JP2003068177A - Adaptive overcurrent detecting cutout element allowing setting of detection level - Google Patents

Adaptive overcurrent detecting cutout element allowing setting of detection level

Info

Publication number
JP2003068177A
JP2003068177A JP2001256004A JP2001256004A JP2003068177A JP 2003068177 A JP2003068177 A JP 2003068177A JP 2001256004 A JP2001256004 A JP 2001256004A JP 2001256004 A JP2001256004 A JP 2001256004A JP 2003068177 A JP2003068177 A JP 2003068177A
Authority
JP
Japan
Prior art keywords
overcurrent detection
electromagnetic pole
fine powder
temperature
electromagnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001256004A
Other languages
Japanese (ja)
Inventor
Yoshikazu Ichiyama
義和 市山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Holon Co Ltd
Original Assignee
Holon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Holon Co Ltd filed Critical Holon Co Ltd
Priority to JP2001256004A priority Critical patent/JP2003068177A/en
Publication of JP2003068177A publication Critical patent/JP2003068177A/en
Pending legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inexpensive adaptive overcurrent detecting cutout element allowing an overcurrent detection level to be set arbitrarily from the outside or by a electric potential at both ends of the element. SOLUTION: This adaptive overcurrent detecting cutout element comprises a pair of electromagnetic poles in the magnetic circuit of a permanent magnet, insulating oil and conductive temperature sensing magnetic substance fine powder between the pair of electromagnetic poles, and an electromagnet having a magnetic circuit partly formed of the pair of electromagnetic poles. The conductive temperature sensing magnetic substance fine powder is as small as approx. 0.2 to 0.3 micron meter which is enough not to lose temperature sensing ferrite magnetism. A gold of approx. 100 Å is coated on the surface of the powder. The amount of the conductive temperature sensing magnetic substance fine powder arrested between the pair of electromagnetic poles by the electromagnet is controlled to vary an electric resistance between the pair of electromagnetic poles so as to vary a produced heat quantity in order to change an overcurrent level which leads the temperature to a Curie-point as the result of temperature rising.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,過電流検出遮断素子に
拘わり,特に遮断後は一定時間後に復帰導通し,その過
電流検出レベルを素子両端の電位有無により変えること
を特徴とする適応型過電流検出遮断素子に拘わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an overcurrent detection cutoff element, and in particular, it is made to return and conduct after a fixed time after cutoff, and the overcurrent detection level is changed by the presence or absence of a potential across the element. Related to the overcurrent detection cutoff element.

【0002】[0002]

【従来の技術】機器に流れる電流を検出し,過電流を検
出した場合にはその機器への給電を停止する手段は古く
から使用され,機器及び周囲の安全対策として広く用い
られている。また,一時的な過負荷により過電流となる
場合を想定して過電流を検出遮断した後,一定時間後に
復帰導通するような安価な素子もPCTとして知られ広
く用いられている。しかしながら,それらの過電流検出
遮断素子における過電流の検出レベルは設計製造時にお
ける設定により外部から任意に制御することは出来な
い。さらにそれら過電流検出遮断素子両端の電位状態に
より検出レベルを設定できる安価な素子は存在していな
かった。
2. Description of the Related Art A means for detecting a current flowing through a device and stopping power supply to the device when an overcurrent is detected has been used for a long time and is widely used as a safety measure for the device and its surroundings. In addition, an inexpensive element is also widely known and known as a PCT, in which an overcurrent is detected and interrupted on the assumption that an overcurrent is caused by a temporary overload, and then a return conduction is performed after a certain time. However, the overcurrent detection level of these overcurrent detection interrupting elements cannot be arbitrarily controlled from the outside by setting during designing and manufacturing. Furthermore, there is no inexpensive element that can set the detection level according to the potential state across the overcurrent detection cutoff element.

【0003】[0003]

【発明が解決しようとする課題】そこで本発明の目的
は,外部から任意に或いは素子両端の電位により過電流
検出レベルを設定できる安価な適応型過電流検出遮断素
子を実現提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to realize and provide an inexpensive adaptive overcurrent detection cutoff device in which the overcurrent detection level can be set externally or by the potential across the device.

【0004】[0004]

【課題を解決するための手段】本発明による適応型過電
流検出遮断素子は,永久磁石の磁気回路内にある電磁極
対と,電磁極対間の絶縁性オイル及び導電性感温磁性体
微粉と,前記電磁極対を磁気回路の一部とする電磁石と
より構成する。導電性感温磁性体微粉は感温フェライト
を磁性を失わない程度に小さく,0.2−0.3ミクロ
ンメートル程度として表面に金を100Å程度コーティ
ングして構成する。
An adaptive overcurrent detection interrupting element according to the present invention comprises an electromagnetic pole pair in a magnetic circuit of a permanent magnet, an insulating oil between the electromagnetic pole pair, and a conductive temperature-sensitive magnetic fine powder. , An electromagnet having the electromagnetic pole pair as a part of a magnetic circuit. The conductive temperature-sensitive magnetic fine powder is small enough not to lose the magnetism of the temperature-sensitive ferrite, and is made to have a thickness of about 0.2-0.3 μm, and the surface is coated with about 100Å of gold.

