JP2003069475A - Drive assisting device for unattended truck - Google Patents

Drive assisting device for unattended truck

Info

Publication number
JP2003069475A
JP2003069475A JP2001255426A JP2001255426A JP2003069475A JP 2003069475 A JP2003069475 A JP 2003069475A JP 2001255426 A JP2001255426 A JP 2001255426A JP 2001255426 A JP2001255426 A JP 2001255426A JP 2003069475 A JP2003069475 A JP 2003069475A
Authority
JP
Japan
Prior art keywords
unmanned
unmanned trolley
trolley
communication means
external environment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001255426A
Other languages
Japanese (ja)
Inventor
Kenji Matsukuma
研司 松熊
Ryokichi Hirata
亮吉 平田
Toshiyuki Kono
寿之 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2001255426A priority Critical patent/JP2003069475A/en
Publication of JP2003069475A publication Critical patent/JP2003069475A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a drive assisting device for an unattended truck with high absolute position precision for detecting a mark, that can accurately identify a relative positional posture between the unattended truck and an outer environmental transmitter-receiver when the communication is established. SOLUTION: The drive assisting device for an unattended truck of this invention includes; an unattended truck side transmitter-receiver 102 consisting of an unattended truck side communication means provided with an unattended truck side transmitter provided to the unattended truck 101 and transmitting a trigger signal and with an unattended truck side receiver for receiving various kinds of drive information such as an absolute position required for driving from an outer environment in which the unattended truck is driven and of an unattended truck side arithmetic means for conducting various arithmetic operations on the basis of the drive information; and an outer environment side transmitter-receiver 104 consisting of an outer environment side communication means provided with an outer environment side receiver placed in an outer environment and receiving the trigger signal and with an outer environment side transmitter for transmitting the drive information when the outer environment side receiver receives the trigger signal, and of an outer environment side arithmetic means, and both the communication means are placed so as to enhance the communication directivity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、搬送等の作業を行
う無人で走行する台車の走行支援装置に関し、特に正確
な現在位置を通知したり、進入不可を通知したりするた
めの走行支援装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a traveling support device for an unmanned vehicle for carrying work such as transportation, and particularly to a traveling support device for notifying an accurate current position or notifying that entry is impossible. Regarding

【0002】[0002]

