JP2003065326A - Rotary supporting apparatus for pulley - Google Patents

Rotary supporting apparatus for pulley

Info

Publication number
JP2003065326A
JP2003065326A JP2001259738A JP2001259738A JP2003065326A JP 2003065326 A JP2003065326 A JP 2003065326A JP 2001259738 A JP2001259738 A JP 2001259738A JP 2001259738 A JP2001259738 A JP 2001259738A JP 2003065326 A JP2003065326 A JP 2003065326A
Authority
JP
Japan
Prior art keywords
ball bearing
pulley
raceway
outer ring
double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001259738A
Other languages
Japanese (ja)
Other versions
JP2003065326A5 (en
Inventor
Takeo Okuma
健夫 大熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2001259738A priority Critical patent/JP2003065326A/en
Publication of JP2003065326A publication Critical patent/JP2003065326A/en
Publication of JP2003065326A5 publication Critical patent/JP2003065326A5/ja
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To suppress a noise generated during operation of a double row ball bearing 17 regardless of a offset load applied to the double row ball bearing 17 from a pulley 16. SOLUTION: An angular face-to-face duplex bearing is used as the double row ball bearing 17. Even when an outer ring 22 tends to incline based on the offset load, clearance is not produced between each of outer ring raceway tracks 26, 26, inner ring raceway tracks 29, 29 and each of rolling contact surfaces of balls 15, 15. As a result, each of outer ring raceway tracks 26, 26 and inner ring raceway tracks 29, 29 does not violently collide with each of rolling contact surfaces of balls 15, 15. As a result, generation of the noise is prevented.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】この発明に係るプーリ用回転
支持装置は、自動車の走行用エンジンによりこのエンジ
ンに付属した各種補機を回転駆動する為の無端ベルトを
掛け渡すプーリを、ハウジングや支持軸等に対して回転
自在に支持する為に利用する。 【0002】 【従来の技術】自動車用空気調和装置に組み込んで冷媒
を圧縮するコンプレッサ等の補機は、走行用エンジンに
より回転駆動する。この為、この補機の回転軸の端部に
設けた従動プーリと、上記走行用エンジンのクランクシ
ャフトの端部に固定した駆動プーリとの間に無端ベルト
を掛け渡し、この無端ベルトの循環に基づいて、上記回
転軸を回転駆動する様にしている。又、この無端ベルト
の中間部はガイドプーリやテンションプーリに掛け渡し
て、上記従動プーリ或は駆動プーリに対する上記無端ベ
ルトの巻き付け角度を確保したり、或はこの無端ベルト
の張力を確保する様にしている。この様な、自動車用補
機駆動装置に組み込まれるプーリのうちの一部のプーリ
は、ハウジング或は支持軸等の固定部分の周囲に、本発
明の対象となるプーリ用回転支持装置により、回転自在
に支持する必要がある。 【0003】図4は、この様なプーリ用回転支持装置を
設置する部分の1例として、コンプレッサの回転軸1の
回転駆動部分の構造を示している。この回転軸1は、図
示しない転がり軸受により、ケーシング2内に回転自在
に支持している。このケーシング2の端部外面に設け
た、請求項に記載した固定の部分に相当する支持筒部3
の周囲に従動プーリ4を、複列玉軸受5により、回転自
在に支持している。この従動プーリ4は、断面コ字形で
全体を円環状に構成しており、上記ケーシング2の端面
に固定したソレノイド6を、上記従動プーリ4の内部空
間に配置している。一方、上記回転軸1の端部で上記ケ
ーシング2から突出した部分には取付ブラケット7を固
定しており、この取付ブラケット7の周囲に磁性材製の
環状板8を、板ばね9を介して支持している。この環状
板8は、上記ソレノイド6への非通電時には、上記板ば
ね9の弾力により、図4に示す様に上記従動プーリ4か
ら離隔しているが、上記ソレノイド6への通電時にはこ
の従動プーリ4に向け吸着されて、この従動プーリ4か
ら上記回転軸1への回転力の伝達を自在とする。即ち、
上記ソレノイド6と上記環状板8と上記板ばね9とによ
り、上記従動プーリ4と上記回転軸1とを係脱する為の
電磁クラッチ10を構成している。 【0004】上述した様なプーリ用回転支持装置を構成
する複列玉軸受5として従来は、1対のアンギュラ型の
玉軸受を背面組み合わせした如き構造のものを使用して
いた。この為に、上記複列玉軸受5を構成する外輪11
の内周面に1対の外輪軌道12、12を外向に、同じく
内輪13の外周面に1対の内輪軌道14、14を内向
に、それぞれ形成している。そして、これら外輪軌道1
2、12と内輪軌道14、14との間にそれぞれ複数個
ずつ配置した玉15、15に、作用線の方向を表す為に
図4に記載した2本の鎖線α、αから明らかな通り、外
向の接触角を付与している。 【0005】この図4に示した様な従来構造の場合、プ
ーリ4を介して上記複列玉軸受5を構成する外輪11に
オフセット荷重(作用線がこの複列玉軸受5の中心から
幅方向にずれる荷重)が加わると、しばしば耳障りな騒
音が発生する事が知られている。この様な騒音が発生す
る機構に就いて、図5により説明する。プーリから外輪
11にオフセット荷重Fが加わると、このオフセット荷
重Fを支承する負荷圏部分で上記外輪11が、上記複列
玉軸受5の中心点Oの回りで揺動変位する。この結果、
図5に鎖線で誇張して示す様に、この荷重が加わった側
(図5の右側)が径方向内方(図5の下方)に、逆側
(図5の左側)が径方向外方(図5の上方)に、それぞ
れ変位する。尚、実際にはこの外輪11を含む各部材が
弾性変形する為、より複雑な動きになるが、説明の簡略
化の為に図5には、各部材は弾性変形しない剛体の如く
表している。 【0006】上記外輪11がこの様に変位する結果、上
記荷重が加わった側で上記外輪軌道12及び内輪軌道1
4と玉15の転動面との当接圧が高くなる一方、逆側で
は外輪軌道12及び内輪軌道14と玉15の転動面との
当接圧が低下し、更には隙間が生じる傾向になる。但
し、この様に隙間が生じるのは、全周に亙ってではな
く、負荷圏側に限られる。非負荷圏では、この様な隙間
が生じる事はなく、上記外輪軌道12及び内輪軌道14
と玉15の転動面とは当接したままの状態となる。従っ
て、上記逆側部分に存在する玉15は、プーリと共に上
記外輪11が回転する事に伴う公転運動によって、上記
外輪軌道12と内輪軌道14との間で挟持される状態
と、これら両軌道12、14同士の間で径方向に変位自
在な状態とを繰り返す事になる。この結果、上記逆側部
分に存在する玉15は、負荷圏部分で上記外輪軌道12
及び内輪軌道14と衝突する事により騒音を発生する
他、負荷圏から非負荷圏に突入する際にもこれら外輪軌
道12及び内輪軌道14と勢い良く衝突して騒音を発生
する。 【0007】この様な原因で背面組み合わせ型の複列玉
軸受5が発生する騒音をなくす為、プーリを支持する為
の転がり軸受として、4点接触型の単列深溝型の玉軸受
を使用する事が、特開2000−170752号公報に
記載されている。この公報に記載された構造の様に、プ
ーリを支持する為に4点接触型の単列深溝型の玉軸受を
使用すれば、総ての玉が、外輪軌道及び内輪軌道に対し
て少なくとも1点以上で接触する為、これら各玉の転動
面と外輪軌道及び内輪軌道とが勢い良く衝突する事を防
止して、騒音の発生を防止できる。 【0008】 【発明が解決しようとする課題】4点接触型の単列深溝
型の玉軸受の場合、各玉の転動面と外輪軌道及び内輪軌
道とが2点ずつで接触する状態が必ず存在する。そし
て、この状態では、接触部が純転がり接触状態とはなら
ず、滑り接触状態を伴った転がり接触状態となる。即
ち、4点接触型の単列深溝型玉軸受は、純ラジアル荷重
を受けた場合には、上記各玉の転動面と外輪軌道及び内
輪軌道とが2点ずつ、これら各玉毎に4点ずつで接触す
る。この状態では、各接触部が滑り接触状態を伴った転
がり接触状態となり、これら各接触部で多くの摩擦熱が
発生する。純ラジアル荷重ではない、モーメント荷重が
加わった場合には、一部の玉の転動面と外輪軌道及び内
輪軌道との接触点が1点ずつとなり、接触部分が純転が
り接触に近くなって、当該部分で発生する摩擦熱が少な
くなる。但し、残りの玉の転動面は、外輪軌道と内輪軌
道との一方又は双方と、2点ずつで接触し、接触部分で
発生する摩擦熱が多くなる。 【0009】この結果、4点接触型の単列深溝型の玉軸
受により大きな荷重を支承しつつ、これを高速運転した
場合、この玉軸受の内部温度が、上記各接触部分で発生
する摩擦熱に基づいて大きく上昇する。この結果、上記
玉軸受内に封入したグリースが劣化し、この玉軸受の耐
久性が損なわれる原因となる。プーリを回転自在に支持
する為の転がり軸受として、一般的な単列深溝型の玉軸
受を使用すれば、各接触部を純転がり接触状態に近くで
きて、グリースの劣化に結び付く程の温度上昇を防止で
きるが、モーメント剛性が低い為、採用できない場合も
多い。即ち、一般的な単列深溝型の玉軸受の場合には、
モーメント剛性が低く、大きなモーメント荷重が加わっ
た場合には外輪の中心軸と内輪の中心軸とが不一致にな
