JP2003059914A - Plasma treatment equipment - Google Patents

Plasma treatment equipment

Info

Publication number
JP2003059914A
JP2003059914A JP2001250602A JP2001250602A JP2003059914A JP 2003059914 A JP2003059914 A JP 2003059914A JP 2001250602 A JP2001250602 A JP 2001250602A JP 2001250602 A JP2001250602 A JP 2001250602A JP 2003059914 A JP2003059914 A JP 2003059914A
Authority
JP
Japan
Prior art keywords
plasma
chamber
processing
plasma chamber
window
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001250602A
Other languages
Japanese (ja)
Inventor
Kazuyuki Toyoda
一行 豊田
Masayuki Asai
優幸 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2001250602A priority Critical patent/JP2003059914A/en
Publication of JP2003059914A publication Critical patent/JP2003059914A/en
Pending legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the nonuniformity of substrates to be treated due to the distribution of activated species by producing plasma in annular shape in a plasma chamber. SOLUTION: Single wafer processing substrate processing equipment has a processing chamber 12 and processes wafers W one by one under reduced pressure. To supply activated species produced by remote plasma to a wafer W in the processing chamber 12, a plasma chamber 14 is formed at the upper part of the processing chamber 12 for producing plasma 10. A cylindrical window 26 protruded in convex shape toward the plasma chamber 14 is formed at the upper part of the center of the plasma chamber 14. An induction coil 29 which applies high-frequency power to a recess 27 outside thereof is installed so that plasma in annular shape is produced on the inner circumferential surface of the plasma chamber 14 on the outer circumferential surface of the cylindrical window 26.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明はプラズマ処理装置に
係り、特にシリコン基板やガラス基板表面への薄膜形成
に好適なものに関する。 【0002】 【従来の技術】従来、シャワーヘッドを備えて被処理物
を均一に処理することが可能なプラズマ処理装置とし
て、特開平11−106960号公報に記載された技術
が知られている。これは、真空容器内においてガスを用
いて励起源によりプラズマが生成されるプラズマ室と、
上記真空容器内へ駆動装置によりパルス的に上記ガスを
供給するパルスガスバルブと、パルスガスバルブから供
給されるガスをプラズマ室に導入できる複数の孔を有す
るシャワーヘッドと、上記真空容器内において試料が配
置される処理室と、処理室とプラズマ室との間に設けら
れ、プラズマ室から処理室に連通する孔を有する隔壁板
と、処理室を排気する図示しない真空排気手段とを備え
て構成される。 【0003】これによれり大面積にわたって均一なプラ
ズマを形成し、大口径の被処理物をさらに均一に処理で
き、この均一処理と同時にゴミの発生を低減することが
でき、さらに、処理速度および処理形状の制御ができる
ようになる。 【0004】 【発明が解決しようとする課題】しかしながら、上述し
た従来技術では次のような問題点があった。 (1)プラズマ室を構成する側壁の外周にRFコイルを
装着して、プラズマ室内にプラズマを生成すると、中心
部のプラズマ密度が高くなるため、シャワーヘッドを介
してプラズマ室に均一にガスを供給しても、プラズマ室
の中心部で励起されるガスの密度が高くなるため、プラ
ズマ室の下に設けた隔壁板を通して被処理基板に供給す
る活性種の密度分布も、中心が高く周辺が低くなってし
まう。その結果、被処理基板面上での活性種の密度分布
の均一化が図れず、被処理基板の処理が不均一となる。 【0005】(2)筒形のプラズマ室側壁外周にコイル
を装着しているため、プラズマ処理均一性を確保するた
めには、コイルエンドを側壁外周の途中で終わらすこと
ができず、コイルを周単位に設ける必要があるので、適
切な長さで切れない。 【0006】本発明の課題は、上述した従来技術の問題
点を解消して、活性種の寿命に起因する被処理基板の不
均一性の改善をはかることが可能なプラズマ処理装置を
提供することにある。 【0007】 【課題を解決するための手段】本発明は、プラズマを生
成するプラズマ室と被処理基板を処理する処理室とを内
部に形成した処理容器と、前記処理容器のプラズマ室
に、プラズマ室側に凸又は凹状に形成した窓と、前記窓
に設けられる誘導コイルを有し該誘導コイルの電磁誘導
によりプラズマ室に供給されるガスをプラズマ励起して
活性種を生成する誘導結合型プラズマ源とを備えて、前
記プラズマ室で生成された活性種を前記処理室内に供給
して被処理基板を処理するプラズマ処理装置である。 【0008】プラズマ室の窓に設けた誘導コイルに高周
波電力を印加したうえで、プラズマ室内にガスを導入す
る。プラズマ室内にガスが導入されると、このガスが電
磁誘導を受けて活性化され、前記窓に沿ったプラズマ室
の内周に環状のプラズマが生成される。この環状プラズ
マでガスを励起して活性種を生成する。生成された活性
種は、供給ガスの流れ及び拡散により処理室内の被処理
基板に達する。プラズマ室内で環状のプラズマを生成す
るようにしたので、プラズマを均一に生成した場合に比
べて、密度が低下する傾向にある基板周囲の活性種の密
度を向上させることができる。したがって、プラズマか
ら被処理基板までの距離に対する環状プラズマで生成し
た活性種の密度の変化特性により、プラズマから被処理
基板までの距離が短くても、被処理基板面内で均一な活
性種の密度分布を得ることができる。その結果、処理容
器を大型化することなく、且つ、プラズマ密度を必要以
上に減衰させない状態で被処理基板面内での均一な処理
が可能となる。 【0009】また、上記発明において、前記窓を、前記
プラズマ室の上部中央にプラズマ室内側に凸状に突き出
し、前記プラズマ室外側では凹部を有するように筒状に
構成し、前記プラズマ室外の筒状窓の凹部に、プラズマ
室に向かって高周波電力を導入する前記誘導コイルを設
け、前記プラズマ室内の凸状に突出した筒状窓の外周に
沿って環状のプラズマを生成するとよい。 【0010】プラズマ室に設ける窓を、プラズマ室の上
部中央に筒状に形成するという簡単な構成で、プラズマ
室の内周に環状のプラズマを生成することができ、被処
理基板面内で均一な活性種の密度分布を容易に得ること
ができる。筒状は、角筒状でもよいが、円環状のプラズ
マを生成するためには、円筒状が好ましい。 【0011】また、上記発明において、前記窓を、前記
プラズマ室の上部にプラズマ室内側へ凸状に突き出すよ
うに設けるとともに、前記プラズマ室外側に凹部を有す
る環状窓で構成し、前記環状窓の凹部に沿って、プラズ
マ室に向かって高周波電力を導入する前記誘導コイルを
設け、前記環状窓のプラズマ室の内周に沿って環状のプ