【従来の技術】無人台車を走行させるにあたっては、車
輪の回転数など無人台車の内界情報から現在位置姿勢を
推定する方式が一般にとられるが、この方式は路面と車
輪の滑り等によって位置姿勢の誤差が蓄積する問題点が
ある。これを解決するため、従来の無人台車の走行支援
装置においては、これまで路面に誘導線を敷設して、前
記誘導線に沿って前記無人台車を走行させるとともに、
前記誘導線に磁気作用によって絶対位置情報を記憶さ
せ、前記無人台車がこれを読み取ることによって絶対位
置を得るものがあった(特開2000-3218)。しかし本方
式は誘導線に沿って走行するAGV(Automatic Guided Veh
icle)にのみ有効な方式であり、路面に誘導線が不要な
無軌道無人台車には適用できない。特開平11-305832公
報では、誘導線を用いない無軌道無人搬送台車の走行支
援方法が記載されている。以下、この走行支援方法につ
いて説明する。図8は床面に敷設される外環境側送受信
装置である。外環境側送受信装置801は樹脂製の筐体802
で覆われ、内部にはLSI(大規模集積回路)803と、
前記LSI803に接続されたアンテナ804が配置されてい
る。この外環境側送受信装置を床面に敷設し、無人台車
が近傍を通過した場合の位置補正方法を図9に示す。図
9において901は無人台車、902は前記無人台車901上に
搭載された無人台車側送受信装置である。いま、無人台
車901が外環境側送受信装置903の近傍を通過し、外環境
側送受信装置904の方向に向かっている。無人台車側送
受信装置902は一定周期ごとにトリガ信号を周囲に輻射
しており、外環境側送受信装置903と通信可能な距離に
到達すると、外環境側送受信装置903がこのトリガ信号
を受信し、受信通知信号を返信する。無人台車側送受信
装置902がこの受信通知信号を受信すると、今度は絶対
位置データ要求信号を送信する。外環境側送受信装置90
3は絶対位置データ要求信号を受信すると、あらかじめ
記憶されている外環境側送受信装置903の固有の絶対位
置データを返信する。無人台車側送受信装置902はこの
絶対位置データを受信し、図示しない演算器により、内
界センサで計測・蓄積しているスタート地点からの相対
位置データと比較し、偏差Dを算出する。上記のような
無人台車の走行支援装置において、無人台車は外環境側
送受信装置から絶対位置データを受信することにより、
無人台車の現在位置から次の外環境側送受信装置904ま
でに行うべき軌道の補正量θeを算出し、補正量θeに従
って動作することで位置姿勢誤差の修正ができるように
なっている。
2. Description of the Related Art When running an unmanned trolley, a method of estimating the current position and orientation from the internal information of the unmanned trolley such as the number of rotations of the wheels is generally used. There is a problem that the error of is accumulated. In order to solve this, in a conventional travel assistance device for an unmanned trolley, a guide wire has been laid so far on the road surface, and the unmanned trolley travels along the guide line,
There has been a method in which absolute position information is stored in the guide wire by a magnetic action, and the unmanned vehicle reads the information to obtain the absolute position (Japanese Patent Laid-Open No. 2000-3218). However, this method uses an AGV (Automatic Guided Veh
icle) and cannot be applied to unguided unmanned bogies that do not require guide lines on the road surface. Japanese Unexamined Patent Application Publication No. 11-305832 describes a traveling support method for an unguided guided vehicle that does not use a guide wire. Hereinafter, this driving support method will be described. FIG. 8 shows an external environment side transmitter / receiver laid on the floor. The outside environment transmitter / receiver 801 is a resin housing 802.
It is covered with an LSI (Large Scale Integrated Circuit) 803,
An antenna 804 connected to the LSI 803 is arranged. FIG. 9 shows a position correction method in the case where the transceiver on the outside environment side is laid on the floor and an unmanned trolley passes by in the vicinity. In FIG. 9, 901 is an unmanned trolley, and 902 is an unmanned trolley-side transceiver device mounted on the unmanned trolley 901. Now, the unmanned trolley 901 is passing near the environment-side transceiver 903 and is heading toward the environment-side transceiver 904. The unmanned trolley-side transceiver device 902 radiates a trigger signal to the surroundings at regular intervals, and when it reaches a distance communicable with the external environment transceiver device 903, the external environment transceiver device 903 receives this trigger signal, Returns the reception notification signal. When the unmanned trolley-side transceiver device 902 receives this reception notification signal, this time it transmits an absolute position data request signal. External environment transmitter / receiver 90
When receiving the absolute position data request signal, 3 returns the absolute position data peculiar to the external environment side transmitting / receiving device 903 stored in advance. The unmanned trolley-side transceiver device 902 receives the absolute position data and compares the absolute position data with the relative position data from the start point measured and accumulated by the internal sensor to calculate the deviation D. In the driving support device for the unmanned trolley as described above, the unmanned trolley receives the absolute position data from the external environment side transmitter / receiver,
The position / orientation error can be corrected by calculating a trajectory correction amount θe to be performed from the current position of the unmanned vehicle to the next external environment transmitting / receiving device 904 and operating according to the correction amount θe.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来の無人台車の走行支援装置に関しては、電波による通
信を用いているため、指向性が無く、実際には通信可能
な範囲が広い範囲にわたる。このため、無人台車とマー
クとの間で通信ができたとしても、無人台車の実際のマ
ークからの位置は正確には特定できなかった。図10は
従来例の問題点を示す図である。図10において、1001
は無人台車、1002は無人台車側送受信装置、1003は外環
境側送受信装置、1004は無人台車側送受信装置の通信可
能領域、1005は外環境側送受信装置の通信可能領域であ
る。図10(a)は斜視図、図10(b)(c)は上面図であ
る。無人台車側送受信装置と外環境側送受信装置との間
に通信が成立した時には、図10(b)のような状態であ
る可能性も、図10(c)のような状態である可能性もあ
る。これらの状態において、無人台車1001は全て現在位
置が外環境側送受信装置1003に記憶された絶対位置であ
ると認識してしまうので、X軸方向(進行方向)にはΔ
x、Y軸方向(横方向)にはΔyの測定誤差が生じるこ
とになる。このΔx、Δyを小さくするため、通信可能
領域の小さい通信手段を使用した場合、今度は軌道誤差
によってはマークを検出できずに通過してしまうという
問題がある。以上述べたように、従来の無人台車の走行
支援装置では、通信成立時にも無人台車と外環境側送受
信装置との相対位置姿勢が正確に特定できないため、絶
対位置精度が悪いという問題点があった。そこで、本発
明の目的は、通信成立時に無人台車と外環境側送受信装
置との相対位置姿勢が正確に特定でき、マーク検出の絶
対位置精度が高い無人台車走行支援装置を提供すること
である。
However, since the above-mentioned conventional travel support device for an unmanned vehicle uses radio wave communication, there is no directivity, and in fact, the communicable range is wide. Therefore, even if the unmanned carriage and the mark can communicate with each other, the position of the unmanned carriage from the actual mark cannot be accurately specified. FIG. 10 is a diagram showing a problem of the conventional example. In FIG. 10, 1001
Is an unmanned trolley, 1002 is an unmanned trolley-side transceiver, 1003 is an outside environment transceiver, 1004 is an unmanned trolley transceiver communication area, and 1005 is an outside environment transceiver transceiver area. 10A is a perspective view, and FIGS. 10B and 10C are top views. When communication is established between the unmanned vehicle side transmitter / receiver and the external environment side transmitter / receiver, the state may be as shown in FIG. 10 (b) or may be as shown in FIG. 10 (c). is there. In these states, all of the unmanned carts 1001 recognize that the current position is the absolute position stored in the external environment side transmitting / receiving device 1003, and therefore the Δ in the X-axis direction (travel direction).
A measurement error of Δy occurs in the x and Y axis directions (horizontal direction). In order to reduce Δx and Δy, if a communication means having a small communicable area is used, there is a problem that a mark may not be detected and the mark may pass due to a trajectory error. As described above, the conventional travel support device for an unmanned trolley has a problem in that the absolute position accuracy is poor because the relative position and orientation between the unmanned trolley and the transceiver on the external environment side cannot be accurately specified even when communication is established. It was Therefore, an object of the present invention is to provide an unmanned trolley traveling support device capable of accurately specifying the relative position and orientation between the unmanned trolley and the external environment side transmitting / receiving device when communication is established, and having high absolute position accuracy of mark detection.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するた
め、請求項1記載の無人台車の走行支援装置は、無人台
車および前記無人台車が走行する外環境に設置され、前
記無人台車および前記外環境との間で走行に必要な情報
の授受を行うことで前記無人台車の走行を支援する無人
台車走行支援装置において、前記無人台車上の無人台車
側送受信装置と前記外環境上の外環境側送受信装置間の
通信の指向性であって、各々の通信の指向性を高めるよ
うに配置した無線通信手段を有することを特徴とするも
のである。請求項1記載の無人台車の走行支援装置によ
れば、無人台車の位置精度を向上させることができる。
請求項2記載の無人台車の走行支援装置は、前記無人台
車側送受信装置と外環境側送受信装置間の通信の指向性
は、前記外環境側送受信装置の通信可能領域を、前記無
人台車に対向するように配置することを特徴とするもの
である。請求項2記載の無人台車の走行支援装置によれ
ば、無人台車を停留ステーションに誘導することがで
き、これにより絶対位置姿勢の補正を行うことができ
る。請求項3記載の無人台車の走行支援装置は、前記無
人台車側送受信装置は、前記無人台車の外周上に複数配
置し、前記外環境側送受信装置との通信に成功した前記
無人台車側送受信装置が設置されている場所をもとに、
前記無人台車と前記外環境側送受信装置との相対位置あ
るいは姿勢を推定することを特徴とするものである。請
求項3記載の無人台車の走行支援装置によれば、無人台
車の走行中の累積誤差による姿勢変化に関わらず、外環
境側送受信装置との無線通信を確実に補正することがで
きる。請求項4記載の無人台車の走行支援装置は、前記
無人台車側送受信装置は、1つあるいは複数の前記無人
台車側送受信手段を有し、前記無人台車側送受信手段
は、前記無人台車上で旋回することを特徴とするもので
ある。請求項4記載の無人台車の走行支援装置によれ
ば、さらに確実に外環境側送受信装置との無線通信を行
うことができる。また、位置姿勢の検出精度を向上させ
ることができる。請求項5記載の無人台車の走行支援装
置は、前記外環境側送受信装置は、携帯型遠隔操作装置
に搭載され、前記無人台車の走行指令を送信することを
特徴とするものである。請求項5記載の無人台車の走行
支援装置によれば、前記無人台車を操作するオペレータ
の作業性を向上させることができる。請求項6記載の無
人台車の走行支援装置は、前記外環境側送受信装置は、
前記無人台車の接近すべきでない障害物や段差の手前に
配置し、前記無人台車に障害物や段差の情報を送信する
ことを特徴とするものである。請求項6記載の無人台車
の走行支援装置によれば、接近すべきでない障害物、ま
たは段差や行き止まり等との遭遇を未然に回避すること
ができる。請求項7記載の無人台車の走行支援装置は、
前記外環境側送受信装置は、他の無人台車上に設置さ
れ、各々の無人台車間で、障害物データ、現在位置情報
などの外環境情報を授受することを特徴とするものであ
る。請求項7記載の無人台車の走行支援装置によれば、
複数の無人台車が互いに衝突を未然に回避することがで
きる。また情報量を増やし作業を効率化することができ
る。請求項8記載の無人台車の走行支援装置は、前記無
人台車側送受信装置と外環境側送受信装置間の通信の指
向性は、広域の指向性と狭域の指向性の2つの通信手段
を各々装備させることを特徴とするものである。請求項
8記載の無人台車の走行支援装置によれば、広範囲にか
つ精度の良い位置補正を行うことができる。
In order to solve the above-mentioned problems, a traveling support device for an unmanned trolley according to claim 1 is installed in an unmanned trolley and an outside environment in which the unmanned trolley travels. In an unmanned trolley traveling support device that supports traveling of the unmanned trolley by exchanging information necessary for traveling with the environment, an unmanned trolley side transceiver device on the unmanned trolley and the outside environment side on the outside environment The wireless communication means is arranged so as to improve the directivity of communication between the transmitting and receiving devices and the directivity of each communication. According to the travel support device for an unmanned trolley of claim 1, the position accuracy of the unmanned trolley can be improved.
The driving assistance device for an unmanned trolley according to claim 2, wherein the directivity of communication between the unmanned trolley-side transceiver device and the external environment-side transceiver device is such that the communicable area of the external environment-side transceiver device faces the unmanned trolley. It is characterized by arranging as described above. According to the traveling support device for an unmanned trolley of the second aspect, the unmanned trolley can be guided to the stop station, whereby the absolute position and orientation can be corrected. The unmanned trolley-side transceiver device according to claim 3, wherein a plurality of the unmanned trolley-side transceiver devices are arranged on an outer periphery of the unmanned trolley, and the unmanned trolley-side transceiver device succeeds in communication with the outside environment transceiver device. Based on the place where is installed,
It is characterized in that the relative position or orientation between the unmanned trolley and the outside environment side transceiver is estimated. According to the traveling support device for an unmanned vehicle described in claim 3, it is possible to reliably correct the wireless communication with the external environment transmitting / receiving device regardless of the posture change due to the accumulated error during traveling of the unmanned vehicle. The travel support device for an unmanned trolley according to claim 4, wherein the unmanned trolley-side transceiver device has one or a plurality of the unmanned trolley-side transceiver devices, and the unmanned trolley-side transceiver device turns on the unmanned trolley. It is characterized by doing. According to the travel support device for an unmanned trolley of claim 4, it is possible to more reliably perform wireless communication with the external environment transmitting / receiving device. In addition, the position and orientation detection accuracy can be improved. According to a fifth aspect of the present invention, in the traveling support device for an unmanned vehicle, the external environment side transmitting / receiving device is mounted on a portable remote control device and transmits a traveling command of the unmanned vehicle. According to the traveling support device for an unmanned trolley of claim 5, workability of an operator who operates the unmanned trolley can be improved. The travel support device for an unmanned trolley according to claim 6, wherein the external environment side transceiver device is
It is characterized in that it is arranged in front of an obstacle or a step that should not be approached by the unmanned trolley, and information on the obstacle or the step is transmitted to the unmanned trolley. According to the traveling support device for an unmanned trolley of claim 6, it is possible to avoid an obstacle that should not be approached, a step, a dead end, or the like. The traveling support device for an unmanned vehicle according to claim 7,
The external environment side transmitting / receiving device is installed on another unmanned bogie, and exchanges external environment information such as obstacle data and current position information between the unmanned bogies. According to the traveling support device for the unmanned bogie of claim 7,
It is possible to prevent a plurality of unmanned trolleys from colliding with each other. In addition, the amount of information can be increased and work can be made more efficient. The traveling assistance device for an unmanned trolley according to claim 8, wherein the directivity of communication between the unmanned trolley-side transceiver device and the external environment-side transceiver device includes two communication means, a wide area directivity and a narrow area directivity, respectively. It is characterized by being equipped. According to the traveling support device for an unmanned trolley of claim 8, it is possible to perform accurate position correction in a wide range.

