JP2003063837A - Method of forming optical element and apparatus for forming the same - Google Patents

Method of forming optical element and apparatus for forming the same

Info

Publication number
JP2003063837A
JP2003063837A JP2001256091A JP2001256091A JP2003063837A JP 2003063837 A JP2003063837 A JP 2003063837A JP 2001256091 A JP2001256091 A JP 2001256091A JP 2001256091 A JP2001256091 A JP 2001256091A JP 2003063837 A JP2003063837 A JP 2003063837A
Authority
JP
Japan
Prior art keywords
mold
temperature
optical element
molding
sleeve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001256091A
Other languages
Japanese (ja)
Inventor
Takashi Kobayashi
高志 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP2001256091A priority Critical patent/JP2003063837A/en
Publication of JP2003063837A publication Critical patent/JP2003063837A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/12Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould
    • C03B11/125Cooling
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/40Product characteristics
    • C03B2215/46Lenses, e.g. bi-convex
    • C03B2215/48Convex-concave

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a forming apparatus and a forming method for an optical element by which the optical element does not have a substantially different temperature distribution in a cooling process for the element to be formed and the optical element of good quality can be formed. SOLUTION: The forming apparatus 1 for an optical element is provided with: a cylindrical sleeve 2C; a pair of an upper die 2a and a lower die 2b inserted into both opening parts of the sleeve; a pressure mechanism 9 for pressing the upper and the lower die; a heating furnace 6 which is mounted on the outer periphery of the sleeve and can be controlled being divided at least into two parts vertically; a pair of thermometers 19 for respectively measuring the temperatures in the vicinity of die surfaces of the upper and the lower die; and a control part 14 which individually controls the temperature lowering conditions of the upper and the lower die based on the measured data from the pair of thermometers.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、加熱軟化した光学
素材を押圧し、光学素子を加圧成形する光学素子の成形
法とその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical element molding method and apparatus for pressing an optical material that has been softened by heating to pressure-mold an optical element.

【0002】[0002]

【従来の技術】この種の光学素子の成形法とその装置の
従来技術として、特開平5−97447号公報に、上型
と下型の間に配置された成形用の素材を、型加熱とは別
の加熱手段による輻射熱で加熱し所望の温度に昇温した
後にプレス成形する方法とその装置が開示されている。
2. Description of the Related Art As a conventional technique for molding an optical element of this type and a device therefor, Japanese Patent Laid-Open No. 5-97447 discloses a molding material disposed between an upper mold and a lower mold, which is heated by a mold. Discloses a method and apparatus for performing press molding after heating to a desired temperature by radiant heat by another heating means.

【0003】[0003]

【発明が解決しようとする課題】一般的に、光学素子
(例えばレンズ)において、両面の曲率半径が極端に異
なる光学素子を成形する場合、前述した従来技術の様に
熱輻射加熱装置でスリーブに均一に輻射熱を与え加熱す
る手段を採用すると、曲率半径の小さな成形型の成形面
が形成する空間に充満する光学素材の体積が、曲率半径
の大きな成形型の成形面が形成するそれより極端に大き
くなり、光学素子を2分割して考えると、貯えられる熱
容量に大きな差を生じることとなる。
Generally, in the case of molding an optical element (for example, a lens) having extremely different radii of curvature on both sides, a sleeve is formed by a thermal radiation heating device as in the prior art described above. If a means for uniformly applying radiant heat is used, the volume of the optical material that fills the space formed by the molding surface of the mold with a small radius of curvature becomes much more extreme than that formed by the molding surface of the mold with a large radius of curvature. When the optical element is divided into two parts, a large difference occurs in the heat capacity that can be stored.

【0004】このような光学素子を、成形型と光学素子
が均温の加熱状態から同じように冷却すると、成形面か
らの熱の移動は両成形面ともほぼ同じ為、熱容量の大き
な(曲率半径の小さい)金型側の成形面の冷却が他方よ
り遅れる状態となる。この結果、両成形面間での温度分
布の相違から内部応力が発生し、成形表面の割れ等の品
質不良を発生させるという問題がある。
If such an optical element is cooled in the same manner from the uniform heating state of the mold and the optical element, the movement of heat from the molding surface is substantially the same on both molding surfaces, so that the heat capacity is large (radius of curvature). The cooling of the molding surface on the side of the mold is smaller than that of the other. As a result, there is a problem that internal stress is generated due to the difference in temperature distribution between the two molding surfaces, which causes quality defects such as cracks on the molding surface.

【0005】また、上述した従来技術には、冷却工程で
の温度管理方法や冷却時に金型の温度を管理しながら降
温させる機能に関する記載がなく、上述した問題点を解
決することは困難である。
Further, the above-mentioned prior art does not describe the method of controlling the temperature in the cooling step or the function of lowering the temperature while controlling the temperature of the mold during cooling, and it is difficult to solve the above-mentioned problems. .

【0006】本発明は、上記事情に鑑みてなされたもの
であり、成形される光学素子の冷却工程で光学素子に大
きな温度分布の相違を持たせることがなく良品質な光学
素子を成形し得る光学素子の成形方法及び成形装置を提
供することを目的とするものである。
The present invention has been made in view of the above circumstances, and a good quality optical element can be formed without giving a large difference in temperature distribution to the optical element in the step of cooling the optical element to be formed. An object is to provide a molding method and a molding apparatus for an optical element.