ラズマを生成するようにしてもよい。 【0012】プラズマ室内に突出した環状窓の内側に沿
って環状のプラズマを生成しても、処理容器を大型化す
ることなく、プラズマで生成した活性種の密度の均一化
が図れるため、被処理基板面内での均一な処理が可能と
なる。 【0013】また、上記発明において、前記窓を、前記
プラズマ室の上部にプラズマ室外側へ凸状に突き出すよ
うに設けるとともに、前記プラズマ室内側に凹部を有す
る環状窓で構成し、前記プラズマ室外の凸状に突き出し
た環状窓の外周に沿って、プラズマ室に向かって高周波
電力を導入する前記誘導コイルを環状に設け、前記プラ
ズマ室外に突出した環状窓の環状の凹部に沿って環状の
プラズマを生成するようにしてもよい。 【0014】前述したように、プラズマ室内に突出した
環状窓の内側に沿って環状のプラズマを生成すると、生
成される環状プラズマの形が不明瞭であるため、プラズ
マに近い位置では、プラズマで生成された活性種の密度
分布は深さが比較的浅い盆地形状を示すが、プラズマか
ら離れると急速に凸形になり、均一になる位置はない。
しかし、プラズマ室外に突出した環状窓の環状の凹部に
沿って環状のプラズマを生成すると、プラズマからの距
離で、プラズマで生成された活性種の密度が均一になる
位置がある。したがって、活性種の密度が均一になる位
置に基板を配置すると、処理容器を大型化することな
く、被処理基板面内でのより均一な処理が可能となる。 【0015】また、上記発明において、プラズマ室を誘
電体製のドームで構成するとよい。プラズマ室を誘電体
製のドームで構成すると、誘電体製でありながら、壁面
を薄くしても強度が上がり、製作費用が低減し、部品点
数も少なくできる。 【発明の実施の形態】以下に本発明のプラズマ処理装置
における実施の形態を説明する。 【0016】まず、本発明の原理について説明する。本
発明は、被処理基板であるウェーハの面上でのプラズマ
で生成された活性種の密度を均一化するために、生成さ
れるプラズマを環状にすることが必要であるとの知見を
得てなされたものである。 【0017】図7は、生成されるプラズマの形状毎に、
プラズマからウェーハに向かって離れていくにしたがっ
て、プラズマで生成された活性種の密度分布が推移して
いく様子を示す。 【0018】プラズマ室で生成されるプラズマの形状
は、それぞれ(A)がプラズマ室に円板状で均一に生成
される均一プラズマ、(B)がプラズマ室の中央部に生
成される点状プラズマ、そして(C)がプラズマ室の内
周に生成される環状プラズマである。プラズマからの距
離は離れる方向にしたがってh1〜h4としてある。ここ
で示したウェーハ径はφ200mmであり、ウェーハを
収容する各処理室の内径は一定である。 【0019】プラズマ室でプラズマ励起して活性種を生
成すると処理室に向かって拡散するため、プラズマから
の距離にしたがって活性種の密度が変化していく。した
がって、処理室に置かれたウェーハのプラズマからの位
置によって処理状態が変ることになる。 【0020】処理室の大きさ(内径)は限られているの
で、プラズマからウェーハに至る距離がh1→h4に大き
くなるにしたがって、活性種の密度は減少すると共に、
活性種の拡散が十分に進む。これにともなって活性種の
密度分布が均一化されるため、生成プラズマ形状による
処理状態の違いはなくなる。 【0021】プラズマで生成された活性種の密度分布
は、プラズマからの距離h1→h4にしたがって次のよう
に推移する。均一プラズマの図7(A)では、基板の周
縁部分のみ活性種密度が低下し、それ以外は均一
(h1)となる。全体的にプラズマ処理効果が大きくな
るものの、ウェーハ端部を含む周辺部のプラズマ処理効
率が落ちている。これは処理室の排気の関係で、プラズ
マ室の内壁で活性種が失活すると共にウェーハの周辺部
ほどガス粒子の密度が小さくなり、ウェーハ周辺付近を
処理する活性種の密度が低下するためである。そして、
プラズマからの距離がさらに大きくなると、基板の中央
部分を残し、活性種密度は基板の周縁部分に行くにした
がって緩やかに低下(h2)、基板の中央部分の活性種
密度も落ちていき、中央部分と周辺部分との差が減少
(h3)、基板の中央部分の活性種密度がさらに落ち
て、中央部と周辺部との活性種密度の差がほとんど無く
なり、活性種密度分布はプラズマ室側にやや凸の形状と
なる(h4)。 【0022】点状プラズマの図7(B)では、基板の中
央部分の活性種密度が極端に高く、基板の周縁部に行く
にしたがって急激に低下(h1)、基板の中央部分の活
性種密度が低下し、それにともなって基板の周縁部分に
至る活性種密度分布の落ち込む曲率の向きが反転して活
性種密度分布が一律に凸形状になるが、中央部分と周辺
部分との差は依然として大(h2)、基板の中央部分の
活性種密度がさらに低下して、中央部分と周辺部分との
差は幾分減少し、活性種密度分布は全体で丸みを増す
(h3)、中央部と周辺部との活性種密度の差がほとん
ど無くなりプラズマ室側にやや凸の形状となる
(h4)。 【0023】そして環状プラズマの図7(C)では、基
板の周縁部よりやや内側部分で活性種密度がもっとも高
く、基板の中央部分に行くにしたがって活性種密度が低
下して中央部で最低(h1)、基板の周縁部よりやや内
側部分の活性種密度が低下し、中央部分との差が減少
(h2)、周縁部の内側部分のピークが低下して周縁部
に移り、全体でプラズマ室側にやや凹の形状となるが、
周縁部を残してほぼ均一(h3)、活性種密度分布の曲
率の向きが反転してプラズマ室側にやや凸の形状となる
(h4)。 【0024】通常、ウェーハは、装置の大きさの制約や
処理の効率を考えて、距離h2またはh3付近に置かれ
る。これらの付近で、活性種の密度が均一になるプラズ
マ形状は、(C)の環状タイプとなる。つまり、ウェー
ハを均一に処理するためには、プラズマは環状に生成す
ることが必要になる。 【0025】ここで、プラズマ源を誘導結合型プラズマ
源で構成する場合、プラズマはコイルに流れる電流を打
ち消すように生成される。したがって、図8に示すよう
に、プラズマ室1内に凸状に突き出した筒状窓2を設
け、その筒内に誘導コイル3を装着して、筒状窓2から
高周波電力を導入することによって、プラズマ4を生成
する。すると筒状窓2の外周のプラズマ室内周に生成さ
れるプラズマ4は環状となる。 【0026】次に、図1〜図4を用いて種々の窓形をも
つ基板処理装置の具体的な説明をする。図1は第1の実
施の形態の筒状窓、図2は第2の実施の形態の凹環状
窓、図3は第3の実施の形態の凸環状窓、図4は第4の
実施の形態の蓋体をドーム状にした枚葉式のプラズマ処
理装置の概略断面図をそれぞれ示す。プラズマ源は、I
CP(Inductively Coupled Plasma)源であり、誘電体チ
ャンバの外に設けた高周波コイルの電磁誘導によりプラ
ズマ室の内部にプラズマを発生させる。 【0027】図1の筒状窓26を持つ第1の実施の形態
によるプラズマ処理装置は、1枚のウェーハWを処理す
る処理容器11を備える。処理容器11は、金属、例え
ばステンレス製またはアルミ合金で構成される。 【0028】処理容器11は、上部が開口して内部にウ
ェーハWを成膜処理する処理室12を形成した本体13
と、本体13の開口を塞ぐとともに、処理室12とは別
に、内部にプラズマを生成するプラズマ室14を形成す
るドーム形をした蓋体15とから構成されたリモートプ
ラズマ形である。 【0029】蓋体15内のプラズマ室14と本体13内
の処理室12との境界に、プラズマ室14から処理室1
2へプラズマで活性化した活性種を含むガスを供給する
ガス供給ヘッド16が設けられる。ガス供給ヘッド16
は、上から順に、プラズマ室14内のガスを分散する多
数の分散孔17を有するガス分散板18、分散されたガ
スを一時的に貯めるバッファ室19、多数のシャワー孔
20を有しバッファ室19から処理室12へガスを噴射
するガスシャワー板21から構成される。 【0030】本体13内の処理室12には、1枚のウェ
ーハWを支持するサセプタ22が設けられる。サセプタ
22の内部には、冷却・加熱機能を有する温度調整機構
(図示せず)が埋設され、処理中のウェーハWの温度を
調節可能としている。 【0031】上記処理容器11は気密に構成され、本体
13の底部に設けた排気口23から処理室12及びプラ
ズマ室14を排気するようになっている。また、金属製
の蓋体15のドーム状をした天井は、蓋体15に直接プ
ラズマが接してダメージを与えたり、金属の放出を抑え
る目的で、誘電体カバー24で覆われている。誘電体カ
バー24は、例えばAl23(アルミナ)やAlN(窒
化アルミ)やSiO2(石英)で構成する。 【0032】プラズマ室14を構成する蓋体15の上部
中央に開口25を設け、その開口25に窓26を嵌め
る。窓26は、プラズマ室14内側に鉛直に凸状に突き
出し、プラズマ室14外側では凹部27を有するように
円筒状に構成する。円筒状窓26は、耐プラズマ性の誘
電体材料、例えばパイレックス(登録商標)、石英ガラ