【0005】[0005]

【発明の実施の形態】本発明の実施の形態を図に基づい
て詳細に説明する。 (第1の実施形態)本発明の第1の実施形態を図1に示
す。図1は無人台車の走行支援装置を示す模式図で、
(a)は斜視図、(b)(c)図は上面図である。図1におい
て、101は無人台車、102は無人台車側送受信装置、103
は外環境の壁面、104は壁面103に固定された外環境側送
受信装置、105は無人台車側送受信装置102の通信可能領
域、106は外環境側送受信装置104の通信可能領域であ
る。無人台車および外環境の壁面に設けた送受信装置に
用いた無線通信手段を図2に示す。図2は指向性の高い
無線通信手段を示す詳細図である。この無線通信手段は
赤外線通信を用いており、その通信可能領域は指向性を
持つように設定されている。図2の201は赤外線通信の
送受信ユニット、202は赤外線送信器、203は赤外線受信
器である。送受信ユニット201にはコーン204を被せ、赤
外線の送受信範囲205を狭めて指向性幅を狭くしてい
る。つぎに、本実施例の動作について述べる。無人台車
側送受信装置102は一定周期ごとにトリガ信号を発信し
ているが、図1(b)のように無人台車101が外環境側送受
信装置104の近傍に来たときにも、赤外線通信の指向性
が高いために、無人台車側送受信装置102と外環境側送
受信装置104との間には通信が発生しない。図1(c)のよ
うに、無人台車側送受信装置102の通信可能領域105と外
環境側送受信装置104の通信可能領域106が重なったとき
に、初めて外環境側送受信装置104は無人台車側送受信
装置102のトリガ信号を受信する。そうすると外環境側
送受信装置104は受信通知信号を発信する。無人台車側
送受信装置102は、この受信通知信号を受信した時点
で、外環境側送受信装置104に対して無線通信手段の指
向性幅の1/2の誤差を有する近傍にあるが、無線通信
手段に狭域の指向性を持たせ、通信可能な指向性幅を狭
くしているので、通信成立時には外環境側送受信装置に
対する無人台車の位置が、特にX軸方向(進行方向)に
関して誤差を少なく特定できる。外環境側送受信装置の
絶対位置を無人台車にあらかじめ登録しているので、図
示しない無人台車側演算器により、外環境側送受信装置
の絶対位置と内界センサで計測しているスタート地点か
らの相対位置データとを比較し、これをもとに自己位置
を補正することができる。外環境側送受信装置が走行経
路中に複数ある場合は、外環境側送受信装置が発信する
受信通知信号の内容は、外環境側送受信装置を特定でき
るID番号のようなものであってもよい。 (第2の実施形態)本発明の第2の実施形態を図3に示
す。図3は、本発明の第2の実施形態を示す無人台車の
走行支援装置の模式図である。本実施形態は通路の両側
に本走行支援装置を設置した例である。図において、30
1〜306は図1の101〜106と同じ機能であり、307は反
対側の無人台車側送受信装置、308は反対側の外環境の
壁面、309は壁面108に固定された外環境側送受信装置、
310は無人台車側送受信装置307の通信可能領域、311は
外環境側送受信装置309の通信可能領域である。つぎ
に、本実施例の動作について述べる。外環境側送受信装
置を通路の両側に配置することにより、無人台車301が
累積誤差により傾いて進入してきた場合に、無人台車側
送受信装置302および307の受信の有無によって、無人台
車301の姿勢を検出することができる。さらに無人台車
側送受信装置302および307がどちらも受信できるように
無人台車301の姿勢を変更することにより、累積姿勢誤
差を補正することができる。外環境の絶対位置情報を送
信する場合は、つぎのようにする。すなわち、図1(c)
において無人台車側送受信装置102のトリガ信号が外環
境側送受信装置104に受信されると、外環境側送受信装
置104は受信通知信号を発信する。無人台車側送受信装
置102はこの受信通知信号を受信すると、絶対位置デー
タ要求信号を発信する。外環境側送受信装置104は絶対
位置データ要求信号を受信すると、あらかじめ記憶され
ている外環境側送受信装置104固有の絶対位置データを
発信する。無人台車側送受信装置102はこのデータを外
環境側送受信装置104の絶対位置データとして受信す
る。すなわち、この方法によれば、通信が成立すること
によって、無人台車が外環境側送受信装置の近傍にある
ことが検出できると同時に、前記外環境側送受信装置の
絶対位置姿勢も検出できる。これにより、外環境側送受
信装置の絶対位置を無人台車にあらかじめ登録すること
なく、絶対位置姿勢の補正を行うことができる。 (第3の実施形態)本発明の第3の実施形態を図4に示
す。図4は、本発明の第3の実施形態を示す無人台車の
走行支援装置の模式図である。本実施形態は請求項2記
載に記載されているもので、通信可能領域を対向するよ
うに配置し、いずれか一方に狭域の指向性を有する通信
手段、もう一方に広域の指向性を有する通信手段を装備
させた実施例を示している。図4において、401は無人
台車、402は無人台車側送受信装置であり、403は無人台
車側送受信装置402の通信可能領域である。また404は停
留ステーション等に取りつけられた外環境側送受信装置
であり、405は外環境側送受信装置404の通信可能領域で
ある。無人台車側送受信装置402の指向性は狭く、外環
境側送受信装置404の指向性は広く設定されている。例
えば図4(a)のように無人台車401が姿勢誤差を伴ってス
テーション前に到達した場合、無人台車側送受信装置40
2と外環境側送受信装置403との間には通信が成立しな
い。ここで無人台車401は、旋回しては直進するモード
を繰り返しているので、図4(b)のようにある姿勢で無
人台車側送受信装置402と外環境側送受信装置403との間
に通信が成立する。この通信の成立した方向に向かって
無人台車401を走行させることにより、無人台車401を停
留ステーションに誘導することができる。停留ステーシ
ョンに到達した時点であらかじめ登録された停留ステー
ションの絶対位置を用いることで、絶対位置姿勢の補正
を行うことができる。本実施例では無人台車側送受信装
置402の指向性を狭く、外環境側送受信装置404の指向性
を広く設定されているが、この逆でも同様の効果があ
る。 (第4の実施形態)本発明の第4の実施形態を図5に示
す。図5は、本発明の第4の実施形態を示す無人台車の
走行支援装置の模式図である。本実施形態は請求項3記
載に記載されているもので、無人台車側送受信装置を無
人台車の外周上に複数配置した例である。図5におい
て、501は無人台車、502〜504は無人台車側送受信装置
であり、505〜507は無人台車側送受信装置502〜504の通
信可能領域である。また508は停留ステーション等に取
りつけられた外環境側送受信装置であり、509は外環境
側送受信装置508の通信可能領域である。図のように外
環境側送受信装置が水平面内に複数個配置されており、
図5(a)のように正面の外環境側送受信装置503ではなく
左側の外環境側送受信装置502が通信に成功した場合、
無人台車501は右に傾いていると判断し、図5(b)のよう
に、正面の外環境側送受信装置506が通信可能になるま
で旋回する。このように、無人台車側送受信装置を無人
台車の外周上に複数配置することで、走行中の累積誤差
による姿勢変化を補正し、正しい方向を向くことができ
る。 (第5の実施形態)本発明の第5の実施形態を図6に示
す。図6は、本発明の第5の実施形態を示す無人台車の
走行支援装置の模式図である。本実施形態は、請求項4
記載に記載されているもので、無人台車側送受信手段が
無人台車上で旋回するように構成された例である。無人
台車601の上に搭載された無人台車側送受信装置602が、
モータ603によって垂直軸まわりに旋回する。このとき
モータ603の角度は角度測定器604によって測定される。
これにより、通信可能領域605は水平面内周囲を切れ目
なく走査でき、外環境側送受信装置を確実に検出でき
る。また、通信が成立した時の無人台車側送受信装置60
2の無人台車601に対する角度は角度測定器604によって
正確に計測されるので、無人台車601に対する外環境側
送受信装置の方向を精度良く認識することができる。 (第6の実施形態)本発明の第6の実施形態を図7に示
す。図7は、本発明の第6の実施形態を示す無人台車の
走行支援装置の模式図である。本実施形態は、請求項5
記載に記載されているもので、外環境側送受信装置を携
帯型遠隔操作装置に搭載した例である。全方向移動可能
な無人台車701を操作するため携帯型遠隔操作装置702上
に設置されたボタン703〜706を押して無線通信により進
行方向を指示する場合、無人台車701と携帯型遠隔操作
装置702の姿勢が一致していないと、無人台車701を操作
するオペレータから見た前記携帯型遠隔操作装置702の
ボタンの方向と実際に前記無人台車701が進む方向が異
なることになり、前記オペレータにとって作業性が悪
い。そこで携帯型遠隔操作装置702に外環境側送受信装
置707、無人移動台車701上に無人台車側送受信装置708
〜715を設置する。これにより、無人搬送台車701は受信
に成功した無人台車側送受信装置の位置をもとに、どの
方向から携帯型遠隔操作装置702の赤外線が発射された
かを推定し、また通信内容から押されたボタンの種類を
判別する。押されたボタンの方向を赤外線の発射された
方向で座標変換することで、前記オペレータの意図した
方向に無人搬送台車701を動作させることができる。当
然本実施例における無人台車側送受信装置は、請求項4
に示すような旋回式の受信装置であっても構わない。 (第7の実施形態)本実施形態は、請求項6に記載され
ているもので、外環境側送受信装置を無人台車が接近す
べきでない障害物に予め貼りつけておいたり、段差や行
き止まり等で通過すべきではない場所の壁に設置してお
くものである。無人台車が付近まで来ると、無人台車側
送受信装置が一定周期ごとに発信するトリガ信号を、障
害物や壁に設置された外環境側送受信装置が受信して、
外環境側送受信装置から、停止あるいは引き返し等の指
令が発信される。これを受信した前記無人台車が回避行
動をとることにより、接近すべきでない障害物、または
段差や行き止まり等との遭遇を未然に回避することがで
きる。 (第8の実施形態)本実施形態は、請求項7に記載され
ているもので、同一フロア内を複数の無人台車が走行す
る環境において、外環境側送受信装置が、全ての無人台
車上に設置されている。複数の無人台車が接近すると、
各々の無人台車側送受信装置と前記外環境側送受信装置
とが交信して現在位置情報を連絡し合う。これにより、
互いの接近を検知して衝突を未然に回避することができ
る。またフロア内の障害物データなどの環境情報を相互
に交換して、他の無人台車が得た情報を共有することに
より、情報量を増やし作業を効率化することができる。 (第9の実施形態)本実施形態は、請求項8に記載され
ているので、無人台車側送受信装置と外環境側送受信装
置は、それぞれ広域の指向性と狭域の指向性の2つの通
信手段を装備している。2つの通信手段は互いに独立で
あり、干渉を起こさないように設定されている。無人台
車はまず広域の指向性を有する通信手段で、広い範囲か
ら確実に外環境側送受信装置を認識し、さらに外環境側
送受信装置に接近後は、狭域の指向性を有する通信手段
で、精度良く外環境側送受信装置を認識することによ
り、広範囲にかつ精度の良い位置補正を行うことができ
る。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail with reference to the drawings. (First Embodiment) FIG. 1 shows a first embodiment of the present invention. FIG. 1 is a schematic diagram showing a driving support device for an unmanned trolley,
(a) is a perspective view and (b) and (c) are top views. In FIG. 1, 101 is an unmanned trolley, 102 is an unmanned trolley side transceiver device, 103
Is a wall surface of the external environment, 104 is an external environment transmitting / receiving apparatus fixed to the wall surface 103, 105 is a communicable area of the unmanned vehicle side transmitting / receiving apparatus 102, and 106 is a communicable area of the external environment side transmitting / receiving apparatus 104. FIG. 2 shows a wireless communication means used for an unmanned trolley and a transmitting / receiving device provided on the wall of the external environment. FIG. 2 is a detailed view showing a wireless communication means having high directivity. This wireless communication means uses infrared communication, and its communicable area is set to have directivity. In FIG. 2, 201 is a transmission / reception unit for infrared communication, 202 is an infrared transmitter, and 203 is an infrared receiver. The transmission / reception unit 201 is covered with a cone 204 to narrow the infrared transmission / reception range 205 to narrow the directivity width. Next, the operation of this embodiment will be described. Although the unmanned trolley-side transceiver device 102 transmits a trigger signal at regular intervals, even when the unmanned trolley 101 comes near the external environment-side transceiver device 104 as shown in FIG. Since the directivity is high, communication does not occur between the unmanned vehicle-side transceiver device 102 and the external environment-side transceiver device 104. As shown in FIG. 1 (c), when the communicable area 105 of the unmanned trolley-side