JP2003065323A - Hydrodynamic bearing apparatus and electric motor using the same - Google Patents

Hydrodynamic bearing apparatus and electric motor using the same

Info

Publication number
JP2003065323A
JP2003065323A JP2001256524A JP2001256524A JP2003065323A JP 2003065323 A JP2003065323 A JP 2003065323A JP 2001256524 A JP2001256524 A JP 2001256524A JP 2001256524 A JP2001256524 A JP 2001256524A JP 2003065323 A JP2003065323 A JP 2003065323A
Authority
JP
Japan
Prior art keywords
dynamic pressure
thrust
hole
shaft portion
lubricating fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001256524A
Other languages
Japanese (ja)
Inventor
Kiyobumi Inoue
清文 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Corp
Original Assignee
Nidec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Corp filed Critical Nidec Corp
Priority to JP2001256524A priority Critical patent/JP2003065323A/en
Publication of JP2003065323A publication Critical patent/JP2003065323A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To smoothly remove air bubbles entrained into lubricating fluid in a hydrodynamic bearing apparatus of which the minute clearance between a shaft member and a sleeve member is entirely filled with the lubricating fluid. SOLUTION: The hydrodynamic bearing apparatus is provided with a shaft member 11 having a shaft part 111 and a thrust plate part 112, a sleeve member 12 made of porous sintered compact, a sleeve supporting member 13, a thrust bush member 14 for sealing a lower aperture of the sleeve supporting member 13, and the lubricating fluid for entirely filling the minute clearance. The shaft member 11 is supported by providing two or more radial hydrodynamic pressure generating grooves 121a, 121b for supporting a radial load on the shaft part 111 and the inside peripheral surface of the sleeve member 12 facing the shaft part 111, and by providing a thrust hydrodynamic pressure generating grooves 141 for supporting a thrust load on the lower side surface of the thrust plate part 112 and the inside surface of the thrust bush member 14 facing the lower side surface of the thrust plate part 112.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は動圧軸受装置および
それを用いたモータに関し、より詳細には軸部材とスリ
ーブ部材との間の微小間隙全体に潤滑流体を充填した構
造(以下「フルフィル構造」と記すことがある)の動圧
軸受装置およびそれを用いたモータに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrodynamic bearing device and a motor using the same, and more particularly to a structure in which a lubricating fluid is filled in the entire minute gap between a shaft member and a sleeve member (hereinafter referred to as "full fill structure"). ) ”And a motor using the same.

【0002】[0002]

【従来の技術】ハードディスクドライブ(HDD)や高
容量のフロピィディスクドライブ(FDD)などの磁気
ディスク装置は年々著しく高容量化、小型化が進み、そ
こで使用されるスピンドルモータには、高速化に耐えら
れる寿命と静寂性、それに優れた振れ精度が要求される
が、このようなスピンドルモータの軸受手段としてこれ
まで主に用いられてきたボールベアリングでは、相対回
転する回転側部材と静止側部材との間にボールによる接
触が生じるため、このような要求を満足することが困難
になりつつある。そこで、回転側部材と静止側部材との
間に介在させた潤滑流体中に発生する流体動圧を用いて
非接触支持する動圧軸受装置が使用されるようになって
きた。動圧軸受装置の構造は、大きくはスラストプレー
ト部を有する軸部材と、この軸部材に対して微小間隙を
有して対向配置されるスリーブ部材と、前記微小間隙に
充填された潤滑流体と、モータの回転時にこの潤滑流体
中に流体動圧を誘起するための動圧発生溝とからなる。
このような基本構造の動圧軸受装置において、装置の一
層の信頼性並びに耐久性の改善および構造の簡略化によ
る低コスト化という市場要求に応えるため、フルフィル
構造の動圧軸受装置が開発されている。フルフィル構造
を用いた従来の動圧軸受装置の例を図8に示す。
2. Description of the Related Art Magnetic disk devices such as hard disk drives (HDD) and high-capacity floppy disk drives (FDD) have been significantly increased in capacity and miniaturized year by year. A ball bearing that has been mainly used until now as a bearing means for such spindle motors is required to have a rotating side member and a stationary side member that rotate relative to each other. It is becoming difficult to satisfy such a requirement because contact is made by a ball between the two. Therefore, a dynamic pressure bearing device has been used which supports in a non-contact manner by using a fluid dynamic pressure generated in a lubricating fluid interposed between a rotating side member and a stationary side member. The structure of the dynamic pressure bearing device is roughly comprised of a shaft member having a thrust plate portion, a sleeve member arranged to face the shaft member with a minute gap, and a lubricating fluid filled in the minute gap. It comprises a dynamic pressure generating groove for inducing a fluid dynamic pressure in the lubricating fluid when the motor rotates.
In such a dynamic bearing device having a basic structure, a full-fill dynamic bearing device has been developed in order to meet the market demand for further reliability and durability of the device and cost reduction by simplifying the structure. There is. An example of a conventional dynamic pressure bearing device using a full-fill structure is shown in FIG.

【0003】図8の動圧軸受装置では、スリーブ支持部
材13の中心に軸線方向に貫通孔131が形成され、ス
リーブ支持部材13の下端には貫通孔131の内径より
も大径に形成された嵌合溝部132が形成されている。
そしてこの貫通孔131の内周面に、2つのラジアル動
圧発生溝121a,121bが軸方向に離隔して内周面
に形成されると共に、下端面にスラスト動圧発生溝12
1cが形成された、軸方向長さがスリーブ支持部材13
よりも短い多孔質焼結体からなる中空円筒状のスリーブ
部材12が固着されている。
In the hydrodynamic bearing device of FIG. 8, a through hole 131 is formed in the axial direction at the center of the sleeve supporting member 13, and the lower end of the sleeve supporting member 13 is formed with a diameter larger than the inner diameter of the through hole 131. A fitting groove portion 132 is formed.
Two radial dynamic pressure generating grooves 121a and 121b are formed on the inner peripheral surface of the through hole 131 so as to be axially separated from each other, and the thrust dynamic pressure generating groove 12 is formed on the lower end surface.
1c is formed, and the length in the axial direction is the sleeve support member 13
A hollow cylindrical sleeve member 12 made of a shorter porous sintered body is fixed.

【0004】一方、軸部材11は、軸部111と、軸部
111の下端に形成されたスラストプレート部112と
からなる。そして、スラストプレート部112の上面が
スリーブ部材12の下端面に当接するまで、スリーブ部
材12の中空部に軸部材11の軸部111が一定の間隙
を介して挿入され、スリーブ支持部材13に形成された
貫通孔131の下側開口を封止するように、スラスト動
圧発生溝141が上面に形成されたスラストブッシュ部
材14が嵌合溝部132に装着されている。他方、貫通
孔131の上側開口には、軸部111に嵌通させた環状
のシール部材15が、その上面とスリーブ支持部材13
の上端面とが同一面となるように貫通孔131の内周面
に固着されている。そして、スリーブ支持部材13とス
ラストブッシュ部材14、シール部材15とで囲まれた
貫通孔131の内部は潤滑流体(不図示)で充填されて
いる。すなわち、スリーブ部材12と軸部111との間
およびスラストプレート部112とスラストブッシュ部
材14との間の微小間隙、それにスリーブ部材12の内
部に形成された連続孔は潤滑流体で充填されている。
On the other hand, the shaft member 11 comprises a shaft portion 111 and a thrust plate portion 112 formed at the lower end of the shaft portion 111. Then, the shaft portion 111 of the shaft member 11 is inserted into the hollow portion of the sleeve member 12 with a constant gap until the upper surface of the thrust plate portion 112 comes into contact with the lower end surface of the sleeve member 12, and is formed on the sleeve support member 13. The thrust bush member 14 having the thrust dynamic pressure generating groove 141 formed on the upper surface is mounted in the fitting groove portion 132 so as to seal the lower opening of the through hole 131. On the other hand, in the upper opening of the through hole 131, an annular seal member 15 fitted in the shaft portion 111 is provided, and its upper surface and the sleeve support member 13
Is fixed to the inner peripheral surface of the through hole 131 so that the upper end surface thereof is flush with the upper surface. The inside of the through hole 131 surrounded by the sleeve support member 13, the thrust bush member 14, and the seal member 15 is filled with a lubricating fluid (not shown). That is, the minute gaps between the sleeve member 12 and the shaft portion 111 and between the thrust plate portion 112 and the thrust bush member 14 and the continuous holes formed inside the sleeve member 12 are filled with the lubricating fluid.

【0005】上記構造の動圧軸受装置において、軸部材
111のラジアル荷重は、スリーブ部材12の内周面に
形成されたヘリングボーン型の2つのラジアル動圧発生
溝121a,121bで発生する流体動圧により、他方
スラスト荷重は、スリーブ部材12の下端面およびスラ
ストブッシュ部材14の表面に形成されたスパイラル型
のスラスト動圧発生溝121c、141で発生する流体
動圧により支持される。
In the dynamic bearing device having the above structure, the radial load of the shaft member 111 is generated by the fluid dynamics generated by the two herringbone type radial dynamic pressure generating grooves 121a, 121b formed on the inner peripheral surface of the sleeve member 12. On the other hand, the pressure causes the thrust load to be supported by the fluid dynamic pressure generated in the spiral thrust dynamic pressure generating grooves 121c and 141 formed in the lower end surface of the sleeve member 12 and the surface of the thrust bush member 14.