【0007】[0007]

【課題を解決するための手段】請求項1記載の発明は、
円筒形のスリーブの上下の開口部から一対構成の上型、
下型を挿入し、前記上型、下型及び前記スリーブを加熱
装置により加熱し、前記上型、下型間に配置された光学
素材を加熱軟化させ、押圧成形して光学素子を得る光学
素子の成形方法において、押圧成形後の冷却工程で、上
型型表面近くの温度と、下型型表面近くの温度とを監視
しながら前記加熱装置の加熱能力を制御して、上型温度
と下型温度の降温状態を個別に管理することを特徴とす
るものである。
The invention according to claim 1 is
A pair of upper molds consisting of upper and lower openings of a cylindrical sleeve,
An optical element in which a lower mold is inserted, the upper mold, the lower mold and the sleeve are heated by a heating device to heat and soften an optical material arranged between the upper mold and the lower mold, and press molding is performed to obtain an optical element. In the molding method of 1, the heating capacity of the heating device is controlled while monitoring the temperature near the surface of the upper mold and the temperature near the surface of the lower mold in the cooling step after press molding, and the upper mold temperature and the lower mold temperature are controlled. It is characterized in that the cooling state of the mold temperature is managed individually.

【0008】請求項2記載の発明は、請求項1記載の光
学素子の成形方法において、押圧成形後の前記上型及び
下型の降温状態の管理を少なくとも成形される前記光学
素材のガラス転移点以下になるまで行うことを特徴とす
るものである。
According to a second aspect of the invention, in the optical element molding method according to the first aspect, at least the glass transition point of the optical material to be molded is controlled for the temperature lowering state of the upper mold and the lower mold after the press molding. The feature is that the process is performed until the following.

【0009】請求項3記載の発明の光学素子の成形装置
は、円筒形のスリーブと、前記スリーブの両開口部に挿
入される一対構成の上型、下型と、上型、下型を押圧す
る押圧機構と、前記スリーブの外周に設置され少なくと
も上下2つに分割制御できる加熱炉と、上型及び下型の
型表面近くの温度を各々測定する一対の測温器と、測温
器の測定データに基づき前記上型及び下型の降温状態を
個別に制御する制御部とを有することを特徴とするもの
である。
According to a third aspect of the present invention, there is provided an optical element molding apparatus in which a cylindrical sleeve and a pair of upper and lower molds inserted into both openings of the sleeve are pressed, and an upper mold and a lower mold are pressed. Of the pressing mechanism, a heating furnace installed on the outer circumference of the sleeve and capable of being divided into at least two upper and lower parts, a pair of temperature measuring devices for respectively measuring temperatures near the mold surfaces of the upper mold and the lower mold, and a temperature measuring device. And a control unit for individually controlling the temperature lowering states of the upper mold and the lower mold based on the measurement data.

【0010】請求項4記載の発明は、請求項3記載の光
学素子の成形装置において、前記制御部は、成形される
光学素材の材料特性、成形される光学素子の形状に応じ
た前記上型及び下型の型温度の降温パターンデータを記
憶する記憶部を備えていることを特徴とする。
According to a fourth aspect of the present invention, in the optical element molding apparatus according to the third aspect, the controller controls the upper mold according to the material characteristics of the optical material to be molded and the shape of the optical element to be molded. And a storage unit for storing the temperature decrease pattern data of the lower mold temperature.

【0011】以下に本発明の光学素子の成形方法及び成
形装置の作用を説明する。本発明において、円筒形のス
リーブの上下の開口部から挿入された一対構成の上型、
下型間に配置された光学素材は、スリーブ外周に設置さ
れた加熱炉により加熱された後、上型、下型により押圧
成形される。
The operation of the optical element molding method and molding apparatus of the present invention will be described below. In the present invention, a pair of upper molds inserted from the upper and lower openings of a cylindrical sleeve,
The optical material arranged between the lower molds is heated by a heating furnace installed on the outer circumference of the sleeve, and then pressure-molded by the upper mold and the lower mold.

【0012】押圧成形後の冷却工程において、曲率半径
の小さい、即ち、成形面が形成する空間部が大きく光学
素材が充満する体積の大きい側から成形型への熱移動
を、曲率半径の大きい側のそれに比べ相対的に早くする
(曲率半径の小さい成形型の温度を他方の成形型より低
くすることで、成形される光学素子と成形型の温度差を
大きくして熱移動を早くする)ために、上型型表面近く
の温度と、下型型表面近くの温度とを監視し、曲率半径
の大きい成形型(例えば下型)の成形面の近くの温度
を、他方の成形型(例えば上型)の温度よりもある程度
高くしながら冷却する。
In the cooling step after the press molding, the heat transfer from the side having a small radius of curvature, that is, the side having a large space formed by the molding surface and having a large volume filled with the optical material to the molding die, has a large radius of curvature. To make it relatively faster than that of (the mold with a smaller radius of curvature has a lower temperature than the other mold to increase the temperature difference between the molded optical element and the mold to accelerate heat transfer) In addition, the temperature near the surface of the upper mold and the temperature near the surface of the lower mold are monitored, and the temperature near the molding surface of the mold having a large radius of curvature (for example, the lower mold) is measured by the temperature of the other mold Cool it while keeping it somewhat higher than the mold temperature.