【0005】永久磁石は電磁極対間を磁気回路の一部と
して導電性感温磁性体微粉を捕捉し架橋せしめて電気的
に導通状態とする。電磁極対間を流れる電流は電磁極対
間の微少な電気抵抗により発熱するが,発熱量が微少で
有れば周囲へ逃げる熱量と平衡して昇温は一定レベルに
抑えられる。電流が所定レベルより大になると発熱量は
増して温度は上昇する。導電性感温磁性体微粉のキュリ
ー温度以上になると導電性感温磁性体微粉は磁性を失い
前記電磁極対間の磁束から離脱する。その結果,電磁極
対間の電気抵抗は著しく大となり電流は遮断される。温
度が下がり,前記キュリー温度以下になると導電性感温
磁性体微粉に磁性は戻り,再び電磁極対間に捕捉されて
電磁極対間の電気抵抗は下がり電流は流れる。
The permanent magnet captures the conductive temperature-sensitive magnetic substance fine powder as a part of the magnetic circuit between the electromagnetic pole pairs and bridges them to make them electrically conductive. The current flowing between the pair of electromagnetic poles generates heat due to the minute electric resistance between the pair of electromagnetic poles, but if the amount of heat generation is small, the temperature rise is suppressed to a certain level in equilibrium with the amount of heat that escapes to the surroundings. When the current exceeds a predetermined level, the amount of heat generated increases and the temperature rises. When the temperature exceeds the Curie temperature of the conductive thermosensitive magnetic powder, the conductive thermosensitive magnetic powder loses magnetism and is separated from the magnetic flux between the electromagnetic pole pairs. As a result, the electrical resistance between the electromagnetic pole pairs is significantly increased, and the current is cut off. When the temperature falls and becomes equal to or lower than the Curie temperature, the magnetism returns to the conductive temperature-sensitive magnetic substance fine powder, is again captured between the electromagnetic pole pairs, the electric resistance between the electromagnetic pole pairs is reduced, and the current flows.

【0006】電磁石は永久磁石と電磁極対及び導電性感
温磁性体微粉を磁気回路の一部として共有するので電磁
石からの磁束が電磁極対間で永久磁石の磁束を減じるよ
う電流駆動すると,電磁極対間に捕捉される導電性感温
磁性体微粉の量或いは密度を電磁石により制御出来るこ
とになる。したがって,電磁極対間の電気抵抗が変わる
ので発熱量は変わり,電流遮断に至る過電流の量を電磁
石で制御できることになる。
Since the electromagnet shares the electromagnetic pole pair with the permanent magnet and the conductive temperature-sensitive magnetic fine powder as a part of the magnetic circuit, when the magnetic flux from the electromagnet is current-driven so as to reduce the magnetic flux of the permanent magnet between the electromagnetic pole pairs, It is possible to control the amount or density of the conductive temperature-sensitive magnetic substance fine powder captured between the pole pairs by the electromagnet. Therefore, the electric resistance between the electromagnetic pole pairs changes, so the amount of heat generated changes, and the amount of overcurrent leading to current interruption can be controlled by the electromagnet.

【0007】このように電磁石により電磁極対間の導電
性感温磁性体微粉を移動制御せしめて過電流検出レベル
を変えることが出来るが,電磁石により移動せしめた導
電性感温磁性体微粉が電磁石の駆動条件を変えた後にも
直ちには元に戻らず一定時間後に徐々に復帰するよう構
成すれば過電流検出レベルを一定時間保持できる。本発
明の適応型過電流検出素子では電磁石により導電性磁性
体微粉の移動を開口が制限された或いは繊維状材質のあ
る領域間で実施させることで実現した。また電磁石を素
子の両端から共通電位へと流れる電流により駆動するよ
う構成して,素子両端の電位有無によって過電流検出レ
ベルが設定され,その過電流検出レベルが一定時間保持
されるような適応型過電流検出遮断素子を実現した。
As described above, it is possible to change the overcurrent detection level by controlling the movement of the conductive temperature-sensitive magnetic substance fine powder between the electromagnetic pole pairs by the electromagnet, but the conductive temperature-sensitive magnetic substance fine powder moved by the electromagnet drives the electromagnet. The overcurrent detection level can be maintained for a certain period of time if it is configured such that it does not immediately return to the original state even after changing the condition and gradually returns after a certain period of time. The adaptive overcurrent detecting element of the present invention is realized by moving the fine particles of the conductive magnetic material by the electromagnet between the areas where the openings are restricted or where the fibrous material is present. The electromagnet is configured to be driven by a current flowing from both ends of the element to a common potential, and the overcurrent detection level is set depending on the presence / absence of the potential across the element, and the overcurrent detection level is maintained for a certain period of time. An overcurrent detection cutoff element has been realized.