transceiver 102 and the communicable area 106 of the outside environment transceiver 104 overlap, the outside environment transmitter / receiver 104 transmits / receives to the unmanned truck for the first time. A trigger signal for the device 102 is received. Then, the external environment transmitting / receiving device 104 transmits a reception notification signal. Although the unmanned trolley-side transceiver device 102 is in the vicinity having an error of 1/2 of the directivity width of the wireless communication means with respect to the external environment-side transceiver device 104 at the time of receiving the reception notification signal, the wireless communication means Since the directivity of the unmanned trolley is narrowed by making the directivity of the communication range narrower, the error of the position of the unmanned trolley with respect to the external environment side transmitter / receiver can be reduced especially in the X-axis direction (travel direction) when communication is established. Can be specified. Since the absolute position of the external environment transmitter / receiver is registered in the unmanned trolley in advance, the absolute position of the external environment transmitter / receiver and the relative position from the start point measured by the internal sensor are calculated by the unmanned trolley side calculator. The self position can be corrected based on comparison with the position data. When there are a plurality of outside environment side transmitting / receiving devices on the travel route, the content of the reception notification signal transmitted by the outside environment side transmitting / receiving device may be something like an ID number for identifying the outside environment side transmitting / receiving device. (Second Embodiment) FIG. 3 shows a second embodiment of the present invention. FIG. 3 is a schematic diagram of a travel support device for an unmanned vehicle showing a second embodiment of the present invention. The present embodiment is an example in which the traveling support devices are installed on both sides of the passage. In the figure, 30
1 to 306 have the same functions as 101 to 106 in FIG. 1, 307 is an unmanned trolley-side transmitter / receiver on the opposite side, 308 is a wall of the opposite outside environment, and 309 is an outside environment transmitter / receiver fixed to the wall 108. ,
Reference numeral 310 is a communicable area of the transceiver apparatus 307 on the unmanned vehicle side, and 311 is a communicable area of the transceiver apparatus 309 on the external environment side. Next, the operation of this embodiment will be described. By arranging the external environment side transceivers on both sides of the aisle, the posture of the unmanned trolley 301 can be adjusted depending on whether the unmanned trolley side transceivers 302 and 307 are receiving when the unmanned trolley 301 enters at an angle due to accumulated error. Can be detected. Further, by changing the posture of the unmanned trolley 301 so that both the unmanned trolley side transceiver devices 302 and 307 can receive, the accumulated posture error can be corrected. To send the absolute position information of the external environment, do the following. That is, FIG. 1 (c)
When the trigger signal of the unmanned trolley-side transceiver device 102 is received by the external environment-side transceiver device 104, the external environment-side transceiver device 104 transmits a reception notification signal. When the unmanned trolley-side transceiver device 102 receives this reception notification signal, it transmits an absolute position data request signal. Upon receiving the absolute position data request signal, the external environment side transmitting / receiving device 104 transmits the absolute position data unique to the external environment side transmitting / receiving device 104 stored in advance. The unmanned trolley-side transceiver device 102 receives this data as absolute position data of the external environment-side transceiver device 104. That is, according to this method, it is possible to detect that the unmanned trolley is in the vicinity of the external environment side transmitting / receiving device and also to detect the absolute position / orientation of the external environment side transmitting / receiving device by the establishment of communication. This makes it possible to correct the absolute position and orientation without registering the absolute position of the external environment transmitting / receiving device in the unmanned vehicle in advance. (Third Embodiment) FIG. 4 shows a third embodiment of the present invention. FIG. 4 is a schematic diagram of a traveling support device for an unmanned vehicle showing a third embodiment of the present invention. In this embodiment, the communication areas are arranged so as to face each other, and one of them has a narrow area directivity, and the other has a wide area directivity. An embodiment equipped with communication means is shown. In FIG. 4, 401 is an unmanned trolley, 402 is an unmanned trolley-side transceiver, and 403 is a communicable area of the unmanned trolley-side transceiver 402. Further, 404 is a transmitter / receiver on the external environment side attached to a station or the like, and 405 is a communicable area of the transmitter / receiver 404 on the external environment side. The directivity of the transceiver 402 on the unmanned vehicle side is narrow, and the directivity of the transceiver 404 on the external environment side is wide. For example, when the unmanned trolley 401 arrives in front of the station with an attitude error as shown in FIG.
No communication is established between 2 and the external environment transmitting / receiving device 403. Here, since the unmanned trolley 401 repeats the mode of turning and going straight, communication is performed between the unmanned trolley side transceiver device 402 and the external environment side transceiver device 403 in a certain posture as shown in FIG. 4B. To establish. By running the unmanned bogie 401 in the direction in which this communication is established, the unmanned bogie 401 can be guided to the stop station. The absolute position and orientation can be corrected by using the absolute position of the stationary station registered in advance at the time of reaching the stationary station. In this embodiment, the directivity of the unmanned trolley-side transceiver device 402 is set to be narrow and the directivity of the external environment-side transceiver device 404 is set to be wide, but the opposite effect is also obtained. (Fourth Embodiment) A fourth embodiment of the present invention is shown in FIG. FIG. 5: is a schematic diagram of the driving assistance device of an unmanned vehicle which shows the 4th Embodiment of this invention. This embodiment is described in claim 3, and is an example in which a plurality of unmanned trolley-side transceiver devices are arranged on the outer periphery of the unmanned trolley. In FIG. 5, 501 is an unmanned trolley, 502 to 504 are unmanned trolley side transceivers, and 505 to 507 are communicable areas of the unmanned trolley side transceivers 502 to 504. Further, 508 is a transmitting / receiving device on the outside environment side attached to a station or the like, and 509 is a communicable area of the transmitting / receiving device 508 on the outside environment side. As shown in the figure, a plurality of external environment side transceivers are arranged in the horizontal plane,