ス、アルミナ、サファイア等で構成する。 【0033】蓋体15内のプラズマ室14には、蓋体1
5の外部からガス導入配管28が挿入され、円筒状窓2
6の底部室内側に矢印で示すようにガスを吹きつけて散
らし、プラズマ室14にガスを導入するようになってい
る。 【0034】プラズマ室14外の円筒状窓26の凹部2
7に、プラズマ室14に向かって高周波電力を導入する
誘導コイル29を装着する。誘導結合型プラズマ源(I
CP源)30を構成する誘導コイル29は、整合器31
を介して高周波電源32に接続され、電磁誘導によりプ
ラズマ室14に供給されるガスを励起して、プラズマ室
14内の凸状に突出した円筒状窓26の室内側外周に沿
って、円筒状窓26を取り囲む環状のプラズマ10を生
成する。 【0035】なお、図中、点線で示した符号32は、円
筒状窓26を外部から保護するためのカバーである。 【0036】上記した構成において、図示しない搬送機
構によってウェーハWを搬送口(図示せず)から処理室
12に搬入する。温度調整機構によって加熱したサセプ
タ22上に載置して、ウェーハWを所定温度に加熱す
る。加熱後、図示しない排気ポンプで排気口23から処
理容器11内の処理室12及びプラズマ室14を真空排
気して、所定の低圧にする。プラズマ室14内にガス導
入配管28を経由してその導入口から一定流量の反応性
ガスをプラズマ室14の中央に吹出す。吹出されたガス
はガス分散板18によって遮られて、プラズマ室14全
体に広がる。処理室12及びプラズマ室14の圧力を図
示しない圧力制御機構で所定の値に設定した後、蓋体1
5の円筒状窓26に装着した誘導コイル29に高周波電
力を印加する。広がったガスが電磁誘導を受けて励起さ
れて、円筒状窓26に沿ったプラズマ室14の内周に環
状のプラズマ10が生成される。この環状のプラズマ1
0により活性化されたガス(活性種)は、ガス分散板1
8の分散孔17を通過しバッファ室19に送られる。さ
らに活性種はバッファ室19からガスシャワー板21の
シャワー孔20を経由して、処理室12に均一に供給さ
れてる。供給された活性種はウェーハWに到達してウェ
ーハ表面を処理し、処理後、排気口23より排気され
る。 【0037】実施の形態では、プラズマ室14に円筒状
窓26を設けて、プラズマ室14内に環状のプラズマを
生成するようにしたので、プラズマを円板状に均一に生
成した場合に比べて、活性種の密度が低下する傾向にあ
るウェーハW周囲の活性種の密度分布を向上させること
ができる。 【0038】ウェーハ中央とウェーハ周辺との処理の均
一性(処理の面内均一性)を上げるのは、主にガスシャ
ワー板21とサセプタ22との間の距離Bを変えること
により、ウェーハ面内で処理が均一になる最適なサセプ
タの位置に調整する。例えば、ウェーハ中央でのプラズ
マ処理効率が低ければ、距離Bがまだ狭いことを意味す
るから、前記距離Bを広げてやる。そうすれば、ウェー
ハ周辺の活性種が中央にも拡散するので、均一性が一層
向上することになる。 【0039】このようにプラズマ10からウェーハWま
での距離Cに対する環状のプラズマ10の活性種の密度
分布変化特性により(図7(C)参照)、プラズマ10
からウェーハWまでの距離Cが短くても、ウェーハW面
内で均一な活性種の密度分布を得ることができる。その
結果、処理容器11を大型化(大径化、深層化)するこ
となく、ウェーハ面内での均一な処理が可能となる。 【0040】また、円筒状窓26内に誘導コイル29を
納めるようにしたので、プラズマ処理均一性のためにプ
ラズマ室14の外周にコイルを周単位に設けなければな
らないものと比べて、周単位に巻く必要がなく、コイル
29の長さを適切な長さのところで選定できる。したが
って、プラズマ室内に注入する高周波電力パワーの設計
が容易となる。 【0041】上記プラズマ処理装置では、タンタルオキ
サイド(Ta25)の後処理(Cの除去)、酸化膜の表
面窒化、エピタキシャル成長、ドライエッチング、及び
処理室のクリーニングなどに適用可能であり、いずれも
均一なプラズマを生成していた従来例のものに比べて、
処理効率が向上し、且つ面内均一性も改善することがで
きる。 【0042】ここで、上記タンタルオキサイド(Ta2
5)の後処理(Cの除去)とは、例えば、64メガビ
ットのDRAM以降の半導体製造プロセスにおいて、キ
ャパシタ部の絶縁膜として用いられるタンタルオキサイ
ド膜のリーク電流低減のために、膜表面近傍に存在する
カーボン(C)を除去するプロセスである。除去条件
は、 圧力 1〜100Pa 被処理基板温度 300〜400℃ であり、反応ガスは酸素(O2)が一般的で、プラズマ
で活性化された酸素の活性種(O*)がウェーハWの表
面に到達し、タンタルオキサイド膜表面のカーボンと反
応してこれを除去する。なお、圧力によって酸素の活性
種の生成量や寿命が変るので、酸素ガスの供給量と圧力
を排気ポンプの能力の範囲で適切に設定する。 【0043】また、特にリモートプラズマ処理の他の例
として、酸化膜表面の窒化がある。因みに、このリモー
トプラズマによる酸化膜表面の窒化の条件例を示せば下
記の通りである。 【0044】 NH3流量 300sccm 圧力 30Pa 被処理基板温度 400℃ RF電力 1000W 処理時間 5分 酸化膜表面のSIMS(Secondary Ionization Mass Sp
ectrometer)分析を行うと、窒素原子の濃度を測定する
ことができる。 【0045】図1の実施の形態による装置のものでは、
ウェーハをプラズマから90mm離して(図1における
距離C)処理を行うと、窒素原子の濃度は約50%とな
る。これに対して400mm離して処理すると窒素原子
濃度は10%以下まで減少する。また、均一なプラズマ
を生成する従来例のものでは、活性種の密度分布を均一
化するために要するプラズマとウェーハ間の距離が20
0mm以上あったのに対して、環状のプラズマを生成す
る実施の形態のものでは、活性種の密度分布を均一化す
るために要するプラズマとウェーハ間の距離を、最少3
0mm程度まで近づけることができるため、活性種の密
度の低下を抑えてリモートプラズマ処理の効果を著しく
向上できる。 【0046】また、従来例のようにバッファ室の中央に
点状プラズマを形成すると、被処理基板が、例えばφ2
00mmのシリコンウェーハの場合、プラズマからシリ
コンウェーハまでの経路で100mmの経路差があるた
め、シリコンウェーハの中心部に対して端部では処理の
効果が相当小さくなっていた。これに対して、本実施の
形態では経路差による効果の差はほとんど解消される。 【0047】図2は第2の実施の形態によるプラズマ処
理装置を示す。図1に示す第1の実施の形態によるプラ
ズマ処理装置と異なる点は、図1のものがドーム状の蓋
体15に円筒状窓26を設けているのに対し、図2のも
のは平板状の蓋体35にプラズマ室14側に凸状の環状
窓36を設けている点である。 【0048】蓋体35内のプラズマ室14には、蓋体3
5の上部中央にガス導入口38が設けられ、プラズマ室
14の中央に矢印で示すようにガスを導入するようにな
っている。 【0049】具体的には、プラズマ室14を形成する蓋
体35は、ドーム状ではなく、平板状としてある。平板
状としたのは強度を確保するためである。蓋体35の平
板状をした天井は、電磁誘導をプラズマ室14に生じさ
せるために誘電体カバー34で覆われている。この蓋体
35に環状の開口を設け、この開口に環状窓36を嵌め
込む。環状窓36はプラズマ室14の上部にプラズマ室
14内側へ凸状に突き出すように設けるとともに、プラ
ズマ室14外側に凹部37を有する。環状窓36の凹部
37に沿って、プラズマ室14に向かって高周波電力を
導入する誘導コイル29を環状に装着して、プラズマ室
14内に突出した環状窓36の内側に沿って環状のプラ
ズマ10を生成する。 【0050】図中、符号39は蓋体35の環状窓36で
区画形成された中央部を上部から支持する蓋体支持カバ
ーである。また、点線で示した符号32は、環状窓36
を外部から保護するためのカバーである。 【0051】このようにプラズマ室14内に突出した環
状窓36の内側に沿って環状のプラズマ10を生成して
も、円筒状窓の場合と同様に活性種の密度の均一化が図
れる。 【0052】図3は第3の実施の形態によるプラズマ処
理装置を示す。図2に示す第2の実施の形態では、平板
状の蓋体35にプラズマ室14側に凸状の環状窓36を
設けていたが、図3に示す第3の実施の形態では、平板
状の蓋体35にプラズマ室14側に凹状の環状窓46を
設けている。 【0053】具体的には、窓を環状窓46で構成し、該
環状窓46はプラズマ室14の上部にプラズマ室14外
側へ凸状に突き出し、従ってプラズマ室14側に凹状に
設けられることとなり、プラズマ室14内側に凹部47
を形成するよう構成する。前記環状窓46の外周に沿っ
て、プラズマ室14に向かって高周波電力を導入する誘
導コイル29を装着し、前記環状窓46の内側の凹部4