る事を必ずしも十分に防止できない。又、負荷容量(基
本動定格荷重)が必ずしも十分とは言えない。この為、
玉軸受の中心に対するプーリ中心のオフセット量が少な
くて加わるモーメント荷重が小さい事に加え、無端ベル
トの張力が弱くて加わるラジアル荷重が小さい等の条件
が整わない限り、採用できない場合が多い。本発明のプ
ーリ用回転支持装置は、この様な事情に鑑みて発明した
ものである。 【0010】 【課題を解決するための手段】本発明のプーリ用回転支
持装置は、従来から知られているプーリ用回転支持装置
と同様に、内周面に複列の外輪軌道を有する外輪と、外
周面に複列の内輪軌道を有する内輪と、これら各外輪軌
道とこれら各内輪軌道との間にそれぞれ複数個ずつ転動
自在に設けられた玉とを備えた複列玉軸受により、固定
の部分の周囲にプーリを回転自在に支持する。特に、本
発明のプーリ用回転支持装置に於いては、上記複列玉軸
受を構成する各玉列が、内向の接触角を持つ、正面組み
合わせである。 【0011】 【作用】上述の様に構成する本発明のプーリ用回転支持
装置によれば、モーメント荷重により外輪が揺動変位し
た場合でも、外輪軌道及び内輪軌道と玉の転動面との間
に隙間が生じにくくなる。この結果、これら外輪軌道及
び内輪軌道と玉の転動面とが勢い良く衝突する事がなく
なり、耳障りな騒音が発生しにくくなる。又、上記外輪
軌道及び内輪軌道と玉の転動面との接触状態は、純転が
り接触に近い状態となり、4点接触型の玉軸受の様に、
滑り接触の割合が多くはない。この為、接触部で発生す
る摩擦熱を少なくして、複列玉軸受内部の温度上昇を抑
え、この内部に封入したグリースの劣化を防止して、耐
久性向上を図れる。更に、複列玉軸受としてはモーメン
ト剛性が低い正面組み合わせではあっても、一般的な単
列深溝型玉軸受の場合に比べて大きなモーメント剛性及
び負荷容量(基本動定格荷重)を有する。この為、この
面からも十分な耐久性確保を図ると共に、無端ベルトの
張力が強くて大きなラジアル荷重が加わる様な厳しい条
件下でも適用可能となる。 【0012】 【発明の実施の形態】図1は、本発明の実施の形態の第
1例を示している。本例のプーリ用回転支持装置は、ハ
ウジングの一部、或は支持軸等、図示しない固定の部分
の周囲にプーリ16を、複列玉軸受17により回転自在
に支持する様に構成している。このプーリ16は、鋼板
等の金属板にプレス加工等の塑性加工を施す事により造
ったもので、互いに同心に配置された、内径側の支持円
筒部18と外径側のベルト掛け渡し部19との軸方向一
端縁(図1の右端縁)同士を、円輪状の連続部20によ
り連続させて成る。上記支持円筒部18の軸方向他端縁
(図1の左端縁)には、内向フランジ状の鍔部21を形
成している。この様なプーリ16は、上記支持円筒部1
8を上記複列玉軸受17を構成する外輪22に締り嵌め
で外嵌する事により、この外輪22に対し固定してい
る。 【0013】上記複列玉軸受17は、上記外輪22と、
この外輪22の内径側にこの外輪22と同心に配置され
た内輪23と、複数個の玉15、15とから成る。この
うちの外輪22の内周面は、軸方向中央部を大径部24
とすると共に軸方向両端部を小径部25、25とし、こ
れら大径部24と小径部25、25との連続部を、それ
ぞれがアンギュラ型である内向の外輪軌道26、26と
している。これに対して上記内輪23の外周面は、軸方
向中央部を大径部27とすると共に軸方向両端部を小径
部28、28とし、これら大径部27と小径部28、2
8との連続部を、それぞれがアンギュラ型である外向の
内輪軌道29、29としている。そして、これら各内輪
軌道29、29と上記各外輪軌道26、26との間に、
上記各玉15、15を複数個ずつ、保持器30、30に
より保持した状態で転動自在に設けている。 【0014】上記各玉15、15は、それぞれがアンギ
ュラ型である内向の外輪軌道26、26と外向の内輪軌
道29、29との間に設けている為、上記複列玉軸受1
7は、この複列玉軸受17を構成する各玉列が、アンギ
ュラ型で且つ内向の接触角を持つ、正面組み合わせであ
る。即ち、図1に記載した2本の鎖線β、βは、上記各
玉列に関する作用線の方向であるが、これら両鎖線β、
β同士の間隔は、上記各玉15、15の設置部分から径
方向内方に向けて次第に狭くなる。 【0015】上述の様に構成する本発明のプーリ用回転
支持装置によれば、モーメント荷重により上記外輪22
が、上記複列玉軸受17の中心の回りで揺動変位した場
合でも、上記各外輪軌道26、26及び上記各内輪軌道
29、29と上記各玉15、15の転動面との間に隙間
が生じにくくなる。この結果、これら外輪軌道26、2
6及び内輪軌道29、29と玉15、15の転動面とが
勢い良く衝突する事がなくなり、耳障りな騒音が発生し
にくくなる。この点に就いて、図1に図2を加えて説明
する。 【0016】前記プーリ16の幅方向中心は上記複列玉
軸受17の幅方向中心に対し、図1に示したδ分だけ偏
心しているので、上記プーリ16に無端ベルトを掛け渡
した状態では、このプーリ16から上記複列玉軸受17
を構成する外輪22にオフセット荷重Fが加わると、こ
のオフセット荷重Fを支承する負荷圏部分で上記外輪2
2が、上記複列玉軸受17の中心点Oの回りで揺動変位
する。この結果、図2に鎖線で誇張して示す様に、上記
オフセット荷重Fが加わった側(図2の右側)が径方向
内方(図2の下方)に、逆側(図2の左側)が径方向外
方(図2の上方)に、それぞれ変位する。尚、本発明の
場合も、実際にはこの外輪22を含む各部材が弾性変形
する為、より複雑な動きになるが、説明の簡略化の為に
図2には、各部材は弾性変形しない剛体の如く表してい
る。 【0017】上記外輪22がこの様に変位する結果、上
記荷重が加わった側で上記外輪軌道26及び内輪軌道2
9と玉15の転動面との当接圧が高くなる一方、逆側で
も外輪軌道26の幅方向外端部が玉15に押し付けられ
る。従って、上記オフセット荷重Fを受ける負荷圏で
は、このオフセット荷重Fが加わった側は勿論、これと
逆側でも隙間は生じない。従って、前述した様な従来構
造で生じた、負荷圏部分で、オフセット荷重が加わるの
と反対側に生じる、隙間に基づく騒音の発生を防止でき
る。 【0018】尚、上記複列玉軸受17の構成各部材1
5、22、23が、それぞれ全く弾性変形しない完全な
剛体であれば、図2に示した負荷圏と逆の状態が非負荷
圏で発生するので、この非負荷圏で騒音の発生原因とな
る隙間が生じる事になる。但し、実際の場合には上記各
部材15、22、23は弾性変形するし、上記図2が誇
張された状態である事から明らかな通り、非負荷圏で図
2と逆の状態が生じる事はない。隙間に関して非負荷圏
での状態は、本発明の場合と前述の図4〜5に示した先
発明の場合とは基本的に同じである。従って、本発明の
場合には、負荷圏で発生する隙間を抑える分、従来構造
に比べて運転時に発生する騒音の低減を図れる。 【0019】又、上記複列玉軸受17は、接触角が正面
組み合わせである(本例の場合にはそれぞれがアンギュ
ラ型である)玉軸受を組み合わせて成るもので、前記各
外輪軌道26、26及び各内輪軌道29、29と各玉1
5、15の転動面との接触状態は、純転がり接触に近い
状態となる。言い換えれば、4点接触型の玉軸受の様
に、滑り接触の割合が多くはない。この為、接触部で発
生する摩擦熱を少なくして、上記複列玉軸受17内部の
温度上昇を抑え、この内部に封入したグリースの劣化を
防止して、耐久性向上を図れる。 【0020】更に、上記複列玉軸受17は、背面組み合
わせの複列玉軸受に比べればモーメント剛性が低い正面
組み合わせではあっても、一般的な単列深溝型玉軸受の
場合に比べて大きなモーメント剛性及び負荷容量(基本
動定格荷重)を有する。この為、この面からも十分な耐
久性確保を図ると共に、無端ベルトの張力が強くて大き
なラジアル荷重が加わる様な厳しい条件下でも適用可能
となる。 【0021】次に、図3は、本発明の実施の形態の第2
例を示している。本例の複列玉軸受17aの場合には、
外輪22aの内周面にそれぞれが深溝型である複列の外
輪軌道26a、26aを、内輪23aの外周面にそれぞ
れが深溝型である複列の内輪軌道29a、29aを、そ
れぞれ形成している。本例の場合、上記両外輪軌道26
a、26aのピッチを、上記両内輪軌道29a、29a
のピッチよりも小さくする事により、これら各軌道26
a、29a同士の間に転動自在に設けた各玉15、15
に、内向の接触角を持たせている。前述の図1〜2に示
した第1例の構造が、各列がアンギュラ型である玉軸受
を組み合わせた如き構造であるのに対し、本例の場合に
は、各列が深溝型である玉軸受を組み合わせた如き構造
を採用している。この様な本例の構造の場合も、上述し
た第1例の構造と同様の作用・効果を奏する。 【0022】 【発明の効果】本発明のプーリ用回転支持装置は、以上
に述べた通り構成し作用する為、運転時に異音が発生す
る事を有効に防止して、自動車の乗員や周囲に居る歩行
者等に不快感を与えない自動車用補機駆動装置の実現に
寄与できる。しかも、無端ベルトの張力が強く、加わる
ラジアル荷重が大きい等の条件下でも十分な耐久性を確
保できる等、厳しい条件下でも使用可能である。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an endless belt for rotating and driving various accessories attached to an engine for a pulley of a motor vehicle. Is used to rotatably support the pulley over which is mounted the housing and the support shaft. 