JP2003064458A - Control of structures of aluminum and aluminum alloy - Google Patents

Control of structures of aluminum and aluminum alloy

Info

Publication number
JP2003064458A
JP2003064458A JP2002237777A JP2002237777A JP2003064458A JP 2003064458 A JP2003064458 A JP 2003064458A JP 2002237777 A JP2002237777 A JP 2002237777A JP 2002237777 A JP2002237777 A JP 2002237777A JP 2003064458 A JP2003064458 A JP 2003064458A
Authority
JP
Japan
Prior art keywords
aluminum
tool
aluminum alloy
changing
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002237777A
Other languages
Japanese (ja)
Other versions
JP4006515B2 (en
Inventor
Kazunori Shigematsu
一典 重松
Takafumi Saito
尚文 齋藤
Mamoru Nakamura
守 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002237777A priority Critical patent/JP4006515B2/en
Publication of JP2003064458A publication Critical patent/JP2003064458A/en
Application granted granted Critical
Publication of JP4006515B2 publication Critical patent/JP4006515B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for controlling the structures of aluminum and aluminum alloy and to provide a product thereof. SOLUTION: A high-speed rotating tool is brought into contact with the surface of an aluminum or aluminum-alloy member to carry out the structure control of the aluminum or aluminum alloy owing to the effect of heat treatment of the member due to the frictional heat between the tool and the surface of the member in combination with the effect of mechanical agitation of the member by the tool, by which the strength and hardness of the product can be locally increased. The number of revolutions of the tool is changed and/ or the area of the part where the tool and the member come into contact with each other is arbitrary changed to control the amount of heat generated by friction and change the heat treatment temperature of the member into arbitrary values and resultantly control the grain size and structure of the member to arbitrary sizes, by which the strength and hardness of the aluminum or aluminum alloy can be locally increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、アルミニウム及び
アルミニウム合金の組織制御に関するものであり、更に
詳しくは、特に、製品形状に柔軟に対応でき、生産性良
く、大きな設備を必要とせず、省エネルギーで、アルミ
ニウム及びアルミニウム合金の結晶粒径を広い範囲にわ
たって制御しうる新しいアルミニウム及びアルミニウム
合金の組織制御方法及びその製品に関するものである。
本発明は、アルミニウムならびにアルミニウム合金の組
織制御による強度、硬度の制御をきわめて容易に、低コ
ストで行うことを可能にする方法として有用である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to structure control of aluminum and aluminum alloys, and more particularly, it can flexibly adapt to product shapes, has high productivity, does not require large equipment, and saves energy. The present invention relates to a new method for controlling the structure of aluminum and aluminum alloys, which can control the crystal grain size of aluminum and aluminum alloys over a wide range, and a product thereof.
INDUSTRIAL APPLICABILITY The present invention is useful as a method that makes it possible to control the strength and hardness of aluminum and aluminum alloys by controlling the structure extremely easily and at low cost.

【0002】[0002]

【従来の技術】従来より、アルミニウム及びアルミニウ
ム合金は、比強度が高いことから、様々な分野におい
て、各種構造部材への応用が検討され実施されてきてい
る。
2. Description of the Related Art Conventionally, since aluminum and aluminum alloys have high specific strength, their application to various structural members has been studied and implemented in various fields.

【0003】アルミニウム及びアルミニウム合金の機械
的特性は、その結晶組織に大きな影響を受けることが知
られている。特に、強度や硬度は組織の結晶粒径の影響
を大きく受け、一般に結晶粒径が小さいほど室温下にお
いて高強度、高硬度であることが今までの研究で明らか
になっている[Hall−Petchの式、σ=σ0
k・d-1/2、ここで、σは変形応力、σ0 及びkは材料
に依存する定数、dは結晶粒径]。
Aluminum and aluminum alloy machines
It is known that the physical properties are greatly affected by its crystal structure.
Has been. In particular, strength and hardness are affected by the crystal grain size of the structure.
Generally, the smaller the crystal grain size, the better the temperature at room temperature.
It is clear from previous studies that it has high strength and hardness.
[Hall-Petch formula, σ = σ0 +
k ・ d-1/2, Where σ is the deformation stress, σ0 And k are materials
And d is the crystal grain size].

【0004】結晶粒径の制御方法としては、鋳造時の冷
却速度の大小により、直径数十μmから数mmオーダー
までコントロールできることが知られている。しかし、
強度等の機械的特性の向上のためには、数μm以下の、
より細かい範囲での結晶粒径組織の制御方法が必要とさ
れている。
As a method of controlling the crystal grain size, it is known that the diameter can be controlled from several tens of μm to several mm depending on the cooling rate during casting. But,
In order to improve mechanical properties such as strength,
There is a need for a method of controlling the grain size structure in a finer range.

【0005】結晶粒径を数μmオーダーで制御するため
には、微量の添加元素を母材のアルミニウム合金に加え
ることも従来から行われてきた。しかしながら、安易に
他元素を利用することはコストの面からも、部材をリサ
イクルして再利用する際の処理を複雑にする点からも、
好ましいこととは言えないのである。
In order to control the crystal grain size on the order of several μm, it has been conventionally practiced to add a trace amount of additional element to the base aluminum alloy. However, it is easy to use other elements from the viewpoint of cost, and also from the point of complicating the process when recycling and reusing the members,
It is not desirable.