【作用】以上に説明したように永久磁石の磁気回路中に
ある電磁極対間に導電性感温磁性体微粉を封入し,電磁
極対間の導電性感温磁性体微粉を電磁石により制御でき
る構造で過電流検出レベルを任意に設定可能とした。ま
た,導電性感温磁性体微粉の移動に時定数を持たせるこ
とで過電流検出レベルを一定時間保持させ,さらに素子
両端の電位有無により過電流検出レベルを変えられるよ
うな適応型過電流検出遮断素子を実現した。
[Operation] As described above, the conductive temperature-sensitive magnetic substance fine powder is enclosed between the electromagnetic pole pairs in the magnetic circuit of the permanent magnet, and the conductive temperature-sensitive magnetic substance fine powder between the electromagnetic pole pairs can be controlled by the electromagnet. The overcurrent detection level can be set arbitrarily. Also, by giving a time constant to the movement of the conductive temperature-sensitive magnetic substance fine powder, the overcurrent detection level can be maintained for a certain period of time, and the overcurrent detection level can be changed depending on the presence or absence of the potential across the element. Realized the element.

【0008】[0008]

【発明の実施の形態】以下に本発明による適応型過電流
検出遮断素子について,その実施例及び原理作用等を図
面を参照しながら説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments and principles of the adaptive overcurrent detection interrupting device according to the present invention will be described below with reference to the drawings.

【0009】図1は,本発明による第一の実施例を示
し,(a)図は断面図を,(b),(c)図は電磁極対
周辺の斜視図を示す。電磁極対11,12は間隙を有し
て対向し,間に絶縁オイルと導電性感温磁性体微粉31
を封入し,永久磁石21と電磁極対11,12,及び導
電性感温磁性体微粉31とで磁気回路を形成する。番号
22は永久磁石21の磁化方向を示し,番号23は永久
磁石21より漏洩する磁束を示す。導電性感温磁性体微
粉31は電磁極対11,12間の磁界に捕捉されて両者
間を架橋し導通させる。電磁石はコア24,コイル25
とで構成し,引き出し線26に加える駆動電流により電
磁極対11,12に磁界を印可する。断面を示す(a)
図では明確でないが,電磁石は(a)図に示す電磁極対
11,12の手前側に磁界を印可するよう配置する。導
電性感温磁性体微粉31は感温フェライトを磁性を失わ
ない程度に小さく,0.2−0.3ミクロンメートル程
度として表面に金を100Å程度コーティングして構成
する。番号41,42はそれぞれ電磁石,電磁極対1
1,12を封止固定した樹脂を示す。
FIG. 1 shows a first embodiment according to the present invention, in which (a) is a sectional view, and (b) and (c) are perspective views around the electromagnetic pole pair. Electromagnetic pole pairs 11 and 12 face each other with a gap, and insulating oil and conductive temperature-sensitive magnetic fine powder 31 are placed between them.
And the permanent magnet 21, the electromagnetic pole pairs 11 and 12, and the conductive temperature-sensitive magnetic substance fine powder 31 form a magnetic circuit. The number 22 indicates the magnetization direction of the permanent magnet 21, and the number 23 indicates the magnetic flux leaking from the permanent magnet 21. The conductive temperature-sensitive magnetic substance fine powder 31 is trapped by the magnetic field between the electromagnetic pole pairs 11 and 12, and bridges and conducts the two. The electromagnet has a core 24 and a coil 25.
And a magnetic field is applied to the electromagnetic pole pairs 11 and 12 by the drive current applied to the lead wire 26. Shows a cross section (a)
Although not clear in the figure, the electromagnet is arranged so as to apply a magnetic field to the front side of the electromagnetic pole pairs 11 and 12 shown in FIG. The conductive temperature-sensitive magnetic substance fine powder 31 is made of a temperature-sensitive ferrite which is small enough not to lose its magnetism, and has a thickness of about 0.2 to 0.3 μm and is formed by coating the surface with about 100 Å of gold. Numbers 41 and 42 are electromagnet and electromagnetic pole pair 1, respectively.
The resin in which 1 and 12 are sealed and fixed is shown.

【0010】このような構成において,導電性感温磁性
体微粉31は電磁極対11,12間を導通させるが,小
さな抵抗を有して発熱昇温する。発熱量が少なければ周
囲に熱は放散し,温度上昇は微小で平衡する。しかし,
過大電流が流れると発熱量は大となり急激に昇温する。
温度が導電性感温磁性体微粉31のキュリー温度を超え
ると導電性感温磁性体微粉31は磁性を失い,電磁極対
11,12間を架橋していた導電性感温磁性体微粉31
はバラバラに分離して絶縁オイル中を浮遊し,電磁極対
11,12間の導通は失われる。時間の経過と共に導電
性感温磁性体微粉31の温度がキュリー温度以下になる
と再び磁性を取り戻して電磁極対11,12間を架橋,
導通せしめる。
In such a structure, the conductive temperature-sensitive magnetic substance fine powder 31 conducts between the electromagnetic pole pairs 11 and 12, but has a small resistance to heat up. If the calorific value is small, the heat is dissipated to the surroundings, and the temperature rise is minute and balanced. However,
When an excessive current flows, the amount of heat generated increases and the temperature rises rapidly.
When the temperature exceeds the Curie temperature of the conductive temperature-sensitive magnetic substance fine powder 31, the conductive temperature-sensitive magnetic substance fine powder 31 loses its magnetism, and the conductive temperature-sensitive magnetic substance fine powder 31 was bridging between the electromagnetic pole pairs 11 and 12.
Is separated into pieces and floats in the insulating oil, and the conduction between the electromagnetic pole pairs 11 and 12 is lost. When the temperature of the conductive temperature-sensitive magnetic substance fine powder 31 becomes less than the Curie temperature with the passage of time, the magnetism is regained and the electromagnetic pole pairs 11, 12 are bridged,
Make it conductive.