【0006】[0006]

【発明が解決しようとする課題】このような動圧軸受装
置において潤滑流体中に気泡が混入していると次のよう
な問題が生じる。まず、温度の上昇により気泡が体積膨
張し、潤滑流体が装置外に漏出して潤滑流体量が減少す
る。一方、装置外に漏出した潤滑流体は他の装置に付着
・汚染して不具合の原因となる。また、動圧発生溝に気
泡が巻き込まれると非繰り返し性振動が生じ、さらには
軸受剛性が低下する。特に、図8におけるスラスト軸受
部は、スラストブッシュ部材14の表面に形成されたス
パイラル型のスラスト動圧発生溝141で、スラストプ
レート部112の外周側から内周側に向けて潤滑流体を
流動させ、スラストプレート部112の中心部で極大動
圧を発生させてスラスト荷重を支持しているため、スラ
ストプレート部112の下面に流動してきた気泡は、ス
ラストプレート部112の外周側から内周側に向かう潤
滑流体流に乗ってスラストプレート下面中心に運ばれそ
こに永久に滞留することになる。
In such a dynamic pressure bearing device, if air bubbles are mixed in the lubricating fluid, the following problems occur. First, as the temperature rises, the bubbles expand in volume, the lubricating fluid leaks out of the device, and the amount of lubricating fluid decreases. On the other hand, the lubricating fluid leaked to the outside of the device adheres to and contaminates other devices, causing a malfunction. Further, when air bubbles are caught in the dynamic pressure generation groove, non-repetitive vibration occurs, and the bearing rigidity is reduced. In particular, the thrust bearing portion in FIG. 8 is a spiral type thrust dynamic pressure generating groove 141 formed on the surface of the thrust bush member 14 to allow the lubricating fluid to flow from the outer peripheral side to the inner peripheral side of the thrust plate portion 112. Since the maximum dynamic pressure is generated in the central portion of the thrust plate portion 112 to support the thrust load, the bubbles that have flowed to the lower surface of the thrust plate portion 112 move from the outer peripheral side to the inner peripheral side of the thrust plate portion 112. It is carried by the flowing lubricating fluid to the center of the lower surface of the thrust plate and stays there permanently.

【0007】このため、フルフィル構造を用いたこれま
での軸受装置では潤滑流体中に気泡が混入しないよう
に、例えば軸受部への潤滑流体の注入作業や潤滑流体自
体に様々な改良・工夫を凝らしていた。
For this reason, in conventional bearing devices using a full-fill structure, various improvements and contrivances have been made, for example, in the operation of injecting the lubricating fluid into the bearing portion and the lubricating fluid itself so that air bubbles are not mixed in the lubricating fluid. Was there.

【0008】しかし、潤滑流体の微小間隙への注入工程
において気泡の混入を完全に防止することは困難であっ
た。また、たとえ組立工程で潤滑流体に気泡が混入しな
くても、モータの回転時に動圧発生溝の端部が潤滑流体
界面を揺らすことで、潤滑流体中に空気が取り込まれ気
泡となることがあった。
However, it was difficult to completely prevent air bubbles from being mixed in the step of injecting the lubricating fluid into the minute gap. Even if air bubbles are not mixed in the lubricating fluid in the assembly process, the ends of the dynamic pressure generating grooves oscillate the interface of the lubricating fluid when the motor rotates, so that air may be taken into the lubricating fluid to form bubbles. there were.

【0009】モータ回転時に起こる潤滑流体中へのこの
空気の噛み込みを防止する技術として、例えば特開20
00−173656号公報では、潤滑流体の界面が位置
するテーパシール部の容積と寸法を大きくし、動圧発生
溝と潤滑流体の界面との距離を充分に長くすることが提
案されている。しかし、テーパシール部の領域を拡大す
ると同時にモータの小型・薄型化という市場要求にも応
えるためには、軸受部の設計自由度が極端に制限される
ことなる。また充分な軸受剛性が得られないおそれもあ
る。
As a technique for preventing the entrapment of this air in the lubricating fluid that occurs when the motor rotates, for example, Japanese Patent Laid-Open No.
In Japanese Patent Application Laid-Open No. 00-173656, it is proposed to increase the volume and size of the taper seal portion where the interface of the lubricating fluid is located, and to sufficiently lengthen the distance between the dynamic pressure generating groove and the interface of the lubricating fluid. However, in order to expand the area of the taper seal portion and simultaneously meet the market demand for smaller and thinner motors, the degree of freedom in designing the bearing portion is extremely limited. Further, there is a possibility that sufficient bearing rigidity cannot be obtained.

【0010】本発明はこのような従来の問題に鑑みてな
されたものであり、フルフィル構造の軸受装置において
潤滑流体中に混入した気泡を円滑に除去することをその
目的とするものである。
The present invention has been made in view of such conventional problems, and an object thereof is to smoothly remove bubbles mixed in a lubricating fluid in a bearing device having a full-fill structure.

【0011】また本発明の目的は、動圧軸受装置からの
潤滑流体漏出がなく、また非繰り返し性振動が生じるこ
とがなく、さらには軸受剛性の低下することないモータ
を提供することにある。
Another object of the present invention is to provide a motor in which lubricating fluid does not leak from the dynamic pressure bearing device, non-repetitive vibration does not occur, and the bearing rigidity does not decrease.

【0012】[0012]

【課題を解決するための手段】前記目的を達成する第1
の発明に係る動圧軸受装置は、軸部と該軸部から半径方
向外方に突出するスラストプレート部とを有する軸部材
と、前記軸部に対し微小間隙を有して対向配置された、
多孔質焼結体からなるスリーブ部材と、このスリーブ部
材を支持するスリーブ支持部材と、前記スラストプレー
ト部下面に対し微小間隙を有して対向配置され、前記ス
リーブ支持部材の下側開口を封止するスラストブッシュ
部材と、前記微小間隙全体に充填された潤滑流体とを備
え、前記軸部およびこの軸部と対向する前記スリーブ部
材の内周面の少なくとも一方に、ラジアル荷重を支持す
るためのラジアル動圧発生溝を2つ以上設け、また前記
スラストプレート部の下側面およびこの下側面と対向す
る前記スラストブッシュ部材の内側面の少なくとも一方
に、スラスト荷重を支持するためのスラスト動圧発生溝
を設け、前記スリーブ部材と前記軸部材とを相対的に回
転可能に支持する動圧軸受装置であって、前記軸部の底
面中央部から軸方向に形成された穴に多孔質焼結体が挿
入され、該穴の上端部には軸部外周面に連通する貫通孔
が形成され、該貫通孔の軸部外周面側開口は前記潤滑流
体中に位置していることを特徴とする。
[Means for Solving the Problems] First to achieve the above object
In the dynamic pressure bearing device according to the invention, a shaft member having a shaft portion and a thrust plate portion projecting outward in the radial direction from the shaft portion, and the shaft member are arranged to face each other with a minute gap,
A sleeve member made of a porous sintered body, a sleeve support member supporting the sleeve member, and a lower surface of the thrust plate portion are arranged to face each other with a minute gap, and a lower opening of the sleeve support member is sealed. A thrust bush member and a lubricating fluid filled in the entire minute gap, and a radial load for supporting a radial load on at least one of the shaft portion and the inner peripheral surface of the sleeve member facing the shaft portion. Two or more dynamic pressure generating grooves are provided, and a thrust dynamic pressure generating groove for supporting a thrust load is provided on at least one of the lower side surface of the thrust plate portion and the inner side surface of the thrust bush member facing the lower side surface. A hydrodynamic bearing device for rotatably supporting the sleeve member and the shaft member relative to each other, wherein A porous sintered body is inserted into the hole formed in the through hole, a through hole communicating with the outer peripheral surface of the shaft portion is formed in the upper end portion of the hole, and the opening on the outer peripheral surface side of the shaft portion of the through hole is in the lubricating fluid. It is located in.

【0013】ここで潤滑流体中の存在する気泡をより円
滑に除去する観点から、前記貫通孔の軸部外周面側開口
は、軸方向最も上側に形成されたラジアル動圧発生溝よ
りも上側、又はラジアル動圧発生溝の間に位置させるの
が好ましく、より好ましくは前記潤滑流体の界面近傍に
位置させるのがよい。
From the viewpoint of more smoothly removing the air bubbles present in the lubricating fluid, the opening of the through hole on the outer peripheral surface of the shaft portion is located above the radial dynamic pressure generating groove formed on the uppermost side in the axial direction. Alternatively, it is preferably located between the radial dynamic pressure generating grooves, and more preferably located near the interface of the lubricating fluid.