【0006】このようなことから、近年では、材料に強
い塑性歪みを与えることで、材料に動的な組織変化を起
こし、これを利用して結晶粒を微細化する手法が検討さ
れている。例えば、材料を繰り返し押し出すことで強い
歪みを与えるECAP法によれば、結晶粒径を約1μm
まで微細化しうることが明らかになっており、材料強度
も飛躍的に向上することが知られている。
Under these circumstances, in recent years, there has been studied a method of applying a strong plastic strain to a material to cause a dynamic microstructural change in the material and utilizing this to miniaturize crystal grains. For example, according to the ECAP method which gives a strong strain by repeatedly extruding a material, the crystal grain size is about 1 μm.
It has been clarified that the material can be made even finer, and it is known that the material strength is dramatically improved.

【0007】しかしながら、ECAP法等の押し出し法
は、押し出し形状に制限があるため、製品の形状に柔軟
に対応できないこと、大きな部材を押し出すためには数
百トン以上の能力をもったプレス設備が必要になるこ
と、一般に、加熱のために電気炉を必要とすること、一
般に、一つの製品を数回から十数回繰り返して押し出す
ため、生産性が悪く、多大のエネルギーを要すること、
が問題点として挙げられている。
However, since the extrusion method such as the ECAP method is limited in the extrusion shape, it is not possible to flexibly adapt to the shape of the product, and in order to extrude a large member, press equipment having a capacity of several hundred tons or more is required. Required, generally requires an electric furnace for heating, generally one product is repeatedly extruded several to ten or more times, resulting in poor productivity and large amount of energy,
Are listed as problems.

【0008】このようなことから、当技術分野におい
て、製品形状に柔軟に対応でき、生産性良く、大きな設
備を必要とせず、省エネルギーを指向した新しいアルミ
ニウム又はアルミニウム合金の組織制御方法の開発が強
く求められてきたのである。
In view of the above, the development of a new structure control method for aluminum or aluminum alloy, which is capable of flexibly adapting to the product shape, has high productivity, does not require large equipment, and is energy-saving, is strongly developed in the technical field. It has been sought after.

【0009】[0009]

【発明が解決しようとする課題】本発明は、上記従来技
術に鑑みて、アルミニウム及びアルミニウム合金の新し
い組織制御方法を開発することを目標として鋭意研究を
重ねた結果、新たに見出された知見に基づきなされたも
のであり、本発明の解決課題とするところは、構造用材
料として多くの需要が見込まれているアルミニウム及び
アルミニウム合金に対する、製品形状に柔軟に対応で
き、生産性良く、大きな設備を必要とせず、且つ省エネ
ルギーを指向した新しい組織制御方法及びその製品を提
供することにある。すなわち、本発明は、アルミニウム
及びアルミニウム合金の結晶粒径組織を広い範囲にわた
って制御することが可能な新しいアルミニウム及びアル
ミニウム合金の組織制御方法及びその製品を提供するこ
とを目的とするものである。
DISCLOSURE OF THE INVENTION In view of the above-mentioned conventional techniques, the present invention has been newly researched as a result of earnest research aimed at developing a new microstructure control method for aluminum and aluminum alloys. The problem to be solved by the present invention is that aluminum and aluminum alloys, which are expected to be in great demand as structural materials, can flexibly correspond to the product shape, have high productivity, and have a large facility. It is to provide a new tissue control method and its product which are not required and which are aimed at energy saving. That is, an object of the present invention is to provide a new method for controlling the grain structure of aluminum and an aluminum alloy, which can control the grain size structure of the aluminum and the aluminum alloy over a wide range, and a product thereof.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するため
の本発明は、アルミニウム乃至アルミニウム合金部材の
表面に高速回転する工具を接触させ、工具と部材表面の
摩擦熱による部材の熱処理効果と、工具による部材の機
械的撹拌効果との併用によりアルミニウム乃至アルミニ
ウム合金の組織制御を行い、局所的に強度及び硬度を高
めたアルミニウム乃至アルミニウム合金であって、工具
の回転数を変化させること、及び/又は工具と部材が接
触する部分の面積を任意に変化させること、によって、
発生する摩擦熱量を制御して部材の熱処理温度を任意の
値に変化させ、それにより、部材の結晶粒径組織を任意
の大きさに制御することにより局所的に強度及び硬度を
高めたことを特徴とするアルミニウム乃至アルミニウム
合金、である。また、本発明は、上記アルミニウム乃至
アルミニウム合金において、回転工具の、部材と接触し
摩擦熱を発生する部分の直径を変化させることにより、
工具と部材が接触する部分の面積を任意に変化させるこ
と、また、回転工具の回転軸を、あらかじめ接触させる
部材表面の法線方向に対して傾斜させて設置することに
より、回転工具の部材に接触する部分と部材表面のなす
角を0度以上10度以下にし、更に、回転工具と部材表
面の距離を変化させることにより、工具と部材が接触す
る部分の面積を任意に変化させること、を好ましい実施
態様とするものである。
According to the present invention for solving the above-mentioned problems, a tool rotating at high speed is brought into contact with the surface of an aluminum or aluminum alloy member, and the heat treatment effect of the member by frictional heat between the tool and the member surface, An aluminum or aluminum alloy having locally increased strength and hardness by controlling the structure of aluminum or an aluminum alloy in combination with the mechanical stirring effect of a member by a tool, and changing the rotation speed of the tool; Or, by arbitrarily changing the area of the part where the tool and the member come into contact,
By controlling the amount of frictional heat generated and changing the heat treatment temperature of the member to an arbitrary value, by controlling the crystal grain size structure of the member to an arbitrary size, it was possible to locally increase the strength and hardness. It is a characteristic aluminum or aluminum alloy. Further, the present invention, in the above aluminum or aluminum alloy, by changing the diameter of the portion of the rotary tool that is in contact with the member and generates friction heat,
By changing the area of the part where the tool and the member come into contact with each other, and by installing the rotary shaft of the rotary tool at an angle with respect to the normal direction of the surface of the member to be contacted beforehand, The angle between the contacting portion and the surface of the member is set to 0 degree or more and 10 degrees or less, and further, by changing the distance between the rotary tool and the member surface, the area of the contacting portion of the tool and the member is arbitrarily changed. This is a preferred embodiment.