2. Description of the Related Art Auxiliary equipment such as a compressor for compressing a refrigerant incorporated in an air conditioner for a vehicle is driven to rotate by a traveling engine. For this reason, an endless belt is bridged between a driven pulley provided at the end of the rotating shaft of the auxiliary machine and a driving pulley fixed to the end of the crankshaft of the traveling engine, and the endless belt is circulated. Based on this, the rotation shaft is driven to rotate. Also, the intermediate portion of the endless belt is wound around a guide pulley or a tension pulley to secure the winding angle of the endless belt around the driven pulley or the driving pulley, or to secure the tension of the endless belt. ing. Some of the pulleys incorporated in the auxiliary drive device for automobiles are rotated around a fixed portion such as a housing or a support shaft by a pulley rotation support device according to the present invention. It needs to be freely supported. FIG. 4 shows a structure of a rotary drive portion of a rotary shaft 1 of a compressor as an example of a portion for installing such a pulley rotation support device. The rotating shaft 1 is rotatably supported in the casing 2 by a rolling bearing (not shown). A support cylinder portion 3 provided on an outer surface of an end portion of the casing 2 and corresponding to a fixed portion described in claims.
The driven pulley 4 is rotatably supported by a double-row ball bearing 5 around the periphery. The driven pulley 4 has a U-shaped cross section and is formed in an annular shape as a whole. A solenoid 6 fixed to an end face of the casing 2 is disposed in an internal space of the driven pulley 4. On the other hand, a mounting bracket 7 is fixed to a portion protruding from the casing 2 at the end of the rotating shaft 1, and an annular plate 8 made of a magnetic material is provided around the mounting bracket 7 via a leaf spring 9. I support it. When the solenoid 6 is not energized, the annular plate 8 is separated from the driven pulley 4 as shown in FIG. 4 by the elastic force of the leaf spring 9. However, when the solenoid 6 is energized, the driven pulley 4 to allow the transmission of rotational force from the driven pulley 4 to the rotary shaft 1. That is,
The solenoid 6, the annular plate 8 and the leaf spring 9 constitute an electromagnetic clutch 10 for disengaging the driven pulley 4 and the rotary shaft 1. Conventionally, as the double-row ball bearing 5 constituting the rotary support device for a pulley as described above, a double row ball bearing having a structure in which a pair of angular type ball bearings are combined on the back surface has been used. For this purpose, the outer race 11 constituting the double row ball bearing 5 is provided.
A pair of outer raceways 12, 14 are formed on the inner peripheral surface of the inner ring 13 outward, and a pair of inner raceways 14, 14 are formed on the outer peripheral surface of the inner race 13 inward. And these outer ring tracks 1
As shown in FIG. 4, two balls 15, 15 arranged in plural numbers between the inner races 14, 14 and the inner races 14, 14 clearly indicate the direction of the action line. An outward contact angle is provided. In the case of the conventional structure shown in FIG. 4, an offset load is applied to the outer race 11 constituting the double row ball bearing 5 via the pulley 4 (the line of action is in the width direction from the center of the double row ball bearing 5). It has been known that harsh noise often occurs when a load (deviation load) is applied. A mechanism for generating such noise will be described with reference to FIG. When an offset load F is applied to the outer ring 11 from the pulley, the outer ring 11 swings around the center point O of the double-row ball bearing 5 in a load zone supporting the offset load F. As a result,
As exaggeratedly shown in FIG. 5 by a chain line, the side to which this load is applied (right side in FIG. 5) is radially inward (downward in FIG. 5), and the opposite side (left side in FIG. 5) is radially outward. (Upper part of FIG. 5). Actually, each member including the outer ring 11 is elastically deformed, so that the movement becomes more complicated. However, for the sake of simplicity, FIG. 5 shows each member as a rigid body that does not elastically deform. . As a result of the displacement of the outer race 11, the outer race 12 and the inner race 1 on the side to which the load is applied.
While the contact pressure between the ball 4 and the rolling surface of the ball 15 increases, the contact pressure between the outer ring raceway 12 and the inner ring raceway 14 and the rolling surface of the ball 15 decreases on the opposite side, and a gap tends to occur. become. However, such a gap is generated not on the entire circumference but on the load zone side. In the non-load zone, such a gap does not occur, and the outer raceway 12 and the inner raceway 14
And the rolling surface of the ball 15 is kept in contact. Therefore, the ball 15 present on the opposite side portion is held between the outer raceway 12 and the inner raceway 14 by the revolving motion caused by the rotation of the outer race 11 together with the pulley, , 14 are repeatedly displaced in the radial direction. As a result, the ball 15 existing on the opposite side portion is moved by the outer raceway 12