【0013】これにより、光学素子の曲率半径が大きな
成形面から下型側に逃げる熱量と、曲率半径が小さい成
形面から上型側に逃げる熱量とのバランスを取りながら
冷却することができ、冷却工程時に生じる光学素子内部
の温度分布の相違を少なくすることが可能となり、良品
質な光学素子を成形できる。
Thus, cooling can be performed while balancing the amount of heat escaping from the molding surface having a large radius of curvature of the optical element to the lower mold side and the amount of heat escaping from the molding surface having a small radius of curvature to the upper mold side. It is possible to reduce the difference in temperature distribution inside the optical element that occurs during the process, and it is possible to mold a good quality optical element.

【0014】尚、この冷却工程での上型、下型の温度管
理は、光学素子が成形可能な範囲に亙って、即ち、光学
素材のガラス転移点以下に至るまで行うことが望まし
い。
It is desirable that the temperature control of the upper mold and the lower mold in this cooling step be performed within the moldable range of the optical element, that is, below the glass transition point of the optical material.

【0015】本発明においては、加熱装置を少なくとも
上下二つの加熱炉で構成し、それぞれ金型の成形面近く
の温度を一対の測温器にて個別に監視し測定して、その
測定データに基づき制御部によりそれぞれの加熱炉の加
熱能力、即ち、前記上型及び下型の降温状態を個別に制
御することで、前述した成形方法を実現することができ
る。
In the present invention, the heating device is composed of at least two heating furnaces at the upper and lower sides, and the temperature near the molding surface of the mold is individually monitored and measured by a pair of temperature measuring devices. Based on the control unit individually controlling the heating capacity of each heating furnace, that is, the temperature lowering state of the upper mold and the lower mold, the above-described molding method can be realized.

【0016】この場合、上型、下型の温度制御は、成形
される光学素材の材料特性や光学素子の形状に応じて予
め実験で定められた降温パターンデータを記憶部に記憶
しておき、降温パターンデータに基づいて制御部により
実行するものである。
In this case, for temperature control of the upper mold and the lower mold, temperature-decreasing pattern data determined in advance by experiments according to the material characteristics of the optical material to be molded and the shape of the optical element are stored in the storage unit, It is executed by the control unit based on the temperature decrease pattern data.

【0017】[0017]

【発明の実施の形態】以下に本発明の実施の形態につい
て詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below.

【0018】(実施の形態1) (構成)図1は本発明の実施の形態1の成形装置1の概
略断面図、図2は本実施の形態1の成形装置1の制御系
を示す概略ブロック図である。
(Embodiment 1) (Structure) FIG. 1 is a schematic sectional view of a molding apparatus 1 according to Embodiment 1 of the present invention, and FIG. 2 is a schematic block diagram showing a control system of the molding apparatus 1 according to Embodiment 1. It is a figure.

【0019】本実施の形態1の成形装置1は、成形室5
内で光学素材22の成形を行う上型2a、下型2b、ス
リーブ2cからなる金型2と、金型2を移動する移動台
3と、押圧機構部9により駆動され金型2を押圧する主
軸4と、金型2を加熱する加熱装置6と、金型2及び加
熱装置6の外部に配置された制御装置14とから大略構
成される。
The molding apparatus 1 according to the first embodiment includes a molding chamber 5
A mold 2 composed of an upper mold 2a, a lower mold 2b, and a sleeve 2c for molding the optical material 22 therein, a moving table 3 for moving the mold 2, and a pressing mechanism portion 9 to press the mold 2. The main shaft 4, a heating device 6 for heating the mold 2, and a control device 14 arranged outside the mold 2 and the heating device 6 are generally configured.

【0020】金型2は、上型2a、下型2b、スリーブ
2cから構成され、材質は超硬合金WCやセラミックス
である。上型2aの成形面7aは下型2bの成形面7b
に比べ、極端に曲率半径が小さい球面形状を有してい
る。また、上型2a、下型2bの軸心部で成形面7a、
7bの近くには一対の測温器19が設置されている。測
温器19は熱電対やサーミスタや放射温度計を用いて構
成される。
The mold 2 is composed of an upper mold 2a, a lower mold 2b and a sleeve 2c, and the material thereof is cemented carbide WC or ceramics. The molding surface 7a of the upper mold 2a is the molding surface 7b of the lower mold 2b.
It has a spherical shape with an extremely small radius of curvature as compared with. Also, the molding surface 7a is formed at the axial center of the upper mold 2a and the lower mold 2b.
A pair of temperature measuring devices 19 are installed near 7b. The thermometer 19 is composed of a thermocouple, a thermistor, and a radiation thermometer.

【0021】金型2のスリーブ2cは、円筒形状であ
り、上型2a及び下型2bの外周と上下動自在に嵌合す
る内径寸法を有している。
The sleeve 2c of the die 2 has a cylindrical shape, and has an inner diameter dimension that is fitted in the outer peripheries of the upper die 2a and the lower die 2b so as to be vertically movable.