【0011】[0011]

【発明の実施の形態】以下、本発明を更に具体的に明ら
かにするために、図面を参照しつつ、本発明の具体的構
成について詳細に説明することとする。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, in order to more specifically clarify the present invention, a specific configuration of the present invention will be described in detail with reference to the drawings.

【0012】図1は、回転工具を用いて、アルミニウム
部材のアルミニウム板4の組織制御を行う工程を示した
ものである。回転工具1は、アルミニウム板を摩擦する
工具底面部1aでアルミニウム部材表面を摩擦し、摩擦
熱を発生させる。同時に先端のピン1bを部材内部に挿
入し、機械的撹拌を加えることで、部材に動的な組織変
化を与えるものである。2は攪拌部、3は摩擦痕を示
す。回転工具1を部材表面に沿って移動させることで、
広範囲に渉って処理を行い、部材の組織を制御しうるも
のである。
FIG. 1 shows a process of controlling the structure of an aluminum plate 4 of an aluminum member using a rotary tool. The rotary tool 1 rubs the surface of the aluminum member with the tool bottom surface portion 1a that rubs the aluminum plate to generate friction heat. At the same time, the pin 1b at the tip is inserted into the inside of the member, and mechanical agitation is applied to the member so as to give a dynamic structure change to the member. Reference numeral 2 indicates a stirring portion, and 3 indicates a friction mark. By moving the rotary tool 1 along the surface of the member,
It is possible to control the organization of members by performing processing over a wide range.

【0013】本発明は、このとき、回転工具1の回転数
を変化させること、及び、アルミニウム板を摩擦する工
具底面部1aと部材の間の接触面積を変化させることに
より、発生する摩擦熱量を変化させ、アルミニウム部材
のアルミニウム板の熱処理温度を制御することを特徴と
している。
In the present invention, the amount of frictional heat generated at this time is changed by changing the number of rotations of the rotary tool 1 and by changing the contact area between the tool bottom surface portion 1a rubbing the aluminum plate and the member. The heat treatment temperature of the aluminum plate of the aluminum member is controlled to vary.

【0014】特に、本発明においては、工具底面部1a
の直径を変化させること、及び工具の底面と部材の間の
位置関係を変化させることにより、工具の底面と部材の
間の接触面積を変化させるものである。好適には、工具
の、部材と接触し摩擦熱を発生する部分の直径は7mm
〜20mmであるが、これらに制限されるものではな
い。
Particularly, in the present invention, the tool bottom portion 1a
The contact area between the bottom surface of the tool and the member is changed by changing the diameter of the tool and the positional relationship between the bottom surface of the tool and the member. Preferably, the diameter of the portion of the tool that comes into contact with the member and generates friction heat is 7 mm
It is about 20 mm, but is not limited thereto.