As shown in FIG. 5 (a), when the left-side environment-side transceiver 502 succeeds in communication instead of the front-side environment-side transceiver 503 on the front,
It is determined that the unmanned carriage 501 is tilted to the right, and as shown in FIG. 5B, the unmanned carriage 501 turns until the front environment-side transceiver device 506 becomes communicable. As described above, by disposing a plurality of unmanned trolley-side transceiver devices on the outer periphery of the unmanned trolley, it is possible to correct the posture change due to the accumulated error during traveling and head in the correct direction. (Fifth Embodiment) A fifth embodiment of the present invention is shown in FIG. FIG. 6 is a schematic diagram of a traveling support device for an unmanned vehicle showing a fifth embodiment of the present invention. The present embodiment provides claim 4.
It is described in the description, and is an example in which the unmanned vehicle side transmitting / receiving means is configured to turn on the unmanned vehicle. The unmanned trolley-side transceiver device 602 mounted on the unmanned trolley 601
A motor 603 rotates about a vertical axis. At this time, the angle of the motor 603 is measured by the angle measuring device 604.
As a result, the communicable area 605 can scan the inside of the horizontal plane without a break, and can reliably detect the external environment transmitting / receiving device. In addition, when the communication is established, the unmanned trolley-side transceiver device 60
Since the angle of 2 with respect to the unmanned trolley 601 is accurately measured by the angle measuring device 604, it is possible to accurately recognize the direction of the external environment side transceiver device with respect to the unmanned trolley 601. (Sixth Embodiment) FIG. 7 shows a sixth embodiment of the present invention. FIG. 7: is a schematic diagram of the driving assistance device of an unmanned vehicle which shows the 6th Embodiment of this invention. The present embodiment provides claim 5.
It is described in the description, and is an example in which the external environment side transmitting / receiving device is mounted on the portable remote control device. When pressing the buttons 703 to 706 installed on the portable remote control device 702 to operate the unmanned trolley 701 that is movable in all directions and instructing the traveling direction by wireless communication, the unmanned trolley 701 and the portable remote control device 702 are operated. If the postures do not match, the direction of the button of the portable remote operation device 702 seen by the operator who operates the unmanned trolley 701 and the direction in which the unmanned trolley 701 actually travels are different, and workability for the operator. Is bad. Therefore, the portable remote control device 702 has an external environment transmitter / receiver 707, and the unmanned mobile trolley 701 has an unmanned trolley side transmitter / receiver 708.
Install ~ 715. As a result, the unmanned transport vehicle 701 estimates from which direction the infrared ray of the portable remote control device 702 was emitted based on the position of the unmanned vehicle side transmitting / receiving device that has been successfully received, and is pushed from the communication content. Determine the type of button. By converting the direction of the pressed button into the direction in which infrared rays are emitted, the automated guided vehicle 701 can be operated in the direction intended by the operator. As a matter of course, the unmanned trolley-side transmitter-receiver according to the present embodiment is provided by claim 4.
It may be a turning type reception device as shown in FIG. (Seventh Embodiment) This embodiment is described in claim 6, in which the external environment transmitting / receiving device is attached in advance to an obstacle which the unmanned vehicle should not approach, a step, a dead end, or the like. It should be installed on the wall where it should not pass. When the unmanned trolley comes to the vicinity, the unmanned trolley side transmitter / receiver receives a trigger signal transmitted at regular intervals by the obstacle transmitter or the external environment side transmitter / receiver installed on the wall,
A command to stop or turn back is transmitted from the external environment transmitting / receiving device. When the unmanned vehicle that receives this takes an avoidance action, it is possible to avoid encountering an obstacle that should not approach, a step, a dead end, or the like. (Eighth Embodiment) This embodiment is described in claim 7, and in an environment in which a plurality of unmanned trolleys travel on the same floor, the external environment side transmission / reception device is provided on all unmanned trolleys. is set up. When multiple unmanned trolleys approach each other,
Each unmanned vehicle side transmitting / receiving device and the external environment side transmitting / receiving device communicate with each other to communicate current position information. This allows
It is possible to avoid collision by detecting the approach of each other. Also, by exchanging environmental information such as obstacle data on the floor with each other and sharing the information obtained by other unmanned trolleys, it is possible to increase the amount of information and improve work efficiency. (Ninth Embodiment) Since the present embodiment is described in claim 8, the unmanned vehicle side transmitter / receiver and the external environment side transmitter / receiver respectively perform two communications of wide-area directivity and narrow-area directivity. Equipped with means. The two communication means are independent of each other and are set so as not to cause interference. The unmanned trolley is a communication means having a wide area directivity, and reliably recognizes the external environment side transmitting / receiving device from a wide range, and after approaching the external environment side transmitting / receiving device, a communication means having a narrow area directivity, By accurately recognizing the external environment transmitting / receiving device, it is possible to perform position correction in a wide range and with high accuracy.