【0022】移動台3は、上部に金型2を設置する設置
部8を備え、この設置部8は移動台3の上下動とともに
成形室5に出入可能となっている。
The movable table 3 is provided with an installation part 8 for installing the mold 2 on the upper part thereof, and the installed part 8 can be moved into and out of the molding chamber 5 as the movable table 3 moves up and down.

【0023】主軸4は、成形室5の上部側に配置され、
押圧機構部9に連結されて、この押圧機構部9により主
軸4を上下駆動して上型2aに押圧力を付与するように
なっている。押圧機構部9は、図示していないシリンダ
又はモータ等の駆動源およびガイドを具備し、主軸4を
上下動可能に支持しかつ駆動する。
The main shaft 4 is arranged on the upper side of the molding chamber 5,
It is adapted to be connected to the pressing mechanism section 9 and to drive the main shaft 4 up and down by the pressing mechanism section 9 to apply a pressing force to the upper die 2a. The pressing mechanism unit 9 includes a drive source and a guide (not shown) such as a cylinder or a motor, and supports and drives the main shaft 4 so as to be vertically movable.

【0024】加熱装置6は、前記スリーブ2cに対して
同心円上に設置されたリング状の4本の赤外線ランプ1
0a、10b、10c、10dと、赤外線ランプ10
a、10b、10c、10dの外周外側に配置した上下
一対の赤外線反射板11a、11bとから構成してい
る。赤外線ランプ10a、10b、10c、10dは図
示していない金具で加熱装置6に取り付けられている。
赤外線反射板11aは上側2本の赤外線ランプ10a、
10bから照射される赤外線をスリーブ2cの上外周部
に均一に反射する形状を有する。
The heating device 6 is composed of four ring-shaped infrared lamps 1 arranged concentrically with the sleeve 2c.
0a, 10b, 10c, 10d and infrared lamp 10
It is composed of a pair of upper and lower infrared reflecting plates 11a and 11b arranged outside the outer periphery of a, 10b, 10c and 10d. The infrared lamps 10a, 10b, 10c and 10d are attached to the heating device 6 by metal fittings (not shown).
The infrared reflection plate 11a includes two infrared lamps 10a on the upper side,
It has a shape in which infrared rays emitted from 10b are uniformly reflected on the upper outer peripheral portion of the sleeve 2c.

【0025】また、赤外線反射板11bは下側2本の赤
外線ランプ10c,10dから照射される赤外線をスリ
ーブ2cの下外周部に均一に反射する形状を有する。
Further, the infrared reflecting plate 11b has a shape that uniformly reflects the infrared rays emitted from the lower two infrared lamps 10c and 10d to the lower outer peripheral portion of the sleeve 2c.

【0026】前記成形室5全体を非酸化雰囲気にするた
め不活性ガスを吸入する吸入口12と、成形室5内部の
空気を排出する排気口13が各々成形室5に連通するよ
うに設けられている。吸入口12の口径は排気口13の
口径より大きく形成している。
A suction port 12 for sucking an inert gas to make the entire molding chamber 5 a non-oxidizing atmosphere and an exhaust port 13 for discharging the air inside the molding chamber 5 are provided so as to communicate with the molding chamber 5, respectively. ing. The diameter of the suction port 12 is formed larger than that of the exhaust port 13.

【0027】次に、制御装置14について図2を参照し
て説明する。この制御装置14は、上型2a、下型2b
に設置された各測温器19からの温度データ(信号)を
増幅する一対のアンプ15と、後述する制御部17の制
御の基に上型2a、下型2bの外側の赤外線ランプ10
a乃至10dの発光調節を行う一対の温度調整器18
と、一対の温度調整器18による調節を受けて赤外線ラ
ンプ10a、10b及び赤外線ランプ10c、10dの
発光駆動を行う一対の電力調整器16と、予め実験で求
められた上型2a、下型2bの冷却工程での降温パター
ンのデータが格納された記憶部(図示せず)を備えると
ともに、前記アンプ15からの温度情報と前記降温パタ
ーンのデータを比較し、一対の電力調整器16に制御指
令を出す制御部(CPU)17とから構成される。
Next, the control device 14 will be described with reference to FIG. The control device 14 includes an upper mold 2a and a lower mold 2b.
A pair of amplifiers 15 for amplifying temperature data (signals) from the temperature measuring devices 19 installed in the infrared ray lamps 10 outside the upper mold 2a and the lower mold 2b under the control of the control unit 17 described later.
A pair of temperature adjusters 18 for adjusting light emission of a to 10d
And a pair of power regulators 16 for driving the infrared lamps 10a and 10b and the infrared lamps 10c and 10d to emit light under the control of a pair of temperature regulators 18, and an upper mold 2a and a lower mold 2b which have been experimentally obtained in advance. In addition to having a storage unit (not shown) in which the data of the cooling pattern in the cooling step is stored, the temperature information from the amplifier 15 is compared with the data of the cooling pattern, and a control command is issued to the pair of power regulators 16. And a control unit (CPU) 17 for outputting

【0028】(作用)本実施の形態1の成形装置1の作
用を、転移点381℃、屈伏点404℃の予め球状に研
磨加工された光学素材22を成形し光学素子を得る場合
を例にして説明する。
(Operation) The operation of the molding apparatus 1 according to the first embodiment will be described by taking an example of molding an optical material 22 having a transition point of 381 ° C. and a yield point of 404 ° C. which has been spherically polished in advance to obtain an optical element. Explain.