【0011】(b)図に示すように電磁極対間の間隙は
右側ほど大になるよう構成したので導電性感温磁性体微
粉31は左側の狭間隙部分に集中している。電磁石はこ
の電磁極対11,12の左側に磁界を印可するよう配置
し,永久磁石21とは逆方向の磁界を印可して左半分の
電磁極対11,12間の磁束量を減少させると,導電性
感温磁性体微粉は(c)図の番号32で示されるように
磁束密度が大となる右方に変位する。しかし,電磁極対
11,12の右半分の間隙は大に設定してあるので電気
抵抗は大であり,わずかの電流でも加熱,昇温しやすい
状態となる。すなわち,電磁石のコイル26に流す駆動
電流の多寡により遮断する過電流の検出レベルを制御で
きることになる。
Since the gap between the electromagnetic pole pairs becomes larger toward the right side as shown in FIG. 3B, the conductive temperature-sensitive magnetic substance fine powder 31 is concentrated in the narrow gap portion on the left side. The electromagnet is arranged so as to apply a magnetic field to the left side of the electromagnetic pole pairs 11 and 12, and when a magnetic field in the opposite direction to the permanent magnet 21 is applied to reduce the amount of magnetic flux between the left half electromagnetic pole pairs 11 and 12. , The conductive temperature-sensitive magnetic substance fine powder is displaced to the right where the magnetic flux density becomes large, as indicated by reference numeral 32 in FIG. However, since the gap between the right halves of the electromagnetic pole pairs 11 and 12 is set to be large, the electric resistance is large, and even a small amount of current can easily heat and raise the temperature. That is, it is possible to control the detection level of the overcurrent which is interrupted by the amount of the drive current flowing through the coil 26 of the electromagnet.

【0012】図2は,本発明の第二の実施例を示し,
(a)図は断面図を,(b),(c)図は電磁極対周辺
の平面図を示す。第二の実施例は同図に示すように永久
磁石21の磁気回路の一部で間隙内の導電性感温磁性体
微粉31及び絶縁オイルを共有するが,電気的には独立
の第一の電磁極対11,13,第二の電磁極対13,1
4と,第二の電磁極対13,14及びその間隙を磁気回
路の一部とする電磁石とで構成する。また第一の電磁極
対11,13及び第二の電磁極対13,14の間には繊
維状材質層44を配置して導電性感温磁性体微粉31の
移動抵抗を形成する。
FIG. 2 shows a second embodiment of the present invention,
The figure (a) shows a cross-sectional view, and the figures (b) and (c) show plan views around the electromagnetic pole pair. In the second embodiment, a part of the magnetic circuit of the permanent magnet 21 shares the conductive temperature-sensitive magnetic substance fine powder 31 and the insulating oil in the gap as shown in FIG. Pole pair 11,13, second electromagnetic pole pair 13,1
4 and the second pair of electromagnetic poles 13 and 14 and an electromagnet whose gap is a part of a magnetic circuit. A fibrous material layer 44 is arranged between the first electromagnetic pole pair 11 and 13 and the second electromagnetic pole pair 13 and 14 to form a movement resistance of the conductive temperature-sensitive magnetic substance fine powder 31.

【0013】第一及び第二の電磁極対は一方の電磁極1
3を共通としている。電磁極対間の間隙は(b)図に示
されるように中央を小とし,両端を大にするよう構成さ
れているので電磁石に電流を流してない(b)図では磁
束の集中する中央付近に導電性感温磁性体微粉31は集
中し,第一の電磁極対間11,13を架橋して導通せし
める。
The first and second electromagnetic pole pairs are one electromagnetic pole 1
3 is common. As shown in Figure (b), the gap between the electromagnetic pole pairs is configured so that the center is small and both ends are large, so no current is passed through the electromagnet. The conductive temperature-sensitive magnetic substance fine powder 31 concentrates on the surface of the first magnetic pole pair 11 and bridges the first electromagnetic pole pair 11 and 13 to make them conductive.

【0014】(c)図において電磁石のコイル25に電
流を流し,永久磁石21と同じ向きの磁束が第二の電磁
極対13,14間を通るよう駆動すると,第二の電磁極
対13,14間の磁束量は大となるので番号33で示す
ように導電性感温磁性体微粉は繊維状材質44を通って
第二の電磁極対13,14間に集まる。その結果,第一
の電磁極対11,13間の電気抵抗は大になり,発熱し
やすくなって過電流の検出レベルを下げることになる。
When a current is applied to the coil 25 of the electromagnet in FIG. 3C and a magnetic flux in the same direction as the permanent magnet 21 is driven so as to pass between the second electromagnetic pole pairs 13 and 14, the second electromagnetic pole pair 13 and Since the amount of magnetic flux between 14 is large, the conductive thermosensitive magnetic substance fine powder gathers between the second electromagnetic pole pairs 13 and 14 through the fibrous material 44 as indicated by numeral 33. As a result, the electric resistance between the first electromagnetic pole pair 11 and 13 becomes large, heat is easily generated, and the overcurrent detection level is lowered.