【0015】図2は、工具底面1aとアルミニウム部材
表面間の距離を変えることで、工具底面(ショルダー
部)とアルミニウム部材の接触面積を変化させる工程を
示したものである。工具底面とアルミニウム板表面の距
離は、工具底面の直径によって最適な範囲が決まるが、
およそ0〜0.3mmの範囲が望ましい。それより大き
い場合には接触面積が小さくなることから、アルミニウ
ム板材を充分に軟化させるに足る摩擦熱が得られず、そ
の結果、攪拌部においてアルミニウム板材が充分な塑性
流動を起こさないため、亀裂や空孔といった機械的特性
に悪影響を及ぼす欠陥の発生が多くなる可能性がある。
回転工具1の回転軸は工具の進行方向に対して後方に傾
斜して設置されている。傾斜角は0度以上10度以下、
最も好適には3〜5度が望ましく、それより小さい場合
には工具の底面とアルミニウム部材表面間の接触面積の
増減を細かく制御することが困難になる可能性があり、
逆にそれより大きい場合には接触面積を増やす際に工具
をアルミニウム部材に深く挿入しなければならず、その
結果、アルミニウム部材表面に生じる窪みが大きくなる
という問題が生じる可能性がある。図2において、3
は、工具底面とアルミニウム板表面を最も接触させた時
のアルミニウム板表面位置(接触面積;大、この時の工
具とアルミニウムの位置関係を位置Aと定義する。)、
4は、工具底面とアルミニウム板表面をやや離した時の
アルミニウム板表面位置(接触面積;中、この場合を位
置Bと定義)、5は、工具底面とアルミニウム板表面を
最も離した時のアルミニウム板表面位置(接触面積;
小、この場合を位置Cと定義)を示す。
FIG. 2 shows a step of changing the contact area between the tool bottom surface (shoulder portion) and the aluminum member by changing the distance between the tool bottom surface 1a and the aluminum member surface. The optimum range for the distance between the tool bottom surface and the aluminum plate surface is determined by the diameter of the tool bottom surface,
A range of approximately 0 to 0.3 mm is desirable. If it is larger than that, the contact area becomes small, so that frictional heat sufficient to sufficiently soften the aluminum plate material cannot be obtained, and as a result, the aluminum plate material does not cause sufficient plastic flow in the stirring portion, and thus cracks and The occurrence of defects such as voids that adversely affect mechanical properties may increase.
The rotary shaft of the rotary tool 1 is installed so as to be inclined rearward with respect to the traveling direction of the tool. The inclination angle is 0 degree or more and 10 degrees or less,
Most preferably, it is 3 to 5 degrees, and if it is smaller than that, it may be difficult to finely control the increase or decrease in the contact area between the bottom surface of the tool and the surface of the aluminum member.
On the other hand, if the contact area is larger than that, the tool must be deeply inserted into the aluminum member when increasing the contact area, and as a result, there may be a problem in that the depression formed on the surface of the aluminum member becomes large. In FIG. 2, 3
Is the aluminum plate surface position when the bottom surface of the tool and the aluminum plate surface are in the most contact (contact area; large, the positional relationship between the tool and aluminum at this time is defined as position A),
4 is the aluminum plate surface position when the tool bottom surface and the aluminum plate surface are slightly separated (contact area; middle, in this case is defined as position B), 5 is aluminum when the tool bottom surface and the aluminum plate surface are separated most Plate surface position (contact area;
Small, this case is defined as position C).

【0016】[0016]

【実施例】以下に、実施例として、工業用純アルミニウ
ム圧延材を対象とした本発明による組織制御の例を示
し、本発明の効果について明らかにする。
EXAMPLES The examples of the structure control according to the present invention for industrial pure aluminum rolled materials will be shown below to clarify the effects of the present invention.

【0017】図3は、工具の回転数を1540rpm、
移動速度を0.5mm/secで一定とし、アルミニウ
ム部材と接触する工具底面の直径を7〜10ミリまで変
化させ、同時に工具底面とアルミニウム部材表面の位置
関係を3段階に変化させたときの、摩擦熱によって上昇
したアルミニウム部材処理部の到達温度を示している。
工具位置Aとは、工具底面全面がアルミニウム部材表面
に接触している状態であり、工具位置Bは、工具位置A
から工具を0.1mm上昇させ、工具底面とアルミニウ
ム部材表面の接触面積を減じた状態であり、工具位置C
は、工具位置Aから工具を0.2mm上昇させ、接触面
積を最も減じた状態である。
In FIG. 3, the rotational speed of the tool is 1540 rpm,
When the moving speed is constant at 0.5 mm / sec, the diameter of the tool bottom surface contacting the aluminum member is changed to 7 to 10 mm, and at the same time, the positional relationship between the tool bottom surface and the aluminum member surface is changed in three stages, The reaching temperature of the aluminum member processing portion increased by frictional heat is shown.
The tool position A is a state where the entire bottom surface of the tool is in contact with the surface of the aluminum member, and the tool position B is the tool position A.
The tool is moved up by 0.1 mm from the above position, and the contact area between the tool bottom surface and the aluminum member surface is reduced.
Is a state in which the tool is raised 0.2 mm from the tool position A and the contact area is reduced most.

【0018】図4は、工具の回転数を890rpm、移
動速度を0.5mm/secで一定とし、アルミニウム
部材と接触する工具底面の直径を7〜10mmまで変化
させ、同時に工具底面とアルミニウム部材表面の位置関
係を3段階に変化させたときの、摩擦熱によって上昇し
たアルミニウム部材処理部の到達温度を示している。工
具位置A、B、Cの定義は、図3と同様である。
In FIG. 4, the tool rotation speed is 890 rpm, the moving speed is constant at 0.5 mm / sec, the diameter of the tool bottom surface contacting the aluminum member is changed to 7 to 10 mm, and at the same time, the tool bottom surface and the aluminum member surface are changed. 3 shows the reached temperature of the aluminum member processing portion which is increased by frictional heat when the positional relationship is changed in three stages. The definitions of the tool positions A, B and C are the same as in FIG.