7に環状のプラズマ10を生成する。 【0054】前記凹部47に沿って環状のプラズマ10
を生成すると、プラズマ10からの距離で、活性種の密
度が均一になる位置がある。したがって、活性種の密度
が均一になる位置にウェーハWを配置すると、処理容器
11を大型化することなく、ウェーハ面内でのより均一
な処理が可能となる。 【0055】なお、上述した第3の実施の形態の場合で
も、比較的狭い空間である凹部47を形成している環状
窓46の外周に沿って誘導コイル29を装着すればよ
く、従来技術の装置のようにプラズマ室全外周にコイル
を装着しなくとも良く、装置が簡略的にもなる。 【0056】図4は、第4の実施の形態によるプラズマ
処理装置を示し、図1に示す実施の形態の変形例であ
る。図1のものと異なる点は、蓋体15と誘電体カバー
24との2つの部材からプラズマ室14を構成していた
のを、蓋体自体を誘電体製ドーム45で構成して、プラ
ズマ室14を単体部材で構成した点である。蓋体を直接
誘電体製のドーム45で構成すると、壁面を薄くしても
強度が上がり、製作費用が低減し、部品点数も少なくで
きる。 【0057】図1〜図4に示した発明の実施例につい
て、プラズマから所定距離はなれたウェーハ面内のリモ
ートプラズマ処理効果は図5のように推察される。図5
において、参考までに上げた点状プラズマ(図7
(B))では、プラズマ処理効果は、分布曲線54に示
すように中央部が最もプラズマ処理効果が大きく、周辺
に向かって急激に減少する。また全体的にプラズマ処理
効果が小さい。 【0058】第1の実施の形態、第2の実施の形態、及
び第4の実施の形態の環状プラズマ(図7(C))で
は、分布曲線52に示すように、中心部と周辺部のプラ
ズマ処理効果が少し小さくなるが、端部の効果は均一型
である図7(A)のものと比較して、それほど小さくな
らない。これは、ウェーハW上のプラズマ室14内に突
き出た窓の凹部27、37から高周波電力をプラズマ室
14内に導入して、環状のプラズマ10を生成するの
で、ウェーハ周囲のプラズマ処理効率を向上させること
ができるからである。この装置で、ウェーハWの中央と
周辺部の処理均一性は、主にガスシャワー板21とサセ
プタ22との間の距離B(図1参照)を変えることによ
り調整して向上できる。例えば、ウェーハW中央でプラ
ズマ処理効率が低ければ、上記距離Bを広げれば、ウェ
ーハ周辺のプラズマが中央にも拡散し、均一性が向上す
る。 【0059】第3の実施の形態の環状プラズマ(図7
(C))では、第1、第2、第4の実施の形態と比べ
て、分布曲線53に示すように周辺部の効果がやや大き
くなる。 【0060】上述した図2の凹環状窓36をもつ第2の
実施の形態と、図3の凸環状窓46をもつ第3の実施形
態とでは、プラズマ処理効果に若干の差が生じている。
この差が生じる理由を図6を用いて説明する。図6
(A)は凹環状窓36を設けた場合、図6(B)は凸環
状窓46を設けた場合の活性種の密度分布をそれぞれ示
す。図6(A)では、プラズマ10の環の内周に重なり
が生じて、プラズマ環の形が明確にならないため、活性
種の密度分布が、プラズマとウェーハ間の距離が大きく
ならないうちに直ぐに凸形になり、距離を大きくしても
活性種の密度分布が均一になる位置がなかなか存在しな
い。これに対して図6(B)では、プラズマ10の環に
重なりが生じず、プラズマ環の形が明確になっているた
め、ある程度距離をおくと活性種の密度が均一になる位
置(c)がある。したがって、プラズマ処理効果の均一
性は第2の実施の形態よりも第3の実施の形態の方が良
くなる。 【0061】 【発明の効果】本発明は、プラズマ室に設けた凸又は凹
状の窓からプラズマ室に向かって高周波電力を導入して
プラズマ室に環状プラズマを生成するようにしたので、
従来のようにプラズマ室外周にコイルを設けて均一状の
プラズマを生成するようにしたものと比べて、活性種の
密度分布の均一化が図れ、被処理基板の面内処理の均一
性を改善できる。
DETAILED DESCRIPTION OF THE INVENTION [0001] The present invention relates to a plasma processing apparatus.
In particular, the formation of thin films on silicon and glass substrates
It relates to what is suitable for. [0002] 2. Description of the Related Art Conventionally, an object to be treated is provided with a shower head.
Plasma processing equipment that can uniformly process
And Japanese Patent Application Laid-Open No. H11-106960.
It has been known. This uses gas in a vacuum vessel.
A plasma chamber in which plasma is generated by the excitation source;
The above gas is pulsed into the vacuum vessel by a driving device.
Pulse gas valve to supply and pulse gas valve
Has multiple holes for introducing the supplied gas into the plasma chamber
And the sample is placed in the vacuum vessel.
Between the processing chamber and the plasma chamber.
Partition plate having holes communicating from the plasma chamber to the processing chamber
And a vacuum exhaust unit (not shown) for exhausting the processing chamber.
It is composed. [0003] As a result, a uniform plastic
Gum is formed, and large-diameter workpieces can be processed more uniformly.
At the same time as reducing the amount of dust
Control of processing speed and processing shape
Become like [0004] However, as described above,
Further, the prior art has the following problems. (1) An RF coil is mounted on the outer periphery of the side wall constituting the plasma chamber.
When installed, plasma is generated in the plasma chamber,
Through the shower head because the plasma density in the
To supply gas uniformly to the plasma chamber
The density of the gas excited at the center of the
The substrate is supplied to the substrate through the partition plate
Also, the density distribution of the active species
I will. As a result, the density distribution of active species on the substrate
Cannot be achieved, and the processing of the substrate to be processed becomes non-uniform. (2) A coil is provided on the outer periphery of the cylindrical plasma chamber side wall.
To ensure plasma processing uniformity.
The end of the coil in the middle of the side wall
Is not possible, and coils must be provided in units of circumference.