In addition to generating noise by colliding with the inner ring raceway 14, the outer ring raceway 12 and the inner ring raceway 14 vigorously collide with the outer ring raceway 12 and the inner raceway 14 to generate noise when the vehicle enters the non-loading zone from the load zone. [0007] In order to eliminate the noise generated by the double row ball bearing 5 of the back combination type due to such a cause, a single row deep groove type ball bearing of a four-point contact type is used as a rolling bearing for supporting the pulley. This is described in JP-A-2000-170752. If a four-point contact type single row deep groove ball bearing is used to support the pulley as in the structure described in this publication, all the balls are at least one with respect to the outer raceway and the inner raceway. Since contact occurs at points or more, it is possible to prevent the rolling surfaces of these balls from colliding vigorously with the outer raceway and the inner raceway, thereby preventing noise. [0008] In the case of a single-row deep groove ball bearing of the four-point contact type, the state in which the rolling surface of each ball contacts the outer raceway and the inner raceway at two points is inevitable. Exists. In this state, the contact portion does not become a pure rolling contact state, but becomes a rolling contact state accompanied by a sliding contact state. That is, when a pure radial load is applied to a single-row deep groove ball bearing of a four-point contact type, the rolling surface of each ball, the outer ring raceway and the inner ring raceway are each two points, and each ball has four points. Contact point by point. In this state, each contact portion is in a rolling contact state with a sliding contact state, and a lot of frictional heat is generated in each of these contact portions. When a moment load is applied instead of a pure radial load, the contact point between the rolling surface of some balls and the outer ring raceway and the inner ring raceway becomes one point at a time, and the contact part becomes closer to pure rolling contact, Friction heat generated in the portion is reduced. However, the rolling surfaces of the remaining balls come into contact with one or both of the outer raceway and the inner raceway at two points, and the frictional heat generated at the contact portion increases. As a result, when a large load is supported by a single-row deep groove type ball bearing of a four-point contact type and the bearing is operated at a high speed, the internal temperature of the ball bearing causes the frictional heat generated at each of the contact portions. Will rise significantly based on As a result, the grease sealed in the ball bearing is deteriorated, and the durability of the ball bearing is impaired. If a general single row deep groove ball bearing is used as a rolling bearing to rotatably support the pulley, each contact can be close to a pure rolling contact state, and the temperature rises enough to lead to grease deterioration. Can be prevented, but it cannot be adopted in many cases because of low moment rigidity. That is, in the case of a general single row deep groove ball bearing,
When the moment rigidity is low and a large moment load is applied, it is not always possible to sufficiently prevent the center axis of the outer ring from being inconsistent with the center axis of the inner ring. Also, the load capacity (basic dynamic load rating) is not always sufficient. Because of this,
In many cases, it cannot be adopted unless the offset amount of the center of the pulley with respect to the center of the ball bearing is small and the moment load applied is small, and the tension of the endless belt is weak and the applied radial load is small. The pulley rotation support device of the present invention has been invented in view of such circumstances. [0010] A rotary support device for a pulley according to the present invention, like a rotary support device for a pulley conventionally known, comprises an outer ring having a double-row outer raceway on an inner peripheral surface. , Fixed by a double-row ball bearing comprising an inner ring having a double-row inner raceway on the outer peripheral surface, and a plurality of rollingly provided balls between each of these outer raceways and each of these inner raceways. The pulley is rotatably supported around the portion. In particular, in the pulley rotation support device of the present invention, each ball row constituting the double row ball bearing is a front combination having an inward contact angle. According to the rotary support device for a pulley of the present invention having the above-described structure, even when the outer ring swings and displaces due to the moment load, the outer raceway and the inner raceway and the ball rolling surface can be displaced. Gaps are less likely to occur. As a result, the outer raceway and the inner raceway do not vigorously collide with the rolling surface of the ball, and unpleasant noise is less likely to be generated. In addition, the contact state between the outer raceway and the inner raceway and the ball rolling surface is close to pure rolling contact, as in a four-point contact type ball bearing.