【0015】第一,第二の電磁極対の中間には繊維状材
質層44があるので導電性感温磁性体微粉の移動には時
間を要し,電磁石の駆動条件が変化した後も一定時間は
従前の過電流検出レベルが維持される。電磁石のコイル
を二つ設け,その各に素子両端から共通電位への電流が
流れるように構成すると,素子両端に電位がある,素子
の片方のみに電位がある,素子両端に電位は無いの3条
件で異なる過電流検出レベルを設定でき,一定時間保持
させることが出来る。繊維状材質層44はスリット或い
は微小孔の設けられた壁で構成することも出来る。
Since the fibrous material layer 44 is located between the first and second electromagnetic pole pairs, it takes time to move the fine particles of the conductive temperature-sensitive magnetic substance, and it takes a certain period of time even after the driving condition of the electromagnet changes. Maintains the previous overcurrent detection level. If two electromagnet coils are provided and a current flows from both ends of the element to a common potential in each of them, there is a potential at both ends of the element, there is a potential at only one side of the element, and there is no potential at both ends of the element. Different overcurrent detection levels can be set according to the conditions, and can be maintained for a certain period of time. The fibrous material layer 44 can also be composed of a wall provided with slits or minute holes.

【0016】図3は,本発明の第三の実施例を示し,
(a),(b)図は第二及び第三の電磁極対周辺の断面
図を,(c)図は第一及び第三の電磁極対の平面的な配
置を示す。同図において,永久磁石21の磁気回路内に
配置された第一の電磁極対15,16,第二の電磁極対
17,18は電気的に独立で間隙内には導電性感温磁性
体微粉35,34をそれぞれ有する。第二の電磁極対1
7,18と第三の電磁極対19,20は繊維状材質層4
7を介して隣接し,導電性感温磁性体微粉と絶縁性オイ
ルとを共有する。コア24とコイル25で構成される電
磁石はその磁気回路内に第三の電磁極対19,20が配
置されるよう構成する。さらに第一の電磁極対15,1
6と第三の電磁極対19,20とは電気的に並列接続す
る。
FIG. 3 shows a third embodiment of the present invention,
(A), (b) figure is sectional drawing of the 2nd and 3rd electromagnetic pole pair periphery, and (c) figure shows the planar arrangement of the 1st and 3rd electromagnetic pole pair. In the figure, the first electromagnetic pole pair 15, 16 and the second electromagnetic pole pair 17, 18 arranged in the magnetic circuit of the permanent magnet 21 are electrically independent, and the conductive temperature-sensitive magnetic substance fine powder is present in the gap. 35 and 34 respectively. Second electromagnetic pole pair 1
7, 18 and the third electromagnetic pole pair 19, 20 are the fibrous material layer 4
7 are adjacent to each other and share the conductive temperature-sensitive magnetic substance fine powder and the insulating oil. The electromagnet including the core 24 and the coil 25 is configured such that the third electromagnetic pole pair 19, 20 is arranged in the magnetic circuit. Furthermore, the first electromagnetic pole pair 15,1
6 and the third electromagnetic pole pair 19, 20 are electrically connected in parallel.

【0017】このような構成として第一の電磁極対1
5,16間には常に永久磁石の磁束が通り,導電性磁性
体微粉35で架橋導通される。第二の電磁極対17,1
8間,第三の電磁極対19,20間の導電性感温磁性体
微粉34は共有されているので電磁石の磁束により両者
の間を移動する。(a)図では電磁石が駆動されていな
い状態を,(b)図では電磁石が駆動され,導電性感温
磁性体微粉34の一部が第三の電磁極対19,20間に
移動している状況を示す。番号27は電磁石の発生する
磁束を示す。
As such a structure, the first electromagnetic pole pair 1
The magnetic flux of the permanent magnet always passes through the gaps 5 and 16, and the conductive magnetic fine powder 35 conducts a bridge. Second electromagnetic pole pair 17,1
8, and the conductive temperature-sensitive magnetic substance fine powder 34 between the third electromagnetic pole pair 19 and 20 is shared, so that it moves between them due to the magnetic flux of the electromagnet. In the figure (a), the electromagnet is not driven, and in the figure (b), the electromagnet is driven, and a part of the conductive temperature-sensitive magnetic substance fine powder 34 is moved between the third electromagnetic pole pairs 19 and 20. Show the situation. The number 27 indicates the magnetic flux generated by the electromagnet.

【0018】(c)図は第一の電磁極対15,16及び
第三の電磁極対19,20の配置を上から見た様子を平
面的に示す。導電性感温磁性体微粉36は導電性感温磁
性体微粉34の一部を示す。
FIG. 3C is a plan view showing the arrangement of the first electromagnetic pole pairs 15 and 16 and the third electromagnetic pole pairs 19 and 20 as viewed from above. The conductive temperature-sensitive magnetic substance fine powder 36 is a part of the conductive temperature-sensitive magnetic substance fine powder 34.

【0019】第一及び第三の電磁極対は電気的に並列接
続されているので(b)図のように電磁石が駆動されて
いる時は電気抵抗が小さく,(a)図のように電磁石が
駆動されていない時は電気抵抗が大きい。従って,第一
及び第二の実施例で説明したと同様に電磁石の駆動有無
により過電流検出レベルを任意に設定可能である。繊維
状材質層47は導電性感温磁性体微粉34の移動抵抗を
与えるので第二の実施例と同様に過電流検出レベルを一
定時間保持できる。第二,第三の実施例での大きな違い
は導電性感温磁性体微粉の移動する断面積の差であり,
第三の実施例では多くの導電性感温磁性体微粉を移動さ
せるに適している。また,電磁石のコイル25は第二の
実施例と同様に二つ有し,素子両端から共通電位への電
流で駆動するよう接続すれば,素子両端の電位有無の条
件により3段階の過電流検出レベルを設定できる。
Since the first and third electromagnetic pole pairs are electrically connected in parallel, the electric resistance is small when the electromagnet is driven as shown in (b) and the electromagnet as shown in (a). Has a high electric resistance when is not driven. Therefore, as in the first and second embodiments, the overcurrent detection level can be arbitrarily set depending on whether or not the electromagnet is driven. Since the fibrous material layer 47 provides the movement resistance of the conductive temperature-sensitive magnetic substance fine particles 34, the overcurrent detection level can be maintained for a certain period of time as in the second embodiment. The major difference between the second and third embodiments is the difference in the moving cross-sectional area of the conductive temperature-sensitive magnetic substance fine powder.
The third embodiment is suitable for moving many conductive fine particles of the temperature-sensitive magnetic substance. Further, as in the second embodiment, two electromagnet coils 25 are provided, and if they are connected so as to be driven by a current from both ends of the element to a common potential, overcurrent detection in three stages depending on the presence or absence of a potential at both ends of the element. You can set the level.

【0020】[0020]

【発明の効果】以上,実施例を用いて説明したように本
発明の適応型過電流検出遮断素子に依れば,電磁石の駆
動電流により過電流検出レベルを任意に設定できる過電
流検出遮断素子を構成できる。また,過電流検出レベル
は電磁石の駆動条件を変えても一定時間は保持でき,さ
らに電磁石の駆動を素子両端から共通電位への電流によ
って行い,素子両端の電位有無により過電流検出レベル
を設定できる適応型過電流検出遮断素子を実現できる。
給電配線等において,状況に応じて過電流検出レベル設
定が必要な分野に適している。
As described above with reference to the embodiments, according to the adaptive overcurrent detection cutoff element of the present invention, the overcurrent detection cutoff element can arbitrarily set the overcurrent detection level by the drive current of the electromagnet. Can be configured. In addition, the overcurrent detection level can be maintained for a certain period of time even if the electromagnet drive conditions are changed. Further, the electromagnet is driven by the current from both ends of the element to the common potential, and the overcurrent detection level can be set by the presence or absence of the potential across the element. An adaptive overcurrent detection cutoff element can be realized.
It is suitable for fields where it is necessary to set the overcurrent detection level depending on the situation, such as power supply wiring.

【図面の簡単な説明】[Brief description of drawings]

【図1】 第一の実施例の構造を示し,(a)図は電磁
極対を含む構造の断面図を,(b),(c)図は電磁極
対周辺の斜視図を示す。
FIG. 1 shows a structure of a first embodiment, FIG. 1A is a sectional view of a structure including an electromagnetic pole pair, and FIGS. 1B and 1C are perspective views around the electromagnetic pole pair.

【図2】 第二の実施例の構造を示し,(a)図は電磁
極対を含む構造の断面図を,(b),(c)図は電磁極
対周辺の平面図を示す。
2A and 2B show a structure of a second embodiment, FIG. 2A is a cross-sectional view of a structure including an electromagnetic pole pair, and FIGS. 2B and 2C are plan views around the electromagnetic pole pair.

【図3】 第三の実施例の構造を示し,(a),(b)
図は断面構造を,(c)図は電磁極対を含む平面図を示
す。
FIG. 3 shows a structure of a third embodiment, (a), (b)
The figure shows a cross-sectional structure, and the figure (c) shows a plan view including an electromagnetic pole pair.