It cannot be cut at a sharp length. An object of the present invention is to solve the above-mentioned problems of the prior art.
And eliminate the problem of the substrate to be processed due to the lifetime of the active species.
Plasma processing equipment that can improve uniformity
To provide. [0007] According to the present invention, a plasma is generated.
The plasma chamber to be formed and the processing chamber
Processing chamber formed in a part, and a plasma chamber of the processing chamber
A window formed in a convex or concave shape on the side of the plasma chamber;
Having an induction coil provided therein, and electromagnetic induction of the induction coil
To excite the gas supplied to the plasma chamber by plasma
An inductively coupled plasma source for generating active species,
The active species generated in the plasma chamber are supplied into the processing chamber.
To process the substrate to be processed. [0008] The induction coil provided in the window of the plasma chamber has a high circumference.
After applying wave power, gas is introduced into the plasma chamber.
You. When gas is introduced into the plasma chamber, this gas is
Activated by magnetic induction, plasma chamber along the window
An annular plasma is generated on the inner circumference of. This annular plasm
Exciting the gas with a gas produces active species. Activity generated
Species are treated in the processing chamber by the flow and diffusion of the supply gas.
Reach the substrate. Generate an annular plasma in the plasma chamber
So that compared to the case where plasma is generated uniformly,
In all, the density of active species around the substrate, which tends to decrease in density,
The degree can be improved. Therefore, plasma
To the substrate to be processed.
Process characteristics from the plasma
Even when the distance to the substrate is short, uniform activity is
The density distribution of the sex can be obtained. As a result,
Without increasing the size of the vessel and reducing the plasma density
Uniform processing within the substrate surface without attenuation
Becomes possible. Further, in the above invention, the window may be
Protrudes at the upper center of the plasma chamber toward the plasma chamber side
However, the outside of the plasma chamber is formed into a cylindrical shape having a concave portion.
The plasma is formed in the concave portion of the cylindrical window outside the plasma chamber.
The induction coil for introducing high-frequency power into the room
The outer periphery of a cylindrical window that protrudes in the plasma chamber.
An annular plasma may be generated along. The window provided in the plasma chamber is located above the plasma chamber.
Plasma is simple with a simple configuration that is formed in the center of the
An annular plasma can be generated on the inner periphery of the chamber,
To easily obtain a uniform active species density distribution in the substrate surface
Can be. The tubular shape may be a square tubular shape, but an annular
In order to produce a mask, a cylindrical shape is preferable. Further, in the above invention, the window is provided
It protrudes into the upper part of the plasma chamber to the plasma chamber side
And a recess outside the plasma chamber.
Along the recess of the annular window,
The induction coil that introduces high-frequency power toward the
An annular step along the inner circumference of the plasma chamber of the annular window.
A plasma may be generated. Along the inside of the annular window protruding into the plasma chamber,
To produce a ring-shaped plasma, the process vessel becomes larger.
Uniformity of the density of active species generated by plasma without
Can achieve uniform processing within the surface of the substrate to be processed.
Become. In the above invention, the window is provided
It protrudes from the upper part of the plasma chamber to the outside of the plasma chamber
And a recess on the inside of the plasma chamber.
It is composed of an annular window that protrudes out of the plasma chamber.
High frequency along the outer periphery of the annular window toward the plasma chamber
The induction coil for introducing electric power is provided in an annular shape, and
Along the annular recess of the annular window that protrudes out of the
Plasma may be generated. As described above, the protruding portion extends into the plasma chamber.
When an annular plasma is generated along the inside of the annular window,
Because the shape of the annular plasma formed is unclear,
In the position close to the matrix, the density of the active species generated by the plasma
The distribution shows a basin shape with relatively shallow depth,
As it moves away, it quickly becomes convex and there is no uniform position.
However, in the annular recess of the annular window protruding outside the plasma chamber
When an annular plasma is generated along the
Separation results in uniform density of active species generated by plasma
There is a position. Therefore, the density of the active species becomes uniform.
If the substrate is placed in the
In addition, more uniform processing within the surface of the substrate to be processed can be performed. In the above invention, a plasma chamber is provided.
It is good to comprise a dome made of an electric body. Dielectric plasma chamber
When it is composed of a dome made of
Even if the thickness is reduced, the strength is increased, the production cost is reduced,
The number can be reduced. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A plasma processing apparatus according to the present invention will be described below.
Will be described. First, the principle of the present invention will be described. Book
The invention relates to a plasma on a surface of a wafer to be processed.
Generated to homogenize the density of active species generated in
That it is necessary to make the plasma to be annular
It was made. FIG. 7 shows that the shape of the generated plasma is
As we move away from the plasma towards the wafer,
The density distribution of active species generated by plasma changes
It shows how it goes. The shape of the plasma generated in the plasma chamber
Means that each (A) is uniformly formed in a disk shape in the plasma chamber
(B) is generated in the center of the plasma chamber.
The point plasma that is formed, and (C) is inside the plasma chamber
This is an annular plasma generated around the circumference. Distance from plasma
The separation is h1~ HFourThere is. here
Is 200 mm in diameter, and the wafer is
The inside diameter of each processing chamber to be accommodated is constant. Generates active species by plasma excitation in a plasma chamber
Once formed, it diffuses into the processing chamber,
The density of the active species changes according to the distance. did
Therefore, the position of the wafer placed in the processing chamber from the plasma
Depending on the position, the processing state changes. The size (inner diameter) of the processing chamber is limited.
And the distance from the plasma to the wafer is h1→ hFourLarge
As the density of the active species decreases,
The diffusion of the active species proceeds sufficiently. With this, active species
Since the density distribution is uniform, it depends on the shape of the generated plasma.
There is no difference in the processing state. [0021] Density distribution of active species generated by plasma
Is the distance h from the plasma1→ hFourAccording to
It changes to. In FIG. 7A of the uniform plasma, the periphery of the substrate is shown.
The active species density is reduced only at the edges, and the rest is uniform
(H1). The overall plasma processing effect is large
However, the effect of plasma treatment on the periphery including the wafer edge
Rate is falling. This is due to the exhaust of the processing chamber.
Active species are deactivated on the inner wall of the chamber and the periphery of the wafer
As the gas particle density decreases,
This is because the density of the active species to be treated decreases. And
As the distance from the plasma increases, the center of the substrate
Part, leaving the active species density at the edge of the substrate
And gradually declines (hTwo), Active species in the center of the substrate
Density also decreases, the difference between the central part and the peripheral part decreases
(HThree), The active species density at the center of the substrate is further reduced
And there is almost no difference in active species density between the center and the periphery
The active species density distribution has a slightly convex shape on the plasma chamber side.
(HFour). In FIG. 7B of the point plasma, the inside of the substrate is shown.
Extremely high active species density in the central part, going to the periphery of the substrate
Sharply (h1), The central part of the substrate
The density of sexual species decreases, and accordingly,
The direction of curvature where the active species density distribution falls
The sex density distribution becomes uniformly convex, but the central part and the periphery
The difference from the part is still large (hTwo), In the center of the board
The active species density is further reduced, and the
Differences decrease somewhat, active species density distribution increases overall
(HThree), The difference in the active species density between the central part and the peripheral part is almost
It becomes slightly convex toward the plasma chamber side
(HFour). In FIG. 7C of the annular plasma,
The highest density of active species is located slightly inside the periphery of the plate
And the density of active species decreases toward the center of the substrate.
Lower the center (h1), Slightly inside the periphery of the substrate
The density of active species in the side part decreases, and the difference from the central part decreases
(HTwo), The peak at the inner part of the periphery decreases,
The overall shape is slightly concave on the plasma chamber side,
Almost uniform (hThree), Active species density distribution song
The direction of the rate is reversed and becomes slightly convex toward the plasma chamber
(HFour). Usually, the wafer is limited by the size of the apparatus and
Considering the processing efficiency, the distance hTwoOr hThreePut near
You. In these areas, plasms where the density of active species becomes uniform
The square shape is the annular type of (C). In short, way
In order to treat c uniformly, plasma is generated in an annular shape.