【0019】ここまでで、工具の回転数及びアルミニウ
ム部材と接触する工具底面の直径、更に、工具底面と部
材表面の距離を変化させることにより、摩擦熱による部
材の温度上昇を制御し、到達温度を130℃から470
℃まで任意に変化させうることが明らかになった。
Up to this point, the temperature rise of the member due to frictional heat is controlled by changing the number of revolutions of the tool, the diameter of the tool bottom surface contacting the aluminum member, and the distance between the tool bottom surface and the member surface, to achieve the reached temperature. From 130 ° C to 470
It was revealed that the temperature can be changed arbitrarily up to ° C.

【0020】表1は、処理中の工業用純アルミニウムの
到達温度と、得られる組織の関係を示したものである。
処理部の温度が400〜470℃に達するとき、結晶粒
径は100μm程度まで粗大化する。これは母材の結晶
粒径を大きく上回っている。温度が380〜390℃の
ときには、結晶粒径は50〜80μm、温度が270〜
320℃のときには、20〜40μm、200℃以下の
ときには、1〜数μmまで微細化が可能である。
Table 1 shows the relationship between the ultimate temperature of industrial pure aluminum during processing and the obtained structure.
When the temperature of the processing portion reaches 400 to 470 ° C., the crystal grain size is coarsened to about 100 μm. This is much larger than the crystal grain size of the base material. When the temperature is 380 to 390 ° C., the crystal grain size is 50 to 80 μm and the temperature is 270 to 270.
When the temperature is 320 ° C., the size can be reduced to 20 to 40 μm, and when the temperature is 200 ° C. or less, the size can be reduced to 1 to several μm.

【0021】[0021]

【表1】 [Table 1]

【0022】図5は、本発明により結晶粒径を微細化し
た工業用純アルミニウムの硬度測定結果の一例である。
処理部の硬度は52〜57HVであり、母材の37〜4
1HVに比べて上昇していることが分かる。
FIG. 5 shows an example of the result of hardness measurement of industrial pure aluminum whose crystal grain size has been reduced according to the present invention.
The hardness of the treated part is 52 to 57 HV, and the hardness of the base material is 37 to 4
It can be seen that it is higher than 1HV.

【0023】図6は、動的に工具底面と部材表面の接触
面積を変化させることにより、場所ごとに異なる結晶粒
径を有する部材を作成する工程を示している。このよう
に、本発明によれば、部材の必要とされる部位にのみ、
局所的に強度及び硬度を高める処理を施すことが可能で
あり、効率的であるばかりかコストの低減に寄与でき
る。
FIG. 6 shows a process of dynamically changing the contact area between the tool bottom surface and the member surface to prepare a member having a different crystal grain size at each place. Thus, according to the present invention, only in the required parts of the member,
It is possible to locally perform a treatment for increasing strength and hardness, which is not only efficient but also contributes to cost reduction.

【0024】以上、本発明の代表的な実施例として、工
業用純アルミニウムに適用した例について詳述してきた
が、本発明は、そのような具体例にのみ限定して解釈さ
れるものではなく、JIS A5083等に代表される
既知のアルミニウム合金にも同様に実施されうるもので
ある。
Although the example applied to the pure aluminum for industrial use has been described in detail as a typical example of the present invention, the present invention is not construed as being limited to such a specific example. A known aluminum alloy represented by JIS A5083, etc. can be similarly implemented.

【0025】[0025]

【発明の効果】以上に説明したように、本発明によれ
ば、従来の押出しや圧延に比べて簡便で、部材の形状の
自由度が大きい上、処理条件によって結晶粒径を1μm
から100μmの幅広い範囲内で任意に制御することが
できる。
As described above, according to the present invention, compared to the conventional extrusion or rolling, the flexibility of the shape of the member is large, and the crystal grain size is 1 μm depending on the processing conditions.
It can be arbitrarily controlled within a wide range from 1 to 100 μm.

【0026】また、動的に処理条件を変更することで、
局所的に部材の結晶粒径を制御することが可能であり、
それにより、部材の必要とされる部位にのみ、局所的に
強度及び硬度を高める処理を施すことが可能である。ま
た、このような処理の後に、必要であれば、強化及び硬
化処理を施していない部位に対して、容易に切削加工、
塑性加工等を実施することができる。
Further, by dynamically changing the processing conditions,
It is possible to locally control the crystal grain size of the member,
As a result, it is possible to locally perform a treatment for increasing strength and hardness only on a required portion of the member. In addition, after such treatment, if necessary, it is possible to easily perform a cutting process on a portion not subjected to the strengthening and hardening treatment,
It is possible to carry out plastic working and the like.

【0027】更に、本発明によれば、添加元素を母材の
アルミニウム合金に加えることなく、加熱のための電気
炉も必要なく、更には、大型プレスのような特殊設備を
必要としないことから、アルミニウムならびにアルミニ
ウム合金の組織制御による強度、硬度の制御を従来法に
比べてきわめて容易に、低コストで行うことができる。
Furthermore, according to the present invention, no additional element is added to the aluminum alloy as the base material, no electric furnace for heating is required, and no special equipment such as a large press is required. It is possible to control the strength and hardness of aluminum and aluminum alloys by controlling the microstructure, compared to conventional methods, at a low cost.