【0029】前記スリーブ2c内に上型2aと光学素材
22と下型2bを挿入し、設置部8に載置し、移動台3
を上昇させ成形室5を密閉する(この時、上型2a、下
型2b間には押圧力は加えない)。吸入口12から不活
性ガスを成形室5に導入し同時に排気口13から内部の
空気を排気することで、成形室5内部を不活性ガスでパ
ージする。
The upper die 2a, the optical material 22, and the lower die 2b are inserted into the sleeve 2c, placed on the installation portion 8, and the moving table 3 is moved.
And the molding chamber 5 is closed (at this time, no pressing force is applied between the upper mold 2a and the lower mold 2b). The inside of the molding chamber 5 is purged with the inert gas by introducing the inert gas into the molding chamber 5 through the suction port 12 and simultaneously exhausting the internal air from the exhaust port 13.

【0030】不活性ガスによるパージ完了後、押圧機構
部9をさらに作動させ、上型2a、下型2b間に押圧力
を加えるとともに、赤外線ランプ10a、10b、10
c、10dを発光させ、赤外線をスリーブ2cの外周に
均一に照射する。金型2が屈伏点温度404℃まで上昇
するように加熱装置6を制御し、20秒以上保持した後
赤外線の発光を止め冷却工程に移行する。成形完了時点
では金型2と光学素材22とはほぼ同じ温度である。
After the completion of purging with the inert gas, the pressing mechanism 9 is further operated to apply a pressing force between the upper mold 2a and the lower mold 2b, and the infrared lamps 10a, 10b, 10
C and 10d are made to emit light, and infrared rays are uniformly irradiated to the outer circumference of the sleeve 2c. The heating device 6 is controlled so that the die 2 rises to the deformation point temperature of 404 ° C., and after holding for 20 seconds or more, the infrared ray emission is stopped and the process proceeds to the cooling step. At the time of completion of molding, the mold 2 and the optical material 22 have almost the same temperature.

【0031】冷却工程では、曲率半径の小さい成形面7
a側の蓄熱が、曲率半径の大きな成形面7b側より大き
いため、曲率半径の大きい方が早く冷える傾向にある。
この冷却過程での温度変化は測温器19によりリアルタ
イムでアンプ15を介して制御部17に取り込まれる。
In the cooling step, the molding surface 7 having a small radius of curvature is used.
Since the heat storage on the a side is larger than that on the molding surface 7b side having a large radius of curvature, the larger radius of curvature tends to cool faster.
The temperature change in the cooling process is taken into the control unit 17 via the amplifier 15 in real time by the temperature measuring device 19.

【0032】制御部17には、実験で求めた成形品の熱
分布を極力最小にして良好な品質を確保できる上型2
a、下型2bの降温パターンのデータが予め格納されて
おり、測温器19からのデータと比較されその差データ
が算出される。
The control unit 17 includes an upper mold 2 which can minimize the heat distribution of the molded product obtained by the experiment and ensure good quality.
The data of the temperature lowering pattern of a and the lower mold 2b is stored in advance, and the difference data is calculated by comparing with the data from the temperature measuring device 19.

【0033】この差データを常に最小にするように制御
部17から一対の温度調整器18に制御信号が送られ、
一対の温度調整器18は、一対の電力調整器16による
赤外線ランプ10a、10b、赤外線ランプ10c、1
0dに対する発光駆動のタイミングを調整し、上型2
a、下型2bの降温制御を行う。
A control signal is sent from the control unit 17 to the pair of temperature adjusters 18 so as to always minimize the difference data.
The pair of temperature adjusters 18 are the infrared lamps 10a, 10b, the infrared lamps 10c, 1 by the pair of power adjusters 16.
Adjusting the timing of light emission drive for 0d, the upper mold 2
a, the temperature of the lower mold 2b is controlled.

【0034】以下に、図3に示すフローチャートを参照
して金型2の冷却工程における降温制御の流れについて
詳述する。金型2の冷却工程に入ると赤外線ランプ10
a乃至10dが全て消灯駆動される(ステップS1)。
The flow of temperature reduction control in the cooling process of the mold 2 will be described in detail below with reference to the flow chart shown in FIG. When entering the cooling process of the mold 2, the infrared lamp 10
All of a to 10d are driven to be turned off (step S1).

【0035】赤外線ランプ10a乃至10dの消灯と同
時に金型2の温度は自然放熱と周辺要素への熱伝導によ
り下がり始める。この際、制御部17は上型2a及び下
型2bに設置された各測温器19から上型2a、下型2
bの成形面近くの各温度データをリアルタイム(約1秒
毎)に認識する(ステップS2)。
At the same time when the infrared lamps 10a to 10d are turned off, the temperature of the mold 2 begins to drop due to natural heat dissipation and heat conduction to peripheral elements. At this time, the control unit 17 controls the upper mold 2a and the lower mold 2 from the temperature measuring devices 19 installed in the upper mold 2a and the lower mold 2b.
Each temperature data near the molding surface of b is recognized in real time (about every 1 second) (step S2).