Need to be Here, the plasma source is an inductively coupled plasma.
When configured with a source, the plasma strikes the current flowing through the coil.
Generated to erase. Therefore, as shown in FIG.
In addition, a cylindrical window 2 protruding into the plasma chamber 1 is provided.
The induction coil 3 is mounted in the cylinder,
Generates plasma 4 by introducing high frequency power
I do. Then, it is generated around the plasma chamber around the outer periphery of the cylindrical window 2.
The generated plasma 4 has an annular shape. Next, various window shapes will be described with reference to FIGS.
The following specifically describes the substrate processing apparatus. Figure 1 shows the first real
FIG. 2 shows a cylindrical window according to the second embodiment.
Window, FIG. 3 is a convex annular window of the third embodiment, and FIG.
A single-wafer plasma processing apparatus having a dome-shaped lid according to the embodiment.
1 shows schematic cross-sectional views of a processing device. The plasma source is I
CP (Inductively Coupled Plasma) source
The electromagnetic induction of a high-frequency coil installed outside the chamber
Plasma is generated inside the plasma chamber. A first embodiment having the cylindrical window 26 of FIG.
Plasma processing apparatus processes a single wafer W.
The processing container 11 is provided. The processing container 11 is made of metal, for example,
It is made of stainless steel or aluminum alloy. The processing vessel 11 has an opening at the top and a cuff inside.
Main body 13 in which processing chamber 12 for forming a film of wafer W is formed
And closes the opening of the main body 13 and separates from the processing chamber 12.
Next, a plasma chamber 14 for generating plasma is formed therein.
Dome-shaped lid 15
Razuma shape. The plasma chamber 14 in the lid 15 and the body 13
At the boundary with the processing chamber 12 from the plasma chamber 14
2 to supply gas containing active species activated by plasma
A gas supply head 16 is provided. Gas supply head 16
Are, in order from the top, a gas that disperses the gas in the plasma chamber 14.
A gas distribution plate 18 having a number of distribution holes 17;
Buffer room 19 for temporary storage of water, numerous shower holes
Injects gas from buffer chamber 19 to processing chamber 12
The gas shower plate 21 is formed. The processing chamber 12 in the main body 13 has a single wafer.
A susceptor 22 for supporting the wafer W is provided. Susceptor
22 has a temperature adjusting mechanism having a cooling / heating function
(Not shown) is buried and adjusts the temperature of the wafer W during processing.
Adjustable. The processing vessel 11 is airtightly constructed,
13, the processing chamber 12 and the plastic
The vacuum chamber 14 is evacuated. Also made of metal
The dome-shaped ceiling of the lid 15 is directly
Razma contacts and damages, suppresses metal release
For this purpose, it is covered with a dielectric cover 24. Dielectric power
The bar 24 is made of, for example, AlTwoOThree(Alumina) and AlN (nitride)
Aluminum) and SiOTwo(Quartz). Upper part of lid 15 constituting plasma chamber 14
An opening 25 is provided at the center, and a window 26 is fitted into the opening 25.
You. The window 26 protrudes vertically inside the plasma chamber 14.
So as to have a recess 27 outside the plasma chamber 14.
It has a cylindrical shape. The cylindrical window 26 has a plasma-resistance-inducing property.
Electric material, for example, Pyrex (registered trademark), quartz glass
, Alumina, sapphire, etc. The plasma chamber 14 in the lid 15 contains the lid 1
5, a gas introduction pipe 28 is inserted from outside, and the cylindrical window 2 is inserted.
Gas is blown into the inside of the bottom room as indicated by the arrow to disperse.
Gas is introduced into the plasma chamber 14.
You. The concave portion 2 of the cylindrical window 26 outside the plasma chamber 14
7, high-frequency power is introduced toward the plasma chamber 14.
The induction coil 29 is mounted. Inductively coupled plasma source (I
The induction coil 29 constituting the CP source 30 includes a matching unit 31
Connected to the high-frequency power supply 32 via the
The gas supplied to the plasma chamber 14 is excited to generate a plasma chamber.
14 along the outer periphery of the cylindrical window 26 projecting in a convex shape inside the room.
Thus, an annular plasma 10 surrounding the cylindrical window 26 is generated.
To achieve. In the drawing, reference numeral 32 shown by a dotted line is a circle.
This is a cover for protecting the cylindrical window 26 from the outside. In the above-described configuration, a transfer device (not shown)
The wafer W is transferred from the transfer port (not shown) to the processing chamber
Carry in 12. Suscept heated by temperature control mechanism
And placed on the heater 22 to heat the wafer W to a predetermined temperature.
You. After heating, the gas is processed through the exhaust port 23 by an exhaust pump (not shown).
The processing chamber 12 and the plasma chamber 14 in the processing vessel 11 are evacuated.
Carefully set to a predetermined low pressure. Gas introduction into the plasma chamber 14
A constant flow rate of reactivity from its inlet via inlet pipe 28
Gas is blown out to the center of the plasma chamber 14. Blown gas
Is blocked by the gas dispersion plate 18 and the entire plasma chamber 14
Spread throughout the body. The pressure in the processing chamber 12 and the plasma chamber 14
After setting to a predetermined value by a pressure control mechanism not shown, the lid 1
The induction coil 29 attached to the cylindrical window 26 of FIG.
Apply force. The spread gas is excited by electromagnetic induction.
A ring is formed around the inner periphery of the plasma chamber 14 along the cylindrical window 26.
A plasma 10 is generated. This annular plasma 1
The gas (active species) activated by the gas dispersion plate 1
8 and is sent to the buffer chamber 19 through the dispersion holes 17. Sa
In addition, the active species is transferred from the buffer chamber 19 to the gas shower plate 21.
Through the shower hole 20, it is uniformly supplied to the processing chamber 12.
I'm done. The supplied active species reaches the wafer W and
After treating the surface, the air is exhausted from the exhaust port 23.
You. In the embodiment, the plasma chamber 14 has a cylindrical shape.
A window 26 is provided, and an annular plasma is formed in the plasma chamber 14.
Because it is generated, plasma is generated uniformly in a disk shape
The density of active species tends to decrease
The density distribution of active species around the wafer W
Can be. Processing uniformity between the center of the wafer and the periphery of the wafer
The main reason for improving the uniformity (in-plane uniformity of processing) is gas
Changing the distance B between the work plate 21 and the susceptor 22
Optimal susceptor for uniform processing in the wafer plane
Adjust the position to For example, plasm in the center of the wafer
If the processing efficiency is low, it means that the distance B is still narrow.
Therefore, the distance B is extended. That way, way
The uniformity is further improved because the active species around c diffuses to the center.
Will be improved. Thus, from the plasma 10 to the wafer W,
Density of active species in annular plasma 10 versus distance C at
Due to the distribution change characteristic (see FIG. 7C), the plasma 10
Even if the distance C from the wafer to the wafer W is short,
It is possible to obtain a uniform active species density distribution in the inside. That
As a result, the processing vessel 11 can be made larger (larger diameter, deeper).
In addition, uniform processing within the wafer surface becomes possible. An induction coil 29 is provided in the cylindrical window 26.
So that plasma processing can be performed evenly.
A coil must be provided on the outer circumference of the plasma chamber 14 in units of circumference.
It is not necessary to wind in circumference units compared to
The length of 29 can be selected at an appropriate length. But
Design of high frequency power to be injected into the plasma chamber
Becomes easier. In the above plasma processing apparatus, the tantalum oxide
Side (TaTwoOFive) Post-treatment (removal of C), table of oxide film
Surface nitriding, epitaxial growth, dry etching, and
Applicable to cleaning of processing chambers, etc.
Compared to the conventional example that generated uniform plasma,
Processing efficiency can be improved and in-plane uniformity can be improved.