Not much sliding contact. For this reason, the frictional heat generated at the contact portion is reduced, the temperature rise inside the double row ball bearing is suppressed, the deterioration of the grease sealed inside is prevented, and the durability is improved. Further, even if the double row ball bearing is a front combination having a low moment rigidity, it has a large moment rigidity and load capacity (basic dynamic load rating) as compared with a general single row deep groove ball bearing. For this reason, sufficient durability can be ensured from this aspect as well, and the endless belt can be applied even under severe conditions where the tension of the belt is strong and a large radial load is applied. FIG. 1 shows a first embodiment of the present invention. The rotary support device for a pulley of this example is configured so that a pulley 16 is rotatably supported by a double row ball bearing 17 around a fixed portion (not shown) such as a part of a housing or a support shaft. . The pulley 16 is made by subjecting a metal plate such as a steel plate to plastic working such as press working. The pulley 16 is provided concentrically with a supporting cylindrical portion 18 on the inner diameter side and a belt bridging portion 19 on the outer diameter side. One end in the axial direction (the right end in FIG. 1) is connected to each other by an annular continuous portion 20. An inward flange-like flange portion 21 is formed at the other axial edge (left edge in FIG. 1) of the support cylindrical portion 18. Such a pulley 16 is provided on the supporting cylindrical portion 1.
8 is fixed to the outer ring 22 by tightly fitting the outer ring 22 to the outer ring 22 constituting the double row ball bearing 17. The double row ball bearing 17 is provided with the outer race 22 and
An inner ring 23 is provided concentrically with the outer ring 22 on the inner diameter side of the outer ring 22 and a plurality of balls 15, 15. The inner peripheral surface of the outer ring 22 has a large diameter portion 24 at the axial center.
Both ends in the axial direction are small diameter portions 25, 25, and a continuous portion of the large diameter portion 24 and the small diameter portions 25, 25 is an inward outer ring raceway 26, 26, each of which is an angular type. On the other hand, the outer peripheral surface of the inner ring 23 has a large-diameter portion 27 at the center in the axial direction and small-diameter portions 28 at both end portions in the axial direction.
8 are outwardly directed inner raceways 29, 29, each of which is an angular type. And between each of these inner raceways 29, 29 and each of the outer raceways 26, 26,
Each of the balls 15, 15 is provided so as to roll freely while being held by a plurality of holders 30, 30 each. Since the balls 15 are provided between the inward outer raceways 26, 26, each of which is an angular type, and the outward inner raceways 29, 29, the double row ball bearing 1 is provided.
Reference numeral 7 denotes a front combination in which each ball row constituting the double row ball bearing 17 is angular and has an inward contact angle. That is, the two dashed lines β, β shown in FIG. 1 are the directions of the action lines for the respective ball rows,
The distance between β becomes gradually narrower inward in the radial direction from the installation portion of each of the balls 15, 15. According to the rotation supporting device for a pulley of the present invention configured as described above, the outer ring 22 is driven by a moment load.
However, even if it swings around the center of the double row ball bearing 17, even if it is between the outer raceways 26, 26 and the inner raceways 29, 29 and the rolling surfaces of the balls 15, 15, Gaps hardly occur. As a result, these outer raceways 26, 2
6 and the inner raceways 29, 29 and the rolling surfaces of the balls 15, 15 do not vigorously collide with each other, so that harsh noise is less likely to be generated. This point will be described with reference to FIG. 1 and FIG. Since the center of the pulley 16 in the width direction is eccentric with respect to the center of the width of the double row ball bearing 17 by δ shown in FIG. 1, when the endless belt is stretched over the pulley 16, From the pulley 16, the double row ball bearing 17
When the offset load F is applied to the outer ring 22 constituting the outer ring 22, the outer ring 2 is supported by the load zone supporting the offset load F.