【0036】認識された上型2a、下型2bの各温度デ
ータは、予め制御部17の記憶部に入力され格納されて
いる降温パターンのデータと各々比較される(ステップ
S3)。
The respective temperature data of the upper mold 2a and the lower mold 2b that have been recognized are respectively compared with the data of the temperature drop pattern which is input and stored in the storage unit of the control unit 17 in advance (step S3).

【0037】上型2a又は下型2bの温度が降温パター
ンの温度よりも低くなった場合(ステップS4)、制御
部17から一対の温度調節器18のうちの対応する温度
調節器18へ赤外線ランプ10a、10b又は10c、
10dの点灯信号が送られ、これにより一定時間(約1
秒間)赤外線ランプ10a、10b又は10c、10d
が点灯して上型2a又は下型2bの降温状態を調整する
(ステップS5)。
When the temperature of the upper mold 2a or the lower mold 2b becomes lower than the temperature of the temperature lowering pattern (step S4), the infrared ray lamp is transferred from the controller 17 to the corresponding temperature controller 18 of the pair of temperature controllers 18. 10a, 10b or 10c,
A lighting signal of 10d is sent, which causes a fixed time (about 1
Infrared lamp 10a, 10b or 10c, 10d
Lights up and the temperature lowering state of the upper mold 2a or the lower mold 2b is adjusted (step S5).

【0038】ステップS1乃至S5の処理終了後、金型
2及び光学素材22がガラス転移点温度以下になるまで
上述したステップS2乃至S5の処理を繰り返し、ガラ
ス転移点温度以下になった時点で金型2及び光学素材2
2の温度制御処理を終了する(ステップS6)。
After the processing of steps S1 to S5 is completed, the above-described processing of steps S2 to S5 is repeated until the temperature of the mold 2 and the optical material 22 becomes lower than the glass transition point temperature. Mold 2 and optical material 2
The temperature control process of No. 2 is finished (step S6).

【0039】(効果)本実施の形態1によれば、曲率半
径の差が大きく冷却時に光学素材22の上下面に温度分
布ができやすい形状の光学素子を成形する際に、冷却工
程での金型2の降温過程を上型2a、下型2bで個別に
制御することが可能となり、これにより、良品質の成形
品である光学素子を得ることが可能となる。
(Effect) According to the first embodiment, when an optical element having a shape having a large difference in curvature radius and having a temperature distribution easily formed on the upper and lower surfaces of the optical material 22 at the time of cooling is used, a metal is used in the cooling step. The temperature lowering process of the mold 2 can be individually controlled by the upper mold 2a and the lower mold 2b, which makes it possible to obtain an optical element that is a good quality molded product.

【0040】(実施の形態2) (構成)次に、図4、図5を参照して本発明の実施の形
態2について説明する。尚、本実施の形態2において、
制御装置14Aを除く他の構成は実施の形態1の場合と
同様であるため、その重複説明は省略する。 図4に示
す本実施の形態2の制御装置14Aは、全体の制御を行
う制御部であるシーケンサー20と、赤外線ランプ10
a、10b及び赤外線ランプ10c、10dの発光駆動
を各々行う一対の電力調整器16と、プログラムにて温
度設定を行い一対の電力調整器16を各々制御する一対
のプログラム温度調節器21とから構成される。
(Second Embodiment) (Structure) Next, a second embodiment of the present invention will be described with reference to FIGS. In the second embodiment,
Except for the control device 14A, the other configuration is the same as that of the first embodiment, and thus the duplicated description will be omitted. The control device 14A according to the second embodiment shown in FIG. 4 includes a sequencer 20 that is a control unit that performs overall control, and an infrared lamp 10.
a, 10b and a pair of power regulators 16 for respectively driving the infrared lamps 10c, 10d to emit light, and a pair of program temperature regulators 21 for controlling the pair of power regulators 16 by setting the temperature by a program. To be done.

【0041】(作用)本実施の形態2において、上型2
a、下型2bの型温度の降温パターンは、何分後に温度
何℃という態様で段階的に一対のプログラム温度調節器
21にプログラムされる。このため、冷却工程での金型
温度の降温パターンはやや波打つ形となるが設定間隔を
短くすることで対応できる。
(Operation) In the second embodiment, the upper mold 2
The pattern of temperature decrease of the mold temperature of a and the lower mold 2b is programmed in the pair of program temperature controllers 21 in a stepwise manner such that the temperature is several degrees Celsius after a few minutes. Therefore, the cooling pattern of the mold temperature in the cooling step has a slightly wavy shape, but this can be dealt with by shortening the set interval.

【0042】図5に冷却工程での上型2a、下型2bの
温度制御パターンを示す。横軸が時間、縦軸は温度であ
る。赤外線ランプ10a、10b又は赤外線ランプ10
c、10dは、設定された時間間隔(設定時間1、設定
時間2、・・・)毎に、上型2a又は下型2bが定めら
れた温度(設定温度1、設定温度2、・・・)になり、
その後自然冷却を行うように点灯、消灯制御される。
FIG. 5 shows a temperature control pattern of the upper mold 2a and the lower mold 2b in the cooling process. The horizontal axis represents time and the vertical axis represents temperature. Infrared lamp 10a, 10b or infrared lamp 10
c and 10d are the temperatures (set temperature 1, set temperature 2, ...) At which the upper mold 2a or the lower mold 2b is set for each set time interval (set time 1, set time 2, ...). )become,
After that, lighting and extinguishing control are performed so as to perform natural cooling.