Wear. Here, the tantalum oxide (Ta)Two
OFive) Is a post-treatment (removal of C)
In the semiconductor manufacturing process after the
Tantalum oxide used as insulating film in capacitor
Exists near the film surface to reduce leakage current
This is a process for removing carbon (C). Removal conditions
Is Pressure 1-100Pa Substrate temperature 300-400 ° C And the reaction gas is oxygen (OTwo) Is common and plasma
Activated species of oxygen (O*) Is a table of wafer W
Surface, and reacts with carbon on the surface of the tantalum oxide film.
This is removed accordingly. The activity of oxygen depends on the pressure.
Since the amount of generation and the life of the species change, the supply amount of oxygen gas and the pressure
Is appropriately set within the range of the capacity of the exhaust pump. Another example of remote plasma processing
Is nitriding of the oxide film surface. By the way, this remote
Examples of conditions for nitridation of the oxide film surface by plasma
It is as described. [0044] NHThreeFlow rate 300sccm Pressure 30Pa Substrate temperature 400 ℃ RF power 1000W Processing time 5 minutes SIMS (Secondary Ionization Mass Sp
ectrometer) to measure the concentration of nitrogen atoms
be able to. In the apparatus according to the embodiment of FIG.
The wafer is separated from the plasma by 90 mm (FIG. 1)
After performing the distance C) treatment, the concentration of nitrogen atoms becomes about 50%.
You. On the other hand, if it is treated 400 mm away, nitrogen atoms
The concentration decreases to less than 10%. Also, a uniform plasma
In the conventional example that generates
Distance between the plasma and the wafer required for
Although it was 0 mm or more, an annular plasma was generated.
In one embodiment, the density distribution of the active species is made uniform.
The distance between the plasma and the wafer required for
It can be close to 0mm, so the density of active species
Significantly reduce the effect of remote plasma processing
Can be improved. Also, as in the conventional example, at the center of the buffer chamber,
When a point-like plasma is formed, the substrate to be processed is, for example, φ2
In the case of a 00 mm silicon wafer,
There is a path difference of 100mm in the path to the con wafer
Processing at the edge with respect to the center of the silicon wafer.
The effect was much smaller. In contrast, this implementation
In the embodiment, the difference in the effect due to the route difference is almost eliminated. FIG. 2 shows a plasma processing according to the second embodiment.
1 shows a processing device. The first embodiment shown in FIG.
The difference from the Zuma treatment device is that the one in Fig. 1 has a dome-shaped lid.
While a cylindrical window 26 is provided in the body 15, FIG.
Is a plate-like lid 35 with an annular shape convex toward the plasma chamber 14 side.
The point is that a window 36 is provided. In the plasma chamber 14 in the lid 35, the lid 3
5 is provided with a gas inlet 38 in the upper center.
As shown by the arrow in the center of FIG.
ing. Specifically, a lid for forming the plasma chamber 14
The body 35 is not in a dome shape but in a flat plate shape. Flat plate
The shape is used to secure the strength. Flat of lid 35
The plate-shaped ceiling generates electromagnetic induction in the plasma chamber 14.
The cover is covered with a dielectric cover. This lid
An annular opening is provided in 35, and an annular window 36 is fitted into this opening.
Put in. An annular window 36 is provided above the plasma chamber 14.
14 so that it protrudes inward, and
A recess 37 is provided outside the zoom chamber 14. Recess of annular window 36
Along with 37, the high-frequency power is supplied to the plasma chamber 14.
The induction coil 29 to be introduced is mounted in a ring shape,
Along the inside of an annular window 36 projecting into
A zuma 10 is generated. In the figure, reference numeral 39 denotes an annular window 36 of the lid 35.
Lid support cover that supports the central part formed from above
It is. Reference numeral 32 indicated by a dotted line denotes an annular window 36.
Is a cover for protecting the outside from outside. The ring projecting into the plasma chamber 14 in this manner
Generates an annular plasma 10 along the inside of the window 36
In the same way as in the case of cylindrical windows, the density of active species can be made uniform.
It is. FIG. 3 shows a plasma processing according to the third embodiment.
1 shows a processing device. In the second embodiment shown in FIG.
An annular window 36 protruding toward the plasma chamber 14 is
However, in the third embodiment shown in FIG.
An annular window 46 having a concave shape on the side of the plasma chamber 14
Provided. Specifically, the window is constituted by an annular window 46,
The annular window 46 is located above the plasma chamber 14 and outside the plasma chamber 14.
Projecting to the side, and thus concave to the plasma chamber 14 side
The recess 47 is provided inside the plasma chamber 14.
Is formed. Along the outer circumference of the annular window 46
To induce high-frequency power into the plasma chamber 14
The conductive coil 29 is attached, and the concave portion 4 inside the annular window 46 is mounted.
7, an annular plasma 10 is generated. The annular plasma 10 extends along the concave portion 47.
Is generated, the density of the active species is increased at a distance from the plasma 10.
There is a position where the degree is uniform. Therefore, the density of the active species
When the wafer W is placed at a position where
More uniform in the wafer plane without increasing the size of 11
Processing can be performed. In the case of the above-described third embodiment,
Also has an annular shape forming a recess 47 which is a relatively narrow space.
The induction coil 29 should be mounted along the outer periphery of the window 46.
And a coil around the entire circumference of the plasma chamber as in the prior art device.
Need not be attached, and the apparatus can be simplified. FIG. 4 shows a plasma according to the fourth embodiment.
FIG. 4 shows a processing apparatus, which is a modification of the embodiment shown in FIG.
You. The difference from FIG. 1 is that the lid 15 and the dielectric cover
The plasma chamber 14 was composed of two members 24 and 24.
The lid itself is composed of a dielectric dome 45,
This is the point that the zuma chamber 14 is constituted by a single member. Lid directly
With the dome 45 made of dielectric, even if the wall surface is thinned
Increased strength, reduced production costs and reduced number of parts
Wear. Referring to the embodiment of the invention shown in FIGS.
Remote from the plasma within a specified distance from the plasma.
The effect of the heat plasma treatment is presumed as shown in FIG. FIG.
In FIG. 7, the point-like plasma raised for reference (FIG. 7)
In (B)), the plasma processing effect is indicated by a distribution curve 54.
As shown in the figure, the central part has the largest plasma processing effect,
Decreases sharply toward. Also overall plasma treatment
The effect is small. The first embodiment, the second embodiment, and
And the annular plasma of the fourth embodiment (FIG. 7C).
Are, as indicated by the distribution curve 52,
Smearing effect is slightly reduced, but the effect at the end is uniform
7 (A), which is not so small.
No. This protrudes into the plasma chamber 14 on the wafer W.
High-frequency power is supplied from the recesses 27 and 37 of the window
14 to produce an annular plasma 10
To improve the plasma processing efficiency around the wafer
Because it can be. With this device, the center of the wafer W
The processing uniformity of the peripheral part is mainly due to the gas shower plate 21
By changing the distance B (see FIG. 1) between the
Can be adjusted and improved. For example, when the wafer W
If the processing efficiency is low, if the distance B is increased,
The plasma around the wafer is also diffused to the center, improving uniformity.
You. The annular plasma according to the third embodiment (FIG. 7)
(C)) in comparison with the first, second, and fourth embodiments.
Therefore, as shown in the distribution curve 53, the effect of the peripheral portion is slightly large.
It becomes. The second embodiment having the concave annular window 36 shown in FIG.
Embodiment and a third embodiment having a convex annular window 46 of FIG.
There is a slight difference in the plasma processing effect between the two.
The reason for this difference will be described with reference to FIG. FIG.
FIG. 6A shows a case where a concave annular window 36 is provided, and FIG.
Shows the density distribution of active species when a window 46 is provided.
You. In FIG. 6 (A), the plasma 10 overlaps the inner circumference of the ring.
