JP2003061298A - Motor having hemispherical fluid or gas dynamic pressure bearing balanced with magnetic attractive force at axial end - Google Patents

Motor having hemispherical fluid or gas dynamic pressure bearing balanced with magnetic attractive force at axial end

Info

Publication number
JP2003061298A
JP2003061298A JP2001245878A JP2001245878A JP2003061298A JP 2003061298 A JP2003061298 A JP 2003061298A JP 2001245878 A JP2001245878 A JP 2001245878A JP 2001245878 A JP2001245878 A JP 2001245878A JP 2003061298 A JP2003061298 A JP 2003061298A
Authority
JP
Japan
Prior art keywords
sleeve
shaft
dynamic pressure
bearing motor
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001245878A
Other languages
Japanese (ja)
Inventor
Yoshikazu Ichiyama
義和 市山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2001245878A priority Critical patent/JP2003061298A/en
Publication of JP2003061298A publication Critical patent/JP2003061298A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/10Sliding-contact bearings for exclusively rotary movement for both radial and axial load
    • F16C17/102Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure
    • F16C17/105Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure with at least one bearing surface providing angular contact, e.g. conical or spherical bearing surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C25/00Bearings for exclusively rotary movement adjustable for wear or play
    • F16C25/02Sliding-contact bearings
    • F16C25/04Sliding-contact bearings self-adjusting
    • F16C25/045Sliding-contact bearings self-adjusting with magnetic means to preload the bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1005Construction relative to lubrication with gas, e.g. air, as lubricant
    • F16C33/101Details of the bearing surface, e.g. means to generate pressure such as lobes or wedges
    • F16C33/1015Pressure generating grooves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/106Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
    • F16C33/107Grooves for generating pressure

Abstract

PROBLEM TO BE SOLVED: To achieve and provide a hemispherical fluid and gas dynamic pressure bearing motor that is suited for thinning and reduction in current, has a simple structure, and can reduce costs, by solving the problems of realization of stability in a rotary attitude, a structure that can be assembled easily, an the like that are the problems in the hemispherical fluid and gas dynamic pressure bearing motor. SOLUTION: The motor comprises a shaft where at least one side is hemispherical, a sleeve having a recess that opposes the shaft, lubrication fluid in the gap between the shaft and the sleeve, and a magnetic means that has either a magnet or a magnetic body in the shaft or on the bottom surface of the sleeve and generates magnetic attraction force between a shaft end and a sleeve bottom surface. The motor has a dynamic pressure groove on the hemispherical bearing surface of the shaft or the sleeve, and balances the axial component force in load capacitance that the dynamic pressure groove generates in rotation and the magnetic attraction force for supporting the rotary section, inhibits NRRO for thinning, reduces current, and reduces costs.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は流体及び気体動圧軸受モ
ータに係わり,特に半球形状の軸受部を有して薄型化と
低コスト化を可能とする流体及び気体動圧軸受モータに
係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluid and gas dynamic pressure bearing motor, and more particularly to a fluid and gas dynamic pressure bearing motor which has a hemispherical bearing portion and enables reduction in thickness and cost.

【0002】[0002]

【従来の技術】回転型の記憶装置,冷却用のファン等に
おいて,静粛性或いは回転体のNRRO(非同期軸振
れ)抑制等の要請から流体動圧軸受モータの採用方向に
ある。同時に携帯用途の進展と共にそれら機器の薄型
化,低電流化等も強く求められている。しかしながら流
体動圧軸受は,NRROを抑圧する観点から軸を支承す
るベアリング部間のスパンを小さくし難く薄型化に限界
が有り,また軸受間隙維持にサブミクロン以下の加工精
度を必要として低コスト化が困難な事情にある。
2. Description of the Related Art In a rotary type memory device, a cooling fan, etc., a fluid dynamic bearing motor is being adopted due to a demand for quietness or suppression of NRRO (asynchronous shaft runout) of a rotating body. At the same time, along with the development of portable applications, there is a strong demand for thinner devices and lower currents. However, from the viewpoint of suppressing NRRO, the fluid dynamic bearing is difficult to reduce the span between the bearings that support the shaft, and has a limit in thinning. In addition, machining accuracy of sub-micron or less is required to maintain the bearing gap, and cost is reduced. Is in a difficult situation.

【0003】流体動圧軸受に於いて薄型化を可能にする
には軸方向の二点で支持するベアリングから脱却できる
構造,低電流化にはベアリング摺動部面積を減少出来る
構造,さらに低コスト化には部材の加工精度を緩和して
も軸受間隙を必要な精度で維持出来る構造等々を実現す
る事である。
In order to make the fluid dynamic pressure bearing thinner, it is possible to separate it from the bearing supported at two points in the axial direction, to reduce the current, the structure in which the bearing sliding area can be reduced, and at a lower cost. In order to realize this, it is necessary to realize a structure that can maintain the bearing gap with the required accuracy even if the processing accuracy of the members is relaxed.

【0004】この候補となる半球形状の流体動圧軸受
は,ラジアル及びスラスト方向の負荷を支持出来て以前
から注目されてきた。しかし薄型化に適する単一の半球
形状軸受はUSP05854524に示される気体軸受
の例もあるが,普及はしていない。その理由の一つは半
球状動圧軸受と平衡させる磁気吸引力をローターマグネ
ット,ステーターコア間から得ているので姿勢復元力を
損なう構造であること,さらに軸受面が起動停止時に摺
動する構造で摩耗問題を有していること等である。
The candidate hemispherical fluid dynamic bearing has been attracting attention since it can support loads in the radial and thrust directions. However, a single hemispherical bearing suitable for thinning is not widely used although there is an example of the gas bearing shown in USP058545424. One of the reasons is that the magnetic attraction force that balances with the hemispherical dynamic pressure bearing is obtained from between the rotor magnet and the stator core, so that the posture restoring force is impaired, and the bearing surface slides when starting and stopping. Therefore, it has a wear problem.

【0005】[0005]

【発明が解決しようとする課題】半球形状の流体及び気
体動圧軸受モータでの課題は回転姿勢の安定性,摺動摩
耗の少ない構造の実現であり,流体動圧軸受の場合はさ
らに潤滑流体の漏れがたい構造の実現である。本発明の
目的は,前記課題を解決して,薄型化及び低電流化に適
し,簡易な構造で低コスト化が可能な半球形状の流体及
び気体動圧軸受モータを実現提供することである。
The problems with a fluid and gas dynamic pressure bearing motor in the shape of a hemisphere are to realize a stable rotational posture and a structure with less sliding wear. This is the realization of a structure that does not leak easily. An object of the present invention is to solve the above problems and to provide a hemispherical fluid and gas dynamic pressure bearing motor that is suitable for thinning and low current, and has a simple structure and can reduce cost.

【0006】[0006]

【課題を解決するための手段】本発明による流体動圧軸
受モータは,略半球状の軸と,半球状軸に対向する凹部
を持つスリーブと,軸及びスリーブ間間隙の潤滑流体
と,軸端及びスリーブ頂部間に磁気吸引力を発生させる
磁気的手段と,軸外周部に配置され且つスリーブ外周壁
に対向して開口部に向け徐々に大となる間隙を有してテ
ーパーシール部を構成する環状障壁と等より構成され
る。同流体動圧軸受モータにおいて,軸或いはスリーブ
の半球状軸受面に動圧溝を有し,回転時に前記動圧溝が
発生する負荷容量の軸方向分力と前記磁気吸引力とを平
衡させて回転部を支承する事を特徴とする。スリーブ外
周に潤滑流体の境界面を配置する構造として高速回転時
にも安定な潤滑流体のシール構造を実現する。
A fluid dynamic bearing motor according to the present invention comprises a substantially hemispherical shaft, a sleeve having a recess facing the hemispherical shaft, a lubricating fluid in the shaft and a gap between the sleeves, and a shaft end. And a magnetic means for generating a magnetic attraction force between the tops of the sleeve and a taper seal portion which is arranged on the outer peripheral portion of the shaft and faces the outer peripheral wall of the sleeve and has a gap gradually increasing toward the opening. It is composed of an annular barrier and the like. The fluid dynamic bearing motor has a dynamic pressure groove on the hemispherical bearing surface of the shaft or sleeve, and balances the axial component force of the load capacity generated by the dynamic pressure groove during rotation with the magnetic attraction force. Characterized by supporting the rotating part. As a structure in which the boundary surface of the lubricating fluid is arranged on the outer circumference of the sleeve, a stable lubricating fluid sealing structure is realized even at high speed rotation.

【0007】軸外周部に配置の環状障壁端部にはリング
状部材を固定し,そのリング状部材の内周部をスリーブ
外周壁の環状凹部内となるよう配置させて回転部の軸方
向移動量を規制する。過大な衝撃が加わった場合におけ
る回転部の抜け止め構造である。
A ring-shaped member is fixed to the end portion of the annular barrier arranged on the outer peripheral portion of the shaft, and the inner peripheral portion of the ring-shaped member is arranged so as to be in the annular recess of the outer peripheral wall of the sleeve, and the rotary portion is moved in the axial direction. Regulate the amount. This structure prevents the rotating part from coming off when an excessive impact is applied.

【0008】また,潤滑流体中に導電性磁性体微粉を混
入させ,軸端とスリーブ頂部間の磁界中に拘束させて回
転部の電気的接地手段を構成することも提案している。
Further, it has been proposed that the electrically conductive magnetic fine powder is mixed in the lubricating fluid and restrained in the magnetic field between the shaft end and the sleeve top to constitute the electrical grounding means of the rotating portion.

【0009】第二の本発明による気体動圧軸受モータ
は,略半球状の軸と,半球状軸に対向する凹部を持つス
リーブと,軸端及びスリーブ頂部間に磁気吸引力を発生
させる磁気的手段と等より構成し,軸或いはスリーブの
半球状軸受面に動圧溝を有し,回転時に前記動圧溝が発
生する負荷容量の軸方向分力と前記磁気吸引力とを平衡
させて回転部を支承する事を特徴とする。
A gas dynamic pressure bearing motor according to the second aspect of the present invention is a magnetic bearing pressure motor that produces a magnetic attraction force between a shaft having a substantially hemispherical shaft, a sleeve having a recess facing the hemispherical shaft, and a shaft end and a sleeve top. And has a dynamic pressure groove on the hemispherical bearing surface of the shaft or sleeve, and rotates by balancing the axial component force of the load capacity generated by the dynamic pressure groove during rotation with the magnetic attraction force. Characterized by supporting the club.

【0010】スリーブ端面にはリング状部材を固定し,
そのリング状部材の自由端部側を固定部側の環状凹部内
となるよう配置させて回転部の軸方向移動量を規制す
る。過大な衝撃が加わった場合における回転部の抜け止
め構造である。
A ring-shaped member is fixed to the end surface of the sleeve,
The free end portion side of the ring-shaped member is arranged so as to be in the annular recess portion on the fixed portion side, and the amount of axial movement of the rotating portion is regulated. This structure prevents the rotating part from coming off when an excessive impact is applied.

【0011】上記流体及び気体動圧軸受において,磁気
吸引力を発生させる磁気的手段は軸内或いは対向するス
リーブ頂部にそれぞれ配置した永久磁石と磁性体とで構
成する。軸端の磁気吸引力は動圧溝の発生する負荷容量
と併せて姿勢復元力を形成し,姿勢安定性を向上でき
る。
In the above fluid and gas dynamic pressure bearings, the magnetic means for generating a magnetic attraction force is composed of a permanent magnet and a magnetic body which are respectively disposed inside the shaft or at the opposite sleeve top. The magnetic attraction force at the shaft end forms the posture restoring force together with the load capacity generated by the dynamic pressure groove, and the posture stability can be improved.