【0043】このような制御は、金型2の上型2a、下
型2b及び光学素材22がガラス転移点以下になるまで
繰り返し継続される。
Such control is repeatedly continued until the upper die 2a, the lower die 2b and the optical material 22 of the die 2 reach the glass transition point or lower.

【0044】(効果)本実施の形態2によれば、実施の
形態1の場合よりも簡略な構成の制御装置14Aを使用
し、簡略な制御過程にて実施の形態1の場合と同様の効
果を奏することができる。
(Effect) According to the second embodiment, the same effect as that of the first embodiment is obtained by using the control device 14A having a simpler configuration than that of the first embodiment and performing a simple control process. Can be played.

【0045】[0045]

【発明の効果】本発明によれば、光学素子の曲率半径が
大きな成形面から金型側に逃げる熱量と、曲率半径が小
さい成形面から金型側に逃げる熱量とのバランスを取り
ながら冷却することができ、冷却工程時に生じる光学素
子内部の温度分布の相違を少なくすることが可能とな
り、良品質な光学素子を成形できる光学素子の成形方法
を提供することができる。
According to the present invention, cooling is performed while balancing the amount of heat escaping from the molding surface having a large radius of curvature of the optical element to the mold side and the amount of heat escaping from the molding surface having a small radius of curvature to the mold side. It is possible to reduce the difference in temperature distribution inside the optical element that occurs during the cooling step, and it is possible to provide an optical element molding method capable of molding a good quality optical element.

【0046】また、本発明によれば、冷却工程時に生じ
る光学素子内部の温度分布の相違を少なくし、良品質な
光学素子を成形できる光学素子の成形装置を提供するこ
とができる。
Further, according to the present invention, it is possible to provide an optical element molding apparatus capable of molding a good quality optical element by reducing the difference in temperature distribution inside the optical element that occurs during the cooling step.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態1の光学素子の成形装置の
一部を断面にして示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing a cross section of a part of a molding device of an optical element according to a first embodiment of the present invention.

【図2】本実施の形態1の光学素子の成形装置の制御系
の概略ブロック図である。
FIG. 2 is a schematic block diagram of a control system of the optical element molding apparatus according to the first embodiment.

【図3】本実施の形態1の光学素子の成形方法による上
型、下型の降温処理の流れを示すフローチャートであ
る。
FIG. 3 is a flowchart showing a flow of temperature lowering processing of an upper mold and a lower mold by the optical element molding method according to the first embodiment.

【図4】本発明の実施の形態2の光学素子の成形装置の
制御系の概略ブロック図である。
FIG. 4 is a schematic block diagram of a control system of an optical element molding apparatus according to a second embodiment of the present invention.

【図5】本実施の形態2の光学素子の成形方法における
型温度の降温パターンを示す説明図である。
FIG. 5 is an explanatory view showing a pattern of decreasing the mold temperature in the method of molding an optical element according to the second embodiment.

【符号の説明】[Explanation of symbols]

1 成形装置 2 金型 2a 上型 2b 下型 2c スリーブ 3 移動台 4 主軸 5 成形室 6 加熱装置 7a 成形面 7b 成形面 8 設置部 9 押圧機構部 10a〜10d 赤外線ランプ 11a 赤外線反射板 11b 赤外線反射板 12 吸入口 13 排気口 14 制御装置 14A 制御装置 15 アンプ 16 電力調整器 17 制御部 18 温度調節器 19 測温器 20 シーケンサー 21 プログラム温度調節器 22 光学素材 1 molding equipment 2 mold 2a Upper mold 2b Lower mold 2c sleeve 3 mobile platforms 4 spindles 5 molding room 6 heating device 7a Molding surface 7b Molding surface 8 installation departments 9 Pressing mechanism 10a-10d infrared lamp 11a Infrared reflector 11b Infrared reflector 12 suction port 13 Exhaust port 14 Control device 14A control device 15 amplifier 16 Power regulator 17 Control unit 18 Temperature controller 19 Thermometer 20 sequencer 21 Program temperature controller 22 Optical material