【符号の説明】[Explanation of symbols]

11,12,13,14,15,16,17,18,1
9,20・・電磁極,21・・・永久磁石,
22・・・磁化方向,23・・・永久磁石から
の磁束, 24・・・コア,25・・・コイル,
26・・・コイルの引き出し線,
27・・・電磁石からの磁束,31,32,33,3
4,35,36・・導電性磁性体微粉,41,42,4
5,46・・筐体, 44,47・・繊維状材質層
11, 12, 13, 14, 15, 16, 17, 18, 1
9, 20, ... Electromagnetic pole, 21 ... Permanent magnet,
22 ... Magnetization direction, 23 ... Magnetic flux from permanent magnet, 24 ... Core, 25 ... Coil,
26 ... Lead wire of coil,
27 ... Magnetic flux from electromagnet, 31, 32, 33, 3
4,35,36 ... Electroconductive magnetic fine powder, 41, 42, 4
5,46 .. Casing, 44, 47 .. Fibrous material layer

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 永久磁石と,対向する電磁極対と,その
間隙内の導電性感温磁性体微粉及び絶縁性の液体と,電
磁石とより構成し,電磁極対,導電性の感温磁性体微
粉,絶縁性の液体等は永久磁石の磁気回路の一部を構成
し,電磁極対間に架橋導通させる導電性感温磁性体微粉
の量を電磁石により増減させて電磁極対間の電気抵抗を
変え,電磁極間を流れる電流による発生熱量を変えて感
温磁性体微粉が昇温,磁性喪失により電流遮断となる電
流値レベルを変えることで過電流検出遮断レベルを制御
することを特徴とする適応型過電流検出遮断素子
1. A permanent magnet, an electromagnetic pole pair facing each other, a conductive temperature-sensitive magnetic substance fine powder and an insulating liquid in a gap between the permanent magnet, an electromagnet, and an electromagnetic pole pair, a conductive temperature-sensitive magnetic substance. Fine powder, insulating liquid, etc. form a part of the magnetic circuit of the permanent magnet, and the electric resistance between the electromagnetic pole pairs is increased by increasing or decreasing the amount of conductive temperature-sensitive magnetic substance fine powder that bridges conduction between the electromagnetic pole pairs with the electromagnet. In addition, the overcurrent detection cutoff level is controlled by changing the amount of heat generated by the current flowing between the electromagnetic poles and changing the current value level at which the temperature of the temperature-sensitive magnetic fine particles rises and the current is cut off due to loss of magnetism. Adaptive overcurrent detection cutoff element
【請求項2】 請求項1記載の適応型過電流検出遮断素
子に於いて,導電性の感温磁性体微粉は一定温度以上で
磁性を失う磁性体微粉の表面を導電材料で被覆して形成
することを特徴とする適応型過電流検出遮断素子
2. The adaptive overcurrent detection interrupting element according to claim 1, wherein the conductive temperature-sensitive magnetic fine powder is formed by coating the surface of the magnetic fine powder which loses magnetism at a certain temperature or higher with a conductive material. Overcurrent detection interrupting device characterized by
【請求項3】 請求項2記載の適応型過電流検出遮断素
子に於いて,感温磁性体微粉の表面を被覆する導電性材
料は金,白金,パラジュウム等電気接点材料に適した材
料とすることを特徴とする適応型過電流検出遮断素子
3. The adaptive overcurrent detection interrupting element according to claim 2, wherein the conductive material coating the surface of the temperature-sensitive magnetic fine powder is a material suitable for electrical contact materials such as gold, platinum, palladium, etc. Adaptive overcurrent detection interrupting device characterized by
【請求項4】 請求項1記載の適応型過電流検出遮断素
子に於いて,電磁極対は導電性の感温磁性体微粉を共有
する電気的に独立な第一,第二の電磁極対とし,前記電
磁石により第一或いは第二の電磁極対間の磁束量を変え
ることにより第一の電磁極対間の電気抵抗を変え,第一
の電磁極対間を流れる電流の過電流検出レベルを制御す
ることを特徴とする適応型過電流検出遮断素子
4. The adaptive overcurrent detection interrupting device according to claim 1, wherein the electromagnetic pole pair is an electrically independent first and second electromagnetic pole pair sharing a conductive temperature-sensitive magnetic substance fine powder. And the electric resistance between the first electromagnetic pole pair is changed by changing the amount of magnetic flux between the first and second electromagnetic pole pairs by the electromagnet, and the overcurrent detection level of the current flowing between the first electromagnetic pole pair is changed. Type overcurrent detection cutoff device characterized by controlling
【請求項5】 請求項4記載の適応型過電流検出遮断素
子に於いて,第一及び第二の電磁極対の間には繊維状材
料,小孔或いはスリットを有する遮蔽板等を設けて導電
性感温磁性体微粉の移動抵抗を形成し,過電流検出レベ
ルの変化に時定数を持たせた事を特徴とする適応型過電
流検出遮断素子
5. The adaptive overcurrent detection interrupting element according to claim 4, wherein a fibrous material, a shielding plate having small holes or slits, etc. is provided between the first and second electromagnetic pole pairs. Adaptive overcurrent detection interrupting device characterized by forming a movement resistance of conductive temperature-sensitive magnetic fine particles and giving a time constant to change of overcurrent detection level
【請求項6】 請求項5記載の適応型過電流検出遮断素
子に於いて,電磁石に流す電流は素子両端からそれぞれ
共通電位との間に流れる電流としたことを特徴とする適
応型過電流検出遮断素子
6. The adaptive overcurrent detection interrupting element according to claim 5, wherein the current flowing through the electromagnet is a current flowing between both ends of the element and a common potential. Breaking element
【請求項7】 請求項1記載の適応型過電流検出遮断素
子に於いて,電磁極対は導電性の感温磁性体微粉をそれ
ぞれ有する電気的に独立な第一,第二の電磁極対とし,
さらに第二の電磁極対と導電性の感温磁性体微粉を共有
し磁気的に独立な第三の電磁極対を第二の電磁極対に隣
接させ,前記電磁石により第三の電磁極対間の磁束強度
を変えることにより第三の電磁極対間の電気抵抗を変
え,並列に接続された第一,第三の電磁極間を流れる電
流の過電流検出レベルを制御することを特徴とする適応
型過電流検出遮断素子
7. The adaptive overcurrent detection interrupting element according to claim 1, wherein the electromagnetic pole pairs are electrically independent first and second electromagnetic pole pairs each having conductive temperature-sensitive magnetic fine particles. age,
Furthermore, a third electromagnetic pole pair, which shares a conductive temperature-sensitive magnetic substance fine powder with the second electromagnetic pole pair and is magnetically independent, is adjacent to the second electromagnetic pole pair, and the third electromagnetic pole pair is connected by the electromagnet. The electric resistance between the third electromagnetic pole pair is changed by changing the magnetic flux intensity between them, and the overcurrent detection level of the current flowing between the first and third electromagnetic poles connected in parallel is controlled. Adaptive overcurrent detection cutoff element
【請求項8】 請求項7記載の適応型過電流検出遮断素
子に於いて,第二及び第三の電磁極対の間には導電性感
温磁性体微粉の移動抵抗となるよう繊維状材料,小孔或
いはスリットを有する遮蔽板等を設け,過電流検出レベ
ルの変化に時定数を持たせた事を特徴とする適応型過電
流検出遮断素子
8. The adaptive overcurrent detection interrupting element according to claim 7, wherein a fibrous material is provided between the second and third electromagnetic pole pairs so as to provide a movement resistance of the conductive temperature-sensitive magnetic substance fine powder. An adaptive overcurrent detection interrupting element characterized by providing a shield plate having small holes or slits and providing a time constant for changes in overcurrent detection level
【請求項9】 請求項8記載の適応型過電流検出遮断素
子に於いて,電磁石に流す電流は素子両端からそれぞれ
共通電位との間に流れる電流としたことを特徴とする適
応型過電流検出遮断素子
9. The adaptive overcurrent detection interrupting element according to claim 8, wherein the current flowing through the electromagnet is a current flowing between both ends of the element and a common potential. Breaking element
JP2001256004A 2001-08-27 2001-08-27 Adaptive overcurrent detecting cutout element allowing setting of detection level Pending JP2003068177A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001256004A JP2003068177A (en) 2001-08-27 2001-08-27 Adaptive overcurrent detecting cutout element allowing setting of detection level