【0014】また第2の発明に係る動圧軸受装置は、軸
部と該軸部から半径方向外方に突出するスラストプレー
ト部とを有する軸部材と、前記軸部に対し微小間隙を有
して対向配置された、金属材料からなるスリーブ部材
と、前記スラストプレート部下面に対し微小間隙を有し
て対向配置され、前記スリーブ部材の下側開口を封止す
るスラストブッシュ部材と、前記微小間隙全体に充填さ
れた潤滑流体とを備え、前記軸部およびこの軸部と対向
する前記スリーブ部材の内周面の少なくとも一方に、ラ
ジアル荷重を支持するためのラジアル動圧発生溝を2つ
以上設け、また前記スラストプレート部の下側面および
前記スラストブッシュ部材の内側面の少なくとも一方
に、スラスト荷重を支持するためのスラスト動圧発生溝
を設け、前記スリーブ部材と前記軸部材とを相対的に回
転可能に支持する動圧軸受装置であって、前記軸部の底
面中央部から軸方向に形成された穴に多孔質焼結体が挿
入され、該穴の上端部には軸部外周面に連通する貫通孔
が形成され、該貫通孔の軸部外周面側開口は、軸方向最
も上側に形成されたラジアル動圧発生溝よりも上側で且
つ前記潤滑流体中に位置していることを特徴とする。
A hydrodynamic bearing device according to a second aspect of the present invention has a shaft member having a shaft portion and a thrust plate portion protruding outward in the radial direction from the shaft portion, and a minute gap with respect to the shaft portion. A sleeve member made of a metal material and opposed to the lower surface of the thrust plate portion with a minute gap, and a thrust bush member sealing a lower opening of the sleeve member, and the minute gap. A lubricating fluid filled in the entirety, and two or more radial dynamic pressure generating grooves for supporting a radial load are provided on at least one of the shaft portion and the inner peripheral surface of the sleeve member facing the shaft portion. Further, a thrust dynamic pressure generating groove for supporting a thrust load is provided on at least one of the lower side surface of the thrust plate portion and the inner side surface of the thrust bush member, and the sleeve is provided. A hydrodynamic bearing device for rotatably supporting a material and the shaft member, wherein a porous sintered body is inserted into a hole formed in the axial direction from the bottom center of the shaft part, A through hole communicating with the shaft outer peripheral surface is formed at the upper end of the shaft, and the shaft outer peripheral surface side opening of the through hole is above the radial dynamic pressure generating groove formed on the axially uppermost side and the lubrication is performed. It is characterized in that it is located in the fluid.

【0015】ここで、スラスト荷重を一層確実に支持す
る観点から、第1の発明および第2の発明に係る動圧軸
受装置では多孔質焼結体を前記貫通孔の全体に隙間なく
嵌挿するのが望ましい。また、前記スラスト動圧発生溝
はスラストプレート部の外周側から内周側に向けて潤滑
流体を流動させるものが好ましい。さらにスリーブ部材
の軸方向最も上側に形成されたラジアル動圧発生溝は、
軸方向下方に潤滑流体を流動させる、軸方向に不平衡に
形成されたヘリングボーン状溝であるのが潤滑流体の漏
出防止の点で好ましい。
Here, from the viewpoint of more reliably supporting the thrust load, in the hydrodynamic bearing device according to the first invention and the second invention, the porous sintered body is fitted into the entire through hole without any clearance. Is desirable. Further, it is preferable that the thrust dynamic pressure generating groove allows the lubricating fluid to flow from the outer peripheral side to the inner peripheral side of the thrust plate portion. Further, the radial dynamic pressure generating groove formed on the uppermost side in the axial direction of the sleeve member is
From the viewpoint of preventing leakage of the lubricating fluid, a herringbone-shaped groove formed in the axially unbalanced manner to allow the lubricating fluid to flow axially downward is preferable.

【0016】そしてまた前記目的を達成する本発明に係
るモータは、前記のいずれかに記載の動圧軸受装置を備
えたことを特徴とする。
A motor according to the present invention that achieves the above object is characterized by including any one of the dynamic pressure bearing devices described above.

【0017】[0017]

【発明の実施の形態】本発明者等は、これまでの潤滑流
体中に気泡を混入させないという技術思想とはまったく
逆の、潤滑流体に気泡が混入することを前提とした、混
入気泡を円滑に除去するという技術思想に基づき鋭意検
討を重ねた結果、潤滑流体が充填されている領域全体に
潤滑流体を大きく循環させることにより混入気泡を円滑
に除去できることを見出し本発明をなすに至った。
BEST MODE FOR CARRYING OUT THE INVENTION The inventors of the present invention are completely contrary to the conventional technical idea of not mixing bubbles in a lubricating fluid, and assume that the bubbles are mixed in the lubricating fluid on the assumption that the bubbles are mixed. As a result of intensive studies based on the technical idea of removing the mixed fluid, it was found that mixed bubbles can be smoothly removed by largely circulating the lubricating fluid throughout the area filled with the lubricating fluid, and the present invention has been accomplished.

【0018】すなわち本発明に係る動圧軸受装置の大き
な特徴の一つは、軸部の底面中央部から軸方向に穴を形
成し、さらにこの穴の上端部に軸部外周面に連通する貫
通孔を形成し、且つこの貫通孔の軸部外周面側開口を潤
滑流体中に設けた点にある。軸部に前記穴および貫通孔
を形成したことにより、スラスト軸受部から前記穴そし
て貫通孔を通ってラジアル軸受部に潤滑流体は流動し、
さらに多孔質焼結体からなるスリーブ部材の内部の連続
孔を流動してスラスト軸受部に戻るようになる。ここ
で、前記開口を潤滑流体中に設けるのは、貫通孔の軸部
外周面側開口が潤滑流体の界面より上に設けられている
と、軸部材の回転による遠心力で潤滑流体が前記開口か
ら飛散することになるからである。潤滑流体中の気泡を
より円滑に除去するには、前記開口を潤滑流体の界面近
傍、すなわちテーパシール部に設けるのがよい。このよ
うな潤滑流体の循環路を形成したことで、潤滑流体中の
気泡は循環途中で潤滑流体界面から大気へ順次抜けて行
く。
That is, one of the major features of the hydrodynamic bearing device according to the present invention is that a hole is formed in the axial direction from the center of the bottom surface of the shaft portion, and the upper end portion of the hole penetrates the outer peripheral surface of the shaft portion. A hole is formed, and the opening of the through hole on the outer peripheral surface of the shaft portion is provided in the lubricating fluid. By forming the hole and the through hole in the shaft portion, the lubricating fluid flows from the thrust bearing portion to the radial bearing portion through the hole and the through hole,
Further, it flows through the continuous holes inside the sleeve member made of the porous sintered body and returns to the thrust bearing portion. Here, the opening is provided in the lubricating fluid because when the opening of the through hole on the outer peripheral surface of the shaft portion is provided above the interface of the lubricating fluid, the lubricating fluid is opened by the centrifugal force due to the rotation of the shaft member. It will be scattered from. In order to remove bubbles in the lubricating fluid more smoothly, it is preferable to provide the opening near the interface of the lubricating fluid, that is, in the taper seal portion. By forming such a circulation path of the lubricating fluid, the bubbles in the lubricating fluid sequentially escape from the interface of the lubricating fluid to the atmosphere during the circulation.

【0019】また本発明に係る動圧軸受装置のもう一つ
の大きな特徴は、軸部に形成した穴に多孔質焼結体を挿
入した点にある。スラスト動圧発生溝がスラストプレー
ト部の外周側から内周側に潤滑流体を流動させるスパイ
ラル溝であって、スラストプレート部の下面中央部で極
大動圧を生じさせてスラスト荷重を支持している場合、
スラストプレート下面中央部に穴が空いていると、スパ
イラル溝によってスラストプレート部の外周側から内周
側に流動してきた潤滑流体はそのまま前記穴を通って循
環してしまうため、スラストプレート部の下面中央部で
極大動圧が発生せず軸受作用が生じない。そこで、潤滑
流体の循環を確保しながらスラストプレート下面中央部
で動圧が生じるようにするため、多孔質焼結体を前記穴
に挿着したのである。
Another major feature of the dynamic pressure bearing device according to the present invention is that a porous sintered body is inserted into a hole formed in the shaft portion. The thrust dynamic pressure generation groove is a spiral groove that allows the lubricating fluid to flow from the outer peripheral side to the inner peripheral side of the thrust plate portion, and the maximum dynamic pressure is generated at the center of the lower surface of the thrust plate portion to support the thrust load. If
If there is a hole in the center of the lower surface of the thrust plate, the lubricating fluid that has flowed from the outer peripheral side to the inner peripheral side of the thrust plate due to the spiral groove will circulate through the hole as it is, so the lower surface of the thrust plate Maximum dynamic pressure does not occur in the central part and bearing action does not occur. Therefore, in order to ensure the circulation of the lubricating fluid and to generate the dynamic pressure at the central portion of the lower surface of the thrust plate, the porous sintered body is inserted into the hole.

【0020】以下、図に基づいて本発明の動圧軸受装置
について詳述する。図1は第1の発明に係る動圧軸受装
置の縦断面図である。なお、図8に示した従来の動圧軸
受装置と同じ部材及び部分は同じ符号を付している。ま
た図8の動圧軸受装置と共通する構造および機能につい
てはその説明をここでは省略し、相違する構造および機
能についてのみ説明する。
The hydrodynamic bearing device of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a vertical sectional view of a dynamic pressure bearing device according to the first invention. The same members and parts as those of the conventional dynamic pressure bearing device shown in FIG. 8 are designated by the same reference numerals. Descriptions of structures and functions common to the dynamic pressure bearing device of FIG. 8 will be omitted here, and only different structures and functions will be described.