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 円筒形のスリーブの上下の開口部から一
対構成の上型、下型を挿入し、前記上型、下型及び前記
スリーブを加熱装置により加熱し、前記上型、下型間に
配置された光学素材を加熱軟化させ、押圧成形して光学
素子を得る光学素子の成形方法において、 押圧成形後の冷却工程で、上型型表面近くの温度と、下
型型表面近くの温度とを監視しながら前記加熱装置の加
熱能力を制御して、上型温度と下型温度の降温状態を個
別に管理することを特徴とする光学素子の成形方法。
1. A pair of an upper mold and a lower mold are inserted from upper and lower openings of a cylindrical sleeve, and the upper mold, the lower mold and the sleeve are heated by a heating device, and a space between the upper mold and the lower mold. In the method of forming an optical element, in which the optical material placed in the mold is heated and softened to obtain an optical element by press molding, the temperature near the upper mold surface and the temperature near the lower mold surface in the cooling step after the press molding. A method for molding an optical element, characterized in that the heating capacity of the heating device is controlled while monitoring the above, and the cooling state of the upper mold temperature and the lower mold temperature are individually managed.
【請求項2】 押圧成形後の前記上型及び下型の降温状
態の管理を少なくとも成形される前記光学素材のガラス
転移点以下になるまで行うことを特徴とする請求項1記
載の光学素子の成形方法。
2. The optical element according to claim 1, wherein the temperature lowering state of the upper mold and the lower mold after the press molding is performed at least until the glass transition point of the optical material to be molded is below the glass transition point. Molding method.
【請求項3】 円筒形のスリーブと、前記スリーブの両
開口部に挿入される一対構成の上型、下型と、上型、下
型を押圧する押圧機構と、前記スリーブの外周に設置さ
れ少なくとも上下2つに分割制御できる加熱炉と、上型
及び下型の型表面近くの温度を各々測定する一対の測温
器と、 測温器の測定データに基づき前記上型及び下型の降温状
態を個別に制御する制御部と、 を有することを特徴とする光学素子の成形装置。
3. A cylindrical sleeve, a pair of upper and lower dies inserted into both openings of the sleeve, a pressing mechanism for pressing the upper and lower dies, and a sleeve provided on the outer circumference of the sleeve. A heating furnace that can be divided into at least two upper and lower parts, a pair of thermometers that measure the temperatures near the upper and lower mold surfaces, respectively, and the temperature drop of the upper and lower molds based on the measured data of the thermometers. An optical element molding apparatus comprising: a control unit that individually controls a state.
【請求項4】 前記制御部は、成形される光学素材の材
料特性、成形される光学素子の形状に応じた前記上型及
び下型の型温度の降温パターンデータを記憶する記憶部
を備えていることを特徴とする請求項3記載の光学素子
の成形装置。
4. The control unit includes a storage unit that stores temperature decrease pattern data of mold temperatures of the upper mold and the lower mold according to material characteristics of an optical material to be molded and shapes of optical elements to be molded. The apparatus for molding an optical element according to claim 3, wherein:
JP2001256091A 2001-08-27 2001-08-27 Method of forming optical element and apparatus for forming the same Pending JP2003063837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001256091A JP2003063837A (en) 2001-08-27 2001-08-27 Method of forming optical element and apparatus for forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001256091A JP2003063837A (en) 2001-08-27 2001-08-27 Method of forming optical element and apparatus for forming the same

Publications (1)

Publication Number Publication Date
JP2003063837A true JP2003063837A (en) 2003-03-05

Family

ID=19083954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001256091A Pending JP2003063837A (en) 2001-08-27 2001-08-27 Method of forming optical element and apparatus for forming the same

Country Status (1)

Country Link
JP (1) JP2003063837A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006001802A (en) * 2004-06-18 2006-01-05 Nikon Corp Method for molding optical element, device for molding optical element and method for manufacturing optical element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000103627A (en) * 1998-09-28 2000-04-11 Minolta Co Ltd Production of precision glass element and device for producing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000103627A (en) * 1998-09-28 2000-04-11 Minolta Co Ltd Production of precision glass element and device for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006001802A (en) * 2004-06-18 2006-01-05 Nikon Corp Method for molding optical element, device for molding optical element and method for manufacturing optical element

Similar Documents

Publication Publication Date Title
JP2783713B2 (en) Press forming method of optical element and apparatus therefor
JP2004196651A (en) Method and apparatus for manufacturing glass substrate for storage medium, and glass substrate for storage medium, and storage medium
JPH0597447A (en) Method for molding optical element and device therefor
US6067819A (en) Method for manufacturing glass container and apparatus therefor
JPH06263463A (en) Method and device for forming optical glass element
JP2003063837A (en) Method of forming optical element and apparatus for forming the same
KR100552609B1 (en) Press-forming method and machine for glass
JP4146558B2 (en) Substrate heat treatment method and substrate heat treatment apparatus
JP4059008B2 (en) Press molding method and press molding apparatus
JP2001048552A (en) Holding method for optical element and molding unit for optical element
JPH10101352A (en) Production of quartz glass tube and device for the production
JP3826090B2 (en) Optical element molding apparatus and optical element molding method
JP2946003B2 (en) Method and apparatus for molding optical element
JP4474755B2 (en) Optical element manufacturing method
JP3585260B2 (en) Apparatus and method for manufacturing optical element
JP4580677B2 (en) Glass forming equipment
JP5399673B2 (en) Molding apparatus and method for manufacturing molded product
JP2005170751A (en) Method and apparatus for forming glass lens
JP2751131B2 (en) Optical device molding apparatus and molding method
TW202337848A (en) Molding apparatus and molding method for precision glass elements
JP4065143B2 (en) Mold for molding
JP2000247656A (en) Glass shaping machine
JP2000247654A (en) Glass shaping machine
JP2000247657A (en) Glass shaping machine
JPH10287434A (en) Formation of optical element material, and apparatus therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100511