【0028】そして、それらの結果として、アルミニウ
ムならびにアルミニウム合金の機械的構造物等への適用
が促進され、その工業的な利用が大きく拡大することが
期待される。
As a result, it is expected that the application of aluminum and aluminum alloys to mechanical structures and the like will be promoted, and the industrial use thereof will be greatly expanded.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わるアルミニウム及びアルミニウム
合金の組織制御方法を実施しうる装置の一例を示す模式
図である。
FIG. 1 is a schematic view showing an example of an apparatus capable of carrying out the method of controlling the structure of aluminum and aluminum alloy according to the present invention.

【図2】本発明に係わる回転工具と、組織制御を実施さ
れるアルミニウム及びアルミニウム合金部材表面の位置
関係を示す説明図である。
FIG. 2 is an explanatory view showing a positional relationship between a rotary tool according to the present invention and surfaces of aluminum and aluminum alloy members on which texture control is performed.

【図3】本発明により組織制御を実施した際に、工具の
回転数が1540rpmの時の、工具底面の直径、なら
びに工具と工業用純アルミニウム材表面の位置関係が、
処理中の工業用純アルミニウム材の到達温度に与える影
響を示す説明図である。
FIG. 3 shows the diameter of the bottom surface of the tool and the positional relationship between the tool and the surface of the industrial pure aluminum material when the rotational speed of the tool is 1540 rpm when the structure control is performed according to the present invention.
It is explanatory drawing which shows the influence which it has on the ultimate temperature of the industrial pure aluminum material in process.

【図4】本発明により組織制御を実施した際に、工具の
回転数が890rpmの時の、工具底面の直径、ならび
に工具と工業用純アルミニウム材表面の位置関係が、処
理中の工業用純アルミニウム材の到達温度に与える影響
を示す説明図である。
FIG. 4 shows the diameter of the bottom surface of the tool and the positional relationship between the tool and the surface of the industrial pure aluminum material when the rotational speed of the tool is 890 rpm when the structure control is performed according to the present invention. It is explanatory drawing which shows the influence which it has on the ultimate temperature of an aluminum material.

【図5】本発明により結晶粒径を微細化した工業用純ア
ルミニウムの硬度分布測定例を示す説明図である。
FIG. 5 is an explanatory diagram showing an example of hardness distribution measurement of industrial pure aluminum whose crystal grain size has been reduced according to the present invention.

【図6】本発明に係わるアルミニウム及びアルミニウム
合金の組織制御方法に従って、回転工具の高さ又は回転
数を動的に変化させることにより、アルミニウム部材の
任意の場所の結晶粒径を、任意の大きさに制御できるこ
とを示す模式図である。
FIG. 6 is a diagram illustrating a method for controlling the structure of aluminum and an aluminum alloy according to the present invention, by dynamically changing the height or the rotational speed of a rotary tool to change the grain size of an aluminum member at an arbitrary location to an arbitrary size. It is a schematic diagram which shows that it can control to a height.

【符号の説明】[Explanation of symbols]

(図1の符号の説明) 1 回転工具 1a アルミニウム板を摩擦する工具底面部 1b ピン 2 攪拌部 3 摩擦痕 4 アルミニウム板 (図2の符号の説明) 1 回転工具 1a 工具底面 1b ピン 2 工具の回転軸 3 工具底面とアルミニウム板表面を最も接触させた
時のアルミニウム板表面位置(接触面積;大、位置A) 4 工具底面とアルミニウム板表面をやや離した時の
アルミニウム板表面位置(接触面積;中、位置B) 5 工具底面とアルミニウム板表面を最も離した時の
アルミニウム板表面位置(接触面積;小、位置C) (図3、図4の符号の説明) A 工具底面とアルミニウム板表面を最も接触させた
時のアルミニウム板表面位置(接触面積;大) B 工具底面とアルミニウム板表面をやや離した時の
アルミニウム板表面位置(接触面積;中) C 工具底面とアルミニウム板表面を最も離した時の
アルミニウム板表面位置(接触面積;小)
(Explanation of symbols in FIG. 1) 1 rotary tool 1a Tool bottom part 1b that rubs an aluminum plate Pin 2 Stirrer 3 Friction mark 4 Aluminum plate (explanation of symbols in FIG. 2) 1 Rotary tool 1a Tool bottom 1b Pin 2 Rotation axis 3 Aluminum plate surface position when the tool bottom and aluminum plate surface are in the most contact (contact area; large, position A) 4 Aluminum plate surface position when the tool bottom and aluminum plate surface are slightly separated (contact area; Middle, position B) 5 Aluminum plate surface position when the bottom surface of the tool and the aluminum plate surface are separated most (contact area; small, position C) (Explanation of symbols in FIGS. 3 and 4) A Tool bottom surface and aluminum plate surface Aluminum plate surface position when most contacted (contact area; large) B Aluminum plate surface position when slightly separated from the tool bottom surface and aluminum plate surface (contact area; middle) Aluminum plate surface position when the most away tool bottom and the aluminum plate surface (contact area; small)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 685 C22F 1/00 685A (72)発明者 中村 守 愛知県名古屋市守山区大字下志段味字穴ケ 洞2266番地の98 独立行政法人産業技術総 合研究所中部センター内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification code FI Theme Coat (reference) C22F 1/00 685 C22F 1/00 685A (72) Inventor Mamoru Nakamura Oshige Shidanji character hole in Moriyama Ward, Aichi Prefecture Nagoya City 98, Independent Administrative Institution, National Institute of Advanced Industrial Science and Technology, Chubu Center, 2266, Kedong