2 swings around the center point O of the double row ball bearing 17. As a result, the side to which the offset load F is applied (the right side in FIG. 2) is radially inward (the lower side in FIG. 2) and the opposite side (the left side in FIG. 2). Are displaced radially outward (upward in FIG. 2). In addition, in the case of the present invention as well, each member including the outer ring 22 is actually elastically deformed, so that the movement becomes more complicated. However, for simplification of description, FIG. Expressed as a rigid body. As a result of the displacement of the outer race 22, the outer raceway 26 and the inner raceway 2 on the side to which the load is applied.
While the contact pressure between the ball 9 and the rolling surface of the ball 15 increases, the widthwise outer end of the outer raceway 26 is pressed against the ball 15 on the opposite side. Therefore, in a load zone receiving the offset load F, no gap is formed on the side to which the offset load F is applied and also on the opposite side. Therefore, it is possible to prevent the generation of noise due to the gap, which is generated in the load zone portion on the side opposite to the side where the offset load is applied, which occurs in the conventional structure as described above. The components 1 of the double row ball bearing 17
If each of 5, 22, and 23 is a completely rigid body that is not elastically deformed at all, a state opposite to the load zone shown in FIG. 2 occurs in the non-load zone, which causes noise in the non-load zone. A gap will be created. However, in an actual case, the members 15, 22, and 23 are elastically deformed, and as is apparent from the state in which FIG. 2 is exaggerated, a state opposite to that in FIG. There is no. The state of the gap in the non-load zone is basically the same as the case of the present invention and the case of the prior invention shown in FIGS. Therefore, in the case of the present invention, the noise generated during operation can be reduced as compared with the conventional structure because the gap generated in the load zone is suppressed. The double-row ball bearing 17 is a combination of ball bearings having a contact angle of a front combination (in this case, each of which is an angular type). And each inner raceway 29, 29 and each ball 1
The contact states of the rolling surfaces 5 and 15 are close to pure rolling contact. In other words, unlike a four-point contact type ball bearing, the ratio of sliding contact is not large. For this reason, the frictional heat generated at the contact portion is reduced, the temperature rise inside the double row ball bearing 17 is suppressed, and the deterioration of the grease sealed inside the double row ball bearing 17 is prevented, so that the durability can be improved. Further, the double-row ball bearing 17 has a larger moment than that of a general single-row deep-groove ball bearing even though it is a front combination having a lower moment rigidity than a double-row ball bearing of a rear combination. Has rigidity and load capacity (basic dynamic load rating). For this reason, sufficient durability can be ensured from this aspect, and the endless belt can be applied under severe conditions in which the tension of the endless belt is strong and a large radial load is applied. FIG. 3 shows a second embodiment of the present invention.
An example is shown. In the case of the double row ball bearing 17a of this example,
A double-row outer raceway 26a, 26a each having a deep groove shape is formed on the inner peripheral surface of the outer race 22a, and a double-row inner raceway 29a, 29a, each having a deep-groove type, is formed on the outer peripheral surface of the inner race 23a. . In the case of this example, the two outer raceways 26
a, 26a, the two inner raceways 29a, 29a
By making the pitch smaller than the pitch of
a, each ball 15, 15 provided to be able to roll freely between the
Have an inward contact angle. While the structure of the first example shown in FIGS. 1 and 2 is a structure in which each row is combined with an angular type ball bearing, in the case of this example, each row is a deep groove type. It adopts a structure that combines ball bearings. In the case of such a structure of this example, the same operation and effect as those of the structure of the above-described first example can be obtained. The rotation supporting device for pulleys according to the present invention is constructed and operates as described above, so that it is possible to effectively prevent the generation of abnormal noise during driving and to provide the device to the occupant and the surroundings of the vehicle. This can contribute to the realization of an auxiliary device driving device for an automobile that does not cause discomfort to a pedestrian or the like. In addition, the endless belt can be used under severe conditions, such as ensuring sufficient durability under conditions such as high tension and a large radial load.