【0021】軸部111の底面中央から軸方向に有底穴
113が形成され、この穴113には隙間なく多孔質焼
結体114が嵌挿されている。穴113の大きさ(直
径)に特に限定はなく潤滑流体が流動できる程度であれ
ばよい。逆に必要以上に穴を大きくすると軸部111の
強度が低下するので、軸部の直径に対して50%以下が
好ましく、さらには40%以下がより好ましい。具体的
には、穿設加工性の点から通常最も小さい径で0.5〜
2.0mm程度である。また穴の断面形状に特に限定は
なく円形の他、楕円形や多角形であってももちろん構わ
ない。
A bottomed hole 113 is formed in the axial direction from the center of the bottom surface of the shaft portion 111, and a porous sintered body 114 is fitted in the hole 113 without a gap. The size (diameter) of the hole 113 is not particularly limited as long as the lubricating fluid can flow. On the contrary, if the hole is made larger than necessary, the strength of the shaft portion 111 is reduced. Specifically, from the viewpoint of drilling workability, the smallest diameter is usually 0.5 to
It is about 2.0 mm. The cross-sectional shape of the hole is not particularly limited and may be circular, oval or polygonal.

【0022】穴に嵌挿する多孔質焼結体は、内部に連続
空孔を有するものであればその材質に特に限定はなく、
各種金属粉末や金属化合物粉末、非金属粉末を原料とし
て成形、焼結したものが使用できる。原料としてはFe
−CuやCu−Sn、Cu−Sn−Pb、Fe−Cなど
が挙げられる。
The porous sintered body fitted into the hole is not particularly limited in its material as long as it has continuous pores inside.
Various metal powders, metal compound powders, and non-metal powders that have been molded and sintered can be used. Fe as a raw material
-Cu, Cu-Sn, Cu-Sn-Pb, Fe-C etc. are mentioned.

【0023】そしてこの穴113の上端部と軸部外周面
とを連通するように貫通孔115が形成されている。こ
の貫通孔115の軸部外周面側開口は、環状のシール部
材15と軸部テーパ面117(図2に図示)とで構成さ
れるテーパシール部の潤滑流体の界面下に形成されてい
る。このテーパシール部の拡大断面図を図2に示す。
A through hole 115 is formed so that the upper end of the hole 113 and the outer peripheral surface of the shaft portion communicate with each other. An opening on the outer peripheral surface side of the shaft portion of the through hole 115 is formed below the interface of the lubricating fluid of the taper seal portion formed by the annular seal member 15 and the shaft portion tapered surface 117 (shown in FIG. 2). An enlarged cross-sectional view of this taper seal portion is shown in FIG.

【0024】環状のシール部材15と微小間隙を有して
対向する軸部111に、軸方向上方に向かって徐々に軸
部外径を縮径することによってテーパ面117が形成さ
れている。このテーパ面117とシール部材15とで構
成されるテーパシール部で、毛細管現象を利用して潤滑
流体Lが装置外に漏出しないようにしている。貫通孔1
15の軸部外周面側開口116は、このテーパシール部
における潤滑流体Lの界面下に形成するのが望ましい。
潤滑流体Lの界面近傍はラジアル動圧発生溝121a
(図1に図示)からある程度離れているので軸受方向へ
の流動圧力が比較的低く、テーパシール部に流動してき
た潤滑流体中の気泡が、軸受方向に流動せずに界面から
外部に抜けやすくなるからである。なお、テーパシール
部の潤滑流体界面は温度変化により移動するので、貫通
孔115の軸部外周面側開口116は潤滑流体L中に常
に位置するように形成する必要がある。また、このよう
な貫通孔115を円周方向に2以上設けても構わない。
さらには貫通孔115を軸方向に2以上設けても構わな
い。
A tapered surface 117 is formed on the shaft portion 111 facing the annular seal member 15 with a minute gap by gradually reducing the outer diameter of the shaft portion upward in the axial direction. At the taper seal portion composed of the taper surface 117 and the seal member 15, the lubricating fluid L is prevented from leaking out of the device by utilizing the capillary phenomenon. Through hole 1
The shaft outer peripheral surface side opening 116 of 15 is preferably formed below the interface of the lubricating fluid L in the taper seal portion.
The radial dynamic pressure generating groove 121a is formed near the interface of the lubricating fluid L.
Since it is apart from (illustrated in FIG. 1) to some extent, the flow pressure in the bearing direction is relatively low, and the bubbles in the lubricating fluid flowing to the taper seal part do not flow in the bearing direction and easily escape from the interface to the outside. Because it will be. Since the lubricating fluid interface of the taper seal portion moves due to the temperature change, it is necessary to form the shaft portion outer peripheral surface side opening 116 of the through hole 115 so that it is always positioned in the lubricating fluid L. Further, two or more such through holes 115 may be provided in the circumferential direction.
Furthermore, two or more through holes 115 may be provided in the axial direction.

【0025】図1において、多孔質焼結体からなる中空
円筒状のスリーブ部材12の内周面には、2つのラジア
ル動圧発生溝121a,121bが上下方向に離隔して
形成されると共に、スリーブ部材12の下端面(スラス
トプレート部112の上側面と軸方向に対向する面)に
はスラスト動圧発生溝121cが形成されている。図3
にラジアル動圧発生溝の具体例を示す。図3はスリーブ
部材の縦断面図である。スリーブ部材12の内周面に形
成された2つのラジアル動圧発生溝121a,121b
はどちらもヘリングボーン溝であるが、下側のラジアル
動圧発生溝121bはスリーブ部材12の軸方向に溝部
分が平衡に形成されたヘリングボーン溝であるのに対
し、上側のラジアル動圧発生溝121aは、上側(スリ
ーブ部材12の開口端側)の溝部分が下側の溝部分より
も長く形成されたヘリングボーン溝である。これによ
り、上側のラジアル動圧発生溝121aでは軸受作用に
加えて、潤滑流体を軸方向下方に流動させる作用が生
じ、前記テーパシール部の作用と相まって潤滑流体の漏
出を有効に防止している。なお、スラスト動圧発生溝1
21cの具体的形状については、後に図4を参照して説
明する、スラストブッシュ部材14に形成されるスラス
ト動圧発生溝141と実質的に同一である。
In FIG. 1, two radial dynamic pressure generating grooves 121a and 121b are formed in the inner peripheral surface of a hollow cylindrical sleeve member 12 made of a porous sintered body so as to be vertically separated from each other. A thrust dynamic pressure generating groove 121c is formed on the lower end surface of the sleeve member 12 (the surface that faces the upper side surface of the thrust plate portion 112 in the axial direction). Figure 3
A concrete example of the radial dynamic pressure generating groove is shown in FIG. FIG. 3 is a vertical sectional view of the sleeve member. Two radial dynamic pressure generating grooves 121a, 121b formed on the inner peripheral surface of the sleeve member 12.
Both are herringbone grooves, but the lower radial dynamic pressure generating groove 121b is a herringbone groove in which the groove portions are formed in equilibrium in the axial direction of the sleeve member 12, while the upper radial dynamic pressure generating groove 121b is generated. The groove 121a is a herringbone groove in which the groove portion on the upper side (opening end side of the sleeve member 12) is formed longer than the groove portion on the lower side. As a result, in the upper radial dynamic pressure generating groove 121a, in addition to the bearing action, an action of causing the lubricating fluid to flow downward in the axial direction occurs, and in combination with the action of the taper seal portion, the leakage of the lubricating fluid is effectively prevented. . The thrust dynamic pressure generating groove 1
The specific shape of 21c is substantially the same as the thrust dynamic pressure generating groove 141 formed in the thrust bush member 14, which will be described later with reference to FIG.

【0026】多孔質焼結体からなるスリーブ部材12に
このような動圧発生溝を形成するには、従来公知の方法
を用いることができ、例えば動圧発生溝と反対の凹凸を
表面に形成した型に焼結材を充填して圧縮成形した後焼
結することによって作製できる。スリーブ部材12の表
面開口率は一般に15%以下が好ましく、潤滑流体の流
動を考慮すると5〜10%の範囲がより好ましい。また
動圧発生溝を形成した部分は、潤滑流体を流動させて動
圧を発生させる必要があるためその表面開口率は5%以
下が望ましい。表面開口率を部分的に小さくするには例
えば封孔処理を行えばよい。なお、ここでいう表面開口
率とは単位面積当たりの開口面積の割合を意味する。
In order to form such a dynamic pressure generating groove in the sleeve member 12 made of a porous sintered body, a conventionally known method can be used. For example, irregularities opposite to the dynamic pressure generating groove are formed on the surface. It can be manufactured by filling a shaped mold with a sintering material, compression-molding, and then sintering. The surface aperture ratio of the sleeve member 12 is generally preferably 15% or less, and more preferably 5 to 10% in consideration of the flow of the lubricating fluid. Further, in the portion where the dynamic pressure generating groove is formed, it is necessary to flow the lubricating fluid to generate the dynamic pressure, so that the surface aperture ratio is preferably 5% or less. To partially reduce the surface aperture ratio, for example, a sealing treatment may be performed. The surface opening ratio here means the ratio of the opening area per unit area.

【0027】スリーブ部材をなす多孔質焼結体は、穴に
嵌挿する多孔質焼結体と同様に、各種金属粉末や金属化
合物粉末、非金属粉末を原料として成形、焼結の工程を
経て作製される。またその原料も同じものが例示され
る。
The porous sintered body forming the sleeve member is molded and sintered using various metal powders, metal compound powders and non-metal powders as raw materials, like the porous sintered body fitted in the hole. It is made. The same raw materials are also exemplified.