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 アルミニウム乃至アルミニウム合金部材
の表面に高速回転する工具を接触させ、工具と部材表面
の摩擦熱による部材の熱処理効果と、工具による部材の
機械的撹拌効果との併用によりアルミニウム乃至アルミ
ニウム合金の組織制御を行い、局所的に強度及び硬度を
高めたアルミニウム乃至アルミニウム合金であって、工
具の回転数を変化させること、及び/又は工具と部材が
接触する部分の面積を任意に変化させること、によっ
て、発生する摩擦熱量を制御して部材の熱処理温度を任
意の値に変化させ、部材の結晶粒径組織を任意の大きさ
に制御することにより局所的に強度及び硬度を高めたこ
とを特徴とするアルミニウム乃至アルミニウム合金。
1. The aluminum or aluminum alloy is produced by bringing a tool rotating at a high speed into contact with the surface of an aluminum or aluminum alloy member, and using the heat treatment effect of the member due to frictional heat between the tool and the member surface and the mechanical stirring effect of the member by the tool. Aluminum or aluminum alloy having locally enhanced strength and hardness by controlling the structure of the alloy, and changing the rotational speed of the tool and / or arbitrarily changing the area of the portion where the tool and the member come into contact with each other. By controlling the amount of frictional heat generated by changing the heat treatment temperature of the member to an arbitrary value, the strength and hardness of the member were locally increased by controlling the crystal grain size structure of the member to an arbitrary size. Aluminum or an aluminum alloy characterized by:
【請求項2】 回転工具の、部材と接触し摩擦熱を発生
する部分の直径を変化させることにより、工具と部材が
接触する部分の面積を任意に変化させることを特徴とす
る、請求項1に記載のアルミニウム乃至アルミニウム合
金。
2. The area of the contacting portion between the tool and the member is arbitrarily changed by changing the diameter of the portion of the rotary tool that comes into contact with the member and generates frictional heat. The aluminum or aluminum alloy according to.
【請求項3】 回転工具の回転軸を、あらかじめ接触さ
せる部材表面の法線方向に対して傾斜させて設置するこ
とにより、回転工具の部材に接触する部分と部材表面の
なす角を0度以上10度以下にし、更に、回転工具と部
材表面の距離を変化させることにより、工具と部材が接
触する部分の面積を任意に変化させることを特徴とす
る、請求項1に記載のアルミニウム乃至アルミニウム合
金。
3. The rotary shaft of the rotary tool is installed so as to be inclined with respect to the normal direction of the surface of the member to be contacted in advance, so that the angle formed by the surface of the rotary tool that contacts the member and the surface of the member is 0 degree or more. The aluminum or aluminum alloy according to claim 1, wherein the area of the portion where the tool contacts the member is arbitrarily changed by changing the distance between the rotating tool and the member surface to 10 degrees or less. .
【請求項4】 部材の熱処理部の温度を130〜200
℃に制御することを特徴とする、請求項1に記載のアル
ミニウム乃至アルミニウム合金。
4. The temperature of the heat treatment part of the member is set to 130 to 200.
The aluminum or aluminum alloy according to claim 1, which is controlled at a temperature of ° C.
【請求項5】 部材の結晶粒径を1〜5μmに制御する
ことを特徴とする、請求項1に記載のアルミニウム乃至
アルミニウム合金。
5. The aluminum or aluminum alloy according to claim 1, wherein the crystal grain size of the member is controlled to 1 to 5 μm.
【請求項6】 請求項1から5のいずれかに記載の局所
的に強度及び硬度を高めたアルミニウム乃至アルミニウ
ム合金を使用したことを特徴とする機械的構造物。
6. A mechanical structure using the aluminum or aluminum alloy having locally increased strength and hardness according to any one of claims 1 to 5.
JP2002237777A 2002-08-19 2002-08-19 Structure control of aluminum and aluminum alloys Expired - Lifetime JP4006515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002237777A JP4006515B2 (en) 2002-08-19 2002-08-19 Structure control of aluminum and aluminum alloys

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002237777A JP4006515B2 (en) 2002-08-19 2002-08-19 Structure control of aluminum and aluminum alloys

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001046019A Division JP3755024B2 (en) 2001-02-22 2001-02-22 Structure control method of aluminum and aluminum alloy

Publications (2)

Publication Number Publication Date
JP2003064458A true JP2003064458A (en) 2003-03-05
JP4006515B2 JP4006515B2 (en) 2007-11-14

Family

ID=19196412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002237777A Expired - Lifetime JP4006515B2 (en) 2002-08-19 2002-08-19 Structure control of aluminum and aluminum alloys

Country Status (1)