【0012】軸内には磁気吸引力より大の保持力で可動
に保持する永久磁石を有し,組立時に永久磁石は十分に
軸端より突出させた後に軸とスリーブ間には磁気吸引力
以上の力を加えてスリーブ頂部或いはスリーブ頂部に配
置された板バネが弾性変形を生じる状態で永久磁石の位
置を確定させ,スリーブ頂部或いは板バネと永久磁石端
とは静止時には接触し,回転時には離間してその離間距
離が軸とスリーブの軸受面に於ける軸方向浮上距離より
小或いは等しくなるよう構成している。これにより起動
停止時に軸及びスリーブの軸受面における摺動を減少さ
せて信頼性を向上出来る。
There is a permanent magnet movably held in the shaft with a holding force larger than the magnetic attraction force, and during assembly, the permanent magnet is sufficiently projected from the shaft end and, thereafter, between the shaft and the sleeve is more than the magnetic attraction force. Force is applied to determine the position of the permanent magnet in a state where the sleeve top or the leaf spring arranged on the sleeve top is elastically deformed, and the sleeve top or leaf spring and the end of the permanent magnet make contact when stationary and separate when rotating. The separation distance is smaller or equal to the axial levitation distance between the shaft and the bearing surface of the sleeve. This can reduce the sliding of the shaft and the sleeve on the bearing surface at the time of starting and stopping, and improve the reliability.

【0013】さらに対向する軸及びスリーブ軸受両面の
ほぼ同じ軸方向位置にそれぞれ周方向角度長の異なる動
圧溝を配して周方向の最小間隙点から最大圧力点となる
までの遅れ量を分散させてハーフホワール等の不安定現
象を回避する構造を提案している。
Further, dynamic pressure grooves having different angular lengths in the circumferential direction are arranged at substantially the same axial position on both surfaces of the shaft and the sleeve bearing facing each other, and the delay amount from the minimum clearance point in the circumferential direction to the maximum pressure point is dispersed. We have proposed a structure that avoids unstable phenomena such as half whirl.

【作用】本発明による流体及び気体動圧軸受モータに依
れば,回転によって発生する負荷容量は半球状軸受面に
垂直でその軸方向分力と磁気吸引力とが平衡する位置で
軸とスリーブは非接触で回転する。負荷容量の径方向分
力は周方向の各点でそれぞれ平衡して回転部の調芯に寄
与する。
According to the fluid and gas dynamic pressure bearing motor of the present invention, the load capacity generated by rotation is perpendicular to the hemispherical bearing surface, and the shaft and the sleeve are positioned at a position where the axial component force and the magnetic attraction force are balanced. Rotates without contact. The radial component force of the load capacity is balanced at each point in the circumferential direction and contributes to the centering of the rotating portion.

【0014】従来の単一球面軸受での課題は,姿勢安定
性及び軸受面の摺動摩耗であった。本発明において,軸
端における磁気吸引力は動圧溝が発生させる負荷容量と
姿勢復元モーメント力を形成させ,さらに軸受両面にお
いての周方向角度長の異なる動圧溝はハーフホワールを
減じる等の効果を期待できて姿勢安定性を改善できる。
また起動停止時に起こりがちな軸受面の摺動は軸端の突
出部により減じられ,軸受の寿命を改善できる。
The problems with the conventional single spherical bearing are attitude stability and sliding wear of the bearing surface. In the present invention, the magnetic attraction force at the shaft end forms the load capacity and the attitude restoring moment force generated by the dynamic pressure groove, and the dynamic pressure grooves having different circumferential angular lengths on both sides of the bearing reduce the half whirl. Can be expected to improve posture stability.
In addition, the sliding of the bearing surface, which tends to occur when starting and stopping, is reduced by the protruding portion at the shaft end, which improves the life of the bearing.

【0015】[0015]

【発明の実施の形態】以下に本発明による流体及び気体
動圧軸受モータについて,その実施例及び原理作用等を
図面を参照しながら説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments and principles of a fluid and gas dynamic pressure bearing motor according to the present invention will be described below with reference to the drawings.

【0016】図1は本発明の第一の実施例である流体動
圧軸受モータの断面構造を示す。軸11は側面を半球形
状とし,軸11に対向して配置されるスリーブ12は側
面を半球状凹面とする。軸11とスリーブ12間の間隙
には潤滑流体である磁性流体オイルが充填され,軸11
の外周部に設けた環状障壁23とスリーブ12の外周壁
との間隙は軸方向に徐々に大としてテーパーシール部を
形成し潤滑流体の境界面17を有する。軸11はその中
に永久磁石35を有し,磁性体で構成されたスリーブ1
2頂部との間に磁気吸引力を発生させる。回転部は軸1
1,環状障壁23,ハブ41,ローターマグネット44
等とより,固定部はスリーブ12,ベース43,ステー
タコア47,コイル50等とより構成する。
FIG. 1 shows a sectional structure of a fluid dynamic bearing motor according to a first embodiment of the present invention. The shaft 11 has a hemispherical side surface, and the sleeve 12 disposed so as to face the shaft 11 has a hemispherical concave surface. The gap between the shaft 11 and the sleeve 12 is filled with magnetic fluid oil that is a lubricating fluid,
The gap between the annular barrier 23 provided on the outer peripheral portion of the sleeve 12 and the outer peripheral wall of the sleeve 12 gradually increases in the axial direction to form a tapered seal portion and has a boundary surface 17 for the lubricating fluid. The shaft 11 has a permanent magnet 35 therein and is made of a magnetic material.
A magnetic attraction force is generated between the two tops. Rotating part is axis 1
1, annular barrier 23, hub 41, rotor magnet 44
Etc., the fixed portion is composed of the sleeve 12, the base 43, the stator core 47, the coil 50, and the like.

【0017】軸11,スリーブ12の何れかの半球状軸
受面13には,後に説明するヘリングボーン形状の動圧
溝を一組有してベアリング部を形成する。この一組の動
圧溝は潤滑流体をその中心に向かってポンピングし潤滑
流体の圧力を高める。その結果生じる負荷容量は軸とス
リーブ間間隙に反比例するので負荷容量の軸方向分力と
前記磁気吸引力とが平衡するよう前記間隙は決定され,
負荷容量の径方向分力で軸11の調芯が行われる。した
がって,負荷容量の大きさは磁気吸引力によって決まる
ので回転時に回転部を支持するに十分な負荷容量を発生
出来るよう磁気吸引力を設定するとし,間隙はおおよそ
数ミクロンメートルの値となる。
The hemispherical bearing surface 13 of either the shaft 11 or the sleeve 12 has a set of herringbone dynamic pressure grooves, which will be described later, to form a bearing portion. The set of dynamic pressure grooves pumps the lubricating fluid toward its center to increase the pressure of the lubricating fluid. Since the resulting load capacity is inversely proportional to the gap between the shaft and the sleeve, the gap is determined so that the axial component force of the load capacitance and the magnetic attraction force are balanced,
The shaft 11 is aligned by the radial component force of the load capacity. Therefore, since the size of the load capacity is determined by the magnetic attraction force, the magnetic attraction force is set to generate sufficient load capacity to support the rotating part during rotation, and the gap has a value of about several microns.

【0018】ステーターコア47,コイル50はロータ
ーマグネット44と協働して回転部を回転させる。回転
部にはこの他に負荷として磁気ディスク或いは光ディス
ク等が搭載され,正立或いは倒立等記憶装置の設置形態
により軸11とスリーブ12間に加わる力は異なる。す
なわち,正立では磁気吸引力に加えて可動部重量が加わ
り,倒立では逆に磁気吸引力から可動部重量が差し引か
れて加わる。それらを考慮すれば,磁気吸引力としては
可動部重量の3倍以上が目安であり,経験的にも妥当な
姿勢の安定が得られる。磁気吸引力を大にしてより大き
な負荷容量と平衡させれば歳差運動を更に圧縮できて姿
勢安定性を増すことが出来るが,一方では起動停止時の
摺動摩擦を大にして稼働寿命を減ずる事も判明してい
る。必要な回転精度によって異なるが,おおよその目安
として小型磁気ディスク装置の場合は流体動圧軸受モー
タの回転部重量に負荷重量を加えた可動部重量の5倍程
度の磁気吸引力を発生させるよう設定する。
The stator core 47 and the coil 50 cooperate with the rotor magnet 44 to rotate the rotating portion. In addition to this, a magnetic disk, an optical disk, or the like is mounted as a load on the rotating portion, and the force applied between the shaft 11 and the sleeve 12 differs depending on the installation form of the storage device such as upright or inverted. That is, the weight of the movable part is added to the magnetic attraction force in the upright state, and the weight of the movable part is subtracted from the magnetic attraction force in the inverted state. Taking these into consideration, the magnetic attraction force should be at least three times the weight of the moving part, and empirically stable posture can be obtained. Precession can be further compressed and posture stability can be increased by increasing the magnetic attraction force and balancing it with a larger load capacity, but on the other hand, the sliding friction at the time of start and stop can be increased to reduce the operating life. Things are known. It depends on the required rotation accuracy, but as a rough guide, in the case of a small magnetic disk device, it is set to generate a magnetic attraction force of about 5 times the weight of the moving part, which is the weight of the rotating part of the fluid dynamic bearing motor plus the load weight. To do.

【0019】図2は軸11,永久磁石35,スリーブ1
2等の断面と磁束の経路を示す。軸11は非磁性材料と
し,軸内に希土類の強力な永久磁石35を配置する。軸
受部の径は5ミリメートル程度であるとして永久磁石3
5の径は設計上1−2ミリメートル程が割り当て可能で
ある。軸11の先端とスリーブ12との距離は20−3
0ミクロンメートル程度の微小な間隙に設定するので磁
気吸引力はその間隙変動に依らずほぼ一定となり,加工
組み立て公差を大に出来る。番号55は永久磁石35の
磁化方向を示し,永久磁石35先端は球面として磁束を
集中させ,スリーブ12頂部に流入した磁束56は番号
57として示すようにスリーブ12内を通ってスリーブ
12の半球状軸受面から永久磁石35の他端に戻る(番
号58)。半球状軸受面から永久磁石35端までの距離
は大でしかも面積は広いので磁束58は分散し磁束密度
は小さく,スリーブ12の半球状軸受面と永久磁石35
との磁気吸引力は小さい。
FIG. 2 shows the shaft 11, the permanent magnet 35, and the sleeve 1.
2 shows a cross section and a magnetic flux path. The shaft 11 is made of a non-magnetic material, and a strong rare-earth permanent magnet 35 is arranged inside the shaft. Assuming that the diameter of the bearing is about 5 mm, the permanent magnet 3
The diameter of 5 can be assigned about 1-2 mm by design. The distance between the tip of the shaft 11 and the sleeve 12 is 20-3.
Since the gap is set to a minute gap of about 0 μm, the magnetic attraction force is almost constant regardless of the gap variation, and the working and assembly tolerance can be increased. The number 55 indicates the magnetization direction of the permanent magnet 35, and the tip of the permanent magnet 35 is a spherical surface to concentrate the magnetic flux, and the magnetic flux 56 flowing into the top of the sleeve 12 passes through the inside of the sleeve 12 as shown by the number 57 and is a hemispherical shape of the sleeve 12. It returns from the bearing surface to the other end of the permanent magnet 35 (number 58). Since the distance from the hemispherical bearing surface to the end of the permanent magnet 35 is large and the area is large, the magnetic flux 58 is dispersed and the magnetic flux density is small, and the hemispherical bearing surface of the sleeve 12 and the permanent magnet 35.
The magnetic attraction of and is small.

【0020】潤滑流体として磁性流体オイルを使用した
ので磁束密度の高い頂部近傍に磁性流体オイルへの求心
力が働き頂部及び軸受部からの気泡排除を促進できる。
通常のオイルでも軸受の機能実現に支障は無い。
Since the magnetic fluid oil is used as the lubricating fluid, a centripetal force is exerted on the magnetic fluid oil in the vicinity of the top portion having a high magnetic flux density, so that the removal of bubbles from the top portion and the bearing portion can be promoted.
Normal oil will not hinder the functioning of the bearing.

【0021】磁気吸引力の発生手段には他にローターマ
グネット44とステーター47を軸方向に偏倚させる,
或いはローターマグネット44の下方に磁性体片を配置
する等が存在する。前者は振動を誘発し,後者は磁性体
片に生じる渦電流で消費電流を大にさせるデメリットが
ある。本発明の実施例に示す磁気吸引力発生手段では上
記手段の欠点を解決する事が出来る。
In addition to the means for generating the magnetic attraction force, the rotor magnet 44 and the stator 47 are axially biased.
Alternatively, a magnetic piece may be arranged below the rotor magnet 44. The former has the disadvantage of inducing vibration, and the latter has the disadvantage of increasing the current consumption due to the eddy current generated in the magnetic piece. The magnetic attraction force generating means shown in the embodiment of the present invention can solve the drawbacks of the above means.

【0022】図3は第一の実施例に於ける軸受部分の詳
細構造を示し,図3(a)は軸11及びスリーブ12の
断面構造を,図3(b)はスリーブ12の平面図をそれ
ぞれ示す。動圧溝の軸方向の位置を理解しやすいように
軸11の表面の動圧溝20,21を断面図に重ねて示
し,スリーブ12の軸受面13の動圧溝27,28は平
面図上に示した。動圧溝20,21,27,28は数ミ
クロンメートル程度の凹みであり,回転時に内周側及び
外周側から潤滑流体を中間部に集めて潤滑流体の圧力を
高め,軸11をスリーブ12に対して浮上,支承する。
本実施例では外周側から内周側へのポンピング能力を内
周側から外周側へのそれよりやや大として内周側へのポ
ンピング力が残るよう設定し,内周側での潤滑流体の圧
力を回転起動時に速やかに大とさせて軸11,スリーブ
12の摺動摩擦を軽減させる。図に示す動圧溝では内周
部側の溝長(20,27)が大に表されているが,ポン
ピング能力は溝の周方向長さの縮小程度及び溝の径方向
長さ等により決まるので上記説明とは矛盾しない。
FIG. 3 shows the detailed structure of the bearing portion in the first embodiment. FIG. 3 (a) is a sectional view of the shaft 11 and the sleeve 12, and FIG. 3 (b) is a plan view of the sleeve 12. Shown respectively. In order to make it easy to understand the axial position of the dynamic pressure groove, the dynamic pressure grooves 20 and 21 on the surface of the shaft 11 are shown superimposed on the cross-sectional view, and the dynamic pressure grooves 27 and 28 of the bearing surface 13 of the sleeve 12 are shown in plan view. It was shown to. The dynamic pressure grooves 20, 21, 27, 28 are recesses of about several micrometers, and collect the lubricating fluid from the inner peripheral side and the outer peripheral side to the intermediate portion during rotation to increase the pressure of the lubricating fluid, and the shaft 11 to the sleeve 12. On the other hand, levitate and support.
In this embodiment, the pumping capacity from the outer circumference side to the inner circumference side is set to be slightly larger than that from the inner circumference side to the outer circumference side so that the pumping force to the inner circumference side remains, and the pressure of the lubricating fluid on the inner circumference side is set. Is rapidly increased at the start of rotation to reduce sliding friction between the shaft 11 and the sleeve 12. In the dynamic pressure groove shown in the figure, the groove length (20, 27) on the inner peripheral side is shown largely, but the pumping ability is determined by the degree of reduction of the circumferential length of the groove and the radial length of the groove. Therefore, it does not contradict the above description.

【0023】潤滑流体のテーパーシール部はスリーブ1
2の外周に配置したのでモーター全体の薄型化に効果が
あり,テーパーシール部の軸方向のスペースは十分に取
れるのでテーパー角を10度以下の小さな角度として強
固な潤滑流体のシール構造を実現できる。また潤滑流体
の境界面17をほぼ垂直に近いスリーブ12外周壁と環
状障壁23との間に配置したので高速回転に於いても遠
心力で潤滑流体が漏れる懸念は少ない。
The taper seal portion of the lubricating fluid is the sleeve 1
Since it is placed on the outer circumference of 2, it is effective in reducing the thickness of the whole motor, and the axial space of the taper seal part can be sufficiently secured, so that the taper angle can be made a small angle of 10 degrees or less to realize a strong lubricating fluid seal structure. . Further, since the boundary surface 17 of the lubricating fluid is disposed between the outer peripheral wall of the sleeve 12 which is almost vertical and the annular barrier 23, there is little concern that the lubricating fluid leaks due to centrifugal force even during high speed rotation.

【0024】軸11表面の動圧溝20,21とスリーブ
12表面の動圧溝27,28とは周方向角度長が異なる
ことを特徴とする。本実施例ではスリーブ12表面の動
圧溝27,28の周方向角度長は軸11表面の動圧溝2
0,21の2倍以上に設定してある。番号30の矢印は
軸11の回転方向を示す。
The dynamic pressure grooves 20, 21 on the surface of the shaft 11 and the dynamic pressure grooves 27, 28 on the surface of the sleeve 12 are characterized by different angular lengths in the circumferential direction. In this embodiment, the angular length of the dynamic pressure grooves 27, 28 on the surface of the sleeve 12 in the circumferential direction is determined by the dynamic pressure groove 2 on the surface of the shaft 11.
It is set to more than twice as large as 0,21. The arrow number 30 indicates the direction of rotation of the shaft 11.

【0025】動圧溝は回転時に潤滑流体をポンピングし
て圧力を高め,圧力を高める能力は軸受間隙にほぼ反比
例して姿勢復元力を発生させる。動圧溝は周方向に分布
するので偏芯して軸受間隙が局部的に小となってもその
影響が周方向での圧力分布差として反映されるまでには
遅れが生じ,その遅れ量は動圧溝の周方向の角度長に比
例する。被制御量の変化から制御までに遅れが有る制御
系はある種の共振現象を起こすことは知られており,流
体動圧軸受の場合は歳差運動,オイルホイップ等の不安
定現象を引き起こす。
The dynamic pressure groove pumps the lubricating fluid at the time of rotation to increase the pressure, and the ability to increase the pressure generates a posture restoring force almost in inverse proportion to the bearing gap. Since the dynamic pressure grooves are distributed in the circumferential direction, even if the bearing gap becomes locally small due to eccentricity, there is a delay until the effect is reflected as the pressure distribution difference in the circumferential direction. It is proportional to the circumferential angular length of the dynamic pressure groove. It is known that a control system in which there is a delay from the change of the controlled variable to the control causes some kind of resonance phenomenon, and in the case of a fluid dynamic bearing, it causes instability phenomena such as precession and oil whip.

【0026】したがって,この種の不安定現象を軽減さ
せるには上記遅れ量を適当に分散させることであり,例
えば動圧溝21の周方向の長さを分散させて構成する。
しかし,一周当たりに数個しかない動圧溝の角度長を分
散させると姿勢復元力の不均等その他のデメリットも顕
在化する。本発明では軸11表面,およびスリーブ12
表面にそれぞれ周方向角度長の異なる動圧溝を形成し,
高められた圧力による姿勢復元力の周方向への均一性
と,異なる周方向角度長の動圧溝の共存とを実現して解
決した。動圧溝の加工は一般には容易ではなく,軸受部
の両面に構成することはコストアップの要因となる。本
実施例では半球状軸11,半球状スリーブ12は何れも
型成形が可能であるのでコストアップ要因とはならず歳
差運動の起こりにくい流体動圧軸受モータを実現でき
る。
Therefore, in order to reduce this kind of instability phenomenon, it is necessary to appropriately disperse the delay amount, and for example, the dynamic pressure groove 21 is constituted by dispersing the length in the circumferential direction.
However, if the angular lengths of the dynamic pressure grooves, which are only a few per revolution, are dispersed, uneven posture restoring force and other disadvantages become apparent. In the present invention, the surface of the shaft 11 and the sleeve 12
Dynamic pressure grooves with different circumferential angular lengths are formed on the surface,
The problem was solved by realizing the uniformity of the posture restoring force due to the increased pressure in the circumferential direction and the coexistence of dynamic pressure grooves with different circumferential angular lengths. Machining the dynamic pressure groove is generally not easy, and configuring it on both sides of the bearing part increases the cost. In the present embodiment, since the hemispherical shaft 11 and the hemispherical sleeve 12 can be molded, it does not cause a cost increase and a fluid dynamic bearing motor in which precession hardly occurs can be realized.

【0027】環状障壁23とスリーブ12の外周壁との
間隙は軸方向に徐々に大として潤滑流体を表面張力によ
ってシールするテーパーシール部を形成している。環状
障壁23の端部にはリング状部材24が固定され,リン
グ状部材24の内周部はスリーブ12外周壁面に設けら
れた環状凹部26内にあり,回転部の軸方向への移動を
制限する。リング状部材24は弾性を利用しあるいはリ
ングの一部を切り欠き,組立時に予め環状凹部26に回
転自在に嵌めておいて,組み立て後に環状障壁23と対
向する部材に設けられたアクセス孔25を介してリング
状部材24を環状障壁23端部にスポット溶接,接着等
により固定する。アクセス孔25は周方向に3個有り,
リング状部材24は3点で周方向に均一に固定する。
The gap between the annular barrier 23 and the outer peripheral wall of the sleeve 12 is gradually increased in the axial direction to form a taper seal portion for sealing the lubricating fluid by surface tension. A ring-shaped member 24 is fixed to an end portion of the annular barrier 23, and an inner peripheral portion of the ring-shaped member 24 is located in an annular recess 26 provided on an outer peripheral wall surface of the sleeve 12 to limit the axial movement of the rotating portion. To do. The ring-shaped member 24 uses elasticity or is formed by notching a part of the ring and preliminarily rotatably fitted in the annular recess 26 at the time of assembly, and after the assembly, the access hole 25 provided in the member facing the annular barrier 23 is provided. The ring-shaped member 24 is fixed to the end of the annular barrier 23 by spot welding, bonding, or the like. There are three access holes 25 in the circumferential direction,
The ring-shaped member 24 is fixed uniformly at three points in the circumferential direction.

【0028】図4では,回転時に発生する潤滑流体内の
圧力分布,圧力分布の結果として軸11,スリーブ12
間に現れる負荷容量等を示して回転姿勢の復元力が得ら
れる事を説明する。図4(a)には上記の動圧溝構造に
於ける回転時の圧力分布等も示す。番号73は軸方向の
座標,番号74は圧力値をそれぞれ示し,番号75,7
6,77,78,79はそれぞれの軸方向位置で周方向
の平均的な圧力を示す。大気圧を差し引いてあるので外
周部での圧力値75はゼロを示し,動圧溝21により圧
力76は増加し,中央部では番号77で示すようほぼ一
定となる。動圧溝20の位置に相当する部分で圧力は番
号78に示すよう減少し,頂部14では番号79に示す
よう大気圧よりやや大の値となる。
In FIG. 4, the pressure distribution in the lubricating fluid generated during rotation, the shaft 11 and the sleeve 12 as a result of the pressure distribution.
It will be explained that the restoring force of the rotational posture can be obtained by showing the load capacity appearing in between. FIG. 4 (a) also shows the pressure distribution during rotation in the above dynamic pressure groove structure. The number 73 indicates the coordinate in the axial direction, the number 74 indicates the pressure value, and the numbers 75 and 7
Reference numerals 6, 77, 78 and 79 represent average pressures in the circumferential direction at the respective axial positions. Since the atmospheric pressure is subtracted, the pressure value 75 at the outer peripheral portion shows zero, the pressure 76 increases due to the dynamic pressure groove 21, and becomes substantially constant at the central portion as indicated by reference numeral 77. The pressure decreases at a portion corresponding to the position of the dynamic pressure groove 20 as indicated by reference numeral 78, and becomes slightly higher than the atmospheric pressure at the top 14 as indicated by reference numeral 79.

【0029】基本的にはこの中央部での高い圧力77に
より回転部姿勢を保持するのであるが,詳細には更に図
4(b)により説明する。図4(a)に示す圧力分布7
5,76,77,78,79は周方向の平均値であり,
軸11とスリーブ12とが偏芯したり,傾いた場合には
局部的に周方向の圧力分布も異なる。図4(b)では回
転するスリーブ12が左に傾いて回転している状況を示
す。グルーブ20,21が発生させる負荷容量は周方向
に均一では無くなり,右側で負荷容量68,左側で67
として代表させて考えると軸受間隙の小さい側の67が
大となる。これら負荷容量67,68は軸受面に垂直に
働き,軸端の磁気吸引力83と姿勢復元のモーメント力
を発生させる。この説明では簡単のために左右のモーメ
ント力のみ取り上げたが,実際には円周方向及び軸方向
の各点に於けるモーメント力が釣り合う事になる。
Basically, the posture of the rotating portion is maintained by the high pressure 77 at the central portion, which will be described in detail with reference to FIG. 4 (b). Pressure distribution 7 shown in FIG.
5,76,77,78,79 are the average values in the circumferential direction,
When the shaft 11 and the sleeve 12 are eccentric or tilted, the pressure distribution in the circumferential direction also differs locally. FIG. 4B shows a situation where the rotating sleeve 12 is tilted to the left and is rotating. The load capacities generated by the grooves 20 and 21 are not uniform in the circumferential direction, and the load capacities 68 on the right side and 67 on the left side.
As a representative example, 67 on the side where the bearing gap is small becomes large. These load capacities 67 and 68 work perpendicularly to the bearing surface and generate a magnetic attraction force 83 at the shaft end and a moment force for restoring the posture. In this description, only the left and right moment forces are taken up for simplification, but in reality, the moment forces at each point in the circumferential direction and the axial direction are balanced.

【0030】潤滑流体として用いるオイルの粘度は一般
に高温では小で負荷容量は減少する。従来の設計では使
用温度範囲の上限で余裕を持って負荷容量を確保できる
よう設定するが,その結果として低温では過剰負荷容
量,過大電流に悩まされている。本発明に依れば,軸1
1とスリーブ12間の間隙は負荷容量67,68の軸方
向分力と磁気吸引力とが平衡する位置に定まるので負荷
容量は温度に拘わらずほぼ一定に保たれる。すなわち温
度補償が自動的になされ,設計での負荷容量設定値は全
温度範囲に渡って一定の値と出来,低温での過剰負荷容
量,過大電流等を回避できて低電流化設計が可能とな
る。
The viscosity of oil used as a lubricating fluid is generally small at high temperatures, and the load capacity decreases. In the conventional design, the upper limit of the operating temperature range is set so that the load capacity can be secured with a margin, but as a result, at low temperatures, excessive load capacity and excessive current are plagued. According to the invention, axis 1
Since the gap between 1 and the sleeve 12 is determined at a position where the axial component force of the load capacities 67 and 68 and the magnetic attraction force are in equilibrium, the load capacity is kept substantially constant regardless of temperature. In other words, temperature compensation is performed automatically, and the load capacitance set value in the design can be kept constant over the entire temperature range. It is possible to avoid excessive load capacitance, excessive current, etc. at low temperatures, enabling low current design. Become.

【0031】さらに流体動圧軸受での軸損は,主として
動圧溝のある狭間隙部分での潤滑流体と軸11,スリー
ブ12等の面との摩擦力に起因するので本発明のように
動圧溝が一組という最小構成で有ればこの点からも軸損
は小さく,低電流化が達成できる。
Further, since the axial loss in the fluid dynamic pressure bearing is mainly caused by the frictional force between the lubricating fluid and the surface of the shaft 11, the sleeve 12, etc. in the narrow gap portion having the dynamic pressure groove, the axial loss in the dynamic fluid dynamic bearing is the same as that of the present invention. From this point as well, if the pressure groove has a minimum configuration of one set, the axial loss is small and a low current can be achieved.

【0032】図5ではさらに軸端の磁気吸引力が回転姿
勢の復元に有効であることを説明する。図5(a)は軸
端に磁気吸引力を有する実施例,図5(b)はローター
マグネットを磁気吸引力発生手段とする例を示す。これ
らの図では軸11の上部が左に傾いた例を示すので図4
(b)で説明したように動圧発生による負荷容量を左右
の二点に代表させて番号67,68として示す。軸受間
間隙の小となる負荷容量67は負荷容量68より大で図
4(a)で説明したように回転姿勢の復元モーメント力
が発生する。図5(a)ではさらに軸端の磁気吸引力8
3が負荷容量67,68と回転姿勢の復元モーメント力
を発生させる事が容易に判る。一方のローターマグネッ
ト44を磁気吸引力発生手段とする図5(b)の例では
左右の磁気吸引力84,85とがほぼバランスするが,
ローターマグネット44と磁性体片53との間の磁気吸
引力84,85は間隙に反比例するので間隙の小になっ
た磁気吸引力84は磁気吸引力85より大となってむし
ろ回転姿勢復元の阻害要因とさえなる。このように軸端
に磁気吸引力を有する構造は更に回転姿勢の安定化に寄
与する。
FIG. 5 further illustrates that the magnetic attraction force at the shaft end is effective for restoring the rotational posture. FIG. 5A shows an embodiment having a magnetic attraction force at the shaft end, and FIG. 5B shows an example in which a rotor magnet is used as the magnetic attraction force generating means. In these drawings, an example in which the upper part of the shaft 11 is tilted to the left is shown in FIG.
As described in (b), the load capacities due to the generation of dynamic pressure are represented by the two left and right points and are shown by the numbers 67 and 68. The load capacity 67 with a small bearing gap is larger than the load capacity 68, and as described with reference to FIG. In FIG. 5A, the magnetic attraction force 8 at the shaft end is further added.
It is easy to see that 3 generates the load capacities 67 and 68 and the restoring moment force of the rotational posture. In the example of FIG. 5B in which one of the rotor magnets 44 is used as the magnetic attraction force generating means, the left and right magnetic attraction forces 84 and 85 are almost balanced,
Since the magnetic attraction forces 84 and 85 between the rotor magnet 44 and the magnetic piece 53 are inversely proportional to the gap, the magnetic attraction force 84 with a smaller gap becomes larger than the magnetic attraction force 85 and rather hinders the restoration of the rotational posture. Even a factor. In this way, the structure having the magnetic attraction force at the shaft end further contributes to the stabilization of the rotational posture.

【0033】図6及び図7は静止時に軸とスリーブとが
軸受面で完全には接しないようにした図1実施例の詳細
構造を示す。図6において,軸11内には静止時にスリ
ーブ12頂部と接触する可動の永久磁石35を有し,ス
リーブ12の頂部には板バネ33を有する。点線で示し
た軸11aは静止時の位置を,実線の軸11は回転時の
位置をそれぞれ示すが,回転時に於ける永久磁石35端
と板バネ33との間隙をd,スリーブ12,軸11間の
軸受面での軸方向浮上量をfとしてfがdよりも常に等
しいか大となるよう永久磁石35の突出量を定める。そ
の目安として(f−d)はスリーブ12の浮上量fが温
度によって変化するので例えば浮上量fが10−20ミ
クロンメートルの範囲で有れば5ミクロンメートル程度
に設定する。このようにして回転時に永久磁石35端は
少なくとも5ミクロンメートル程度,軸受面は軸方向に
10−20ミクロンメートル浮上し,回転姿勢に影響を
与えない。
6 and 7 show the detailed structure of the embodiment of FIG. 1 in which the shaft and the sleeve are not completely in contact with each other at the bearing surface when stationary. In FIG. 6, a movable permanent magnet 35 that contacts the top of the sleeve 12 when stationary is provided in the shaft 11, and a leaf spring 33 is provided at the top of the sleeve 12. The shaft 11a shown by the dotted line shows the position at rest, and the solid line shaft 11 shows the position at the time of rotation. The gap between the end of the permanent magnet 35 and the leaf spring 33 at the time of rotation is d, the sleeve 12, and the shaft 11 respectively. The amount of protrusion of the permanent magnet 35 is determined so that f is always equal to or larger than d, where f is the axial flying height on the bearing surface between them. As a standard, (f−d) is set to about 5 μm if the flying height f is in the range of 10−20 μm, because the flying height f of the sleeve 12 changes with temperature. In this way, at the time of rotation, the end of the permanent magnet 35 is floated by at least about 5 μm and the bearing surface is floated by 10-20 μm in the axial direction, which does not affect the rotational posture.

【0034】一般に流体動圧軸受では起動停止時に軸受
部が摺動して摩耗し,寿命あるいは信頼性を損なう可能
性が高いが,本実施例では永久磁石35端と板バネ33
が摺動するのみであるので永久磁石35先端部及び対向
する板バネ33にはセラミック材貼付,メッキ処理等摩
耗対策を施せば長期に渡って性能を安定化できる。
Generally, in the fluid dynamic bearing, there is a high possibility that the bearing portion will slide and wear at the time of starting and stopping, and the life or reliability will be impaired. In this embodiment, however, the end of the permanent magnet 35 and the leaf spring 33 are reduced.
However, if the end of the permanent magnet 35 and the opposing leaf spring 33 are provided with a ceramic material, a plating treatment, or other wear countermeasures, the performance can be stabilized for a long period of time.

【0035】図7は図6に於ける永久磁石35の位置調
整を説明するための図である。軸11内の円筒32には
隙間嵌めにより磁気吸引力よりは大の保持力で永久磁石
35を移動可能に保持する。組立時には軸11に予め永
久磁石35を十分に突出させてスリーブ12を組み合わ
せ,磁気吸引力より大の押し圧力をスリーブ12,軸1
1間に加えてスリーブ12の頂部に当接させ,スリーブ
12頂部に配置した板バネ33を弾性変形させた状態で
押し圧力を取り去る。点線11bは押し圧力を加えた状
態での軸を示し,実線で示す軸11は押し圧力を取り去
った後に板バネ33が元の形状に復帰し,軸11及びス
リーブ12の軸受面に間隙が設けられた状態を示す。板
バネ33の弾性変形を利用する替わりにスリーブ12の
頂部の弾性変形を利用しても同様の効果を得ることが出
来る。
FIG. 7 is a diagram for explaining the position adjustment of the permanent magnet 35 in FIG. The permanent magnet 35 is movably held by a holding force larger than the magnetic attraction force in the cylinder 32 in the shaft 11 by a clearance fit. At the time of assembly, the sleeve 12 is assembled by preliminarily projecting the permanent magnet 35 onto the shaft 11, and a pressing force larger than the magnetic attraction force is applied to the sleeve 12 and the shaft 1.
In addition to the interval 1, the top of the sleeve 12 is brought into contact with the leaf spring 33, and the pressing force is removed while the leaf spring 33 arranged on the top of the sleeve 12 is elastically deformed. The dotted line 11b indicates the shaft under the pressing force, and the shaft 11 shown by the solid line returns to the original shape of the leaf spring 33 after removing the pressing pressure, and a gap is provided on the bearing surface of the shaft 11 and the sleeve 12. The state is shown. The same effect can be obtained by utilizing the elastic deformation of the top portion of the sleeve 12 instead of utilizing the elastic deformation of the leaf spring 33.

【0036】永久磁石35は位置調整をした後,接着或
いは溶接等で固定すると過大な衝撃力にも対抗できる。
円筒32は貫通孔として永久磁石を隙間バメ或いはねじ
留めで保持し,組立時には十分に突出させてスリーブ1
2の頂部14と当接させた後に貫通孔を介して(f−
d)相当量を突出させ位置調整及び固定を行う事も出来
る。図6の実施例で示した永久磁石35を当初から軸1
1に固定とすることも出来るが,その場合には永久磁石
35の突出量と軸11及びスリーブ12の径寸法とを管
理しなければならない。流体動圧軸受モータとしてのN
RRO等の性能要求が比較的緩い場合は寸法管理も容易
であるが,性能要求が厳しい場合には困難で,本実施例
のように永久磁石の位置調整を行う構造がトータルのコ
ストとしては低い。
If the permanent magnet 35 is adjusted in position and then fixed by adhesion or welding, it is possible to resist an excessive impact force.
The cylinder 32 serves as a through hole for holding a permanent magnet with a clearance fit or screwing, and the sleeve 1 is sufficiently protruded during assembly.
2 is brought into contact with the top 14 and then through the through hole (f-
d) It is possible to adjust and fix the position by projecting a considerable amount. The permanent magnet 35 shown in the embodiment of FIG.
Although it may be fixed to 1, the protrusion amount of the permanent magnet 35 and the diameter dimensions of the shaft 11 and the sleeve 12 must be controlled in that case. N as a fluid dynamic bearing motor
Dimensional management is easy when performance requirements such as RRO are relatively loose, but difficult when performance requirements are strict, and the structure for adjusting the position of the permanent magnet as in this embodiment is low in total cost. .

【0037】図8はリング状部材の軸方向位置を調整で
きる実施例を示し,図8(a)は軸受部分の断面図を,
図8(b)はリング状部材周辺の断面部89を拡大して
示す。同実施例において,環状障壁23の端部は突部8
6を,リング状部材24には契合する貫通孔を有するも
のとする。リング状部材24は予めスリーブ12外周部
の環状凹部26に嵌めておいて軸11と組み合わせ,ア
クセス孔25を介して前記突部86とリング状部材24
の貫通孔を契合させると共にジグ88によりリング状部
材24の内周部を前記環状凹部26の端部87に突き当
て,リング状部材24が弾性変形をした状態で前記突部
86に嵌め合い固定させる。
FIG. 8 shows an embodiment in which the axial position of the ring-shaped member can be adjusted, and FIG. 8 (a) is a sectional view of the bearing portion.
FIG. 8B is an enlarged view of the cross-section portion 89 around the ring-shaped member. In the embodiment, the end portion of the annular barrier 23 has the protrusion 8
6, the ring-shaped member 24 has a through hole that engages with it. The ring-shaped member 24 is fitted in the annular recess 26 on the outer peripheral portion of the sleeve 12 in advance and combined with the shaft 11, and the projection 86 and the ring-shaped member 24 are inserted through the access hole 25.
And the inner peripheral portion of the ring-shaped member 24 is abutted against the end portion 87 of the annular recess 26 by the jig 88, and the ring-shaped member 24 is elastically deformed and fitted and fixed to the protrusion 86. Let

【0038】前記組み立てプロセスでリング状部材24
の軸方向弾性変形量は20ミクロンメートル程度とし,
リング状部材24と前記突部86との嵌め合いの強度を
十分に大とすれば衝撃が加えられた時でもハブ12を含
む可動部の軸方向移動量を20ミクロンメートル程度の
微少量に制限できる。HDD等の例では磁気ディスクの
軸方向移動量を微少量に制限したいとする要求が強い
が,本実施例のようにリング状部材24の弾性変形を利
用する事により,各部材公差を厳しく設定することも無
く要求を満たすことができる。リング状部材24と前記
突部86とは組み立て後にさらに接着,溶接等の手段に
より接合強度を向上させて耐衝撃性を高めることもでき
る。
In the assembly process, the ring-shaped member 24
The amount of elastic deformation in the axial direction is about 20 microns,
If the strength of the fitting between the ring-shaped member 24 and the protrusion 86 is sufficiently large, the amount of axial movement of the movable portion including the hub 12 is limited to a minute amount of about 20 μm even when an impact is applied. it can. In the example of HDD and the like, there is a strong demand to limit the amount of axial movement of the magnetic disk to a very small amount, but by using the elastic deformation of the ring-shaped member 24 as in this embodiment, the tolerance of each member is set strictly. The demand can be satisfied without doing. After the ring-shaped member 24 and the projection 86 are assembled, the joint strength can be further improved by means such as adhesion and welding to improve the impact resistance.

【0039】本発明の第一の実施例に於いて,潤滑流体
の接触する部分には部材間の接合部を排除する構造とし
た。従来の構造においては部材接合部をカシメ,接着,
或いはレーザー熔着等によりシールしているが,量産時
にしばしば接合不良で潤滑流体の漏れを生じて致命的な
障害を起こしていた。本発明による流体動圧軸受は実施
例に示すように潤滑流体に接する接合部を排除でき,オ
イル漏れ懸念の無い流体動圧軸受モータを実現できる。
In the first embodiment of the present invention, the structure in which the joint between the members is eliminated at the portion in contact with the lubricating fluid is adopted. In the conventional structure, caulking, bonding,
Alternatively, although sealing is performed by laser welding or the like, a fatal failure was caused due to leakage of the lubricating fluid due to poor jointing during mass production. In the fluid dynamic bearing according to the present invention, as shown in the embodiment, the joint portion in contact with the lubricating fluid can be eliminated, and a fluid dynamic bearing motor without fear of oil leakage can be realized.

【0040】また,潤滑流体中に導電性の磁性体微粉を
混入させると,磁界が集中する軸端とスリーブ間を架橋
導通せしめて回転部と固定部間の導通を容易に実現させ
る事が出来る。
When conductive fine magnetic powder is mixed in the lubricating fluid, the shaft end where the magnetic field is concentrated and the sleeve can be bridged to each other to facilitate the conduction between the rotating portion and the fixed portion. .

【0041】図9は,本発明の第二の実施例である気体
動圧軸受モータの断面構造を示す。軸11は半球形状と
し,軸11に対向して配置されるスリーブ12は半球状
凹面とする。軸11はその中に永久磁石35を有し,磁
性体で構成されたスリーブ12頂部との間に磁気吸引力
を発生させる。軸11,スリーブ12の何れかの半球状
軸受面13には,動圧溝を有してベアリング部を形成す
る。この動圧溝は空気をその中心に向かってポンピング
し空気の圧力を高める。その結果生じる負荷容量は軸と
スリーブ間間隙に反比例するので負荷容量の軸方向分力
と前記磁気吸引力とが平衡するよう前記間隙は決定さ
れ,負荷容量の径方向分力で軸11の調芯が行われる。
したがって,負荷容量の大きさは磁気吸引力によって決
まるので回転時に回転部を支持するに十分な負荷容量を
発生出来るよう磁気吸引力を設定する。
FIG. 9 shows a sectional structure of a gas dynamic bearing motor according to a second embodiment of the present invention. The shaft 11 has a hemispherical shape, and the sleeve 12 arranged so as to face the shaft 11 has a hemispherical concave surface. The shaft 11 has a permanent magnet 35 therein and generates a magnetic attractive force between the shaft 11 and the top of the sleeve 12 made of a magnetic material. A bearing portion is formed on the hemispherical bearing surface 13 of either the shaft 11 or the sleeve 12 with a dynamic pressure groove. The dynamic pressure groove pumps air toward its center to increase the pressure of the air. Since the resulting load capacity is inversely proportional to the clearance between the shaft and the sleeve, the clearance is determined so that the axial component force of the load capacity and the magnetic attraction force are balanced, and the radial component force of the load capacity adjusts the shaft 11. The wick is done.
Therefore, since the magnitude of the load capacity is determined by the magnetic attraction force, the magnetic attraction force is set so that sufficient load capacity can be generated to support the rotating part during rotation.

【0042】番号34は通気孔を示し,永久磁石35側
面の間隙を介して頂部14に加圧された空気を軸受外周
部に漏洩させる。通気孔34の径を小とし,あるいは繊
維状材質,多孔性材質等を充填して流路抵抗を調整し,
頂部14の圧力を適度に残させる事で起動時の浮上を速
やかにさせると共に衝撃振動が加わった時には加圧空気
を逃がしてダンピングの程度を制御する。
Reference numeral 34 indicates a vent hole, which allows the air pressurized on the top portion 14 to leak to the outer peripheral portion of the bearing through the gap on the side surface of the permanent magnet 35. Adjust the flow path resistance by reducing the diameter of the vent hole 34 or filling it with fibrous material, porous material, etc.
By leaving the pressure of the top portion 14 to an appropriate level, the levitation at the time of startup is swiftly performed, and when impact vibration is applied, the pressurized air is released to control the degree of damping.

【0043】回転部はスリーブ12,ローターマグネッ
ト46,磁気ディスク91等とより,固定部は軸11,
ベース43,ステータコア49,コイル52等とより構
成する。番号90は磁性体で磁気シールドを構成する。
The rotating portion is composed of the sleeve 12, the rotor magnet 46, the magnetic disk 91, etc., and the stationary portion is the shaft 11,
It is composed of a base 43, a stator core 49, a coil 52 and the like. Reference numeral 90 is a magnetic material and constitutes a magnetic shield.

【0044】図10は図9に示す第二の実施例に於ける
軸受部分の詳細構造を示し,図10(a)はスリーブ1
2の平面図を,図10(b)は軸11及びスリーブ12
の断面構造をそれぞれ示す。図10(a)に示すように
スリーブ12の軸受面にはヘリングボーン形状の動圧溝
18を一組,軸11表面には対向して動圧溝19が一組
設けられている。動圧溝18,19は数ミクロンメート
ル程度の凹みであり,回転時に内周側及び外周側から空
気を動圧溝18,19の中心,つまり動圧溝18,19
の屈曲箇所に集めて空気の圧力を高め,スリーブ12を
軸11に対して浮上,支承する。本実施例では外周側か
ら内周側へのポンピング能力を内周側から外周側へのそ
れよりやや大として内周側へのポンピング力が残るよう
設定し,内周側での空気の圧力を回転起動時に速やかに
大とさせて軸11,スリーブ12の摺動摩擦を軽減させ
る。また,動圧溝19の周方向角度長は動圧溝18の約
半分としている。回転部の軸方向移動量を規制するリン
グ状部材24はスリーブ12外周端に設けられている。
その他の構造,機能等は同じであるので同様の部材には
第一の実施例と同一の番号を付し,説明は省略する。
FIG. 10 shows the detailed structure of the bearing portion in the second embodiment shown in FIG. 9, and FIG. 10 (a) shows the sleeve 1
2 is a plan view, and FIG. 10 (b) is a shaft 11 and a sleeve 12
The cross-sectional structures of are shown respectively. As shown in FIG. 10A, the bearing surface of the sleeve 12 is provided with a set of herringbone-shaped dynamic pressure grooves 18, and the surface of the shaft 11 is provided with a set of dynamic pressure grooves 19 facing each other. The dynamic pressure grooves 18 and 19 are recesses of about several micrometers, and air is introduced from the inner peripheral side and the outer peripheral side at the center of the dynamic pressure grooves 18 and 19, that is, the dynamic pressure grooves 18 and 19 during rotation.
The air pressure is increased by gathering it at the bent portions of the sleeve 12 to levitate and support the sleeve 12 with respect to the shaft 11. In this embodiment, the pumping ability from the outer peripheral side to the inner peripheral side is set to be slightly larger than that from the inner peripheral side to the outer peripheral side so that the pumping force to the inner peripheral side remains, and the air pressure on the inner peripheral side is set. At the time of starting the rotation, the sliding friction of the shaft 11 and the sleeve 12 is reduced quickly to reduce the sliding friction. The circumferential angular length of the dynamic pressure groove 19 is about half that of the dynamic pressure groove 18. A ring-shaped member 24 that restricts the axial movement amount of the rotating portion is provided on the outer peripheral end of the sleeve 12.
Since other structures and functions are the same, the same members as those in the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.

【0045】図11及び図12は静止時に軸とスリーブ
とが軸受面で完全には接しないようにした第二の実施例
の詳細構造を示す。図11において,軸11内には静止
時にスリーブ12頂部と接触する可動の永久磁石35を
有する。点線で示したスリーブ12aは静止時の位置
を,実線で示したスリーブ12は回転時の位置をそれぞ
れ示すが,回転時に於ける永久磁石35端とスリーブ1
2の頂部との間隙をd,スリーブ12,軸11間の軸受
面での軸方向浮上量をfとしてfがdよりも常に等しい
か大となるよう永久磁石35の突出量を定める。その目
安として(f−d)はスリーブ12の浮上量fが温度に
よって変化するので例えば浮上量fが10−20ミクロ
ンメートルの範囲で有れば5ミクロンメートル程度に設
定する。このようにして回転時に永久磁石35端は少な
くとも5ミクロンメートル程度,軸受面は軸方向に10
−20ミクロンメートル浮上し,回転姿勢に影響を与え
ない。
FIGS. 11 and 12 show the detailed structure of the second embodiment in which the shaft and the sleeve are not completely in contact with each other at the bearing surface when stationary. In FIG. 11, the shaft 11 has a movable permanent magnet 35 that contacts the top of the sleeve 12 when stationary. The sleeve 12a shown by the dotted line shows the position at rest and the sleeve 12 shown by the solid line shows the position at the time of rotation. The end of the permanent magnet 35 and the sleeve 1 at the time of rotation are shown.
The protrusion amount of the permanent magnet 35 is determined so that f is always equal to or larger than d, where d is the gap from the top of 2 and f is the axial levitation amount on the bearing surface between the sleeve 12 and the shaft 11. As a standard, (f−d) is set to about 5 μm if the flying height f is in the range of 10−20 μm, because the flying height f of the sleeve 12 changes with temperature. In this way, at the time of rotation, the end of the permanent magnet 35 is at least about 5 μm, and the bearing surface is 10
It floats by -20 microns and does not affect the rotation posture.

【0046】図12は図11に於ける永久磁石35の位
置調整を説明するための図である。軸11内の円筒32
には隙間嵌めにより磁気吸引力よりは大の保持力で永久
磁石35を移動可能に保持する。組立時には軸11に予
め永久磁石35を十分に突出させてスリーブ12を組み
合わせ,磁気吸引力より大の押し圧力をスリーブ12,
軸11間に加えてスリーブ12の頂部に当接させ,スリ
ーブ12の頂部を弾性変形させた状態で押し圧力を取り
去る。点線12bは押し圧力を加えた状態でのスリーブ
を示し,実線で示すスリーブ12は押し圧力を取り去っ
た後にスリーブ12の頂部が元の形状に復帰し,軸11
及びスリーブ12の軸受面に間隙が設けられた状態を示
す。スリーブ12の頂部の弾性変形を利用する替わりに
板バネの弾性変形を利用しても同様の効果を得ることが
出来る。
FIG. 12 is a diagram for explaining the position adjustment of the permanent magnet 35 in FIG. Cylinder 32 in shaft 11
The permanent magnet 35 is movably held by a holding force larger than the magnetic attraction force by the clearance fitting. At the time of assembly, the permanent magnet 35 is sufficiently protruded from the shaft 11 in advance to assemble the sleeve 12, and a pressing force larger than the magnetic attraction force is applied to the sleeve 12,
In addition to the space between the shafts 11, the shaft 12 is brought into contact with the top of the sleeve 12, and the pressing pressure is removed while the top of the sleeve 12 is elastically deformed. The dotted line 12b shows the sleeve under the pressing force, and the solid line shows the sleeve 12 after the pressing pressure is removed, and the top of the sleeve 12 returns to its original shape.
And a state in which a gap is provided on the bearing surface of the sleeve 12. The same effect can be obtained by utilizing the elastic deformation of the leaf spring instead of utilizing the elastic deformation of the top of the sleeve 12.

【0047】図13はリング状部材をスリーブ端に設け
て可動部の軸方向位置を規制する実施例を示し,図13
(a)はモータの右半分の断面図を,図13(b)はリ
ング状部材周辺の断面部89を拡大して示す。同実施例
において,スリーブ12の端部は突部86aを,リング
状部材24には契合する貫通孔を有するものとする。リ
ング状部材24は予め軸11外周部の環状凹部26に嵌
めておいてスリーブ12と組み合わせ,アクセス孔25
を介して前記突部86aとリング状部材24の貫通孔を
契合させると共にジグ88によりリング状部材24の内
周部を前記環状凹部26の端部87に突き当て,リング
状部材24が弾性変形をした状態で前記突部86aに嵌
め合い固定させる。
FIG. 13 shows an embodiment in which a ring-shaped member is provided at the end of the sleeve to regulate the axial position of the movable part.
FIG. 13A is a sectional view of the right half of the motor, and FIG. 13B is an enlarged sectional view 89 around the ring-shaped member. In this embodiment, the end of the sleeve 12 has a protrusion 86a and the ring-shaped member 24 has a through hole that engages with the protrusion. The ring-shaped member 24 is fitted in the annular recess 26 on the outer peripheral portion of the shaft 11 in advance and combined with the sleeve 12, and the access hole 25 is formed.
The protrusion 86a and the through-hole of the ring-shaped member 24 are engaged with each other via the jig, and the inner peripheral portion of the ring-shaped member 24 is pressed against the end 87 of the annular recess 26 by the jig 88, and the ring-shaped member 24 is elastically deformed. The protrusion 86a is fitted and fixed in this state.

【0048】前記組み立てプロセスでリング状部材24
の軸方向弾性変形量は20ミクロンメートル程度とし,
リング状部材24と前記突部86aとの嵌め合いの強度
を十分に大とすれば衝撃が加えられた時でもハブ12を
含む可動部の軸方向移動量を20ミクロンメートル程度
の微少量に制限できる。HDD等の例では磁気ディスク
の軸方向移動量を微少量に制限したいとする要求が強い
が,本実施例のようにリング状部材24の弾性変形を利
用する事により,各部材公差を厳しく設定することも無
く要求を満たすことができる。リング状部材24と前記
突部86aとは組み立て後にさらに接着,溶接等の手段
により接合強度を向上させて耐衝撃性を高めることもで
きる。
In the assembly process, the ring-shaped member 24
The amount of elastic deformation in the axial direction is about 20 microns,
If the strength of the fitting between the ring-shaped member 24 and the protrusion 86a is sufficiently large, the amount of axial movement of the movable portion including the hub 12 is limited to a minute amount of about 20 μm even when an impact is applied. it can. In the example of HDD and the like, there is a strong demand to limit the amount of axial movement of the magnetic disk to a very small amount, but by using the elastic deformation of the ring-shaped member 24 as in this embodiment, the tolerance of each member is set strictly. The demand can be satisfied without doing. After the ring-shaped member 24 and the protrusion 86a are assembled, the joint strength can be further improved by means such as adhesion and welding to improve the impact resistance.

【0049】第一及び第二の実施例において,軸及びス
リーブ等軸受部の材料としては,ステンレススチール,
銅合金,セラミックスのように従来から流体及び気体動
圧軸受に用いている材料を使用できる。軸受面の一方の
表面にニッケル,チタン,DLC,二流化モリブデン等
の薄膜を形成する事は起動停止時に於ける摩耗を減じる
に有効で望ましい。
In the first and second embodiments, the shaft and sleeve bearings are made of stainless steel,
Materials conventionally used for fluid and gas dynamic pressure bearings such as copper alloys and ceramics can be used. Forming a thin film of nickel, titanium, DLC, molybdenum disulfide, or the like on one surface of the bearing surface is effective in reducing wear at the time of starting and stopping, and is desirable.

【0050】また,軸受部分の製造方法に関しては,実
施例で示すように本発明に関わる軸受部材は凸形状の軸
は当然として,凹面であるスリーブもその傾斜は上に拡
開する形状で型抜きが容易であり,プレス或いは射出成
形等の技術を用いて動圧溝も含めて同時成形できる。し
たがって,セラミックス,焼結合金等による型成形,炭
素繊維を含むPPS(ポリフェニレンサルファイド樹
脂)の様に耐摩耗性に優れた樹脂材料を用いての型成形
等が可能で低コストでの製造に適している。
As to the method of manufacturing the bearing portion, as shown in the embodiment, the bearing member according to the present invention is not limited to the convex shaft, but the sleeve having the concave surface has a shape in which the inclination is expanded upward. It is easy to remove, and it is possible to perform simultaneous molding, including dynamic pressure grooves, using techniques such as pressing or injection molding. Therefore, it is possible to perform molding using ceramics, sintered alloys, etc., and molding using a resin material with excellent abrasion resistance such as PPS (polyphenylene sulfide resin) containing carbon fiber, which is suitable for low-cost manufacturing. ing.

【0051】[0051]

【発明の効果】以上,実施例を用いて説明したように本
発明の流体及び気体動圧軸受モータに依れば,軸受部は
半球形状軸受面に動圧溝を有してその高められた流体或
いは気体の圧力による負荷容量と磁気吸引力とを平衡さ
せる簡素な構造であって,課題である回転姿勢の安定
化,型成形による量産低コスト化,流体及び気体動圧軸
受モータの薄型化,回転部支持の負荷容量の温度補償,
低電流化をも同時に実現して本発明の目的を十分に達成
することが出来る。特に小型の磁気ディスク装置,光デ
ィスク装置等の回転型記憶装置,CPUの冷却ファン等
に利用できる。
As described above with reference to the embodiments, according to the fluid and gas dynamic pressure bearing motor of the present invention, the bearing portion has the dynamic pressure groove on the hemispherical bearing surface and is enhanced. It has a simple structure that balances the load capacity due to the pressure of fluid or gas and the magnetic attraction force, and it has the problems of stabilizing the rotational posture, lowering the mass production cost by molding, and thinning the fluid and gas dynamic pressure bearing motor. , Temperature compensation of load capacity of rotating part support,
A low current can be realized at the same time, and the object of the present invention can be sufficiently achieved. In particular, it can be used for a small-sized magnetic disk device, a rotary storage device such as an optical disk device, a CPU cooling fan, and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の第一の実施例である流体動圧軸受モ
ータの断面図を示す。
FIG. 1 is a sectional view of a fluid dynamic bearing motor according to a first embodiment of the present invention.

【図2】 図1に示す実施例に於ける磁気吸引力発生手
段と磁束経路とを示す。
FIG. 2 shows a magnetic attraction force generating means and a magnetic flux path in the embodiment shown in FIG.

【図3】 軸受部の詳細を示し,(a)図は軸とスリー
ブの断面図を,(b)図はスリーブの平面図をそれぞれ
示す。
3A and 3B show details of the bearing portion. FIG. 3A is a sectional view of a shaft and a sleeve, and FIG. 3B is a plan view of the sleeve.

【図4】 (a)図は軸とスリーブの断面と圧力分布
を,(b)図はその偏芯時の負荷容量等を示す。
FIG. 4 (a) shows the cross section and pressure distribution of the shaft and sleeve, and FIG. 4 (b) shows the load capacity when the shaft is eccentric.

【図5】 軸端に磁気吸引力発生手段を有する実施例
((a)図)と,ローターマグネットを磁気吸引力発生
手段とする例((b)図)との姿勢復元力の比較をする
ための図を示す。
FIG. 5 compares the posture restoring force between an embodiment having a magnetic attraction force generating means at the shaft end (FIG. 5A) and an example having a rotor magnet as the magnetic attraction force generating means (FIG. 5B). The figure for is shown.

【図6】 静止時に軸とスリーブとの接触を規制する為
に永久磁石を可動として軸内に有する軸受部詳細断面を
示す。
FIG. 6 is a detailed cross-sectional view of a bearing portion in which a permanent magnet is movably provided in the shaft in order to regulate contact between the shaft and the sleeve when stationary.

【図7】 図6に於ける永久磁石の位置調整方法を説明
するための図を示す。
FIG. 7 is a diagram for explaining a method of adjusting the position of the permanent magnet in FIG.

【図8】 リング状部材の軸方向位置を調整できる実施
例を説明するための図で,(a)図は軸受部分の断面図
を,(b)図はリング状部材周辺の断面図を拡大して示
す。
8A and 8B are views for explaining an embodiment in which the axial position of the ring-shaped member can be adjusted. FIG. 8A is a sectional view of a bearing portion, and FIG. 8B is an enlarged sectional view of the periphery of the ring-shaped member. And show it.

【図9】 本発明の第二の実施例である気体動圧軸受モ
ータの断面図を示す。
FIG. 9 shows a sectional view of a gas dynamic bearing motor according to a second embodiment of the present invention.

【図10】 軸受部の詳細を示し,(a)図はスリーブ
の平面図を,(b)図は軸とスリーブの断面図をそれぞ
れ示す。
FIG. 10 shows the details of the bearing portion, FIG. 10 (a) is a plan view of the sleeve, and FIG. 10 (b) is a sectional view of the shaft and the sleeve.

【図11】 静止時に軸とスリーブとの接触を規制する
為に永久磁石を可動として軸内に有する軸受部詳細断面
を示す。
FIG. 11 is a detailed cross-sectional view of a bearing portion in which a permanent magnet is movably provided in the shaft in order to regulate contact between the shaft and the sleeve when stationary.

【図12】 図11に於ける永久磁石の位置調整方法を
説明するための図を示す。
FIG. 12 is a view for explaining a method of adjusting the position of the permanent magnet in FIG.

【図13】 リング状部材の軸方向位置を調整できる実
施例を説明するための図で,(a)図は軸受部分の断面
図を,(b)図はリング状部材周辺の断面図を拡大して
示す。
13A and 13B are views for explaining an embodiment in which the axial position of the ring-shaped member can be adjusted. FIG. 13A is a sectional view of the bearing portion, and FIG. 13B is an enlarged sectional view of the periphery of the ring-shaped member. And show it.

【符号の説明】[Explanation of symbols]

11,11a,11b・・軸, 12,12
a,12b・・スリーブ,13・・・軸受面,
14・・・頂部,17・・・潤滑流体の
境界面, 18・・・動圧溝,19・・・動
圧溝, 20,21・・動圧溝,
23・・・環状障壁, 24・・・
リング状部材,25・・・アクセス孔,
26・・・環状凹部,27,28・・動圧溝,30
・・・スリーブの回転方向, 32・・・円
筒,33・・・板バネ, 34・
・・通気孔,35・・・永久磁石,41・・・ハブ,
43・・・ベース,44,46
・・ローターマグネット, 47,49・・ステー
タコア,50,52・・コイル, 5
3・・・磁性体片,55・・・磁化方向,
56,57,58・・磁束,67,68・・負
荷容量,73・・・軸方向の座標, 7
4・・・圧力値,75,76,77,78,79・・圧
力,83,84,85・・磁気吸引力, 86・
・・環状障壁端の突部,86a・・・スリーブ端の突
部, 87・・・環状凹部の端部,88・・・
ジグ, 89・・・リング状部
材周辺の断面部,90・・・磁性体板,
91・・・磁気ディスク
11, 11a, 11b ... Shaft, 12, 12
a, 12b ... Sleeve, 13 ... Bearing surface,
14 ... Top part, 17 ... Boundary surface of lubricating fluid, 18 ... Dynamic pressure groove, 19 ... Dynamic pressure groove, 20, 21 ... Dynamic pressure groove,
23 ... annular barrier, 24 ...
Ring-shaped member, 25 ... Access hole,
26 ... Annular recesses, 27, 28 ... Dynamic pressure grooves, 30
... Sleeve rotation direction, 32 ... Cylinder, 33 ... Leaf spring, 34 ...
..Ventilation holes, 35 ... Permanent magnets, 41 ... Hubs,
43 ... Base, 44, 46
..Rotor magnets, 47,49..Stator cores, 50,52..Coils, 5
3 ... Magnetic piece, 55 ... Magnetization direction,
56, 57, 58 ... Magnetic flux, 67, 68 ... Load capacity, 73 ... Coordinates in the axial direction, 7
4 ... Pressure value, 75, 76, 77, 78, 79 ... Pressure, 83, 84, 85 ... Magnetic attraction force, 86 ...
..Projections at the end of the annular barrier, 86a ... Projections at the end of the sleeve, 87 ... Ends of the annular recess, 88 ...
Jig, 89 ... Cross-section around ring-shaped member, 90 ... Magnetic plate,
91 ... Magnetic disk

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H02K 7/08 H02K 7/08 A 21/22 21/22 M Fターム(参考) 3J011 AA08 AA11 AA20 BA10 CA03 DA02 JA02 JA03 KA04 LA05 MA06 MA21 MA22 PA02 QA20 RA04 RA10 5H605 AA13 BB05 BB14 BB19 CC04 DD03 EB04 EB06 5H607 BB01 BB17 BB25 DD03 FF04 GG04 GG09 GG12 GG14 5H621 GA01 HH01 JK08 JK17 JK19 PP03 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H02K 7/08 H02K 7/08 A 21/22 21/22 MF term (reference) 3J011 AA08 AA11 AA20 BA10 CA03 DA02 JA02 JA03 KA04 LA05 MA06 MA21 MA22 PA02 QA20 RA04 RA10 5H605 AA13 BB05 BB14 BB19 CC04 DD03 EB04 EB06 5H607 BB01 BB17 BB25 DD03 FF04 GG04 GG09 GG12 GG14 5H621 GA01 HH01 JK08 JK17 JK19 JK17 JK19 JK17 JK17 J19

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも側面を半球状とする軸と,軸
に対向する凹部を持つスリーブと,軸及びスリーブ間間
隙の潤滑流体と,軸内或いはスリーブ頂部に磁石及び磁
性体とをそれぞれどちらかに有して軸端及びスリーブ頂
部間に磁気吸引力を発生させる磁気的手段と,軸外周部
に配置されスリーブ外周壁に対向して開口部に向け徐々
に大となる間隙を有しテーパーシール部を形成する環状
障壁とより構成される流体動圧軸受モータにおいて,軸
或いはスリーブの半球面に動圧溝を有し,回転時に前記
動圧溝が発生する負荷容量の軸方向分力と前記磁気吸引
力とを平衡させて回転部を支承する事を特徴とする流体
動圧軸受モータ
1. A shaft having a hemispherical shape on at least a side surface, a sleeve having a concave portion facing the shaft, a lubricating fluid in a gap between the shaft and the sleeve, and a magnet and a magnetic body in the shaft or on the sleeve top, respectively. And a magnetic means for generating a magnetic attraction force between the shaft end and the sleeve top, and a taper seal having a gap gradually increasing toward the opening, facing the sleeve outer peripheral wall, disposed on the shaft outer periphery. In a fluid dynamic bearing motor composed of an annular barrier forming a portion, a shaft or a sleeve has a dynamic pressure groove on a hemispherical surface, and the dynamic force groove generates an axial component force of the load capacity and A fluid dynamic bearing motor characterized by supporting a rotating part by balancing magnetic attraction force.
【請求項2】 請求項1記載の流体動圧軸受モータに於
いて,前記磁気的手段は前記磁気吸引力よりは大の保持
力で軸内に可動に保持される永久磁石とスリーブ側磁性
体とで構成し,前記永久磁石端において静止時にはスリ
ーブと接触し,回転時には離間してその離間距離が軸と
スリーブの軸受面に於ける軸方向浮上距離より大とはな
らないよう組立時に前記永久磁石の位置調整及び固定を
可能としたことを特徴とする流体動圧軸受モータ
2. The fluid dynamic bearing motor according to claim 1, wherein the magnetic means is movably held in the shaft by a holding force larger than the magnetic attraction force and a sleeve-side magnetic body. And the permanent magnet at the end of the permanent magnet when in a stationary state, contacting the sleeve when stationary, and separating at the time of rotation so that the distance is not larger than the axial levitation distance between the shaft and the bearing surface of the sleeve. Fluid dynamic bearing motor characterized by enabling position adjustment and fixing
【請求項3】 請求項1記載の流体動圧軸受モータに於
いて,前記磁気的手段は前記磁気吸引力よりは大の保持
力で軸内に可動に保持される永久磁石とスリーブ側磁性
体とで構成し,永久磁石は十分に軸端より突出させた後
に軸とスリーブ間には前記磁気吸引力以上の力を加えて
スリーブ頂部或いはスリーブ頂部に配置された板バネが
弾性変形を生じる状態で永久磁石の位置が確定するよう
組み立て,スリーブの頂部或いは板バネと永久磁石端と
は静止時に接触し,回転時には離間してその離間距離が
軸とスリーブの軸受面に於ける軸方向浮上距離より大と
はならないよう構成した事を特徴とする流体動圧軸受モ
ータ
3. The fluid dynamic bearing motor according to claim 1, wherein the magnetic means is movably held in the shaft by a holding force larger than the magnetic attraction force and a sleeve-side magnetic body. The state in which the permanent magnet is sufficiently protruded from the shaft end and then a force greater than the magnetic attraction force is applied between the shaft and the sleeve to cause elastic deformation of the sleeve top portion or the leaf spring arranged on the sleeve top portion. The sleeve is assembled so that the position of the permanent magnet is fixed, and the top or leaf spring of the sleeve is in contact with the end of the permanent magnet when stationary, and is separated during rotation, and the distance is the axial levitation distance between the shaft and the bearing surface of the sleeve. Fluid dynamic bearing motor characterized by being configured so as not to become larger
【請求項4】 請求項1記載の流体動圧軸受モータに於
いて,軸及びスリーブの半球状軸受両面の軸方向に対向
する位置に動圧溝を有し,それぞれの面に於ける動圧溝
は周方向角度長が異なる事を特徴とする流体動圧軸受モ
ータ
4. The fluid dynamic bearing motor according to claim 1, wherein a dynamic pressure groove is provided on both surfaces of the hemispherical bearing of the shaft and the sleeve at positions facing each other in the axial direction, and the dynamic pressure on each surface is provided. Fluid dynamic bearing motor characterized in that the grooves have different angular lengths in the circumferential direction
【請求項5】 請求項1記載の流体動圧軸受モータに於
いて,前記環状障壁端部に固定されるリング状部材と,
リング状部材に対応してスリーブ外周壁に設けられた環
状凹部との間で回転部の軸方向可動距離を制限させた事
を特徴とする流体動圧軸受モータ
5. The fluid dynamic bearing motor according to claim 1, further comprising a ring-shaped member fixed to the end of the annular barrier,
A fluid dynamic bearing motor characterized in that an axial movable distance of a rotating portion is limited between the ring-shaped member and an annular recess provided in an outer peripheral wall of the sleeve.
【請求項6】 請求項5記載の流体動圧軸受モータに於
いて,前記リング状部材はハメ合い,接着或いは溶接等
の手段で前記環状障壁端部に固定されるとし,固定作業
に必要なアクセス孔を前記環状障壁端部に対向する固定
部側或いは回転部側部材に有する事を特徴とする流体動
圧軸受モータ
6. The fluid dynamic bearing motor according to claim 5, wherein the ring-shaped member is fixed to the end of the annular barrier by means such as fitting, bonding or welding, and is required for fixing work. A fluid dynamic bearing motor characterized in that an access hole is provided in a member on a fixed portion side or a rotating portion side facing the end portion of the annular barrier.
【請求項7】 請求項6記載の流体動圧軸受モータに於
いて,環状障壁端部とリング状部材とは互いに嵌め合い
固定する手段を有し,アクセス孔を介してリング状部材
の内周部分を押し弾性変形させた状態で前記環状凹部の
端面に突き当ててリング状部材を環状障壁端部に嵌め合
い固定し,可動部の軸方向移動量をリング状部材の前記
弾性変形量として調整設定することを特徴とする流体動
圧軸受モータ
7. The fluid dynamic bearing motor according to claim 6, further comprising means for fitting and fixing the annular barrier end portion and the ring-shaped member, and the inner periphery of the ring-shaped member through the access hole. The part is pressed and elastically deformed, but is pressed against the end face of the annular recess to fit and fix the ring-shaped member to the end of the annular barrier, and the axial movement amount of the movable part is adjusted as the elastic deformation amount of the ring-shaped member. Fluid dynamic bearing motor characterized by setting
【請求項8】 請求項1項記載の流体動圧軸受モータに
おいて,潤滑流体として磁性流体オイルを用い,潤滑流
体中の気泡排除を容易にしたことを特徴とする流体動圧
軸受モータ
8. The fluid dynamic bearing motor according to claim 1, wherein magnetic fluid oil is used as the lubricating fluid to facilitate elimination of bubbles in the lubricating fluid.
【請求項9】 請求項1記載の流体動圧軸受モータに於
いて,潤滑流体中には導電性の磁性体微粉を混入し,軸
端とスリーブ頂部との間で架橋させ電気的に導通させる
事を特徴とする流体動圧軸受モータ
9. The fluid dynamic bearing motor according to claim 1, wherein conductive magnetic fine powder is mixed in the lubricating fluid, and bridged between the shaft end and the top of the sleeve for electrical conduction. Fluid dynamic bearing motor characterized by
【請求項10】 少なくとも側面を半球状とする軸と,
軸に対向する凹部を持つスリーブと,軸内或いはスリー
ブ頂部に磁石及び磁性体とをそれぞれどちらかに有して
軸端及びスリーブ頂部間に磁気吸引力を発生させる磁気
的手段とより構成される気体動圧軸受モータにおいて,
軸或いはスリーブの半球面に動圧溝を有し,回転時に前
記動圧溝が発生する負荷容量の軸方向分力と前記磁気吸
引力とを平衡させて回転部を支承する事を特徴とする気
体動圧軸受モータ
10. An axis having a hemispherical shape on at least a side surface,
It is composed of a sleeve having a concave portion facing the shaft, and a magnetic means having a magnet and a magnetic body inside the shaft or at the sleeve top, respectively, to generate a magnetic attraction force between the shaft end and the sleeve top. In a gas dynamic bearing motor,
The shaft or the sleeve has a dynamic pressure groove on the hemispherical surface, and the rotating portion is supported by balancing the axial component force of the load capacity generated by the dynamic pressure groove during rotation with the magnetic attraction force. Gas dynamic pressure bearing motor
【請求項11】 請求項10記載の気体動圧軸受モータ
に於いて,前記磁気的手段は前記磁気吸引力よりは大の
保持力で軸内に可動に保持される永久磁石とスリーブ側
磁性体とで構成し,前記永久磁石端において静止時には
スリーブと接触し,回転時には離間してその離間距離が
軸とスリーブの軸受面に於ける軸方向浮上距離より大と
はならないよう組立時に前記永久磁石の位置調整及び固
定を可能としたことを特徴とする気体動圧軸受モータ
11. The gas dynamic pressure bearing motor according to claim 10, wherein the magnetic means is movably held in the shaft by a holding force larger than the magnetic attraction force and a sleeve-side magnetic body. And the permanent magnet at the end of the permanent magnet when in a stationary state, contacting the sleeve when stationary, and separating at the time of rotation so that the distance is not larger than the axial levitation distance between the shaft and the bearing surface of the sleeve. Gas dynamic pressure bearing motor characterized by enabling position adjustment and fixing
【請求項12】 請求項10記載の気体動圧軸受モータ
に於いて,前記磁気的手段は前記磁気吸引力よりは大の
保持力で軸内に可動に保持される永久磁石とスリーブ側
磁性体とで構成し,永久磁石は十分に軸端より突出させ
た後に軸とスリーブ間には前記磁気吸引力以上の力を加
えてスリーブ頂部或いはスリーブ頂部に配置された板バ
ネが弾性変形を生じる状態で永久磁石の位置が確定する
よう組み立て,スリーブの頂部或いは板バネと永久磁石
端とは静止時に接触し,回転時には離間してその離間距
離が軸とスリーブの軸受面に於ける軸方向浮上距離より
大とはならないよう構成した事を特徴とする気体動圧軸
受モータ
12. The gas dynamic pressure bearing motor according to claim 10, wherein the magnetic means is movably held in the shaft by a holding force larger than the magnetic attraction force and a sleeve-side magnetic body. The state in which the permanent magnet is sufficiently protruded from the shaft end and then a force greater than the magnetic attraction force is applied between the shaft and the sleeve to cause elastic deformation of the sleeve top portion or the leaf spring arranged on the sleeve top portion. The sleeve is assembled so that the position of the permanent magnet is fixed, and the top or leaf spring of the sleeve is in contact with the end of the permanent magnet when stationary, and is separated during rotation, and the distance is the axial levitation distance between the shaft and the bearing surface of the sleeve. Gas dynamic pressure bearing motor characterized by being configured so as not to become larger
【請求項13】 請求項10記載の気体動圧軸受モータ
に於いて,軸及びスリーブの軸受両面の軸方向に対向す
る位置に動圧溝を有し,それぞれの面に於ける動圧溝は
周方向角度長が異なる事を特徴とする気体動圧軸受モー
13. The gas dynamic pressure bearing motor according to claim 10, wherein dynamic pressure grooves are provided at axially opposite positions on both bearing surfaces of the shaft and the sleeve, and the dynamic pressure grooves on each surface are Gas dynamic pressure bearing motor characterized by different circumferential angular lengths
【請求項14】 請求項10記載の気体動圧軸受モータ
に於いて,スリーブ端に固定されるリング状部材と,リ
ング状部材に対応して固定側に設けられた環状凹部との
間で回転部の軸方向可動距離を制限させた事を特徴とす
る気体動圧軸受モータ
14. The gas dynamic pressure bearing motor according to claim 10, wherein the motor rotates between a ring-shaped member fixed to the sleeve end and an annular recess provided on the fixed side corresponding to the ring-shaped member. Gas dynamic bearing motor characterized by limiting the axial movable distance
【請求項15】 請求項14記載の気体動圧軸受モータ
に於いて,前記リング状部材はハメ合い,接着或いは溶
接等の手段で前記スリーブ端部に固定されるとし,固定
作業に必要なアクセス孔を前記スリーブ端部に対向する
固定部側部材に有する事を特徴とする気体動圧軸受モー
15. The gas dynamic pressure bearing motor according to claim 14, wherein said ring-shaped member is fixed to said sleeve end by means such as fitting, adhering or welding, and access required for fixing work is performed. A gas dynamic pressure bearing motor characterized in that a hole is formed in a member on the fixed portion facing the end of the sleeve.
【請求項16】 請求項15記載の気体動圧軸受モータ
に於いて,スリーブ端部とリング状部材とは互いに嵌め
合い固定する手段を有し,アクセス孔を介してリング状
部材の自由端側を押し弾性変形させた状態で前記環状凹
部の端面に突き当ててリング状部材をスリーブ端部に嵌
め合い固定し,可動部の軸方向移動量をリング状部材の
前記弾性変形量として調整設定することを特徴とする気
体動圧軸受モータ
16. The gas dynamic bearing motor according to claim 15, wherein the sleeve end and the ring-shaped member have means for fitting and fixing each other, and the free end side of the ring-shaped member is provided through the access hole. Is pressed and elastically deformed to abut the end face of the annular recess to fit and fix the ring-shaped member to the sleeve end, and the axial movement amount of the movable part is adjusted and set as the elastic deformation amount of the ring-shaped member. Gas dynamic pressure bearing motor characterized by
JP2001245878A 2001-08-14 2001-08-14 Motor having hemispherical fluid or gas dynamic pressure bearing balanced with magnetic attractive force at axial end Pending JP2003061298A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001245878A JP2003061298A (en) 2001-08-14 2001-08-14 Motor having hemispherical fluid or gas dynamic pressure bearing balanced with magnetic attractive force at axial end

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001245878A JP2003061298A (en) 2001-08-14 2001-08-14 Motor having hemispherical fluid or gas dynamic pressure bearing balanced with magnetic attractive force at axial end

Publications (1)

Publication Number Publication Date
JP2003061298A true JP2003061298A (en) 2003-02-28

Family

ID=19075548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001245878A Pending JP2003061298A (en) 2001-08-14 2001-08-14 Motor having hemispherical fluid or gas dynamic pressure bearing balanced with magnetic attractive force at axial end

Country Status (1)

Country Link
JP (1) JP2003061298A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7092203B2 (en) 2003-10-15 2006-08-15 Nidec Corporation Method of manufacturing a fluid dynamic bearing applicable to a disk drive that includes welding a cover member to a cylindrical wall of a shaft base
JP2010127386A (en) * 2008-11-27 2010-06-10 Ntn Corp Fluid dynamic-pressure bearing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7092203B2 (en) 2003-10-15 2006-08-15 Nidec Corporation Method of manufacturing a fluid dynamic bearing applicable to a disk drive that includes welding a cover member to a cylindrical wall of a shaft base
JP2010127386A (en) * 2008-11-27 2010-06-10 Ntn Corp Fluid dynamic-pressure bearing device

Similar Documents

Publication Publication Date Title
JP3631988B2 (en) Motor with a single conical hydrodynamic bearing balanced with shaft end magnetic attraction
US6686674B2 (en) Motor having single cone fluid dynamic bearing balanced with magnetic attraction
AU648719B2 (en) Low-profile disk drive motor
US5215385A (en) Low-profile disk drive motor with deflecting-pad bearings
US20060002641A1 (en) Fixed shaft type fluid dynamic bearing motor
JP2003035311A (en) Motor equipped with single and conical dynamic pressure gas bearing balanced with magnetic attraction on end of shaft
JP4182056B2 (en) Fluid dynamic pressure bearing configured with raceway for high efficiency
JPH04235522A (en) Rotating mirror optical scanner with grooved grease bearing
US5142174A (en) Low-profile disk drive motor with deflecting-pad bearings
JP2004218823A (en) Dynamic-pressure bearing motor
US20020079765A1 (en) Compliant foil fluid film bearing with eddy current damper
WO2005059387A1 (en) Fluid bearing device
US6946764B2 (en) Conical hybrid FDB motor
JP2004176816A (en) Dynamic pressure bearing device
JP2003061298A (en) Motor having hemispherical fluid or gas dynamic pressure bearing balanced with magnetic attractive force at axial end
JPH05215128A (en) Bering device
JP2003032961A (en) Motor having single-cone hydraudynamic pressure bearing balanced with magnetic attractive force
JP2005192387A (en) Bearing-integrated spindle motor
JP2006112614A (en) Dynamic pressure bearing device
JP3696492B2 (en) Spindle motor
JP3892995B2 (en) Hydrodynamic bearing unit
JP2004316680A (en) Spindle motor and recording disk driving mechanism with the same
JP2001069719A (en) Dynamic pressure bearing motor
JP2002130257A (en) Disk drive apparatus using hydrodynamic bearing unit
JP2002369446A (en) Disk drive