【0028】また図1において、スラストブッシュ部材
14の上面にはスラスト発生溝141が形成されてい
る。図4にスラスト動圧発生溝の一例を示す。図4はス
ラストブッシュ部材14の平面図であって、スラストブ
ッシュ部材14と同軸の2つの同心円で囲まれた帯状領
域にスパイラル溝141が形成されている。
Further, in FIG. 1, a thrust generating groove 141 is formed on the upper surface of the thrust bush member 14. FIG. 4 shows an example of the thrust dynamic pressure generating groove. FIG. 4 is a plan view of the thrust bush member 14, in which a spiral groove 141 is formed in a band-shaped region surrounded by two concentric circles coaxial with the thrust bush member 14.

【0029】次にこのような構成の動圧軸受装置におけ
る潤滑流体おびよ気泡の流れについて説明する。スラス
トブッシュ部材14の表面に形成されたスパイラル溝1
41によりスラストプレート部112の外周側から内周
側に向かって潤滑流体は流動する。一方、スラストプレ
ート部112の中央部には穴113が形成されている
が、この穴113には多孔質焼結体114が嵌挿されて
いるので、スラストプレート部112の中央部に流動し
てきた潤滑流体は、従来と同様にスラストプレート部1
12の中央部で極大動圧が生じさせ、この動圧により軸
部材11を非接触支持する。
Next, the flow of the lubricating fluid and bubbles in the dynamic pressure bearing device having such a structure will be described. Spiral groove 1 formed on the surface of thrust bush member 14
41 causes the lubricating fluid to flow from the outer peripheral side of the thrust plate portion 112 toward the inner peripheral side. On the other hand, a hole 113 is formed in the central portion of the thrust plate portion 112, but since the porous sintered body 114 is fitted and inserted in this hole 113, it flows into the central portion of the thrust plate portion 112. The lubricating fluid is the same as in the conventional thrust plate portion 1.
A maximum dynamic pressure is generated at the central portion of 12, and the shaft member 11 is supported in a non-contact manner by this dynamic pressure.

【0030】ここで、スラストプレート部112の中央
部に流動してきた潤滑流体の一部は、多孔質焼結体11
4の内部の連続空孔に流れ込み、この焼結体114中を
軸方向上方へと流れる。そして穴113の上端部に達す
ると、さらに貫通孔115を通って軸部外周面へと流れ
る。貫通孔115の軸部外周面側開口116(図2に図
示)は、前述のように潤滑流体界面の下に形成されてい
るので、潤滑流体に存在する気泡はこの界面から外部に
抜ける。気泡が除去された潤滑流体は、軸部材11とス
リーブ部材12との微小間隙およびスリーブ部材12内
部の連続空孔を軸方向下方に流れ、途中2つのラジアル
動圧発生溝121a,121bでそれぞれ動圧を発生さ
せて軸部材11を非接触支持する。そしてスラストブッ
シュ部材14の外周部に至る。潤滑流体はこのような閉
流路を循環する。
Here, part of the lubricating fluid that has flowed to the central portion of the thrust plate portion 112 is part of the porous sintered body 11.
4 flows into the continuous pores inside and flows axially upward in the sintered body 114. When it reaches the upper end of the hole 113, it further flows through the through hole 115 to the outer peripheral surface of the shaft portion. Since the opening 116 on the outer peripheral surface of the shaft portion of the through hole 115 (shown in FIG. 2) is formed under the lubricating fluid interface as described above, the bubbles existing in the lubricating fluid escape to the outside from this interface. The lubricating fluid from which air bubbles have been removed flows axially downward through a minute gap between the shaft member 11 and the sleeve member 12 and a continuous hole inside the sleeve member 12, and moves in the two radial dynamic pressure generating grooves 121a and 121b on the way. A pressure is generated to support the shaft member 11 in a non-contact manner. Then, it reaches the outer peripheral portion of the thrust bush member 14. The lubricating fluid circulates in such a closed flow path.

【0031】第1の発明に係る動圧軸受装置の他の実施
態様を図5に示す。図5は軸部材11の上端面に軸穴1
17が形成された装置の縦断面図であって、この場合軸
部111の中程までしか穴113を空けることができな
い。そしてここでは穴113の上端部と軸部外周面とは
略水平の貫通孔115で連通されている。
Another embodiment of the dynamic pressure bearing device according to the first invention is shown in FIG. FIG. 5 shows the shaft hole 1 on the upper end surface of the shaft member 11.
FIG. 7 is a vertical cross-sectional view of the device in which 17 is formed, in which case the hole 113 can be drilled only up to the middle of the shaft portion 111. Further, here, the upper end portion of the hole 113 and the outer peripheral surface of the shaft portion are communicated with each other through a substantially horizontal through hole 115.

【0032】このような動圧軸受装置において潤滑流体
は、スラスト動圧発生溝141によりスラストプレート
部112の外周側から内周側に向かって流動し、潤滑流
体の一部はスラストプレート部112の中央部に形成さ
れた穴113の多孔質焼結体114の内部を通り、さら
に貫通孔115を通って上・下ラジアル動圧発生溝12
1a,121bの間の軸部外周面に至る。ここで潤滑流
体中の気泡はスリーブ部材12の内部の連続空孔を通っ
て軸方向上方に移動し、前記テーパシール部の潤滑流体
界面から外部に抜ける。一方、潤滑流体はスリーブ部材
12と軸部材11との間の微小間隙およびスリーブ部材
12の内部連続空孔を通って、一部は下側のラジアル動
圧発生溝121bにより動圧を発生させて軸部材11を
非接触支持し、スラストプレート部112の外周部に至
る。このような閉流路を潤滑流体は循環する。
In such a dynamic pressure bearing device, the lubricating fluid flows from the outer peripheral side of the thrust plate portion 112 to the inner peripheral side by the thrust dynamic pressure generating groove 141, and a part of the lubricating fluid of the thrust plate portion 112. The upper and lower radial dynamic pressure generating grooves 12 pass through the inside of the porous sintered body 114 of the hole 113 formed in the central portion and further through the through hole 115.
It reaches the outer peripheral surface of the shaft portion between 1a and 121b. Here, the bubbles in the lubricating fluid move axially upward through the continuous holes inside the sleeve member 12 and escape to the outside from the lubricating fluid interface of the taper seal portion. On the other hand, the lubricating fluid passes through a minute gap between the sleeve member 12 and the shaft member 11 and an internal continuous hole of the sleeve member 12, and a part of the lubricating fluid generates dynamic pressure by the lower radial dynamic pressure generating groove 121b. The shaft member 11 is supported in a non-contact manner and reaches the outer peripheral portion of the thrust plate portion 112. The lubricating fluid circulates in such a closed flow path.

【0033】なお、図5の動圧軸受装置では穴113の
上端部と軸部外周面とを結ぶ貫通孔115を略水平に設
けているが、例えばこの貫通孔115を、テーパシール
部に至るように斜めに形成しても構わない。また、貫通
孔115を円周方向に2以上設けてももちろん構わな
い。
In the hydrodynamic bearing device of FIG. 5, a through hole 115 connecting the upper end of the hole 113 and the outer peripheral surface of the shaft portion is provided substantially horizontally. For example, the through hole 115 reaches the taper seal portion. It may be formed obliquely. Further, it is of course possible to provide two or more through holes 115 in the circumferential direction.

【0034】次に、第2の発明について説明する。第2
の発明において、潤滑流体を循環させて潤滑流体中の気
泡を除去するという技術的思想は第1の発明と共通す
る。第1の発明との相違点は、スリーブ部材が第1の発
明では多孔質焼結体からなっていたのに対し第2の発明
では金属材料からなっている点にある。かかる相違点に
起因して第2の発明に係る動圧発生装置では、第1の発
明では必要であったスリーブ支持部材が不要となると共
に、シール部材を用いることなく、スリーブ部材によっ
てシール部を構成することも可能である。また貫通孔の
軸部外周面側開口を、軸方向最も上側に形成されたラジ
アル動圧発生溝よりも上側で且つ潤滑流体中に位置させ
る必要がある。
Next, the second invention will be described. Second
In the invention, the technical idea of circulating the lubricating fluid to remove bubbles in the lubricating fluid is common to the first invention. The difference from the first invention is that the sleeve member is made of a porous sintered body in the first invention, whereas it is made of a metal material in the second invention. Due to such a difference, in the dynamic pressure generating device according to the second invention, the sleeve supporting member, which is necessary in the first invention, becomes unnecessary, and the seal portion is provided by the sleeve member without using the seal member. It is also possible to configure. Further, it is necessary that the opening of the through hole on the outer peripheral surface side of the shaft portion is located above the radial dynamic pressure generating groove formed on the uppermost side in the axial direction and in the lubricating fluid.