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001256004A JP2003068177A (en) 2001-08-27 2001-08-27 Adaptive overcurrent detecting cutout element allowing setting of detection level

Publications (1)

Publication Number Publication Date
JP2003068177A true JP2003068177A (en) 2003-03-07

Family

ID=19083888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001256004A Pending JP2003068177A (en) 2001-08-27 2001-08-27 Adaptive overcurrent detecting cutout element allowing setting of detection level

Country Status (1)

Country Link
JP (1) JP2003068177A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100914830B1 (en) * 2006-10-17 2009-09-02 엘에스산전 주식회사 Apparatus for controlling trip of power breaker and method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100914830B1 (en) * 2006-10-17 2009-09-02 엘에스산전 주식회사 Apparatus for controlling trip of power breaker and method therefor

Similar Documents

Publication Publication Date Title
EP1691204B1 (en) A surface-mounted integrated current sensor
JPH1073570A (en) Eddy-current sensor and its using method
US3845445A (en) Modular hall effect device
Fullin et al. A new basic technology for magnetic micro-actuators
US3660695A (en) Contactless relay
US4503440A (en) Thin-film magnetic writing head with anti-saturation back-gap layer
US4339734A (en) Encased miniature relay
US6628495B2 (en) Fast acting, re-settable circuit breaker without moving parts
JP4181415B2 (en) Passive magnetic position sensor
JP2003068177A (en) Adaptive overcurrent detecting cutout element allowing setting of detection level
US4367449A (en) Magnetomechanical converter
JPH052033A (en) Current sensor and setting method for range of detection current thereof
GB2088137A (en) Magnetomechanical converter
US2935585A (en) Polarized electromagnetic relay
JP5665422B2 (en) Magnetic flux detection device and method of manufacturing magnetic flux detection device
US3512148A (en) Freezer warning system
US4553118A (en) Polarized electromagnetic device
EP0777212B1 (en) Magnetometric sensor with two magnetically isolated regions formed of spin-polarized materials and magnetic head using the same
KR860002120A (en) Electromagnetic device with overheat protection
JPH0614501A (en) Protective device for rotating electric machine
JPS6044997A (en) Load detector of electromagnetic cooking device
JP2993208B2 (en) Temperature sensor
US2897312A (en) Magnetostriction switch
JPS636830Y2 (en)
Braun Modular Hall masterslice transducer