系を含んでなる宿主細胞。
10. A host cell comprising an expression system capable of expressing the protein of claim 4 or 5.
【請求項11】 請求項10記載の発現系を含んでなる
宿主細胞を培地に培養し、得られる培養物からセルラー
ゼ活性を有する組換えタンパク質を採取することを特徴
とする組換えタンパク質の製造方法。
11. A method for producing a recombinant protein, which comprises culturing a host cell containing the expression system according to claim 10 in a medium and collecting the recombinant protein having cellulase activity from the resulting culture. .
JP2001266454A 2001-09-03 2001-09-03 Cellulase gene from termite symbiotic protozoa Expired - Fee Related JP4224601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001266454A JP4224601B2 (en) 2001-09-03 2001-09-03 Cellulase gene from termite symbiotic protozoa

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001266454A JP4224601B2 (en) 2001-09-03 2001-09-03 Cellulase gene from termite symbiotic protozoa

Publications (2)

Publication Number Publication Date
JP2003070475A true JP2003070475A (en) 2003-03-11
JP4224601B2 JP4224601B2 (en) 2009-02-18

Family

ID=19092739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001266454A Expired - Fee Related JP4224601B2 (en) 2001-09-03 2001-09-03 Cellulase gene from termite symbiotic protozoa

Country Status (1)

Country Link
JP (1) JP4224601B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1612267A1 (en) * 2004-07-02 2006-01-04 GBF Gesellschaft für Biotechnologische Forschung mbH Cellulases from rumen
WO2008108116A1 (en) * 2007-03-02 2008-09-12 Riken Cellulase enzyme and method of producing the same
WO2010005551A3 (en) * 2008-07-07 2010-03-18 Mascoma Corporation Heterologous expression of termite cellulases in yeast
WO2011078262A1 (en) * 2009-12-22 2011-06-30 株式会社豊田中央研究所 Xylose isomerase and use thereof
WO2019044887A1 (en) * 2017-08-30 2019-03-07 国立研究開発法人理化学研究所 NOVEL β-GLUCOSIDASE, ENZYME COMPOSITION INCLUDING SAME, AND METHOD FOR MANUFACTURING SUGAR SOLUTION USING SAME

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006003175A1 (en) * 2004-07-02 2006-01-12 Helmholtz-Zentrum für Infektionsforschung GmbH Cellulases from rumen
EP1612267A1 (en) * 2004-07-02 2006-01-04 GBF Gesellschaft für Biotechnologische Forschung mbH Cellulases from rumen
US8383798B2 (en) 2007-03-02 2013-02-26 Riken Polynucleotide encoding a cellulase enzyme and method for producing the enzyme
WO2008108116A1 (en) * 2007-03-02 2008-09-12 Riken Cellulase enzyme and method of producing the same
JPWO2008108116A1 (en) * 2007-03-02 2010-06-10 独立行政法人理化学研究所 Cellulase enzyme and process for producing the same
JP2013078328A (en) * 2007-03-02 2013-05-02 Institute Of Physical & Chemical Research Cellulase enzyme and method for producing the same
US8658398B2 (en) 2008-07-07 2014-02-25 Mascoma Corporation Heterologous expression of termite cellulases yeast
WO2010005551A3 (en) * 2008-07-07 2010-03-18 Mascoma Corporation Heterologous expression of termite cellulases in yeast
US9856465B2 (en) 2008-07-07 2018-01-02 Lallemand Hungary Liquidity Management Llc Heterologous expression of termite cellulases in yeast
US10214733B2 (en) 2008-07-07 2019-02-26 Lallemand Hungary Liquidity Management Llc Heterologous expression of termite cellulases in yeast
US10428322B2 (en) 2008-07-07 2019-10-01 Lallemand Hungary Liquidity Management Llc Heterologous expression of termite cellulases in yeast
WO2011078262A1 (en) * 2009-12-22 2011-06-30 株式会社豊田中央研究所 Xylose isomerase and use thereof
US8772012B2 (en) 2009-12-22 2014-07-08 Kabushiki Kaisha Toyota Chuo Kenkyusho Xylose isomerase and use thereof
WO2019044887A1 (en) * 2017-08-30 2019-03-07 国立研究開発法人理化学研究所 NOVEL β-GLUCOSIDASE, ENZYME COMPOSITION INCLUDING SAME, AND METHOD FOR MANUFACTURING SUGAR SOLUTION USING SAME
CN110892072A (en) * 2017-08-30 2020-03-17 国立研究开发法人理化学研究所 Novel β -glucosidase, enzyme composition containing the same, and method for producing sugar solution using the same
US11162087B2 (en) 2017-08-30 2021-11-02 Riken Beta-glucosidase, enzyme composition including same, and method for manufacturing sugar solution using same

Also Published As

Publication number Publication date
JP4224601B2 (en) 2009-02-18

Similar Documents

Publication Publication Date Title
US6329516B1 (en) Lepidopteran GABA-gated chloride channels
KR20050010053A (en) Xylanases, nucleic acids encoding them and methods for making and using them
JPH10117789A (en) Person serine protease
US6406899B1 (en) Highly active alkaline phosphatase
JPH11332568A (en) Endo-beta-n-acetylglucosaminidase gene
JP4224601B2 (en) Cellulase gene from termite symbiotic protozoa
JPH1017600A (en) Blood platelet activating factor acetyl hydrolase and its gene
US20100221807A1 (en) Cellulase enzyme and method for producing the same
CA2387695A1 (en) A novel member of the heparanase protein family
JP3533699B2 (en) Prophenol oxidase and phenol oxidase from silkworm
AU696549B2 (en) Variant protein of human DNA topoisomerase I
US20090274715A1 (en) Tick chitinase
JPH11507825A (en) Protein having DNase activity
JP2892171B2 (en) Polypeptide
JPH104976A (en) Tab1 protein and dna coding the same
US7166699B2 (en) Mosquito arrestin 1 polypeptides
US5716816A (en) Clones encoding mammalian ADP-ribosylarginine hydrolases
JPH0923886A (en) Plophenoloxidase and phenoloxidase derived from silkworm, dna for them and their production
CA2480910A1 (en) Arrestin gene, polypeptide and methods of use thereof
JP4805945B2 (en) Process for producing protein phosphatase type 2A enzyme heterodimer derivative
JP2003070473A (en) Acidic peroxides and gene thereof
JPH10215867A (en) Protein derivative, gene coding for the protein and production of the protein
JP3803978B2 (en) Glucagon-degrading enzyme, gene encoding the same, and antibody against the glucagon-degrading enzyme
JPH10175998A (en) Protein related to communication of information
JP2000245479A (en) New alfa-galactosidase gene

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20010907

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031201

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040622

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081029

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees