JP2003059914A - Plasma treatment equipment - Google Patents

Plasma treatment equipment

Info

Publication number
JP2003059914A
JP2003059914A JP2001250602A JP2001250602A JP2003059914A JP 2003059914 A JP2003059914 A JP 2003059914A JP 2001250602 A JP2001250602 A JP 2001250602A JP 2001250602 A JP2001250602 A JP 2001250602A JP 2003059914 A JP2003059914 A JP 2003059914A
Authority
JP
Japan
Prior art keywords
plasma
chamber
processing
plasma chamber
window
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001250602A
Other languages
Japanese (ja)
Inventor
Masayuki Asai
Kazuyuki Toyoda
優幸 浅井
一行 豊田
Original Assignee
Hitachi Kokusai Electric Inc
株式会社日立国際電気
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc, 株式会社日立国際電気 filed Critical Hitachi Kokusai Electric Inc
Priority to JP2001250602A priority Critical patent/JP2003059914A/en
Publication of JP2003059914A publication Critical patent/JP2003059914A/en
Application status is Pending legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To improve the nonuniformity of substrates to be treated due to the distribution of activated species by producing plasma in annular shape in a plasma chamber. SOLUTION: Single wafer processing substrate processing equipment has a processing chamber 12 and processes wafers W one by one under reduced pressure. To supply activated species produced by remote plasma to a wafer W in the processing chamber 12, a plasma chamber 14 is formed at the upper part of the processing chamber 12 for producing plasma 10. A cylindrical window 26 protruded in convex shape toward the plasma chamber 14 is formed at the upper part of the center of the plasma chamber 14. An induction coil 29 which applies high-frequency power to a recess 27 outside thereof is installed so that plasma in annular shape is produced on the inner circumferential surface of the plasma chamber 14 on the outer circumferential surface of the cylindrical window 26.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明はプラズマ処理装置に係り、特にシリコン基板やガラス基板表面への薄膜形成に好適なものに関する。 BACKGROUND OF THE INVENTION [0001] [Technical Field of the Invention The present invention relates to a plasma processing apparatus, more particularly those suitable for thin film formation on a silicon substrate or a glass substrate surface. 【0002】 【従来の技術】従来、シャワーヘッドを備えて被処理物を均一に処理することが可能なプラズマ処理装置として、特開平11−106960号公報に記載された技術が知られている。 [0004] Conventionally, as a uniform processing plasma processing apparatus capable of an object to be processed with shower head, there is known a technique described in Japanese Patent Laid-Open No. 11-106960. これは、真空容器内においてガスを用いて励起源によりプラズマが生成されるプラズマ室と、 It comprises a plasma chamber in which a plasma is generated by excitation sources using gas in the vacuum vessel,
上記真空容器内へ駆動装置によりパルス的に上記ガスを供給するパルスガスバルブと、パルスガスバルブから供給されるガスをプラズマ室に導入できる複数の孔を有するシャワーヘッドと、上記真空容器内において試料が配置される処理室と、処理室とプラズマ室との間に設けられ、プラズマ室から処理室に連通する孔を有する隔壁板と、処理室を排気する図示しない真空排気手段とを備えて構成される。 A pulse gas valve for supplying pulses to the gas by the drive unit into the vacuum container, and a shower head having a plurality of holes of the gas can be introduced into the plasma chamber supplied from the pulse gas valve, the sample is placed in the vacuum vessel a processing chamber that is provided between the processing chamber and the plasma chamber, and provided with a partition plate having a hole communicating with the processing chamber from the plasma chamber, and a vacuum evacuation means (not shown) for evacuating the treatment chamber . 【0003】これによれり大面積にわたって均一なプラズマを形成し、大口径の被処理物をさらに均一に処理でき、この均一処理と同時にゴミの発生を低減することができ、さらに、処理速度および処理形状の制御ができるようになる。 [0003] This forms a uniform plasma over Yoreri a large area, the object to be processed having a large diameter to be more uniformly treated, it is possible to reduce the occurrence of simultaneous dust this uniform treatment, further, the processing speed and it becomes possible to control the processing shape. 【0004】 【発明が解決しようとする課題】しかしながら、上述した従来技術では次のような問題点があった。 [0004] The present invention is, however, in the prior art described above has the following problems. (1)プラズマ室を構成する側壁の外周にRFコイルを装着して、プラズマ室内にプラズマを生成すると、中心部のプラズマ密度が高くなるため、シャワーヘッドを介してプラズマ室に均一にガスを供給しても、プラズマ室の中心部で励起されるガスの密度が高くなるため、プラズマ室の下に設けた隔壁板を通して被処理基板に供給する活性種の密度分布も、中心が高く周辺が低くなってしまう。 (1) the RF coil on the outer periphery of the side wall constituting the plasma chamber mounted supply and generates a plasma in the plasma chamber, since the plasma density in the central portion is increased, a uniform gas into the plasma chamber through the showerhead also, the density of the gas which is excited by the central portion of the plasma chamber is increased, the density of the active species distribution supplied to the substrate to be processed through a partition plate provided under the plasma chamber also low peripheral high center turn into. その結果、被処理基板面上での活性種の密度分布の均一化が図れず、被処理基板の処理が不均一となる。 As a result, not Hakare the uniformity of the density of the active species distribution on the substrate to be processed surface, processing of the substrate becomes non-uniform. 【0005】(2)筒形のプラズマ室側壁外周にコイルを装着しているため、プラズマ処理均一性を確保するためには、コイルエンドを側壁外周の途中で終わらすことができず、コイルを周単位に設ける必要があるので、適切な長さで切れない。 [0005] (2) Since wearing the coil cylindrical plasma chamber sidewall periphery, in order to ensure the plasma processing uniformity can not finish my coil end in the middle of the side wall periphery, circumferential coils since it is necessary to provide a unit, not cut at the appropriate length. 【0006】本発明の課題は、上述した従来技術の問題点を解消して、活性種の寿命に起因する被処理基板の不均一性の改善をはかることが可能なプラズマ処理装置を提供することにある。 An object of the present invention is to solve the problems of the prior art described above, to provide the active species of a plasma processing apparatus capable of achieving an improvement in non-uniformity of the substrate due to the life It is in. 【0007】 【課題を解決するための手段】本発明は、プラズマを生成するプラズマ室と被処理基板を処理する処理室とを内部に形成した処理容器と、前記処理容器のプラズマ室に、プラズマ室側に凸又は凹状に形成した窓と、前記窓に設けられる誘導コイルを有し該誘導コイルの電磁誘導によりプラズマ室に供給されるガスをプラズマ励起して活性種を生成する誘導結合型プラズマ源とを備えて、前記プラズマ室で生成された活性種を前記処理室内に供給して被処理基板を処理するプラズマ処理装置である。 [0007] According to an aspect of the present invention includes a processing chamber formed within the plasma chamber and process chamber for processing a substrate to be processed to generate a plasma, the plasma chamber of the processing chamber, the plasma a chamber formed in a convex or concave side window, inductively coupled plasma for generating active species by plasma excitation gas supplied to the plasma chamber by electromagnetic induction of the induction coil has an induction coil provided in the window and a source, a plasma processing apparatus for processing a target substrate by supplying active species generated in the plasma chamber to the processing chamber. 【0008】プラズマ室の窓に設けた誘導コイルに高周波電力を印加したうえで、プラズマ室内にガスを導入する。 [0008] induction coil provided in the window of the plasma chamber upon application of a high frequency power, introducing a gas into the plasma chamber. プラズマ室内にガスが導入されると、このガスが電磁誘導を受けて活性化され、前記窓に沿ったプラズマ室の内周に環状のプラズマが生成される。 When the plasma chamber gas is introduced, the gas is activated by receiving the electromagnetic induction, an annular plasma is formed in the inner periphery of the plasma chamber along said window. この環状プラズマでガスを励起して活性種を生成する。 The annular plasma by exciting a gas to produce an active species. 生成された活性種は、供給ガスの流れ及び拡散により処理室内の被処理基板に達する。 The generated active species reach the substrate to be processed in the processing chamber by the flow and diffusion of the feed gas. プラズマ室内で環状のプラズマを生成するようにしたので、プラズマを均一に生成した場合に比べて、密度が低下する傾向にある基板周囲の活性種の密度を向上させることができる。 Since so as to generate an annular plasma at the plasma chamber, as compared with the case where the plasma was uniformly formed, it is possible to density improve the density of the active species around the substrate tends to decrease. したがって、プラズマから被処理基板までの距離に対する環状プラズマで生成した活性種の密度の変化特性により、プラズマから被処理基板までの距離が短くても、被処理基板面内で均一な活性種の密度分布を得ることができる。 Therefore, the change characteristics of the resulting active species density annular plasma versus distance from the plasma to the substrate to be processed, from the plasma even short distance to the target substrate, a uniform active species in the treated substrate surface density distribution can be obtained. その結果、処理容器を大型化することなく、且つ、プラズマ密度を必要以上に減衰させない状態で被処理基板面内での均一な処理が可能となる。 As a result, without increasing the size of the processing container, and, uniform treatment of the substrate to be processed plane is possible in a state that does not attenuate more than necessary plasma density. 【0009】また、上記発明において、前記窓を、前記プラズマ室の上部中央にプラズマ室内側に凸状に突き出し、前記プラズマ室外側では凹部を有するように筒状に構成し、前記プラズマ室外の筒状窓の凹部に、プラズマ室に向かって高周波電力を導入する前記誘導コイルを設け、前記プラズマ室内の凸状に突出した筒状窓の外周に沿って環状のプラズマを生成するとよい。 [0009] In the invention, the window protrudes convexly plasma chamber side at the top center of the plasma chamber, the configured into a cylindrical shape so as to have a recess in the plasma chamber outside the plasma outside of the tube the recess of Jomado, provided the induction coil to introduce the high frequency power towards the plasma chamber, it is preferable to produce the annular plasma along the outer periphery of the plasma chamber tubular window projecting convex. 【0010】プラズマ室に設ける窓を、プラズマ室の上部中央に筒状に形成するという簡単な構成で、プラズマ室の内周に環状のプラズマを生成することができ、被処理基板面内で均一な活性種の密度分布を容易に得ることができる。 [0010] The window provided in the plasma chamber, with a simple configuration in which a cylindrical shape at the upper center of the plasma chamber, the inner periphery of the plasma chamber can produce an annular plasma, uniform target substrate plane the such active species density distribution can be easily obtained. 筒状は、角筒状でもよいが、円環状のプラズマを生成するためには、円筒状が好ましい。 Tubular may be a rectangular tube, but to generate an annular plasma cylindrical are preferred. 【0011】また、上記発明において、前記窓を、前記プラズマ室の上部にプラズマ室内側へ凸状に突き出すように設けるとともに、前記プラズマ室外側に凹部を有する環状窓で構成し、前記環状窓の凹部に沿って、プラズマ室に向かって高周波電力を導入する前記誘導コイルを設け、前記環状窓のプラズマ室の内周に沿って環状のプラズマを生成するようにしてもよい。 [0011] In the invention, the window, the top provided with so as to project convexly into the plasma chamber inside of the plasma chamber, constituted by an annular window with the plasma chamber recess on the outside, of the annular window along the recess, provided with the induction coil to introduce the high frequency power towards the plasma chamber, or may be along the inner periphery of the plasma chamber of the annular window so as to produce an annular plasma. 【0012】プラズマ室内に突出した環状窓の内側に沿って環状のプラズマを生成しても、処理容器を大型化することなく、プラズマで生成した活性種の密度の均一化が図れるため、被処理基板面内での均一な処理が可能となる。 [0012] be along the inside of annular windows protruding plasma chamber to generate an annular plasma, a processing vessel without increasing the size of, for uniformity of the density of the active species generated in the plasma can be achieved, the treated uniform treatment in the substrate surface becomes possible. 【0013】また、上記発明において、前記窓を、前記プラズマ室の上部にプラズマ室外側へ凸状に突き出すように設けるとともに、前記プラズマ室内側に凹部を有する環状窓で構成し、前記プラズマ室外の凸状に突き出した環状窓の外周に沿って、プラズマ室に向かって高周波電力を導入する前記誘導コイルを環状に設け、前記プラズマ室外に突出した環状窓の環状の凹部に沿って環状のプラズマを生成するようにしてもよい。 [0013] In the invention, the window, provided with so as to project convexly into the plasma chamber outside the top of the plasma chamber, constituted by an annular window having a recess in the plasma chamber side, of the plasma outside along the outer periphery of the annular windows projecting convex toward the plasma chamber provided with the induction coil for introducing a high frequency power to the ring, the ring along the concave annular plasma of the annular window projecting plasma outdoor it may be generated. 【0014】前述したように、プラズマ室内に突出した環状窓の内側に沿って環状のプラズマを生成すると、生成される環状プラズマの形が不明瞭であるため、プラズマに近い位置では、プラズマで生成された活性種の密度分布は深さが比較的浅い盆地形状を示すが、プラズマから離れると急速に凸形になり、均一になる位置はない。 [0014] As described above, when along the inside of annular windows protruding into the plasma chamber to generate the annular plasma, for the shape of an annular plasma generated is unclear, at a position near the plasma generated in the plasma is density distribution of the active species is a relatively shallow basin-shaped depth rapidly becomes convex away from the plasma, the position is not made uniform.
しかし、プラズマ室外に突出した環状窓の環状の凹部に沿って環状のプラズマを生成すると、プラズマからの距離で、プラズマで生成された活性種の密度が均一になる位置がある。 However, along the annular recess of the annular window which projects the plasma outside to generate an annular plasma at a distance from the plasma, there is a position where the density of the active species generated by the plasma becomes uniform. したがって、活性種の密度が均一になる位置に基板を配置すると、処理容器を大型化することなく、被処理基板面内でのより均一な処理が可能となる。 Therefore, the density of active species placing a substrate in a position to be uniform, without increasing the size of the process chamber, thereby enabling more uniform treatment of the substrate to be processed surface. 【0015】また、上記発明において、プラズマ室を誘電体製のドームで構成するとよい。 [0015] In the above invention, it is preferable to plasma chamber to a dielectric made of a dome. プラズマ室を誘電体製のドームで構成すると、誘電体製でありながら、壁面を薄くしても強度が上がり、製作費用が低減し、部品点数も少なくできる。 When constituting the plasma chamber with a dielectric made of the dome, while being made dielectric, it increases strength even when thin walls, manufacturing cost is reduced, the number of parts can be reduced. 【発明の実施の形態】以下に本発明のプラズマ処理装置における実施の形態を説明する。 The embodiment of the plasma treatment apparatus of the present invention DETAILED DESCRIPTION OF THE INVENTION Hereinafter will be described. 【0016】まず、本発明の原理について説明する。 [0016] First, a description will be given of the principles of the present invention. 本発明は、被処理基板であるウェーハの面上でのプラズマで生成された活性種の密度を均一化するために、生成されるプラズマを環状にすることが必要であるとの知見を得てなされたものである。 The present invention, in order to equalize the active species density generated in the plasma on the surface of the wafer as a substrate to be processed, the plasma generated by obtaining the knowledge that it is necessary to ring It has been made. 【0017】図7は、生成されるプラズマの形状毎に、 [0017] Figure 7, each shape of the plasma generated,
プラズマからウェーハに向かって離れていくにしたがって、プラズマで生成された活性種の密度分布が推移していく様子を示す。 Accordance moves away toward the plasma to the wafer, showing how the plasma generated active species density distribution is gradually transitions. 【0018】プラズマ室で生成されるプラズマの形状は、それぞれ(A)がプラズマ室に円板状で均一に生成される均一プラズマ、(B)がプラズマ室の中央部に生成される点状プラズマ、そして(C)がプラズマ室の内周に生成される環状プラズマである。 The plasma shape generated in the plasma chamber, a uniform plasma, punctate plasma (B) is produced in the central portion of the plasma chamber, each (A) is uniformly generated in the disk-shaped plasma chamber and (C) a cyclic plasma is generated on the inner periphery of the plasma chamber. プラズマからの距離は離れる方向にしたがってh 1 〜h 4としてある。 Distance from the plasma is as h 1 to h 4 according away. ここで示したウェーハ径はφ200mmであり、ウェーハを収容する各処理室の内径は一定である。 Wafer size shown here is .phi.200 mm, the inner diameter of the processing chamber for accommodating the wafer is constant. 【0019】プラズマ室でプラズマ励起して活性種を生成すると処理室に向かって拡散するため、プラズマからの距離にしたがって活性種の密度が変化していく。 [0019] To diffuse towards the treatment chamber by plasma excitation generating the active species in the plasma chamber, the density of the active species will change according to the distance from the plasma. したがって、処理室に置かれたウェーハのプラズマからの位置によって処理状態が変ることになる。 Therefore, the processing state is changed by the position of the plasma of the wafer placed in the processing chamber. 【0020】処理室の大きさ(内径)は限られているので、プラズマからウェーハに至る距離がh 1 →h 4に大きくなるにしたがって、活性種の密度は減少すると共に、 [0020] Since the limited size of the processing chamber (inner diameter), according to distance from the plasma to the wafer is increased to h 1 → h 4, together with the density of the active species decreases,
活性種の拡散が十分に進む。 Diffusion of the active species is well advanced. これにともなって活性種の密度分布が均一化されるため、生成プラズマ形状による処理状態の違いはなくなる。 Since the active species density distribution along with this is made uniform, is not difference in processing state by the produced plasma shape. 【0021】プラズマで生成された活性種の密度分布は、プラズマからの距離h 1 →h 4にしたがって次のように推移する。 The density distribution of the active species generated in the plasma, changes as follows in accordance with the distance h 1 → h 4 from the plasma. 均一プラズマの図7(A)では、基板の周縁部分のみ活性種密度が低下し、それ以外は均一(h 1 )となる。 In a uniform plasma FIG 7 (A), the active species density decreases only the peripheral portion of the substrate, it becomes otherwise uniform (h 1). 全体的にプラズマ処理効果が大きくなるものの、ウェーハ端部を含む周辺部のプラズマ処理効率が落ちている。 Although overall plasma treatment effect is increased, the plasma processing efficiency of the peripheral portion including the wafer end portion is down. これは処理室の排気の関係で、プラズマ室の内壁で活性種が失活すると共にウェーハの周辺部ほどガス粒子の密度が小さくなり、ウェーハ周辺付近を処理する活性種の密度が低下するためである。 This is in relation to the exhaust processing chamber, the density of the gas particles toward the periphery of the wafer with the active species in the inner wall of the plasma chamber is deactivated is reduced, because the active species density for processing near the perimeter wafer is reduced is there. そして、 And,
プラズマからの距離がさらに大きくなると、基板の中央部分を残し、活性種密度は基板の周縁部分に行くにしたがって緩やかに低下(h 2 )、基板の中央部分の活性種密度も落ちていき、中央部分と周辺部分との差が減少(h 3 )、基板の中央部分の活性種密度がさらに落ちて、中央部と周辺部との活性種密度の差がほとんど無くなり、活性種密度分布はプラズマ室側にやや凸の形状となる(h 4 )。 If the distance from the plasma is further increased, leaving a central portion of the substrate, the active species density gradually decreases toward the peripheral portion of the substrate (h 2), will also fall active species density in the central portion of the substrate, the central decrease the difference between the portion and the peripheral portion (h 3), dropped the active species density in the central portion of the substrate addition, most eliminates the difference in active species density between the central portion and the peripheral portion, the active species density distribution plasma chamber It becomes slightly convex shape on the side (h 4). 【0022】点状プラズマの図7(B)では、基板の中央部分の活性種密度が極端に高く、基板の周縁部に行くにしたがって急激に低下(h 1 )、基板の中央部分の活性種密度が低下し、それにともなって基板の周縁部分に至る活性種密度分布の落ち込む曲率の向きが反転して活性種密度分布が一律に凸形状になるが、中央部分と周辺部分との差は依然として大(h 2 )、基板の中央部分の活性種密度がさらに低下して、中央部分と周辺部分との差は幾分減少し、活性種密度分布は全体で丸みを増す(h 3 )、中央部と周辺部との活性種密度の差がほとんど無くなりプラズマ室側にやや凸の形状となる(h 4 )。 In [0022] point-shaped plasma in FIG. 7 (B), the active species density is extremely high in the central portion of the substrate, rapidly decreases toward the periphery of the substrate (h 1), the active species of the central portion of the substrate density decreases, but the direction is reversed the active species density distribution of curvature falling active species density distribution reaches the peripheral portion of the substrate is convex uniformly along with it, the difference between the central portion and peripheral portion is still large (h 2), and decreases the active species density in the central portion of the substrate further difference between the central portion and peripheral portion is somewhat reduced, the active species density distribution increases the rounded throughout (h 3), the central the difference of the active species density between parts and the peripheral portion becomes slightly convex shape almost eliminates the plasma chamber side (h 4). 【0023】そして環状プラズマの図7(C)では、基板の周縁部よりやや内側部分で活性種密度がもっとも高く、基板の中央部分に行くにしたがって活性種密度が低下して中央部で最低(h 1 )、基板の周縁部よりやや内側部分の活性種密度が低下し、中央部分との差が減少(h 2 )、周縁部の内側部分のピークが低下して周縁部に移り、全体でプラズマ室側にやや凹の形状となるが、 [0023] and Figure 7, (C) a cyclic plasma slightly highest active species density inner portion of the circumferential region of the substrate, a minimum in the center portion decreases active species density toward the center portion of the substrate ( h 1), the active species density slightly inner portion from the peripheral portion of the substrate is reduced, reducing the difference between the central portion (h 2), move to the periphery and decreases the peak of the inner portion of the periphery, the entire It becomes slightly concave shape to the plasma chamber side,
周縁部を残してほぼ均一(h 3 )、活性種密度分布の曲率の向きが反転してプラズマ室側にやや凸の形状となる(h 4 )。 Substantially uniform, leaving a peripheral portion (h 3), becomes slightly convex shape to the plasma chamber side direction of curvature of the active species density distribution is reversed (h 4). 【0024】通常、ウェーハは、装置の大きさの制約や処理の効率を考えて、距離h 2またはh 3付近に置かれる。 [0024] Usually, wafers, consider the efficiency of size constraints and processing devices, placed near the distance h 2 or h 3. これらの付近で、活性種の密度が均一になるプラズマ形状は、(C)の環状タイプとなる。 Near them, the plasma shape density of the active species becomes uniform is a circular type (C). つまり、ウェーハを均一に処理するためには、プラズマは環状に生成することが必要になる。 That is, in order to process the wafer uniform is plasma it is necessary to generate the annular. 【0025】ここで、プラズマ源を誘導結合型プラズマ源で構成する場合、プラズマはコイルに流れる電流を打ち消すように生成される。 [0025] Here, when configuring the plasma source by inductively coupled plasma source, plasma is generated so as to cancel the current flowing through the coil. したがって、図8に示すように、プラズマ室1内に凸状に突き出した筒状窓2を設け、その筒内に誘導コイル3を装着して、筒状窓2から高周波電力を導入することによって、プラズマ4を生成する。 Accordingly, as shown in FIG. 8, a cylindrical window 2 projecting convexly plasma chamber 1 is provided, by wearing the induction coil 3 in the cylinder, it introduces a high-frequency power from the cylindrical window 2 , to generate a plasma 4. すると筒状窓2の外周のプラズマ室内周に生成されるプラズマ4は環状となる。 Then the plasma 4 generated in the plasma chamber circumference of the outer periphery of the tubular window 2 is annular. 【0026】次に、図1〜図4を用いて種々の窓形をもつ基板処理装置の具体的な説明をする。 Next, a specific description of a substrate processing apparatus having a variety of window type with reference to FIGS. 図1は第1の実施の形態の筒状窓、図2は第2の実施の形態の凹環状窓、図3は第3の実施の形態の凸環状窓、図4は第4の実施の形態の蓋体をドーム状にした枚葉式のプラズマ処理装置の概略断面図をそれぞれ示す。 Figure 1 is a cylindrical window of the first embodiment, FIG. 2 is concave annular window of the second embodiment, FIG. 3 is a convex circular window of the third embodiment, FIG. 4 of the fourth embodiment the lid forms respectively a schematic cross-sectional view of a plasma processing apparatus of single wafer was in a dome shape. プラズマ源は、I Plasma source, I
CP(Inductively Coupled Plasma)源であり、誘電体チャンバの外に設けた高周波コイルの電磁誘導によりプラズマ室の内部にプラズマを発生させる。 CP is (Inductively Coupled Plasma) source to generate plasma inside the plasma chamber by electromagnetic induction of high frequency coil provided outside the dielectric chamber. 【0027】図1の筒状窓26を持つ第1の実施の形態によるプラズマ処理装置は、1枚のウェーハWを処理する処理容器11を備える。 The plasma processing apparatus according to the first embodiment with the cylindrical window 26 of FIG. 1 includes a processing vessel 11 for processing one wafer W. 処理容器11は、金属、例えばステンレス製またはアルミ合金で構成される。 Processing vessel 11, a metal composed of such as stainless steel or aluminum alloy. 【0028】処理容器11は、上部が開口して内部にウェーハWを成膜処理する処理室12を形成した本体13 The processing vessel 11 includes a main body 13 with its upper part to form a processing chamber 12 for depositing processing wafers W therein open
と、本体13の開口を塞ぐとともに、処理室12とは別に、内部にプラズマを生成するプラズマ室14を形成するドーム形をした蓋体15とから構成されたリモートプラズマ形である。 When, with close the opening of the main body 13, the processing chamber 12 is a separate, remote plasma type constructed from lid 15 which has a dome-shaped to form a plasma chamber 14 to generate plasma therein. 【0029】蓋体15内のプラズマ室14と本体13内の処理室12との境界に、プラズマ室14から処理室1 [0029] boundary between the plasma chamber 14 and the processing chamber 12 in the body 13 of the lid 15, the processing chamber from the plasma chamber 14 1
2へプラズマで活性化した活性種を含むガスを供給するガス供給ヘッド16が設けられる。 Gas supply head 16 for supplying a gas containing activated active species to 2 by the plasma is provided. ガス供給ヘッド16 Gas supply head 16
は、上から順に、プラズマ室14内のガスを分散する多数の分散孔17を有するガス分散板18、分散されたガスを一時的に貯めるバッファ室19、多数のシャワー孔20を有しバッファ室19から処理室12へガスを噴射するガスシャワー板21から構成される。 , From the top, the buffer chamber has a number of distributed gas distribution plate 18 having a hole 17, the buffer chamber 19 to accumulate the dispersed gas temporarily, a large number of shower holes 20 to distribute the gas in the plasma chamber 14 19 to the processing chamber 12 consisting of the gas shower plate 21 for injecting the gas. 【0030】本体13内の処理室12には、1枚のウェーハWを支持するサセプタ22が設けられる。 [0030] processing chamber 12 in the body 13, the susceptor 22 is provided for supporting the one wafer W. サセプタ22の内部には、冷却・加熱機能を有する温度調整機構(図示せず)が埋設され、処理中のウェーハWの温度を調節可能としている。 Inside the susceptor 22, the temperature adjusting mechanism having a cooling and heating function (not shown) is embedded, thereby enabling adjusting the temperature of the wafer W during processing. 【0031】上記処理容器11は気密に構成され、本体13の底部に設けた排気口23から処理室12及びプラズマ室14を排気するようになっている。 [0031] The processing vessel 11 is airtight, so as to evacuate the processing chamber 12 and the plasma chamber 14 from the exhaust port 23 provided in the bottom of the body 13. また、金属製の蓋体15のドーム状をした天井は、蓋体15に直接プラズマが接してダメージを与えたり、金属の放出を抑える目的で、誘電体カバー24で覆われている。 Also, the ceiling where the dome-shaped metal lid member 15, or damaged by direct plasma is in contact with the lid 15, the purpose of suppressing the release of metal, covered with a dielectric cover 24. 誘電体カバー24は、例えばAl 23 (アルミナ)やAlN(窒化アルミ)やSiO 2 (石英)で構成する。 The dielectric cover 24 made of, for example, Al 2 O 3 (alumina) or AlN (aluminum nitride) or SiO 2 (quartz). 【0032】プラズマ室14を構成する蓋体15の上部中央に開口25を設け、その開口25に窓26を嵌める。 [0032] The opening 25 provided in the upper center of the lid body 15 constituting the plasma chamber 14, fitting the window 26 in the opening 25. 窓26は、プラズマ室14内側に鉛直に凸状に突き出し、プラズマ室14外側では凹部27を有するように円筒状に構成する。 The window 26, the plasma chamber protrudes vertically convex 14 inside the plasma chamber 14 outside constitute the cylindrical shape so as to have a recess 27. 円筒状窓26は、耐プラズマ性の誘電体材料、例えばパイレックス(登録商標)、石英ガラス、アルミナ、サファイア等で構成する。 Cylindrical window 26, the plasma resistance of the dielectric material, for example, Pyrex (registered trademark), quartz glass, alumina, composed of sapphire. 【0033】蓋体15内のプラズマ室14には、蓋体1 [0033] The plasma chamber 14 in the lid 15, the lid 1
5の外部からガス導入配管28が挿入され、円筒状窓2 Gas introducing pipe 28 is inserted from 5 external, cylindrical window 2
6の底部室内側に矢印で示すようにガスを吹きつけて散らし、プラズマ室14にガスを導入するようになっている。 6 base-portion room inside of scatter by blowing gas as indicated by the arrow, so as to introduce gas into the plasma chamber 14. 【0034】プラズマ室14外の円筒状窓26の凹部2 The recess 2 of the plasma chamber 14 outside the cylindrical window 26
7に、プラズマ室14に向かって高周波電力を導入する誘導コイル29を装着する。 7, to mount the induction coil 29 for introducing the RF power towards the plasma chamber 14. 誘導結合型プラズマ源(I Inductively coupled plasma source (I
CP源)30を構成する誘導コイル29は、整合器31 Induction coil 29 constituting the CP source) 30, matching device 31
を介して高周波電源32に接続され、電磁誘導によりプラズマ室14に供給されるガスを励起して、プラズマ室14内の凸状に突出した円筒状窓26の室内側外周に沿って、円筒状窓26を取り囲む環状のプラズマ10を生成する。 Via is connected to a high frequency power supply 32, exciting the gas supplied to the plasma chamber 14 by electromagnetic induction, along the interior side outer circumference of the cylindrical window 26 that protrudes in a convex shape in the plasma chamber 14, a cylindrical to produce an annular plasma 10 surrounding the window 26. 【0035】なお、図中、点線で示した符号32は、円筒状窓26を外部から保護するためのカバーである。 [0035] In the drawings, reference numeral 32 shown by a dotted line is a cover for protecting the cylindrical window 26 from the outside. 【0036】上記した構成において、図示しない搬送機構によってウェーハWを搬送口(図示せず)から処理室12に搬入する。 [0036] In the configuration described above will be loaded into the processing chamber 12 to the wafer W by the transport mechanism (not shown) from the transfer port (not shown). 温度調整機構によって加熱したサセプタ22上に載置して、ウェーハWを所定温度に加熱する。 It is placed on the susceptor 22 heated by the temperature adjustment mechanism to heat the wafer W to a predetermined temperature. 加熱後、図示しない排気ポンプで排気口23から処理容器11内の処理室12及びプラズマ室14を真空排気して、所定の低圧にする。 After heating, the treatment chamber 12 and the plasma chamber 14 in the processing chamber 11 from the exhaust port 23 by the exhaust pump (not shown) is evacuated to a predetermined low pressure. プラズマ室14内にガス導入配管28を経由してその導入口から一定流量の反応性ガスをプラズマ室14の中央に吹出す。 Through the gas introduction pipe 28 into the plasma chamber 14 blowing a reactive gas at a constant flow rate from the inlet to the center of the plasma chamber 14. 吹出されたガスはガス分散板18によって遮られて、プラズマ室14全体に広がる。 Blown gas is blocked by the gas distribution plate 18, spread throughout the plasma chamber 14. 処理室12及びプラズマ室14の圧力を図示しない圧力制御機構で所定の値に設定した後、蓋体1 After setting to a predetermined value by the pressure control mechanism (not shown) the pressure of the processing chamber 12 and the plasma chamber 14, the lid 1
5の円筒状窓26に装着した誘導コイル29に高周波電力を印加する。 The induction coil 29 mounted on the cylindrical window 26 of the 5 high-frequency power is applied. 広がったガスが電磁誘導を受けて励起されて、円筒状窓26に沿ったプラズマ室14の内周に環状のプラズマ10が生成される。 Spread gas is excited by the electromagnetic induction, plasma chamber annular plasma 10 on the inner periphery of the 14 along the cylindrical window 26 is generated. この環状のプラズマ1 The annular plasma 1
0により活性化されたガス(活性種)は、ガス分散板1 0 by activated gas (activated species), the gas distribution plate 1
8の分散孔17を通過しバッファ室19に送られる。 It passes through the distribution holes 17 of 8 is sent to the buffer chamber 19. さらに活性種はバッファ室19からガスシャワー板21のシャワー孔20を経由して、処理室12に均一に供給されてる。 Further active species via the shower holes 20 of the gas shower plate 21 from the buffer chamber 19, and is uniformly supplied into the processing chamber 12. 供給された活性種はウェーハWに到達してウェーハ表面を処理し、処理後、排気口23より排気される。 Supplied active species processes the wafer surface to reach the wafer W, after treatment, it is exhausted from the exhaust port 23. 【0037】実施の形態では、プラズマ室14に円筒状窓26を設けて、プラズマ室14内に環状のプラズマを生成するようにしたので、プラズマを円板状に均一に生成した場合に比べて、活性種の密度が低下する傾向にあるウェーハW周囲の活性種の密度分布を向上させることができる。 [0037] In the embodiment, by a cylindrical window 26 provided in the plasma chamber 14, since to generate an annular plasma into the plasma chamber 14, as compared with the case of uniformly generating plasma in a disc shape can the density of active species thereby improving the density of the active species distribution of the wafer W around tends to decrease. 【0038】ウェーハ中央とウェーハ周辺との処理の均一性(処理の面内均一性)を上げるのは、主にガスシャワー板21とサセプタ22との間の距離Bを変えることにより、ウェーハ面内で処理が均一になる最適なサセプタの位置に調整する。 The processing uniformity between the wafer center and the wafer periphery raise the (in-plane uniformity of treatment), mainly by varying the distance B between the gas shower plate 21 and the susceptor 22, the wafer plane in the process it is adjusted to the optimum position of the susceptor to become uniform. 例えば、ウェーハ中央でのプラズマ処理効率が低ければ、距離Bがまだ狭いことを意味するから、前記距離Bを広げてやる。 For example, the lower the plasma processing efficiency of the wafer center, the distance from B means that still narrow, I'll spread the distance B. そうすれば、ウェーハ周辺の活性種が中央にも拡散するので、均一性が一層向上することになる。 That way, the active species around the wafer to diffuse to the center, so that uniformity is further improved. 【0039】このようにプラズマ10からウェーハWまでの距離Cに対する環状のプラズマ10の活性種の密度分布変化特性により(図7(C)参照)、プラズマ10 [0039] Thus the active species density distribution change characteristics of the annular plasma 10 with respect to the distance C from the plasma 10 to the wafer W (see FIG. 7 (C)), the plasma 10
からウェーハWまでの距離Cが短くても、ウェーハW面内で均一な活性種の密度分布を得ることができる。 Be shorter distance C to the wafer W from, it is possible to obtain a density distribution uniform active species in the wafer W surface. その結果、処理容器11を大型化(大径化、深層化)することなく、ウェーハ面内での均一な処理が可能となる。 As a result, size of the process chamber 11 (large diameter, deep reduction) without, it is possible to uniform processing in the wafer surface. 【0040】また、円筒状窓26内に誘導コイル29を納めるようにしたので、プラズマ処理均一性のためにプラズマ室14の外周にコイルを周単位に設けなければならないものと比べて、周単位に巻く必要がなく、コイル29の長さを適切な長さのところで選定できる。 Further, since be paying an induction coil 29 in a cylindrical window 26, as compared to that for the plasma processing uniformity must be provided coil on the outer periphery of the plasma chamber 14 in the circumferential units, peripheral units there is no need to wind the can select the length of the coil 29 at the appropriate length. したがって、プラズマ室内に注入する高周波電力パワーの設計が容易となる。 Therefore, it is easy to design a high-frequency electric power is injected into the plasma chamber. 【0041】上記プラズマ処理装置では、タンタルオキサイド(Ta 25 )の後処理(Cの除去)、酸化膜の表面窒化、エピタキシャル成長、ドライエッチング、及び処理室のクリーニングなどに適用可能であり、いずれも均一なプラズマを生成していた従来例のものに比べて、 [0041] In the plasma processing apparatus, (removal of C) post-treatment of tantalum oxide (Ta 2 O 5), surface nitriding, epitaxial growth of the oxide film is applicable, such as cleaning of the dry etching, and the processing chamber, any compared with the conventional it was also generates a uniform plasma example,
処理効率が向上し、且つ面内均一性も改善することができる。 Improve processing efficiency, and can be plane uniformity also improves. 【0042】ここで、上記タンタルオキサイド(Ta 2 [0042] Here, the tantalum oxide (Ta 2
5 )の後処理(Cの除去)とは、例えば、64メガビットのDRAM以降の半導体製造プロセスにおいて、キャパシタ部の絶縁膜として用いられるタンタルオキサイド膜のリーク電流低減のために、膜表面近傍に存在するカーボン(C)を除去するプロセスである。 O 5) and post-treatment (removal of C) is, for example, in the 64 Mbit DRAM subsequent semiconductor manufacturing process, for reducing leakage current of tantalum oxide film used as the insulating film of the capacitor part, in the vicinity of the film surface the process of removing carbon (C) present. 除去条件は、 圧力 1〜100Pa 被処理基板温度 300〜400℃ であり、反応ガスは酸素(O 2 )が一般的で、プラズマで活性化された酸素の活性種(O * )がウェーハWの表面に到達し、タンタルオキサイド膜表面のカーボンと反応してこれを除去する。 Removal condition is the pressure 1~100Pa target substrate temperature 300 to 400 ° C., the reaction gas is oxygen (O 2) is common, active species of activated oxygen plasma (O *) is the wafer W reaches the surface, to remove it reacts with the carbon of the tantalum oxide film surface. なお、圧力によって酸素の活性種の生成量や寿命が変るので、酸素ガスの供給量と圧力を排気ポンプの能力の範囲で適切に設定する。 Since the active species generation amount and life of oxygen is changed by a pressure, appropriately set the supply amount and the pressure of the oxygen gas in the range of capacity of the exhaust pump. 【0043】また、特にリモートプラズマ処理の他の例として、酸化膜表面の窒化がある。 [0043] Further, particularly another example of a remote plasma treatment, there is a nitride oxide film surface. 因みに、このリモートプラズマによる酸化膜表面の窒化の条件例を示せば下記の通りである。 Incidentally, as follows if Shimese conditions examples nitride oxide film surface by the remote plasma. 【0044】 NH 3流量 300sccm 圧力 30Pa 被処理基板温度 400℃ RF電力 1000W 処理時間 5分酸化膜表面のSIMS(Secondary Ionization Mass Sp [0044] the flow rate of NH 3 300sccm pressure 30Pa target substrate temperature 400 ° C. RF power 1000W treatment time 5 minutes oxide film surface SIMS (Secondary Ionization Mass Sp
ectrometer)分析を行うと、窒素原子の濃度を測定することができる。 Doing Ectrometer) analysis, it can measure the concentration of nitrogen atoms. 【0045】図1の実施の形態による装置のものでは、 The intended device according to the embodiment of FIG. 1,
ウェーハをプラズマから90mm離して(図1における距離C)処理を行うと、窒素原子の濃度は約50%となる。 The wafer away 90mm from the plasma when performing processing (distance C in FIG. 1), the concentration of nitrogen atoms is about 50%. これに対して400mm離して処理すると窒素原子濃度は10%以下まで減少する。 Treatment apart 400mm contrast nitrogen concentration is reduced to 10% or less. また、均一なプラズマを生成する従来例のものでは、活性種の密度分布を均一化するために要するプラズマとウェーハ間の距離が20 Also, in the conventional example of generating a uniform plasma, the distance between the plasma and the wafer required to homogenize the density distribution of the active species 20
0mm以上あったのに対して、環状のプラズマを生成する実施の形態のものでは、活性種の密度分布を均一化するために要するプラズマとウェーハ間の距離を、最少3 Whereas there was more than 0 mm, intended embodiment for generating the annular plasma, the distance between the plasma and the wafer required to homogenize the density distribution of the active species, minimum 3
0mm程度まで近づけることができるため、活性種の密度の低下を抑えてリモートプラズマ処理の効果を著しく向上できる。 It is possible to close to about 0 mm, significantly can be improved effect of remote plasma treatment while suppressing a decrease in the density of the active species. 【0046】また、従来例のようにバッファ室の中央に点状プラズマを形成すると、被処理基板が、例えばφ2 [0046] Further, by forming the dot-shaped plasma in the center of the buffer chamber as in the conventional example, a substrate to be processed, for example φ2
00mmのシリコンウェーハの場合、プラズマからシリコンウェーハまでの経路で100mmの経路差があるため、シリコンウェーハの中心部に対して端部では処理の効果が相当小さくなっていた。 For silicon wafers 300 mm, because of the path difference of 100mm in route to the silicon wafer from the plasma, the effect of treatment at the end had become substantially smaller with respect to the center of the silicon wafer. これに対して、本実施の形態では経路差による効果の差はほとんど解消される。 In contrast, the difference between the effect of the path difference in this embodiment is almost eliminated. 【0047】図2は第2の実施の形態によるプラズマ処理装置を示す。 [0047] Figure 2 illustrates a plasma processing apparatus according to the second embodiment. 図1に示す第1の実施の形態によるプラズマ処理装置と異なる点は、図1のものがドーム状の蓋体15に円筒状窓26を設けているのに対し、図2のものは平板状の蓋体35にプラズマ室14側に凸状の環状窓36を設けている点である。 The plasma processing apparatus differs from the first embodiment shown in FIG. 1, while those of Figure 1 are provided with a cylindrical window 26 in a dome-shaped lid 15, that of Figure 2 is flat it is that the lid 35 has a convex annular window 36 provided in the plasma chamber 14 side. 【0048】蓋体35内のプラズマ室14には、蓋体3 [0048] in plasma chamber 14 of the lid 35, the lid body 3
5の上部中央にガス導入口38が設けられ、プラズマ室14の中央に矢印で示すようにガスを導入するようになっている。 The top center of the 5 gas inlet 38 is provided, so as to introduce the gas as indicated by the arrow in the center of the plasma chamber 14. 【0049】具体的には、プラズマ室14を形成する蓋体35は、ドーム状ではなく、平板状としてある。 [0049] More specifically, the lid 35 to form a plasma chamber 14 is not domed, there as flat. 平板状としたのは強度を確保するためである。 It was a flat is to secure the strength. 蓋体35の平板状をした天井は、電磁誘導をプラズマ室14に生じさせるために誘電体カバー34で覆われている。 Ceiling and the plate-shaped lid member 35 is covered with the dielectric cover 34 to cause the electromagnetic induction plasma chamber 14. この蓋体35に環状の開口を設け、この開口に環状窓36を嵌め込む。 This lid 35 is provided an annular opening, fitting the annular window 36 in the opening. 環状窓36はプラズマ室14の上部にプラズマ室14内側へ凸状に突き出すように設けるとともに、プラズマ室14外側に凹部37を有する。 With annular window 36 is provided so as to project convexly into the plasma chamber 14 inside the top of the plasma chamber 14 has a plasma chamber 14 recess 37 on the outside. 環状窓36の凹部37に沿って、プラズマ室14に向かって高周波電力を導入する誘導コイル29を環状に装着して、プラズマ室14内に突出した環状窓36の内側に沿って環状のプラズマ10を生成する。 Along the recess 37 of the annular window 36, the induction coil 29 for introducing the high-frequency power was mounted on an annular toward the plasma chamber 14, an annular plasma 10 along the inside of the annular window 36 that protrudes into the plasma chamber 14 to generate. 【0050】図中、符号39は蓋体35の環状窓36で区画形成された中央部を上部から支持する蓋体支持カバーである。 [0050] In the figure, reference numeral 39 is a lid support cover for supporting a central portion which is defined and formed in an annular window 36 of the cover 35 from the top. また、点線で示した符号32は、環状窓36 Reference numeral 32 shown in dotted lines, circular windows 36
を外部から保護するためのカバーである。 Which is a cover to protect from the outside. 【0051】このようにプラズマ室14内に突出した環状窓36の内側に沿って環状のプラズマ10を生成しても、円筒状窓の場合と同様に活性種の密度の均一化が図れる。 [0051] Thus even along the inside of the annular window 36 that protrudes into the plasma chamber 14 generates an annular plasma 10, when the cylindrical window as well as uniformity of the density of the active species can be achieved. 【0052】図3は第3の実施の形態によるプラズマ処理装置を示す。 [0052] Figure 3 illustrates a plasma processing apparatus according to the third embodiment. 図2に示す第2の実施の形態では、平板状の蓋体35にプラズマ室14側に凸状の環状窓36を設けていたが、図3に示す第3の実施の形態では、平板状の蓋体35にプラズマ室14側に凹状の環状窓46を設けている。 In the second embodiment shown in FIG. 2, it had a convex circular window 36 provided in the plate-shaped lid member 35 in the plasma chamber 14 side, in the third embodiment shown in FIG. 3, tabular It is provided a concave annular window 46 of the lid 35 to the plasma chamber 14 side. 【0053】具体的には、窓を環状窓46で構成し、該環状窓46はプラズマ室14の上部にプラズマ室14外側へ凸状に突き出し、従ってプラズマ室14側に凹状に設けられることとなり、プラズマ室14内側に凹部47 [0053] More specifically, the windows constituted by an annular window 46, the annular window 46 protrudes convexly to the plasma chamber 14 outside the upper portion of the plasma chamber 14, thus becomes possible provided concavely plasma chamber 14 side the plasma chamber 14 recess 47 on the inside
を形成するよう構成する。 Configured to form a. 前記環状窓46の外周に沿って、プラズマ室14に向かって高周波電力を導入する誘導コイル29を装着し、前記環状窓46の内側の凹部4 Along the outer circumference of the annular window 46, towards the plasma chamber 14 is mounted an induction coil 29 for introducing the high-frequency power, the concave portion 4 inside of the annular window 46
7に環状のプラズマ10を生成する。 7 to generate the annular plasma 10. 【0054】前記凹部47に沿って環状のプラズマ10 [0054] annular plasma 10 along the recess 47
を生成すると、プラズマ10からの距離で、活性種の密度が均一になる位置がある。 When you generate, at a distance from the plasma 10, there is a position where the density of active species is uniform. したがって、活性種の密度が均一になる位置にウェーハWを配置すると、処理容器11を大型化することなく、ウェーハ面内でのより均一な処理が可能となる。 Therefore, placing the wafer W to a position where the density of active species is uniform, the processing chamber 11 without increasing the size of, thereby enabling more uniform treatment in the wafer surface. 【0055】なお、上述した第3の実施の形態の場合でも、比較的狭い空間である凹部47を形成している環状窓46の外周に沿って誘導コイル29を装着すればよく、従来技術の装置のようにプラズマ室全外周にコイルを装着しなくとも良く、装置が簡略的にもなる。 [0055] Even in the third embodiment described above, may be attached to the induction coil 29 along the outer circumference of the annular window 46 forming the recess 47 is a relatively narrow space, the prior art may not fitted with a coil in the plasma chamber entire periphery as devices, apparatus also becomes simplified. 【0056】図4は、第4の実施の形態によるプラズマ処理装置を示し、図1に示す実施の形態の変形例である。 [0056] Figure 4 illustrates a plasma processing apparatus according to the fourth embodiment is a modification of the embodiment shown in FIG. 図1のものと異なる点は、蓋体15と誘電体カバー24との2つの部材からプラズマ室14を構成していたのを、蓋体自体を誘電体製ドーム45で構成して、プラズマ室14を単体部材で構成した点である。 Those different from FIG. 1, that the constituted the plasma chamber 14 from two members of the lid 15 and the dielectric cover 24, constitutes a lid itself with a dielectric made of a dome 45, the plasma chamber 14 in that configured at unitary member. 蓋体を直接誘電体製のドーム45で構成すると、壁面を薄くしても強度が上がり、製作費用が低減し、部品点数も少なくできる。 When constituting the lid directly dielectric made of the dome 45, increases strength even when thin walls, manufacturing cost is reduced, the number of parts can be reduced. 【0057】図1〜図4に示した発明の実施例について、プラズマから所定距離はなれたウェーハ面内のリモートプラズマ処理効果は図5のように推察される。 [0057] For embodiments of the invention shown in FIGS. 1 to 4, remote plasma treatment effect in the wafer plane accustomed predetermined distance from the plasma is assumed as in FIG. 図5 Figure 5
において、参考までに上げた点状プラズマ(図7 In a point-like plasma raised for reference (FIG. 7
(B))では、プラズマ処理効果は、分布曲線54に示すように中央部が最もプラズマ処理効果が大きく、周辺に向かって急激に減少する。 In (B)), the plasma treatment effect is most plasma treatment effect is central as shown in distribution curve 54 is large, rapidly decreases towards the periphery. また全体的にプラズマ処理効果が小さい。 The small overall plasma treatment effect. 【0058】第1の実施の形態、第2の実施の形態、及び第4の実施の形態の環状プラズマ(図7(C))では、分布曲線52に示すように、中心部と周辺部のプラズマ処理効果が少し小さくなるが、端部の効果は均一型である図7(A)のものと比較して、それほど小さくならない。 [0058] The first embodiment, in the second embodiment, and fourth embodiment of the annular plasma (FIG. 7 (C)), as shown in distribution curve 52, the central portion and the peripheral portion Although the plasma treatment effect is slightly reduced, the effect of the end as compared to that of FIG. 7 (a) is a uniform type, not so small. これは、ウェーハW上のプラズマ室14内に突き出た窓の凹部27、37から高周波電力をプラズマ室14内に導入して、環状のプラズマ10を生成するので、ウェーハ周囲のプラズマ処理効率を向上させることができるからである。 This is because the window recess 27, 37 protruding into the plasma chamber 14 on the wafer W by introducing high frequency power to the plasma chamber 14, because it produces an annular plasma 10, improve the plasma processing efficiency of around wafer This is because it is possible to. この装置で、ウェーハWの中央と周辺部の処理均一性は、主にガスシャワー板21とサセプタ22との間の距離B(図1参照)を変えることにより調整して向上できる。 In this device, the processing uniformity of the central and peripheral portion of the wafer W may mainly improved by adjusted by changing the distance between the gas shower plate 21 and the susceptor 22 B (see FIG. 1). 例えば、ウェーハW中央でプラズマ処理効率が低ければ、上記距離Bを広げれば、ウェーハ周辺のプラズマが中央にも拡散し、均一性が向上する。 For example, the lower the plasma treatment efficiency at the wafer W center, should widen the distance B, plasma near the wafer be diffuse in the center, the uniformity is improved. 【0059】第3の実施の形態の環状プラズマ(図7 [0059] annular plasma of the third embodiment (FIG. 7
(C))では、第1、第2、第4の実施の形態と比べて、分布曲線53に示すように周辺部の効果がやや大きくなる。 In (C)), first, compared to the second, fourth embodiment, the effect of the peripheral portion as shown in distribution curve 53 is slightly larger. 【0060】上述した図2の凹環状窓36をもつ第2の実施の形態と、図3の凸環状窓46をもつ第3の実施形態とでは、プラズマ処理効果に若干の差が生じている。 [0060] the second embodiment having a concave annular window 36 of FIG. 2 described above, in the third embodiment with the convex annular window 46 in FIG. 3, a slight difference occurs in the plasma treatment effect .
この差が生じる理由を図6を用いて説明する。 Why this difference occurs will be described with reference to FIG. 図6 Figure 6
(A)は凹環状窓36を設けた場合、図6(B)は凸環状窓46を設けた場合の活性種の密度分布をそれぞれ示す。 (A) is the case of providing the concave annular window 36 and FIG. 6 (B) shows the active species density distribution obtained when a convex circular windows 46, respectively. 図6(A)では、プラズマ10の環の内周に重なりが生じて、プラズマ環の形が明確にならないため、活性種の密度分布が、プラズマとウェーハ間の距離が大きくならないうちに直ぐに凸形になり、距離を大きくしても活性種の密度分布が均一になる位置がなかなか存在しない。 In FIG. 6 (A), with overlap occurs on the inner periphery of the ring of the plasma 10, since the shape of the plasma ring is not clear, the density distribution of the active species, immediately convex while the distance between the plasma and the wafer does not increase takes the form, it does not easily exist active species density distribution becomes uniform position even by increasing the distance. これに対して図6(B)では、プラズマ10の環に重なりが生じず、プラズマ環の形が明確になっているため、ある程度距離をおくと活性種の密度が均一になる位置(c)がある。 6 contrast (B), without overlap occurs in the ring of the plasma 10, since the shape of the plasma ring is clarified, the uniform the density of the active species Placing a certain length position (c) there is. したがって、プラズマ処理効果の均一性は第2の実施の形態よりも第3の実施の形態の方が良くなる。 Therefore, uniformity of the plasma treatment effect is better towards the third embodiment than the second embodiment. 【0061】 【発明の効果】本発明は、プラズマ室に設けた凸又は凹状の窓からプラズマ室に向かって高周波電力を導入してプラズマ室に環状プラズマを生成するようにしたので、 [0061] According to the present invention, since to generate a cyclic plasma in the plasma chamber by introducing high frequency power towards the convex or concave window provided in the plasma chamber into the plasma chamber,
従来のようにプラズマ室外周にコイルを設けて均一状のプラズマを生成するようにしたものと比べて、活性種の密度分布の均一化が図れ、被処理基板の面内処理の均一性を改善できる。 Compared to that so as to produce a uniform shaped plasma coil provided in the plasma chamber outer periphery as in the prior art, Hakare the uniformity of the density of the active species distribution, improving the uniformity of the in-plane processing of the substrate it can.

【図面の簡単な説明】 【図1】第1の実施の形態によるプラズマ処理装置の概略断面図である。 BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic cross-sectional view of a plasma processing apparatus according to the first embodiment. 【図2】第2の実施の形態によるプラズマ処理装置の概略断面図である。 2 is a schematic cross-sectional view of a plasma processing apparatus according to the second embodiment. 【図3】第3の実施の形態によるプラズマ処理装置の概略断面図である。 3 is a schematic cross-sectional view of a plasma processing apparatus according to the third embodiment. 【図4】第4の実施の形態によるプラズマ処理装置の概略断面図である。 4 is a schematic cross-sectional view of a plasma processing apparatus according to the fourth embodiment. 【図5】実施の形態と従来例とを比較したリモートプラズマ処理効果の予想分布特性図である。 Figure 5 is a predicted distribution characteristic diagram of the remote plasma treatment effect compared with the conventional example and the embodiment. 【図6】実施の形態による凹環状窓と凸環状窓とにおけるプラズマ分布密度の違いを示した説明図である。 6 is an explanatory view showing a difference of plasma distribution density in the concave annular window and the convex annular window according to the embodiment. 【図7】各種プラズマ形状の距離に応じた活性種の密度分布特性図である。 7 is a density distribution characteristic diagram of the active species in accordance with the distance the various plasma shape. 【図8】実施の形態による環状プラズマを生成するための窓構造を示す図である。 8 is a diagram illustrating a window structure for generating a cyclic plasma according to the embodiment. 【符号の説明】 10 環状のプラズマ11 処理容器12 処理室14 プラズマ室26 円筒状窓29 誘導コイル30 誘導結合型プラズマ源W ウェーハ(被処理基板) [Description of reference numerals] 10 annular plasma 11 processing chamber 12 the processing chamber 14 plasma chamber 26 cylindrical window 29 induction coil 30 inductively coupled plasma source W wafer (substrate to be processed)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl. 7識別記号 FI テーマコート゛(参考) H05H 1/46 H01L 21/302 N Fターム(参考) 4G075 AA24 BA06 BA10 BC05 BC06 DA02 EB44 FA05 4K030 KA30 5F004 AA01 AA09 AA15 BA03 BA20 BB13 BB32 BD04 5F045 AA08 AA20 AB33 AC12 AF08 BB02 DP03 EC01 EE06 EH11 ────────────────────────────────────────────────── ─── of the front page continued (51) Int.Cl. 7 identification mark FI theme Court Bu (reference) H05H 1/46 H01L 21/302 N F-term (reference) 4G075 AA24 BA06 BA10 BC05 BC06 DA02 EB44 FA05 4K030 KA30 5F004 AA01 AA09 AA15 BA03 BA20 BB13 BB32 BD04 5F045 AA08 AA20 AB33 AC12 AF08 BB02 DP03 EC01 EE06 EH11

Claims (1)

  1. 【特許請求の範囲】 【請求項1】プラズマを生成するプラズマ室と被処理基板を処理する処理室とを内部に形成した処理容器と、 前記処理容器のプラズマ室に、プラズマ室側に凸又は凹状に形成した窓と、 前記窓に設けられる誘導コイルを有し、該誘導コイルの電磁誘導により前記プラズマ室に供給されるガスをプラズマ励起して活性種を生成する誘導結合型プラズマ源とを備えて、前記プラズマ室で生成された活性種を前記処理室内に供給して被処理基板を処理するプラズマ処理装置。 And [Claims 1. A processing chamber and the plasma chamber for generating a plasma and processing chamber for processing a substrate to be processed is formed therein, the plasma chamber of the processing container, convex or plasma chamber side and a window formed in a concave shape, has an induction coil provided in the window, the inductively coupled plasma source gas supplied to the plasma chamber by electromagnetic induction of the induction coil by plasma excitation generating the active species provided, the plasma processing apparatus for processing a target substrate by supplying active species generated in the plasma chamber to the processing chamber.
JP2001250602A 2001-08-21 2001-08-21 Plasma treatment equipment Pending JP2003059914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001250602A JP2003059914A (en) 2001-08-21 2001-08-21 Plasma treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001250602A JP2003059914A (en) 2001-08-21 2001-08-21 Plasma treatment equipment

Publications (1)

Publication Number Publication Date
JP2003059914A true JP2003059914A (en) 2003-02-28

Family

ID=19079390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001250602A Pending JP2003059914A (en) 2001-08-21 2001-08-21 Plasma treatment equipment

Country Status (1)

Country Link
JP (1) JP2003059914A (en)

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100725037B1 (en) 2005-01-21 2007-06-07 세메스 주식회사 Apparatus and method for treating semiconductor device with plasma
US7767024B2 (en) 2004-02-26 2010-08-03 Appplied Materials, Inc. Method for front end of line fabrication
US7780793B2 (en) 2004-02-26 2010-08-24 Applied Materials, Inc. Passivation layer formation by plasma clean process to reduce native oxide growth
US8801952B1 (en) 2013-03-07 2014-08-12 Applied Materials, Inc. Conformal oxide dry etch
US8895449B1 (en) 2013-05-16 2014-11-25 Applied Materials, Inc. Delicate dry clean
US8921234B2 (en) 2012-12-21 2014-12-30 Applied Materials, Inc. Selective titanium nitride etching
US8927390B2 (en) 2011-09-26 2015-01-06 Applied Materials, Inc. Intrench profile
US8951429B1 (en) 2013-10-29 2015-02-10 Applied Materials, Inc. Tungsten oxide processing
US8956980B1 (en) 2013-09-16 2015-02-17 Applied Materials, Inc. Selective etch of silicon nitride
US8969212B2 (en) 2012-11-20 2015-03-03 Applied Materials, Inc. Dry-etch selectivity
US8975152B2 (en) 2011-11-08 2015-03-10 Applied Materials, Inc. Methods of reducing substrate dislocation during gapfill processing
US8980763B2 (en) 2012-11-30 2015-03-17 Applied Materials, Inc. Dry-etch for selective tungsten removal
US8999856B2 (en) 2011-03-14 2015-04-07 Applied Materials, Inc. Methods for etch of sin films
TWI480919B (en) * 2011-11-04 2015-04-11 Psk Inc
US9023734B2 (en) 2012-09-18 2015-05-05 Applied Materials, Inc. Radical-component oxide etch
US9023732B2 (en) 2013-03-15 2015-05-05 Applied Materials, Inc. Processing systems and methods for halide scavenging
US9034770B2 (en) 2012-09-17 2015-05-19 Applied Materials, Inc. Differential silicon oxide etch
US9040422B2 (en) 2013-03-05 2015-05-26 Applied Materials, Inc. Selective titanium nitride removal
US9064815B2 (en) 2011-03-14 2015-06-23 Applied Materials, Inc. Methods for etch of metal and metal-oxide films
US9064816B2 (en) 2012-11-30 2015-06-23 Applied Materials, Inc. Dry-etch for selective oxidation removal
US9111877B2 (en) 2012-12-18 2015-08-18 Applied Materials, Inc. Non-local plasma oxide etch
US9117855B2 (en) 2013-12-04 2015-08-25 Applied Materials, Inc. Polarity control for remote plasma
US9114438B2 (en) 2013-05-21 2015-08-25 Applied Materials, Inc. Copper residue chamber clean
US9132436B2 (en) 2012-09-21 2015-09-15 Applied Materials, Inc. Chemical control features in wafer process equipment
US9136273B1 (en) 2014-03-21 2015-09-15 Applied Materials, Inc. Flash gate air gap
US9159606B1 (en) 2014-07-31 2015-10-13 Applied Materials, Inc. Metal air gap
US9165786B1 (en) 2014-08-05 2015-10-20 Applied Materials, Inc. Integrated oxide and nitride recess for better channel contact in 3D architectures
US9190293B2 (en) 2013-12-18 2015-11-17 Applied Materials, Inc. Even tungsten etch for high aspect ratio trenches
US9236265B2 (en) 2013-11-04 2016-01-12 Applied Materials, Inc. Silicon germanium processing
US9236266B2 (en) 2011-08-01 2016-01-12 Applied Materials, Inc. Dry-etch for silicon-and-carbon-containing films
US9245762B2 (en) 2013-12-02 2016-01-26 Applied Materials, Inc. Procedure for etch rate consistency
US9263278B2 (en) 2013-12-17 2016-02-16 Applied Materials, Inc. Dopant etch selectivity control
US9287134B2 (en) 2014-01-17 2016-03-15 Applied Materials, Inc. Titanium oxide etch
US9287095B2 (en) 2013-12-17 2016-03-15 Applied Materials, Inc. Semiconductor system assemblies and methods of operation
US9293568B2 (en) 2014-01-27 2016-03-22 Applied Materials, Inc. Method of fin patterning
US9299575B2 (en) 2014-03-17 2016-03-29 Applied Materials, Inc. Gas-phase tungsten etch
US9299538B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9299537B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9299582B2 (en) 2013-11-12 2016-03-29 Applied Materials, Inc. Selective etch for metal-containing materials
US9309598B2 (en) 2014-05-28 2016-04-12 Applied Materials, Inc. Oxide and metal removal
US9324576B2 (en) 2010-05-27 2016-04-26 Applied Materials, Inc. Selective etch for silicon films
US9355856B2 (en) 2014-09-12 2016-05-31 Applied Materials, Inc. V trench dry etch
US9362130B2 (en) 2013-03-01 2016-06-07 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
US9373517B2 (en) 2012-08-02 2016-06-21 Applied Materials, Inc. Semiconductor processing with DC assisted RF power for improved control
US9378978B2 (en) 2014-07-31 2016-06-28 Applied Materials, Inc. Integrated oxide recess and floating gate fin trimming
US9378969B2 (en) 2014-06-19 2016-06-28 Applied Materials, Inc. Low temperature gas-phase carbon removal
US9385028B2 (en) 2014-02-03 2016-07-05 Applied Materials, Inc. Air gap process
US9390937B2 (en) 2012-09-20 2016-07-12 Applied Materials, Inc. Silicon-carbon-nitride selective etch
US9396989B2 (en) 2014-01-27 2016-07-19 Applied Materials, Inc. Air gaps between copper lines
US9406523B2 (en) 2014-06-19 2016-08-02 Applied Materials, Inc. Highly selective doped oxide removal method
US9425058B2 (en) 2014-07-24 2016-08-23 Applied Materials, Inc. Simplified litho-etch-litho-etch process
US9493879B2 (en) 2013-07-12 2016-11-15 Applied Materials, Inc. Selective sputtering for pattern transfer
US9496167B2 (en) 2014-07-31 2016-11-15 Applied Materials, Inc. Integrated bit-line airgap formation and gate stack post clean
US9553102B2 (en) 2014-08-19 2017-01-24 Applied Materials, Inc. Tungsten separation
US9576809B2 (en) 2013-11-04 2017-02-21 Applied Materials, Inc. Etch suppression with germanium
US9580338B2 (en) 2013-11-18 2017-02-28 Panasonic Intellectual Property Management Co., Ltd. Liquid treatment apparatus and liquid treatment method
US9591738B2 (en) 2008-04-03 2017-03-07 Novellus Systems, Inc. Plasma generator systems and methods of forming plasma
US9659753B2 (en) 2014-08-07 2017-05-23 Applied Materials, Inc. Grooved insulator to reduce leakage current
US9708201B2 (en) 2013-11-18 2017-07-18 Panasonic Intellectual Property Management Co., Ltd. Liquid treatment apparatus
US9773648B2 (en) 2013-08-30 2017-09-26 Applied Materials, Inc. Dual discharge modes operation for remote plasma
US9828261B2 (en) 2013-11-18 2017-11-28 Panasonic Intellectual Property Management Co., Ltd. Liquid treatment unit, toilet seat with washer, washing machine, and liquid treatment apparatus
US9847289B2 (en) 2014-05-30 2017-12-19 Applied Materials, Inc. Protective via cap for improved interconnect performance
JP2018014337A (en) * 2013-09-06 2018-01-25 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Inductively Coupled Plasma (icp) reactor power deposition control
US9903020B2 (en) 2014-03-31 2018-02-27 Applied Materials, Inc. Generation of compact alumina passivation layers on aluminum plasma equipment components
US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations

Cited By (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7767024B2 (en) 2004-02-26 2010-08-03 Appplied Materials, Inc. Method for front end of line fabrication
US7780793B2 (en) 2004-02-26 2010-08-24 Applied Materials, Inc. Passivation layer formation by plasma clean process to reduce native oxide growth
US8343307B2 (en) 2004-02-26 2013-01-01 Applied Materials, Inc. Showerhead assembly
KR100725037B1 (en) 2005-01-21 2007-06-07 세메스 주식회사 Apparatus and method for treating semiconductor device with plasma
US9591738B2 (en) 2008-04-03 2017-03-07 Novellus Systems, Inc. Plasma generator systems and methods of forming plasma
US9324576B2 (en) 2010-05-27 2016-04-26 Applied Materials, Inc. Selective etch for silicon films
US8999856B2 (en) 2011-03-14 2015-04-07 Applied Materials, Inc. Methods for etch of sin films
US9064815B2 (en) 2011-03-14 2015-06-23 Applied Materials, Inc. Methods for etch of metal and metal-oxide films
US9236266B2 (en) 2011-08-01 2016-01-12 Applied Materials, Inc. Dry-etch for silicon-and-carbon-containing films
US9012302B2 (en) 2011-09-26 2015-04-21 Applied Materials, Inc. Intrench profile
US8927390B2 (en) 2011-09-26 2015-01-06 Applied Materials, Inc. Intrench profile
TWI480919B (en) * 2011-11-04 2015-04-11 Psk Inc
US8975152B2 (en) 2011-11-08 2015-03-10 Applied Materials, Inc. Methods of reducing substrate dislocation during gapfill processing
US9373517B2 (en) 2012-08-02 2016-06-21 Applied Materials, Inc. Semiconductor processing with DC assisted RF power for improved control
US9887096B2 (en) 2012-09-17 2018-02-06 Applied Materials, Inc. Differential silicon oxide etch
US9034770B2 (en) 2012-09-17 2015-05-19 Applied Materials, Inc. Differential silicon oxide etch
US9023734B2 (en) 2012-09-18 2015-05-05 Applied Materials, Inc. Radical-component oxide etch
US9390937B2 (en) 2012-09-20 2016-07-12 Applied Materials, Inc. Silicon-carbon-nitride selective etch
US9132436B2 (en) 2012-09-21 2015-09-15 Applied Materials, Inc. Chemical control features in wafer process equipment
US8969212B2 (en) 2012-11-20 2015-03-03 Applied Materials, Inc. Dry-etch selectivity
US9064816B2 (en) 2012-11-30 2015-06-23 Applied Materials, Inc. Dry-etch for selective oxidation removal
US8980763B2 (en) 2012-11-30 2015-03-17 Applied Materials, Inc. Dry-etch for selective tungsten removal
US9111877B2 (en) 2012-12-18 2015-08-18 Applied Materials, Inc. Non-local plasma oxide etch
US8921234B2 (en) 2012-12-21 2014-12-30 Applied Materials, Inc. Selective titanium nitride etching
US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US9362130B2 (en) 2013-03-01 2016-06-07 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
US9040422B2 (en) 2013-03-05 2015-05-26 Applied Materials, Inc. Selective titanium nitride removal
US9607856B2 (en) 2013-03-05 2017-03-28 Applied Materials, Inc. Selective titanium nitride removal
US8801952B1 (en) 2013-03-07 2014-08-12 Applied Materials, Inc. Conformal oxide dry etch
US9093390B2 (en) 2013-03-07 2015-07-28 Applied Materials, Inc. Conformal oxide dry etch
US9093371B2 (en) 2013-03-15 2015-07-28 Applied Materials, Inc. Processing systems and methods for halide scavenging
US9991134B2 (en) 2013-03-15 2018-06-05 Applied Materials, Inc. Processing systems and methods for halide scavenging
US9184055B2 (en) 2013-03-15 2015-11-10 Applied Materials, Inc. Processing systems and methods for halide scavenging
US9023732B2 (en) 2013-03-15 2015-05-05 Applied Materials, Inc. Processing systems and methods for halide scavenging
US9153442B2 (en) 2013-03-15 2015-10-06 Applied Materials, Inc. Processing systems and methods for halide scavenging
US8895449B1 (en) 2013-05-16 2014-11-25 Applied Materials, Inc. Delicate dry clean
US9114438B2 (en) 2013-05-21 2015-08-25 Applied Materials, Inc. Copper residue chamber clean
US9493879B2 (en) 2013-07-12 2016-11-15 Applied Materials, Inc. Selective sputtering for pattern transfer
US9773648B2 (en) 2013-08-30 2017-09-26 Applied Materials, Inc. Dual discharge modes operation for remote plasma
JP2018014337A (en) * 2013-09-06 2018-01-25 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Inductively Coupled Plasma (icp) reactor power deposition control
US9209012B2 (en) 2013-09-16 2015-12-08 Applied Materials, Inc. Selective etch of silicon nitride
US8956980B1 (en) 2013-09-16 2015-02-17 Applied Materials, Inc. Selective etch of silicon nitride
US8951429B1 (en) 2013-10-29 2015-02-10 Applied Materials, Inc. Tungsten oxide processing
US9236265B2 (en) 2013-11-04 2016-01-12 Applied Materials, Inc. Silicon germanium processing
US9576809B2 (en) 2013-11-04 2017-02-21 Applied Materials, Inc. Etch suppression with germanium
US9299582B2 (en) 2013-11-12 2016-03-29 Applied Materials, Inc. Selective etch for metal-containing materials
US9711366B2 (en) 2013-11-12 2017-07-18 Applied Materials, Inc. Selective etch for metal-containing materials
US9520303B2 (en) 2013-11-12 2016-12-13 Applied Materials, Inc. Aluminum selective etch
US9580338B2 (en) 2013-11-18 2017-02-28 Panasonic Intellectual Property Management Co., Ltd. Liquid treatment apparatus and liquid treatment method
US9708201B2 (en) 2013-11-18 2017-07-18 Panasonic Intellectual Property Management Co., Ltd. Liquid treatment apparatus
US9828261B2 (en) 2013-11-18 2017-11-28 Panasonic Intellectual Property Management Co., Ltd. Liquid treatment unit, toilet seat with washer, washing machine, and liquid treatment apparatus
US9245762B2 (en) 2013-12-02 2016-01-26 Applied Materials, Inc. Procedure for etch rate consistency
US9117855B2 (en) 2013-12-04 2015-08-25 Applied Materials, Inc. Polarity control for remote plasma
US9263278B2 (en) 2013-12-17 2016-02-16 Applied Materials, Inc. Dopant etch selectivity control
US9287095B2 (en) 2013-12-17 2016-03-15 Applied Materials, Inc. Semiconductor system assemblies and methods of operation
US9190293B2 (en) 2013-12-18 2015-11-17 Applied Materials, Inc. Even tungsten etch for high aspect ratio trenches
US9287134B2 (en) 2014-01-17 2016-03-15 Applied Materials, Inc. Titanium oxide etch
US9396989B2 (en) 2014-01-27 2016-07-19 Applied Materials, Inc. Air gaps between copper lines
US9293568B2 (en) 2014-01-27 2016-03-22 Applied Materials, Inc. Method of fin patterning
US9385028B2 (en) 2014-02-03 2016-07-05 Applied Materials, Inc. Air gap process
US9299575B2 (en) 2014-03-17 2016-03-29 Applied Materials, Inc. Gas-phase tungsten etch
US9299538B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9299537B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9136273B1 (en) 2014-03-21 2015-09-15 Applied Materials, Inc. Flash gate air gap
US9903020B2 (en) 2014-03-31 2018-02-27 Applied Materials, Inc. Generation of compact alumina passivation layers on aluminum plasma equipment components
US9309598B2 (en) 2014-05-28 2016-04-12 Applied Materials, Inc. Oxide and metal removal
US9847289B2 (en) 2014-05-30 2017-12-19 Applied Materials, Inc. Protective via cap for improved interconnect performance
US9378969B2 (en) 2014-06-19 2016-06-28 Applied Materials, Inc. Low temperature gas-phase carbon removal
US9406523B2 (en) 2014-06-19 2016-08-02 Applied Materials, Inc. Highly selective doped oxide removal method
US9425058B2 (en) 2014-07-24 2016-08-23 Applied Materials, Inc. Simplified litho-etch-litho-etch process
US9159606B1 (en) 2014-07-31 2015-10-13 Applied Materials, Inc. Metal air gap
US9496167B2 (en) 2014-07-31 2016-11-15 Applied Materials, Inc. Integrated bit-line airgap formation and gate stack post clean
US9378978B2 (en) 2014-07-31 2016-06-28 Applied Materials, Inc. Integrated oxide recess and floating gate fin trimming
US9165786B1 (en) 2014-08-05 2015-10-20 Applied Materials, Inc. Integrated oxide and nitride recess for better channel contact in 3D architectures
US9659753B2 (en) 2014-08-07 2017-05-23 Applied Materials, Inc. Grooved insulator to reduce leakage current
US9553102B2 (en) 2014-08-19 2017-01-24 Applied Materials, Inc. Tungsten separation
US9355856B2 (en) 2014-09-12 2016-05-31 Applied Materials, Inc. V trench dry etch

Similar Documents

Publication Publication Date Title
US7392759B2 (en) Remote plasma apparatus for processing substrate with two types of gases
CN100385620C (en) Electrode subassembly
US6497783B1 (en) Plasma processing apparatus provided with microwave applicator having annular waveguide and processing method
US5522934A (en) Plasma processing apparatus using vertical gas inlets one on top of another
JP6272934B2 (en) Epitaxial deposition process and apparatus
JP4371442B2 (en) Face plate for supplying gas into the reaction chamber, and a reaction chamber
EP0179665A2 (en) Apparatus and method for magnetron-enhanced plasma-assisted chemical vapor deposition
US20140023794A1 (en) Method And Apparatus For Low Temperature ALD Deposition
CN102005381B (en) Plasma processing apparatus
CN1306566C (en) Plasma Processing device
JP5168907B2 (en) Plasma processing apparatus, plasma processing method and a storage medium
JP4146905B2 (en) Processing equipment
KR100870852B1 (en) In situ wafer heat for reduced backside contamination
US6113984A (en) Gas injection system for CVD reactors
JP3192370B2 (en) The plasma processing apparatus
JP4421305B2 (en) The plasma processing apparatus and plasma processing method
US9443753B2 (en) Apparatus for controlling the flow of a gas in a process chamber
US5411624A (en) Magnetron plasma processing apparatus
JP4849705B2 (en) Plasma processing apparatus, plasma generation introducing member and dielectric
JP4704645B2 (en) Plasma processing system and method
US5861601A (en) Microwave plasma processing apparatus and method
US20020036066A1 (en) Method and apparatus for processing substrates
US20010008798A1 (en) Plasma treatment system and method
JP4191137B2 (en) The cleaning method of a substrate processing apparatus
KR100635975B1 (en) Apparatus and method for plasma treatment