【0006】[0006]

【発明の効果】請求項1記載の無人台車の走行支援装置
によれば、無線通信手段に狭域の指向性を持たせ、通信
可能な範囲を狭くしているので、通信成立時には外環境
側送受信装置に対する無人台車の位置が、特にX軸方向
(進行方向)に関して正確に特定でき、これをもとに自
己位置を補正することにより、無人台車の位置姿勢精度
を向上させることができる。また、通信成立によって、
無人台車と外環境側送受信装置との相対位置姿勢と同時
に、前記外環境側送受信装置の絶対位置姿勢も検出でき
ることにより、外環境側送受信装置の絶対位置を無人台
車にあらかじめ登録することなく、絶対位置姿勢の補正
を行うことができる。請求項2記載の無人台車の走行支
援装置によれば、通信の成立した方向に向かって無人台
車を走行させることにより、無人台車を停留ステーショ
ンに誘導することができ、これにより絶対位置姿勢の補
正を行うことができる。請求項3記載の無人台車の走行
支援装置によれば、無人台車側送受信装置の通信可能領
域は、無人台車の周囲の広い範囲をカバーできることに
より、無人台車の走行中の累積誤差による姿勢変化に関
わらず、外環境側送受信装置との無線通信を確実に補正
することができる。請求項4記載の無人台車の走行支援
装置によれば、無人台車側送受信装置の通信可能領域
は、無人台車の水平面内周囲を切れ目なく走査できるこ
とにより、請求項5よりもさらに確実に外環境側送受信
装置との無線通信を行うことができる。また、外環境側
送受信装置の方向を角度測定器で検出することにより、
位置姿勢の検出精度を向上させることができる。請求項
5記載の無人台車の走行支援装置によれば、無人台車を
操作するオペレータが無人台車に向けて携帯型遠隔操作
装置のボタンを押せば、オペレータから見て押されたボ
タンの方向と同じ方向に無人台車が移動することによ
り、オペレータの作業性を向上させることができる。請
求項6記載の無人台車の走行支援装置によれば、前記無
人台車が接近すべきでない障害物、または段差や行き止
まり等の付近まで来ると、壁に設置された外環境側送受
信装置から停止あるいは引き返し等の指令が発信され、
これを受信した前記無人台車が回避行動をとることによ
り、接近すべきでない障害物、または段差や行き止まり
等との遭遇を未然に回避することができる。請求項7記
載の無人台車の走行支援装置によれば、複数の無人台車
が接近すると、各々の無人台車側送受信装置が交信して
現在位置情報を連絡し合うことにより、互いに衝突を未
然に回避することができる。またフロア内の障害物デー
タなどの環境情報を相互に交換して、他の無人台車が得
た情報を共有することにより、情報量を増やし作業を効
率化することができる。請求項8記載の無人台車の走行
支援装置によれば、まず広域の指向性を有する通信手段
で、広い範囲から確実に外環境側送受信装置を認識し、
さらに外環境側送受信装置に接近後は、狭域の指向性を
有する通信手段で、精度良く外環境側送受信装置を認識
することにより、広範囲にかつ精度の良い位置補正を行
うことができる。
According to the traveling support device for an unmanned trolley according to claim 1, since the wireless communication means is provided with the directivity of a narrow area and the communicable range is narrowed, the outside environment side when communication is established. The position of the unmanned trolley with respect to the transmission / reception device can be accurately specified particularly in the X-axis direction (traveling direction), and the position and orientation accuracy of the unmanned trolley can be improved by correcting the self-position based on this. Also, due to the establishment of communication,
Since it is possible to detect the relative position and orientation of the unmanned trolley and the outside environment side transceiver at the same time as the absolute position and orientation of the outside environment side transceiver, the absolute position of the outside environment side transceiver is not registered to the unmanned trolley in advance, The position and orientation can be corrected. According to the traveling support device for an unmanned trolley of claim 2, the unmanned trolley can be guided to the stop station by causing the unmanned trolley to travel in the direction in which the communication is established, thereby correcting the absolute position and orientation. It can be performed. According to the traveling support device for an unmanned trolley of claim 3, the communication area of the unmanned trolley-side transceiver device can cover a wide range around the unmanned trolley, so that the posture change due to the accumulated error during traveling of the unmanned trolley. Regardless, it is possible to reliably correct wireless communication with the external environment transmitting / receiving device. According to the traveling support device for an unmanned trolley of claim 4, the communicable area of the transceiver of the unmanned trolley can scan the inside of the horizontal plane of the unmanned trolley seamlessly, so that the external environment side is more reliable than the unmanned trolley. It is possible to perform wireless communication with the transmitting / receiving device. Also, by detecting the direction of the external environment side transceiver with an angle measuring device,
The position and orientation detection accuracy can be improved. According to the traveling support device for an unmanned trolley of claim 5, if an operator who operates the unmanned trolley pushes a button of the portable remote control device toward the unmanned trolley, the direction of the pushed button is the same as that of the operator. By moving the unmanned cart in the direction, the workability of the operator can be improved. According to the traveling support device for an unmanned trolley of claim 6, when the unmanned trolley reaches an obstacle which should not approach, or near a step, a dead end, etc., the unmanned trolley stops or stops from the external environment side transceiver device. A command such as turning back is transmitted,
When the unmanned vehicle that receives this takes an avoidance action, it is possible to avoid encountering an obstacle that should not approach, a step, a dead end, or the like. According to the traveling support device for an unmanned trolley of claim 7, when a plurality of unmanned trolleys approach each other, each unmanned trolley side transceiver device communicates with each other to communicate the current position information, thereby avoiding a collision with each other. can do. Also, by exchanging environmental information such as obstacle data on the floor with each other and sharing the information obtained by other unmanned trolleys, it is possible to increase the amount of information and improve work efficiency. According to the driving support device for an unmanned trolley of claim 8, first, the external environment side transmitting / receiving device is surely recognized from a wide range by the communication means having wide-range directivity.
Further, after approaching the external environment side transmitting / receiving device, the external environment side transmitting / receiving device can be accurately recognized by the communication means having directivity in a narrow range, so that position correction can be performed in a wide range and with high accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施形態を示す無人台車の走行支
援装置の模式図
FIG. 1 is a schematic diagram of a travel support device for an unmanned bogie showing a first embodiment of the present invention.