【0035】以下、図面に基づいて第2の発明に係る動
圧発生装置について説明する。なお、図1の動圧発生装
置と同じ部材および部分は同じ符号を付している。また
図1の動圧軸受装置と共通する構造および機能について
はその説明をここでは省略し、相違する構造および機能
についてのみ説明する。図6は第2の発明に係る動圧発
生装置の一例を示す縦断面図である。スリーブ部材1
2’は金属材料からなり中空円筒状をなし、中空部内周
面には軸方向の離隔位置に2つのラジアル動圧発生溝1
21a,121bが形成されていると共に、スラスト動
圧発生溝121cが形成されている。そしてスリーブ部
材12’の上端部および下部には中空円筒の内径よりも
大径に形成された溝部122,123がそれぞれ形成さ
れ、下端部には溝部123より大径の嵌合溝部124が
さらに形成されている。
The dynamic pressure generating device according to the second invention will be described below with reference to the drawings. The same members and parts as those of the dynamic pressure generator of FIG. 1 are designated by the same reference numerals. Descriptions of structures and functions common to the dynamic pressure bearing device of FIG. 1 will be omitted here, and only different structures and functions will be described. FIG. 6 is a longitudinal sectional view showing an example of the dynamic pressure generating device according to the second invention. Sleeve member 1
Reference numeral 2'is made of a metal material and has a hollow cylindrical shape. Two radial dynamic pressure generating grooves 1 are formed at axially spaced positions on the inner peripheral surface of the hollow portion.
21a and 121b are formed, and a thrust dynamic pressure generating groove 121c is formed. Grooves 122 and 123 having a diameter larger than the inner diameter of the hollow cylinder are formed at the upper end and the lower portion of the sleeve member 12 ', respectively, and a fitting groove 124 having a larger diameter than the groove 123 is further formed at the lower end. Has been done.

【0036】軸部材11は、軸部111と、軸部111
の下端に形成されたスラストプレート部112とからな
り、軸部111の底面中央から軸方向に有底穴113が
形成され、この穴113には隙間なく多孔質焼結体11
4が嵌挿されている。そして軸部材11のスラストプレ
ート部112がスリーブ部材12’の溝部123に装着
するまで、スリーブ部材12’の中空部に軸部111が
挿通されている。そして、スラスト動圧発生溝141が
上面に形成されたスラストブッシュ部材14がスリーブ
部材12’の嵌合溝部124に装着され、スリーブ部材
12’の下側開口が封止されている。他方、スリーブ部
材12’の上側開口には、軸部111に嵌通させた環状
のシール部材15が、その上面とスリーブ部材12’の
上端面とが同一面となるように溝部122に装着固定さ
れている。そして、スリーブ部材12’とスラストブッ
シュ部材14、シール部材15とで囲まれたスリーブ部
材12’の中空部は潤滑流体(不図示)で充填されてい
る。
The shaft member 11 includes a shaft portion 111 and a shaft portion 111.
And a thrust plate portion 112 formed at the lower end of the shaft portion 111, and a bottomed hole 113 is formed in the axial direction from the center of the bottom surface of the shaft portion 111.
4 is inserted. The shaft portion 111 is inserted into the hollow portion of the sleeve member 12 ′ until the thrust plate portion 112 of the shaft member 11 is mounted in the groove portion 123 of the sleeve member 12 ′. Then, the thrust bush member 14 having the thrust dynamic pressure generating groove 141 formed on the upper surface is mounted in the fitting groove portion 124 of the sleeve member 12 ′, and the lower opening of the sleeve member 12 ′ is sealed. On the other hand, in the upper opening of the sleeve member 12 ', an annular seal member 15 fitted in the shaft portion 111 is attached and fixed to the groove portion 122 so that the upper surface thereof and the upper end surface of the sleeve member 12' are flush with each other. Has been done. The hollow portion of the sleeve member 12 ′ surrounded by the sleeve member 12 ′, the thrust bush member 14, and the seal member 15 is filled with a lubricating fluid (not shown).

【0037】このような動圧軸受装置において、軸部1
11に形成した穴113の上端部と軸部外周面とを連通
する貫通孔115の軸部外周面側開口が、軸方向最も上
側のラジアル動圧発生溝121aよりも上側で且つ潤滑
流体中に位置していることが重要である。第2の発明に
係る動圧軸受装置では、スリーブ部材12’が金属製で
あるため潤滑流体がその内部を流れることができない。
このため、貫通孔115の前記開口が軸方向最も上側の
ラジアル動圧発生溝121aよりも下側に位置している
と、潤滑流体中に存在する気泡が潤滑流体界面に移動す
ることができず気泡を外部に逃がすことができないから
である。
In such a dynamic pressure bearing device, the shaft portion 1
The through hole 115, which communicates the upper end of the hole 113 formed in 11 with the shaft outer peripheral surface, has an opening on the shaft outer peripheral surface side that is above the radial dynamic pressure generating groove 121a that is the uppermost in the axial direction and is in the lubricating fluid. It is important to be located. In the dynamic pressure bearing device according to the second aspect of the present invention, since the sleeve member 12 'is made of metal, the lubricating fluid cannot flow inside thereof.
Therefore, if the opening of the through hole 115 is located below the uppermost radial dynamic pressure generating groove 121a in the axial direction, the bubbles existing in the lubricating fluid cannot move to the lubricating fluid interface. This is because bubbles cannot escape to the outside.

【0038】したがって、図5に示したような軸部11
1の上端面に固定軸穴117が形成されている装置の場
合には、貫通孔115を水平方向に形成すると2つのラ
ジアル動圧発生溝121a,121bの間に軸部外周面
側開口が位置することになるので、例えば貫通孔115
を潤滑流体界面方向に向けて斜めに形成する必要があ
る。
Therefore, the shaft portion 11 as shown in FIG.
In the case of a device in which the fixed shaft hole 117 is formed in the upper end surface of the shaft 1, when the through hole 115 is formed in the horizontal direction, the shaft outer peripheral surface side opening is located between the two radial dynamic pressure generating grooves 121a and 121b. Therefore, for example, the through hole 115
Need to be formed obliquely toward the lubricating fluid interface direction.

【0039】また、潤滑流体中の気泡をより効果的に外
部に逃がすためには、図2に示したように、貫通孔11
5の軸部外周面側開口をテーパシール部の潤滑流体の界
面下に形成するのが望ましい。
In order to more effectively escape the bubbles in the lubricating fluid to the outside, as shown in FIG.
It is desirable to form the outer peripheral surface side opening of the shaft portion 5 under the interface of the lubricating fluid of the taper seal portion.

【0040】次に、本発明に係るモータについて説明す
る。本発明のモータの大きな特徴は前記説明した動圧軸
受装置を搭載した点にある。以下、図に基づいて本発明
のモータを詳述する。
Next, the motor according to the present invention will be described. A major feature of the motor of the present invention is that the dynamic pressure bearing device described above is mounted. Hereinafter, the motor of the present invention will be described in detail with reference to the drawings.

【0041】図7はフルフィル構造の動圧軸受装置を搭
載したHDDスピンドルモータの縦断面図である。ブラ
ケット2は中心部に設けられた基部21と、この基部2
1の外周方向に設けられた周壁22と、この周壁22か
らさらに外方向に延設された鍔部23とからなり、これ
らが一体且つ同軸的に形成されている。
FIG. 7 is a vertical sectional view of an HDD spindle motor equipped with a full-fill dynamic bearing device. The bracket 2 includes a base portion 21 provided at the center and the base portion 2
1, a peripheral wall 22 provided in the outer peripheral direction and a flange portion 23 extending further outward from the peripheral wall 22, which are integrally and coaxially formed.

【0042】基部21の中心部には環状突部24が形成
され、そこに図1に示した動圧軸受装置1が嵌合固定さ
れている。そして動圧軸受装置1の軸部材11の上端
は、略円筒状のロータハブ3の上面中央部に形成された
孔部31に嵌合固定されている。ロータハブ3の内周面
には、周方向に多極着磁されたロータマグネット32が
全周にわたり配設されている。またロータマグネット3
2の半径方向内方には、ロータマグネット32に対向し
てステータ4がブラケット2の基部22に形成された環
状突部24に配設されている。ステータ4と環状突部2
4との固定は、圧入による嵌合固定の他、接着剤による
固定でもよい。
An annular protrusion 24 is formed at the center of the base 21, and the dynamic pressure bearing device 1 shown in FIG. 1 is fitted and fixed thereto. The upper end of the shaft member 11 of the hydrodynamic bearing device 1 is fitted and fixed in a hole portion 31 formed in the central portion of the upper surface of the substantially cylindrical rotor hub 3. On the inner peripheral surface of the rotor hub 3, a rotor magnet 32, which is magnetized in multiple poles in the circumferential direction, is arranged over the entire circumference. Also rotor magnet 3
The stator 4 is arranged radially inward of 2 so as to face the rotor magnet 32 and to be an annular projection 24 formed on the base 22 of the bracket 2. Stator 4 and annular protrusion 2
Fixing with 4 may be fixed by fitting instead of fitting by press fitting.

【0043】ロータハブ3の外周下側には鍔部33が形
成され、ここにハードディスク(不図示)が装着され
る。具体的にはロータハブ3の外周部34により位置決
めされて、鍔部33の上に複数のハードディスクが装着
された後、クランプ部材(不図示)などにより孔部35
にネジ止めされて、ハードディスクはロータハブ3に対
して保持固定される。
A flange portion 33 is formed on the lower side of the outer periphery of the rotor hub 3, and a hard disk (not shown) is mounted on the flange portion 33. Specifically, after positioning the outer peripheral portion 34 of the rotor hub 3 and mounting a plurality of hard disks on the collar portion 33, a hole 35 is formed by a clamp member (not shown) or the like.
The hard disk is held and fixed to the rotor hub 3 by screwing.

【0044】[0044]

【発明の効果】第1の発明および第2の発明に係る動圧
軸受装置では、軸部の底面中央部から軸方向に形成され
た穴に多孔質焼結体を挿入し、この穴の上端部に軸部外
周面に連通する貫通孔を形成し、且つこの貫通孔の軸部
外周面側開口を潤滑流体中に位置させるので、いわゆる
フルフィル構造の軸受装置において潤滑流体中に混入し
た気泡を円滑に除去できる。
In the hydrodynamic bearing device according to the first invention and the second invention, the porous sintered body is inserted into the hole formed in the axial direction from the center of the bottom surface of the shaft, and the upper end of this hole is inserted. Since a through hole communicating with the outer peripheral surface of the shaft portion is formed in the portion, and the opening on the outer peripheral surface side of the shaft portion of this through hole is located in the lubricating fluid, bubbles mixed in the lubricating fluid in a bearing device of a so-called full-fill structure are formed. Can be removed smoothly.

【0045】第1の発明に係る動圧軸受装置において、
貫通孔の軸部外周面側開口を、軸方向最も上側に形成さ
れたラジアル動圧発生溝よりも上側、又はラジアル動圧
発生溝の間に位置させる、より好ましくは前記潤滑流体
の界面近傍に位置させると、潤滑流体中の存在する気泡
を一層円滑に除去できる。
In the dynamic pressure bearing device according to the first invention,
The shaft portion outer peripheral surface side opening of the through hole is located above the radial dynamic pressure generating groove formed on the uppermost axial direction, or between the radial dynamic pressure generating grooves, and more preferably in the vicinity of the interface of the lubricating fluid. When positioned, air bubbles present in the lubricating fluid can be removed more smoothly.

【0046】第1の発明および第2の発明に係る動圧軸
受装置において、多孔質焼結体を貫通孔の全体に隙間な
く嵌挿するとスラスト荷重を一層確実に支持できる。ま
た、スラスト動圧発生溝をスラストプレート部の外周側
から内周側に向けて潤滑流体を流動させるものにして
も、同様にスラスト荷重を一層確実に支持できる。さら
にスリーブ部材の軸方向最も上側に形成されたラジアル
動圧発生溝を、軸方向下方に潤滑流体を流動させる、軸
方向に不平衡に形成されたヘリングボーン状溝にする
と、潤滑流体の漏出が一層防止できる。
In the hydrodynamic bearing device according to the first and second aspects of the present invention, the thrust load can be more reliably supported by inserting the porous sintered body into the entire through hole without any clearance. Further, even if the thrust dynamic pressure generating groove is made to flow the lubricating fluid from the outer peripheral side to the inner peripheral side of the thrust plate portion, similarly, the thrust load can be supported more reliably. Further, if the radial dynamic pressure generating groove formed on the uppermost side in the axial direction of the sleeve member is a herringbone-shaped groove formed in an axially unbalanced manner that allows the lubricating fluid to flow downward in the axial direction, leakage of the lubricating fluid will occur. It can be prevented further.

【0047】また本発明に係るモータでは前記のいずれ
かの動圧軸受装置を備えるので、動圧軸受装置からの潤
滑流体漏出がなく、また非繰り返し性振動が生じること
がなく、さらには軸受剛性の低下することがない。
Since the motor according to the present invention includes any one of the above dynamic pressure bearing devices, there is no leakage of the lubricating fluid from the dynamic pressure bearing device, no non-repetitive vibration occurs, and the bearing rigidity is high. Never decreases.

【図面の簡単な説明】[Brief description of drawings]

【図1】 第1の発明に係る動圧軸受装置の一例を示す
縦断面図である。
FIG. 1 is a longitudinal sectional view showing an example of a dynamic pressure bearing device according to a first invention.

【図2】 図1の動圧軸受装置におけるテーパシール部
の拡大断面図である。
FIG. 2 is an enlarged sectional view of a taper seal portion in the dynamic pressure bearing device of FIG.

【図3】 図1の動圧軸受装置のスリーブ部材内周面に
形成されたラジアル動圧発生溝の一例を示す図である。
3 is a view showing an example of a radial dynamic pressure generating groove formed on the inner peripheral surface of the sleeve member of the dynamic pressure bearing device of FIG.

【図4】 図1の動圧軸受装置のスラストブッシュ部材
に形成されたスラスト動圧発生溝の一例を示す平面図で
ある。
4 is a plan view showing an example of a thrust dynamic pressure generating groove formed in a thrust bush member of the dynamic pressure bearing device of FIG.

【図5】 第1の発明に係る動圧軸受装置の他の例を示
す縦断面図である。
FIG. 5 is a vertical cross-sectional view showing another example of the dynamic pressure bearing device according to the first invention.

【図6】 第2の発明に係る動圧軸受装置の一例を示す
縦断面図である。
FIG. 6 is a vertical sectional view showing an example of a dynamic pressure bearing device according to a second invention.

【図7】 本発明に係るモータの一例を示す縦断面図で
ある。
FIG. 7 is a vertical sectional view showing an example of a motor according to the present invention.

【図8】 従来の動圧軸受装置を示す縦断面図である。FIG. 8 is a vertical sectional view showing a conventional dynamic pressure bearing device.

【符号の説明】[Explanation of symbols]

1 動圧軸受装置 2 ブラケット 3 ロータハブ 4 ステータ 11 軸部材 12、12’ スリーブ部材 13 スリーブ支持部材 14 スラストブッシュ部材 15 シール部材 111 軸部 112 スラストプレート部 113 穴 114 多孔質焼結体 115 貫通孔 116 軸部外周面側開口 121a,121b ラジアル動圧発生溝 121c,141 スラスト動圧発生溝 L 潤滑流体 1 Dynamic bearing device 2 bracket 3 rotor hub 4 stator 11 Shaft member 12, 12 'sleeve member 13 Sleeve support member 14 Thrust bush member 15 Seal member 111 Shaft 112 Thrust plate part 113 holes 114 porous sintered body 115 through hole 116 Shaft outer peripheral surface side opening 121a, 121b Radial dynamic pressure generating groove 121c, 141 thrust dynamic pressure generating groove L Lubricating fluid

フロントページの続き Fターム(参考) 3J011 AA04 AA07 BA02 BA08 CA02 5H605 AA02 AA03 AA04 BB05 BB19 CC02 CC04 CC05 DD03 DD07 DD16 EB03 EB13 EB21 EB28 5H607 AA04 AA05 AA06 BB01 BB14 BB17 CC01 DD01 DD02 DD03 DD09 DD16 FF12 GG01 GG03 GG10 GG12 GG15 GG25 5H621 HH01 JK08 JK17 JK19 Continued front page    F-term (reference) 3J011 AA04 AA07 BA02 BA08 CA02                 5H605 AA02 AA03 AA04 BB05 BB19                       CC02 CC04 CC05 DD03 DD07                       DD16 EB03 EB13 EB21 EB28                 5H607 AA04 AA05 AA06 BB01 BB14                       BB17 CC01 DD01 DD02 DD03                       DD09 DD16 FF12 GG01 GG03                       GG10 GG12 GG15 GG25                 5H621 HH01 JK08 JK17 JK19