【図面の簡単な説明】 【図1】本発明の実施の形態の第1例を示す部分断面
図。 【図2】本発明の構造が異音を発生しにくい理由を説明
する為の模式図。 【図3】本発明の実施の形態の第2例を示す部分断面
図。 【図4】従来構造の1例を示す部分断面図。 【図5】従来構造が異音を発生し易い理由を説明する為
の模式図。 【符号の説明】 1 回転軸 2 ケーシング 3 支持筒部 4 従動プーリ 5 複列玉軸受 6 ソレノイド 7 取付ブラケット 8 環状板 9 板ばね 10 電磁クラッチ 11 外輪 12 外輪軌道 13 内輪 14 内輪軌道 15 玉 16 プーリ 17、17a 複列玉軸受 18 支持円筒部 19 ベルト掛け渡し部 20 連続部 21 鍔部 22、22a 外輪 23、23a 内輪 24 大径部 25 小径部 26、26a 外輪軌道 27 大径部 28 小径部 29、29a 内輪軌道 30 保持器
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a partial sectional view showing a first example of an embodiment of the present invention. FIG. 2 is a schematic diagram for explaining the reason why the structure of the present invention hardly generates abnormal noise. FIG. 3 is a partial cross-sectional view showing a second example of the embodiment of the present invention. FIG. 4 is a partial cross-sectional view showing one example of a conventional structure. FIG. 5 is a schematic diagram for explaining the reason why the conventional structure easily generates abnormal noise. [Description of Signs] 1 Rotary shaft 2 Casing 3 Support cylinder 4 Driven pulley 5 Double row ball bearing 6 Solenoid 7 Mounting bracket 8 Annular plate 9 Plate spring 10 Electromagnetic clutch 11 Outer ring 12 Outer ring track 13 Inner ring 14 Inner ring track 15 Ball 16 Pulley 17, 17a Double row ball bearing 18 Support cylindrical part 19 Belt bridge part 20 Continuous part 21 Flange part 22, 22a Outer ring 23, 23a Inner ring 24 Large diameter part 25 Small diameter part 26, 26a Outer ring raceway 27 Large diameter part 28 Small diameter part 29 , 29a Inner ring raceway 30 Cage