Country Link
JP (1) JP4006515B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004096459A1 (en) * 2003-04-25 2004-11-11 Showa Denko K.K. Tubular metal body, method of producing same, liner for pressure vessel and method of producing same
JP2006291986A (en) * 2005-04-06 2006-10-26 Showa Denko Kk Pressure container and its manufacturing method
JP2007290036A (en) * 2006-03-29 2007-11-08 Osaka Industrial Promotion Organization Backing jig for friction stir processing, and method for manufacturing product using the same
CN100395047C (en) * 2003-04-25 2008-06-18 昭和电工株式会社 Tubular metal body, method of producing same, liner for pressure vessel and method of producing same
JP2008261352A (en) * 2007-04-10 2008-10-30 Showa Denko Kk Metal part with screw hole and method of manufacturing same and liner for pressure vessel and method of manufacturing same
WO2011019041A1 (en) * 2009-08-10 2011-02-17 地方独立行政法人大阪市立工業研究所 Method for modification of cemented carbides and cemented carbides modified by the method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004096459A1 (en) * 2003-04-25 2004-11-11 Showa Denko K.K. Tubular metal body, method of producing same, liner for pressure vessel and method of producing same
CN100395047C (en) * 2003-04-25 2008-06-18 昭和电工株式会社 Tubular metal body, method of producing same, liner for pressure vessel and method of producing same
US7430888B2 (en) 2003-04-25 2008-10-07 Showa Denko K.K. Tubular metal body, method of producing same, liner for pressure vessel and method of producing same
JP2006291986A (en) * 2005-04-06 2006-10-26 Showa Denko Kk Pressure container and its manufacturing method
JP2007290036A (en) * 2006-03-29 2007-11-08 Osaka Industrial Promotion Organization Backing jig for friction stir processing, and method for manufacturing product using the same
JP4650903B2 (en) * 2006-03-29 2011-03-16 財団法人大阪産業振興機構 Friction stir processing backing jig and method of manufacturing a workpiece using the same
JP2008261352A (en) * 2007-04-10 2008-10-30 Showa Denko Kk Metal part with screw hole and method of manufacturing same and liner for pressure vessel and method of manufacturing same
WO2011019041A1 (en) * 2009-08-10 2011-02-17 地方独立行政法人大阪市立工業研究所 Method for modification of cemented carbides and cemented carbides modified by the method
JP2011038143A (en) * 2009-08-10 2011-02-24 Osaka Municipal Technical Research Institute Reforming method of cemented carbide, and cemented carbide reformed by the method
US20120186160A1 (en) * 2009-08-10 2012-07-26 Osaka University Method for modification of cemented carbides and cemented carbides modified by the method

Also Published As

Publication number Publication date
JP4006515B2 (en) 2007-11-14

Similar Documents

Publication Publication Date Title
Sauer et al. Influence of α layers at β grain boundaries on mechanical properties of Ti-alloys
JP2003064458A (en) Control of structures of aluminum and aluminum alloy
US6939419B1 (en) Method for producing axially symmetric parts and the article
CN105803365A (en) Method for improving structure uniformity of TC4 titanium alloy
JP3755024B2 (en) Structure control method of aluminum and aluminum alloy
Chang et al. Influence of grain size and temperature on micro upsetting of copper
JP2011079022A (en) FRICTION STIR WELDING METHOD FOR Mg AND Mg ALLOY
Sajjadi Nikoo et al. Microstructure evolution and mechanical properties of friction stir welded joint of ultrafine-grained dissimilar AA2024/AA5083 composite fabricated by accumulative roll bonding
CN107858617A (en) The method that low-rotate speed mixing yoghurt was modified and prepared wear-resistant titanium surface to titanium surface
Fan et al. Morphology transformation of primary strip α phase in hot working of two-phase titanium alloy
EP0909339A2 (en) Method for processing billets from multiphase alloys and the article
CN106425287A (en) Machining technology of perforated rotating shaft body part
JP2001300643A (en) Manufacturing method of magnesium product
JP4738657B2 (en) Copper, copper-based alloy and method for producing the same
Chou et al. Effects of heat treatments on AA6061 aluminum alloy deformed by cross-channel extrusion
JPH08164438A (en) Forcing method of thin disk
CN107283258A (en) A kind of method and its equipment of jewellery Surface Machining sand streak
KR101866127B1 (en) Simple torsion-based severe plastic deformation of metallic bar enhanced mechanical properties by surface abrasion
CN101660032B (en) Method for processing surface of melting welding head
JP2012040585A (en) Method of manufacturing annular roughly shaped material
CN105543734B (en) A kind of low-melting-point metal Electroplastic ring rolles over rub fine method and its device
KR100494552B1 (en) Method for forming aluminum alloy sheet using texture control
JP2004052043A (en) METHOD OF PRODUCING Al-Si BASED ALLOY MATERIAL HAVING FINE STRUCTURE
Ambrosio et al. Asymmetry in microstructure and mechanical properties of FSWed joints using a hemispherical tool tilted towards the retreating side
Bhardwaj et al. Microtexture and mechanical properties evolution of Ti6Al4V with varying pressing speeds of constrained groove pressing

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060502

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070731

R150 Certificate of patent or registration of utility model

Ref document number: 4006515

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term