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 軸部と該軸部から半径方向外方に突出す
るスラストプレート部とを有する軸部材と、前記軸部に
対し微小間隙を有して対向配置された、多孔質焼結体か
らなるスリーブ部材と、このスリーブ部材を支持するス
リーブ支持部材と、前記スラストプレート部下面に対し
微小間隙を有して対向配置され、前記スリーブ支持部材
の下側開口を封止するスラストブッシュ部材と、前記微
小間隙全体に充填された潤滑流体とを備え、 前記軸部およびこの軸部と対向する前記スリーブ部材の
内周面の少なくとも一方に、ラジアル荷重を支持するた
めのラジアル動圧発生溝を2つ以上設け、また前記スラ
ストプレート部の下側面およびこの下側面と対向する前
記スラストブッシュ部材の内側面の少なくとも一方に、
スラスト荷重を支持するためのスラスト動圧発生溝を設
け、前記スリーブ部材と前記軸部材とを相対的に回転可
能に支持する動圧軸受装置であって、 前記軸部の底面中央部から軸方向に形成された穴に多孔
質焼結体が挿入され、該穴の上端部には軸部外周面に連
通する貫通孔が形成され、該貫通孔の軸部外周面側開口
は前記潤滑流体中に位置していることを特徴とする動圧
軸受装置。
1. A porous sintered body, comprising a shaft member having a shaft portion and a thrust plate portion projecting outward in the radial direction from the shaft portion, and facing the shaft portion with a minute gap therebetween. A sleeve member formed of, a sleeve supporting member supporting the sleeve member, a thrust bushing member facing the lower surface of the thrust plate portion with a minute gap therebetween, and sealing a lower opening of the sleeve supporting member. A lubricating fluid that fills the entire minute gap, and a radial dynamic pressure generating groove for supporting a radial load is provided on at least one of the shaft portion and the inner peripheral surface of the sleeve member facing the shaft portion. Two or more are provided, and at least one of the lower surface of the thrust plate portion and the inner surface of the thrust bush member facing the lower surface,
A dynamic pressure bearing device, which is provided with a thrust dynamic pressure generating groove for supporting a thrust load, and rotatably supports the sleeve member and the shaft member in a relative axial direction from a central portion of a bottom surface of the shaft portion. A porous sintered body is inserted into the hole formed in the through hole, a through hole communicating with the outer peripheral surface of the shaft portion is formed in the upper end portion of the hole, and the opening on the outer peripheral surface side of the shaft portion of the through hole is in the lubricating fluid. A hydrodynamic bearing device characterized by being located at.
【請求項2】 前記貫通孔の軸部外周面側開口が、軸方
向最も上側に形成されたラジアル動圧発生溝よりも上
側、又はラジアル動圧発生溝の間に位置する請求項1記
載の動圧軸受装置。
2. The opening of the through hole on the outer peripheral surface side of the shaft portion is located above the radial dynamic pressure generating groove formed on the uppermost side in the axial direction, or between the radial dynamic pressure generating grooves. Dynamic bearing device.
【請求項3】 前記貫通孔の軸部外周面側開口が、前記
潤滑流体の界面近傍に位置する請求項1記載の動圧軸受
装置。
3. The hydrodynamic bearing device according to claim 1, wherein an opening on the outer peripheral surface side of the shaft portion of the through hole is located near the interface of the lubricating fluid.
【請求項4】 軸部と該軸部から半径方向外方に突出す
るスラストプレート部とを有する軸部材と、前記軸部に
対し微小間隙を有して対向配置された、金属材料からな
るスリーブ部材と、前記スラストプレート部下面に対し
微小間隙を有して対向配置され、前記スリーブ部材の下
側開口を封止するスラストブッシュ部材と、前記微小間
隙全体に充填された潤滑流体とを備え、 前記軸部およびこの軸部と対向する前記スリーブ部材の
内周面の少なくとも一方に、ラジアル荷重を支持するた
めのラジアル動圧発生溝を2つ以上設け、また前記スラ
ストプレート部の下側面および前記スラストブッシュ部
材の内側面の少なくとも一方に、スラスト荷重を支持す
るためのスラスト動圧発生溝を設け、前記スリーブ部材
と前記軸部材とを相対的に回転可能に支持する動圧軸受
装置であって、 前記軸部の底面中央部から軸方向に形成された穴に多孔
質焼結体が挿入され、該穴の上端部には軸部外周面に連
通する貫通孔が形成され、該貫通孔の軸部外周面側開口
は、軸方向最も上側に形成されたラジアル動圧発生溝よ
りも上側で且つ前記潤滑流体中に位置していることを特
徴とする動圧軸受装置。
4. A shaft member having a shaft portion and a thrust plate portion projecting outward in the radial direction from the shaft portion, and a sleeve made of a metal material, which is arranged to face the shaft portion with a minute gap therebetween. A member, a thrust bush member that is arranged to face the lower surface of the thrust plate portion with a minute gap, and seals the lower opening of the sleeve member; and a lubricating fluid that fills the entire minute gap. At least one of the shaft portion and the inner peripheral surface of the sleeve member facing the shaft portion is provided with two or more radial dynamic pressure generating grooves for supporting a radial load, and the lower surface of the thrust plate portion and the A thrust dynamic pressure generating groove for supporting a thrust load is provided on at least one of the inner side surfaces of the thrust bush member so that the sleeve member and the shaft member can rotate relative to each other. In the hydrodynamic bearing device, a porous sintered body is inserted into a hole formed in the axial direction from the center of the bottom surface of the shaft portion, and the upper end of the hole communicates with the outer peripheral surface of the shaft portion. A through hole is formed, and an opening on the outer peripheral surface side of the shaft portion of the through hole is positioned above the radial dynamic pressure generating groove formed on the uppermost side in the axial direction and in the lubricating fluid. Dynamic bearing device.
【請求項5】 前記多孔質焼結体が前記貫通孔の全体に
隙間なく嵌挿されている請求項1〜4のいずれかに記載
の動圧軸受装置。
5. The hydrodynamic bearing device according to claim 1, wherein the porous sintered body is fitted into the entire through hole without any gap.
【請求項6】 前記スラスト動圧発生溝がスラストプレ
ート部の外周側から内周側に向けて潤滑流体を流動させ
るものである請求項1〜5のいずれかに記載の動圧軸受
装置。
6. The dynamic pressure bearing device according to claim 1, wherein the thrust dynamic pressure generating groove causes the lubricating fluid to flow from the outer peripheral side to the inner peripheral side of the thrust plate portion.
【請求項7】 スリーブ部材の軸方向最も上側に形成さ
れたラジアル動圧発生溝が、軸方向下方に潤滑流体を流
動させる、軸方向に不平衡に形成されたヘリングボーン
状溝である請求項1〜6のいずれかに記載の動圧軸受装
置。
7. The radial dynamic pressure generating groove formed on the uppermost side in the axial direction of the sleeve member is a herringbone-shaped groove formed in an axially unbalanced manner for allowing a lubricating fluid to flow downward in the axial direction. The dynamic pressure bearing device according to any one of 1 to 6.
【請求項8】 請求項1〜7のいずれかに記載の動圧軸
受装置を備えたことを特徴とするモータ。
8. A motor comprising the dynamic pressure bearing device according to any one of claims 1 to 7.
JP2001256524A 2001-08-27 2001-08-27 Hydrodynamic bearing apparatus and electric motor using the same Withdrawn JP2003065323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001256524A JP2003065323A (en) 2001-08-27 2001-08-27 Hydrodynamic bearing apparatus and electric motor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001256524A JP2003065323A (en) 2001-08-27 2001-08-27 Hydrodynamic bearing apparatus and electric motor using the same

Publications (1)

Publication Number Publication Date
JP2003065323A true JP2003065323A (en) 2003-03-05

Family

ID=19084326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001256524A Withdrawn JP2003065323A (en) 2001-08-27 2001-08-27 Hydrodynamic bearing apparatus and electric motor using the same

Country Status (1)

Country Link
JP (1) JP2003065323A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1296633C (en) * 2004-05-17 2007-01-24 武汉理工大学 Self-compensation lubricating sliding bearing
US7530741B2 (en) 2004-04-15 2009-05-12 Panasonic Corporation Fluid bearing device and spindle motor
US7837390B2 (en) * 2006-06-15 2010-11-23 Panasonic Corporation Hydrodynamic bearing, motor including the same, and recording and reproducing apparatus
CN105958714A (en) * 2016-06-16 2016-09-21 溧水县得瑞微型电机厂 Water pump motor with ventilating pipes
CN110594288A (en) * 2019-09-29 2019-12-20 中国矿业大学 Magnetic control flexible tile thrust sliding bearing based on nano magnetic liquid
CN111525746A (en) * 2019-02-28 2020-08-11 重庆惠梁机电配件有限公司 Direct current motor rotor provided with PCB plate capacitor assembly

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7530741B2 (en) 2004-04-15 2009-05-12 Panasonic Corporation Fluid bearing device and spindle motor
CN1296633C (en) * 2004-05-17 2007-01-24 武汉理工大学 Self-compensation lubricating sliding bearing
US7837390B2 (en) * 2006-06-15 2010-11-23 Panasonic Corporation Hydrodynamic bearing, motor including the same, and recording and reproducing apparatus
CN105958714A (en) * 2016-06-16 2016-09-21 溧水县得瑞微型电机厂 Water pump motor with ventilating pipes
CN111525746A (en) * 2019-02-28 2020-08-11 重庆惠梁机电配件有限公司 Direct current motor rotor provided with PCB plate capacitor assembly
CN110594288A (en) * 2019-09-29 2019-12-20 中国矿业大学 Magnetic control flexible tile thrust sliding bearing based on nano magnetic liquid
CN110594288B (en) * 2019-09-29 2024-03-08 中国矿业大学 Magnetic control flexible tile thrust sliding bearing based on nano magnetic liquid

Similar Documents

Publication Publication Date Title
USRE45387E1 (en) Spindle motor having a fluid dynamic bearing system and a stationary shaft
JP3462982B2 (en) Hydrodynamic bearing device and electric motor
JP4338359B2 (en) Hydrodynamic bearing device
CN102738942B (en) Motor and disk drive device
US7005768B2 (en) Dynamic bearing device, producing method thereof, and motor using the same
JP3652875B2 (en) motor
JP2006283773A (en) Dynamic pressure fluid bearing device and small-sized motor having the same
JP2006194400A (en) Spindle motor and rotating device
JP2006105398A (en) Fluid dynamical pressure bearing device
US20060147135A1 (en) Hydrodynamic bearing motor
US6955469B2 (en) Dynamic pressure bearing device
JP4127035B2 (en) Hydrodynamic bearing device and disk recording device
US20060104555A1 (en) Fluid dynamic bearing arrangement
JP3930762B2 (en) DYNAMIC PRESSURE BEARING DEVICE AND SPINDLE MOTOR HAVING THE SAME
JP2003065323A (en) Hydrodynamic bearing apparatus and electric motor using the same
JP2004176816A (en) Dynamic pressure bearing device
JP2015132380A (en) Fluid dynamic pressure bearing device and motor having the same
JP2005016556A (en) Conical dynamic pressure bearing device, and recording disk drive device having the same
JP3554485B2 (en) Fluid dynamic bearing motor
JP3745675B2 (en) DYNAMIC PRESSURE BEARING DEVICE, MOTOR HAVING THE DEVICE, AND DISC DEVICE USING THE MOTOR
JP2000352416A (en) Dynamic pressure type bearing unit and its manufacture
JP3691009B2 (en) Hydrodynamic bearing device and spindle motor using the same
JPS63158317A (en) Dynamic pressure bearing device
JP2009011018A (en) Fluid bearing device, and manufacturing method thereof
JP2007092783A (en) Method for manufacturing fluid dynamic bearing, fluid dynamic bearing, and spindle motor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081104