Claims (1)

【特許請求の範囲】 【請求項1】 内周面に複列の外輪軌道を有する外輪
と、外周面に複列の内輪軌道を有する内輪と、これら各
外輪軌道とこれら各内輪軌道との間にそれぞれ複数個ず
つ転動自在に設けられた玉とを備えた複列玉軸受によ
り、固定の部分の周囲にプーリを回転自在に支持するプ
ーリ用回転支持装置に於いて、上記複列玉軸受を構成す
る各玉列が、内向の接触角を持つ、正面組み合わせであ
る事を特徴とするプーリ用回転支持装置。
Claims: 1. An outer ring having a double-row outer raceway on an inner peripheral surface, an inner race having a double-row inner raceway on an outer peripheral surface, and between each of these outer raceways and each of these inner raceways. A double-row ball bearing comprising a plurality of rolling-contacting balls, each of which is provided with a plurality of rolling-free balls, wherein the double-row ball bearing comprises: The pulley rotation support device is characterized in that each of the rows of balls has an inward contact angle and is a front combination.
JP2001259738A 2001-08-29 2001-08-29 Rotary supporting apparatus for pulley Pending JP2003065326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001259738A JP2003065326A (en) 2001-08-29 2001-08-29 Rotary supporting apparatus for pulley

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001259738A JP2003065326A (en) 2001-08-29 2001-08-29 Rotary supporting apparatus for pulley

Publications (2)

Publication Number Publication Date
JP2003065326A true JP2003065326A (en) 2003-03-05
JP2003065326A5 JP2003065326A5 (en) 2008-09-04

Family

ID=19087061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001259738A Pending JP2003065326A (en) 2001-08-29 2001-08-29 Rotary supporting apparatus for pulley

Country Status (1)

Country Link
JP (1) JP2003065326A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7618193B2 (en) 2005-04-15 2009-11-17 Denso Corporation Rolling bearing incorporated in auxiliary device for internal combustion engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5818151U (en) * 1981-07-28 1983-02-04 光洋精工株式会社 Bearing for tension pulley
JP2000170752A (en) * 1998-12-09 2000-06-20 Denso Corp Rotating device and electromagnetic clutch

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5818151U (en) * 1981-07-28 1983-02-04 光洋精工株式会社 Bearing for tension pulley
JP2000170752A (en) * 1998-12-09 2000-06-20 Denso Corp Rotating device and electromagnetic clutch

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7618193B2 (en) 2005-04-15 2009-11-17 Denso Corporation Rolling bearing incorporated in auxiliary device for internal combustion engine

Similar Documents

Publication Publication Date Title
US6394250B1 (en) Alternator pulley unit with a built-in one-way clutch
JP2001208081A (en) Single row deep groove radial ball bearing
WO2003071142A1 (en) Rotation support device for compressor pulley
JP2003042146A (en) Rotation supporting device of pulley used for compressor
JP3567769B2 (en) Rotating device and electromagnetic clutch
JP2001187931A (en) One-way clutch
JPWO2003064872A1 (en) Bearings for automobile engine accessory pulleys
JP2003065326A (en) Rotary supporting apparatus for pulley
JP2003074672A (en) Pulley unit
JPWO2003025409A1 (en) Pulley rotation support device
JP2008261445A (en) In-wheel motor drive device
JP4085235B2 (en) Single row ball bearings for pulley support
JP2005042892A (en) Ball bearing
JPH1163170A (en) Roller clutch built-in pulley device for alternator
JP2004190763A (en) Rotary supporting device for pulley
JP2003287037A (en) Sealed rolling bearing
JP2000291782A (en) Pulley device with built-in one-way clutch for alternator
JP2003021149A (en) Rotary support device for pulley for compressor
JP2007092868A (en) Pulley unit
JP2002339989A (en) Ball bearing
JP2001004011A (en) Pulley unit
JP2002340144A (en) Pulley unit
JP2003120791A (en) Rotation support structure for pulley
JP2000337479A (en) Roller clutch built-in type pulley device for alternator
JP2004225751A (en) Pulley device with built-in one-way clutch

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080718

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100406