【図2】本発明に用いた指向性の高い無線通信手段を示
す詳細図
FIG. 2 is a detailed diagram showing a highly directional wireless communication means used in the present invention.

【図3】本発明の第2の実施形態を示す無人台車の走行
支援装置の模式図
FIG. 3 is a schematic diagram of a travel support device for an unmanned bogie showing a second embodiment of the present invention.

【図4】本発明の第3の実施形態を示す無人台車の走行
支援装置の模式図
FIG. 4 is a schematic diagram of a traveling support device for an unmanned vehicle showing a third embodiment of the present invention.

【図5】本発明の第4の実施形態を示す無人台車の走行
支援装置の模式図
FIG. 5 is a schematic diagram of a travel support device for an unmanned vehicle showing a fourth embodiment of the present invention.

【図6】本発明の第5の実施形態を示す無人台車の走行
支援装置の模式図
FIG. 6 is a schematic diagram of a driving support device for an unmanned bogie showing a fifth embodiment of the present invention.

【図7】本発明の第6の実施形態を示す無人台車の走行
支援装置の模式図
FIG. 7 is a schematic diagram of a travel assistance device for an unmanned vehicle showing a sixth embodiment of the present invention.

【図8】従来の無人台車の走行支援装置を示す図FIG. 8 is a diagram showing a conventional travel support device for an unmanned bogie.

【図9】従来の無人台車の走行支援装置の位置補正方法
を示す図
FIG. 9 is a diagram showing a position correction method for a conventional travel support device for an unmanned bogie.

【図10】従来の無人台車の走行支援装置の問題点を示す
FIG. 10 is a diagram showing a problem of a conventional travel support device for an unmanned bogie.

【符号の説明】[Explanation of symbols]

101、301、401、501、601、701、901、1001 無人台車 102、302、402、502〜504、602、708〜715、902、1002
無人台車側送受信装置 103、303壁面 104、304、404、508、707、801、903、904、1003 外環
境側送受信装置 105、305無人台車側送受信装置の通信可能領域 106、306外環境側送受信装置の通信可能領域 201 赤外線通信の送受信ユニット 202 赤外線送信器 203 赤外線受信器 204 コーン 205赤外線の送受信範囲 307反対側の無人台車側送受信装置 308 反対側の外環境の壁面 309 壁面108に固定された外環境側送受信装置 310 無人台車側送受信装置307の通信可能領域 311 外環境側送受信装置309の通信可能領域 403 無人台車側送受信装置402の通信可能領域 405 外環境側送受信装置404の通信可能領域 505〜507は無人台車側送受信装置502〜504の通信可能領
域 509 外環境側送受信装置508の通信可能領域 603 モータ 604 角度測定器 702 携帯型遠隔操作装置 703〜706 ボタン 802 筐体 803LSI 804アンテナ 1004 無人台車側送受信装置の通信可能領域、 1005 外環境側送受信装置の通信可能領域
101, 301, 401, 501, 601, 701, 901, 1001 Unmanned bogies 102, 302, 402, 502-504, 602, 708-715, 902, 1002
Unmanned trolley side transceiver 103, 303 Wall surface 104, 304, 404, 508, 707, 801, 903, 904, 1003 Outside environment side transceiver 105, 305 Unmanned trolley side transceiver range 106, 306 Outside environment side transceiver Device communication area 201 Infrared transmission / reception unit 202 Infrared transmitter 203 Infrared receiver 204 Cone 205 Infrared transmission / reception range 307 Opposite unmanned trolley side transceiver 308 Opposite outside wall 309 Fixed to wall 108 Outside environment side transmitter / receiver 310 Communication area of unmanned trolley side transmitter / receiver 307 311 Communication area of outside environment side transmitter / receiver 309 Communication area of unmanned truck side transmitter / receiver 402 405 Communication area of outside environment side transceiver 404 507 is an unmanned trolley side transceiver device 502 to 504 communicable area 509 Outside environment transceiver device 508 communicable area 603 Motor 604 Angle measuring device 702 Portable remote operation device 703 to 706 Button 802 Housing 803 LSI 804 Antenna 1004 Unmanned Trolley Communicable area of the transceiver, the communication area of 1005 outside environment side transceiver device

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H301 AA01 BB05 FF05 FF11 GG08 GG16 LL01 5K067 BB21 DD20 EE02 EE12 FF03 JJ51 JJ54 KK02    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 5H301 AA01 BB05 FF05 FF11 GG08                       GG16 LL01                 5K067 BB21 DD20 EE02 EE12 FF03                       JJ51 JJ54 KK02

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】無人台車に設けられトリガ信号を発信する
無人台車側送信器と前記無人台車が走行する外環境側か
ら走行に必要な絶対位置等各種の走行情報を受信する無
人台車側受信器とを設けた無人台車側通信手段および前
記走行情報に基づき種々の演算を実行する無人台車側演
算手段とからなる無人台車側送受信装置と、前記外環境
に設置され前記トリガ信号を受信する外環境側受信器と
前記外環境側受信器が前記トリガ信号を受けると前記走
行情報を送信する外環境側送信器とを設けた外環境側通
信手段および外環境側演算手段とからなる外環境側送受
信装置と、を備えた無人台車の走行支援装置において、 前記双方の通信手段は、通信の指向性を高めるように配
置した無線通信手段を有することを特徴とする無人台車
の走行支援装置。
1. An unmanned trolley-side transmitter that is provided on an unmanned trolley and transmits a trigger signal, and an unmanned trolley-side receiver that receives various traveling information such as an absolute position necessary for traveling from the outside environment side on which the unmanned trolley travels. And an unmanned trolley-side transceiver means provided with an unmanned trolley-side communication means and an unmanned trolley-side computing means for performing various calculations based on the traveling information, and an external environment installed in the external environment and receiving the trigger signal. Environment side transmission / reception comprising an outside environment side communication means and an outside environment side computing means provided with an outside environment side transmitter and an outside environment side transmitter for transmitting the traveling information when the outside environment side receiver receives the trigger signal. In the travel support device for an unmanned trolley, the communication means for both of the devices includes a wireless communication means arranged to enhance the directivity of communication.
【請求項2】前記外環境側無線通信手段は、その通信可
能領域を前記無人台車に対向するように配置し、無人台
車側無線通信手段および外環境側無線通信手段のいずれ
か一方に狭域の指向性を有する通信手段を、他方に広域
の指向性を有する通信手段を備えたことを特徴とする請
求項1記載の無人台車の走行支援装置。
2. The outside environment side wireless communication means is arranged such that its communicable area faces the unmanned trolley, and a narrow area is provided in either the unmanned trolley side wireless communication means or the outside environment side wireless communication means. 2. The traveling support device for an unmanned vehicle according to claim 1, further comprising a communication means having the directivity of 1) and a communication means having the directivity of a wide area on the other side.
【請求項3】前記無人台車側通信手段は、前記無人台車
の外周上に複数配置され、前記無人台車側演算手段は既
に通信が成立した前記外環境側送受信装置の設置場所を
もとに、前記無人台車と前記外環境側送受信装置との相
対位置あるいは姿勢を演算することを特徴とする請求項
1または2記載の無人台車の走行支援装置。
3. A plurality of the unmanned trolley side communication means are arranged on the outer periphery of the unmanned trolley, and the unmanned trolley side computing means is based on the installation location of the outside environment side transceiver device with which communication has already been established. The travel support device for an unmanned trolley according to claim 1 or 2, wherein a relative position or a posture between the unmanned trolley and the external environment side transceiver is calculated.
【請求項4】前記無人台車側通信手段は、前記無人台車
上で旋回することを特徴とする請求項1から3のいずれ
か1項に記載の無人台車の走行支援装置。
4. The traveling support device for an unmanned trolley according to claim 1, wherein the unmanned trolley side communication means turns on the unmanned trolley.
【請求項5】前記外環境側送受信装置は、オペレータが
遠隔操作によって前記無人台車の進行方向を指示する携
帯型遠隔操作装置に搭載され、前記無人台車の走行指令
を送信することを特徴とする請求項1から4のいずれか
1項に記載の無人台車の走行支援装置。
5. The outside environment side transmitter / receiver is mounted on a portable remote operation device for an operator to remotely control the traveling direction of the unmanned trolley, and transmits a traveling command of the unmanned trolley. The travel support device for an unmanned trolley according to any one of claims 1 to 4.
【請求項6】前記外環境側送受信装置は、前記無人台車
が接近すべきでない障害物や段差の手前に配置され、前
記無人台車に障害物や段差の情報を送信することを特徴
とする請求項1から4のいずれか1項に記載の無人台車
の走行支援装置。
6. The outside environment side transmitting / receiving device is arranged in front of an obstacle or a step that the unmanned trolley should not approach, and transmits information on the obstacle or the step to the unmanned trolley. Item 5. A travel assistance device for an unmanned vehicle according to any one of items 1 to 4.
【請求項7】前記外環境側送受信装置は、他の無人台車
上に設置され、各々の無人台車間で、障害物データ、現
在位置情報などの外環境情報を授受することを特徴とす
る請求項1から4のいずれか1項に記載の無人台車の走
行支援装置。
7. The external environment side transmitter / receiver is installed on another unmanned trolley, and transmits / receives external environment information such as obstacle data and current position information between each unmanned trolley. Item 5. A travel assistance device for an unmanned vehicle according to any one of items 1 to 4.
【請求項8】前記無人台車側送受信装置と外環境側送受
信装置間の通信の指向性は、広域の指向性と狭域の指向
性の2つの通信手段を各々装備させることを特徴とする
請求項1から7のいずれか1項に記載の無人台車の走行
支援装置。
8. The directivity of communication between the unmanned trolley-side transceiver device and the external environment-side transceiver device is provided with two communication means, a wide area directivity and a narrow area directivity, respectively. Item 7. A travel support device for an unmanned vehicle according to any one of items 1 to 7.
JP2001255426A 2001-08-27 2001-08-27 Drive assisting device for unattended truck Pending JP2003069475A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001255426A JP2003069475A (en) 2001-08-27 2001-08-27 Drive assisting device for unattended truck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001255426A JP2003069475A (en) 2001-08-27 2001-08-27 Drive assisting device for unattended truck

Publications (1)

Publication Number Publication Date
JP2003069475A true JP2003069475A (en) 2003-03-07

Family

ID=19083395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001255426A Pending JP2003069475A (en) 2001-08-27 2001-08-27 Drive assisting device for unattended truck

Country Status (1)

Country Link
JP (1) JP2003069475A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012071690A (en) * 2010-09-29 2012-04-12 Honda Motor Co Ltd Omnidirectional moving body operation system, and omnidirectional moving body operation method
JP5656316B1 (en) * 2014-04-17 2015-01-21 善郎 水野 System including a marker device and method using the same
CN108121352A (en) * 2017-10-31 2018-06-05 深圳市博鑫创科科技有限公司 The method and system that a kind of balance car is stopped automatically
JP2020509500A (en) * 2017-03-02 2020-03-26 ロブアート ゲーエムベーハーROBART GmbH Control method of autonomous mobile robot

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012071690A (en) * 2010-09-29 2012-04-12 Honda Motor Co Ltd Omnidirectional moving body operation system, and omnidirectional moving body operation method
JP5656316B1 (en) * 2014-04-17 2015-01-21 善郎 水野 System including a marker device and method using the same
JP2015212621A (en) * 2014-04-17 2015-11-26 善郎 水野 System including marker device, and method utilizing the same
JP2020509500A (en) * 2017-03-02 2020-03-26 ロブアート ゲーエムベーハーROBART GmbH Control method of autonomous mobile robot
CN108121352A (en) * 2017-10-31 2018-06-05 深圳市博鑫创科科技有限公司 The method and system that a kind of balance car is stopped automatically

Similar Documents

Publication Publication Date Title
US6459966B2 (en) Navigating method and device for an autonomous vehicle
US6799099B2 (en) Material handling systems with high frequency radio location devices
CN108780317B (en) Automatic carrying vehicle
US11173799B2 (en) Method for guiding a motor vehicle into a charging position at an inductive charging station, and control device and motor vehicle
KR101805423B1 (en) ICT based Stereo Vision guided vehicle system for the next generation smart factory
CN105103069A (en) Automatic guided vehicle
WO2019054208A1 (en) Mobile body and mobile body system
JP2006209567A (en) Guidance device for automated guided vehicle
EP4276562A1 (en) Transport system and transport control method
JP2011037371A (en) Train position detection device
JP5727752B2 (en) Autonomous transport system
CN103076804A (en) Automatic guide vehicle, automatic guide system and navigation method based on ultrasonic range finder
JP2020136876A (en) Base station selection device and base station selection method
JP2003069475A (en) Drive assisting device for unattended truck
JP2003005833A (en) Radio controller for movable cart
JP2009134438A (en) Operation management system and operation management method for self-propelled carrier
CN112997091A (en) Device for determining the position of an object that can move relative to a vehicle and vehicle equipped with such a device
CN107831759B (en) Transport system with automatic binding function
KR20170050499A (en) System for controlling Automatic guided vehicle
JP2019165374A (en) Mobile body and mobile system
JP7283152B2 (en) Autonomous mobile device, program and steering method for autonomous mobile device
JP2006163558A (en) Control device of moving truck
JP2000242333A (en) Method and system for managing operation of autonomous travel robot
JP2005149008A (en) Automatic conveying carriage and conveying system
AU2023201201B2 (en) Own position calculating device