And the shape of the plasma ring is not clear,
Species density distribution increases the distance between plasma and wafer
It quickly becomes convex before it becomes
There are not many positions where the density distribution of active species becomes uniform.
No. On the other hand, in FIG.
There is no overlap and the shape of the plasma ring is clear
At a certain distance, the density of active species becomes uniform.
(C). Therefore, the uniformity of the plasma processing effect
The third embodiment has better performance than the second embodiment.
It becomes. [0061] According to the present invention, a projection or depression provided in a plasma chamber is provided.
High-frequency power from the window into the plasma chamber
Since an annular plasma was generated in the plasma chamber,
A coil is provided on the outer periphery of the plasma chamber as
Compared to those that generate plasma, active species
Uniform density distribution and uniform in-plane processing of substrate to be processed
Performance can be improved.

【図面の簡単な説明】 【図1】第1の実施の形態によるプラズマ処理装置の概
略断面図である。 【図2】第2の実施の形態によるプラズマ処理装置の概
略断面図である。 【図3】第3の実施の形態によるプラズマ処理装置の概
略断面図である。 【図4】第4の実施の形態によるプラズマ処理装置の概
略断面図である。 【図5】実施の形態と従来例とを比較したリモートプラ
ズマ処理効果の予想分布特性図である。 【図6】実施の形態による凹環状窓と凸環状窓とにおけ
るプラズマ分布密度の違いを示した説明図である。 【図7】各種プラズマ形状の距離に応じた活性種の密度
分布特性図である。 【図8】実施の形態による環状プラズマを生成するため
の窓構造を示す図である。 【符号の説明】 10 環状のプラズマ 11 処理容器 12 処理室 14 プラズマ室 26 円筒状窓 29 誘導コイル 30 誘導結合型プラズマ源 W ウェーハ(被処理基板)
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic sectional view of a plasma processing apparatus according to a first embodiment. FIG. 2 is a schematic sectional view of a plasma processing apparatus according to a second embodiment. FIG. 3 is a schematic sectional view of a plasma processing apparatus according to a third embodiment. FIG. 4 is a schematic sectional view of a plasma processing apparatus according to a fourth embodiment. FIG. 5 is an expected distribution characteristic diagram of a remote plasma processing effect comparing the embodiment and the conventional example. FIG. 6 is an explanatory diagram showing a difference in plasma distribution density between a concave annular window and a convex annular window according to the embodiment. FIG. 7 is a density distribution characteristic diagram of active species according to the distance of various plasma shapes. FIG. 8 is a diagram showing a window structure for generating annular plasma according to the embodiment. DESCRIPTION OF SYMBOLS 10 Annular plasma 11 Processing vessel 12 Processing chamber 14 Plasma chamber 26 Cylindrical window 29 Induction coil 30 Inductively coupled plasma source W Wafer (substrate to be processed)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H05H 1/46 H01L 21/302 N Fターム(参考) 4G075 AA24 BA06 BA10 BC05 BC06 DA02 EB44 FA05 4K030 KA30 5F004 AA01 AA09 AA15 BA03 BA20 BB13 BB32 BD04 5F045 AA08 AA20 AB33 AC12 AF08 BB02 DP03 EC01 EE06 EH11──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H05H 1/46 H01L 21/302 NF term (Reference) 4G075 AA24 BA06 BA10 BC05 BC06 DA02 EB44 FA05 4K030 KA30 5F004 AA01 AA09 AA15 BA03 BA20 BB13 BB32 BD04 5F045 AA08 AA20 AB33 AC12 AF08 BB02 DP03 EC01 EE06 EH11

Claims (1)

【特許請求の範囲】 【請求項1】プラズマを生成するプラズマ室と被処理基
板を処理する処理室とを内部に形成した処理容器と、 前記処理容器のプラズマ室に、プラズマ室側に凸又は凹
状に形成した窓と、 前記窓に設けられる誘導コイルを有し、該誘導コイルの
電磁誘導により前記プラズマ室に供給されるガスをプラ
ズマ励起して活性種を生成する誘導結合型プラズマ源と
を備えて、前記プラズマ室で生成された活性種を前記処
理室内に供給して被処理基板を処理するプラズマ処理装
置。
Claims: 1. A processing container having a plasma chamber for generating plasma and a processing chamber for processing a substrate to be processed formed therein, and a plasma chamber of the processing container, A window formed in a concave shape, and an inductively coupled plasma source having an induction coil provided in the window, and plasma-exciting a gas supplied to the plasma chamber by electromagnetic induction of the induction coil to generate active species. A plasma processing apparatus for processing the substrate to be processed by supplying active species generated in the plasma chamber into the processing chamber.
JP2001250602A 2001-08-21 2001-08-21 Plasma treatment equipment Pending JP2003059914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001250602A JP2003059914A (en) 2001-08-21 2001-08-21 Plasma treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001250602A JP2003059914A (en) 2001-08-21 2001-08-21 Plasma treatment equipment

Publications (1)

Publication Number Publication Date
JP2003059914A true JP2003059914A (en) 2003-02-28

Family

ID=19079390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001250602A Pending JP2003059914A (en) 2001-08-21 2001-08-21 Plasma treatment equipment

Country Status (1)

Country Link
JP (1) JP2003059914A (en)

Cited By (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100725037B1 (en) 2005-01-21 2007-06-07 세메스 주식회사 Apparatus and method for treating semiconductor device with plasma
US7767024B2 (en) 2004-02-26 2010-08-03 Appplied Materials, Inc. Method for front end of line fabrication
US7780793B2 (en) 2004-02-26 2010-08-24 Applied Materials, Inc. Passivation layer formation by plasma clean process to reduce native oxide growth
US8679982B2 (en) 2011-08-26 2014-03-25 Applied Materials, Inc. Selective suppression of dry-etch rate of materials containing both silicon and oxygen
US8679983B2 (en) 2011-09-01 2014-03-25 Applied Materials, Inc. Selective suppression of dry-etch rate of materials containing both silicon and nitrogen
US8765574B2 (en) 2012-11-09 2014-07-01 Applied Materials, Inc. Dry etch process
US8771539B2 (en) 2011-02-22 2014-07-08 Applied Materials, Inc. Remotely-excited fluorine and water vapor etch
US8801952B1 (en) 2013-03-07 2014-08-12 Applied Materials, Inc. Conformal oxide dry etch
US8895449B1 (en) 2013-05-16 2014-11-25 Applied Materials, Inc. Delicate dry clean
US8921234B2 (en) 2012-12-21 2014-12-30 Applied Materials, Inc. Selective titanium nitride etching
US8927390B2 (en) 2011-09-26 2015-01-06 Applied Materials, Inc. Intrench profile
US8951429B1 (en) 2013-10-29 2015-02-10 Applied Materials, Inc. Tungsten oxide processing
US8956980B1 (en) 2013-09-16 2015-02-17 Applied Materials, Inc. Selective etch of silicon nitride
US8969212B2 (en) 2012-11-20 2015-03-03 Applied Materials, Inc. Dry-etch selectivity
US8975152B2 (en) 2011-11-08 2015-03-10 Applied Materials, Inc. Methods of reducing substrate dislocation during gapfill processing
US8980763B2 (en) 2012-11-30 2015-03-17 Applied Materials, Inc. Dry-etch for selective tungsten removal
US8999856B2 (en) 2011-03-14 2015-04-07 Applied Materials, Inc. Methods for etch of sin films
TWI480919B (en) * 2011-11-04 2015-04-11 Psk Inc A plasma supply unit and a substrate processing device including the same
US9023732B2 (en) 2013-03-15 2015-05-05 Applied Materials, Inc. Processing systems and methods for halide scavenging
US9023734B2 (en) 2012-09-18 2015-05-05 Applied Materials, Inc. Radical-component oxide etch
US9034770B2 (en) 2012-09-17 2015-05-19 Applied Materials, Inc. Differential silicon oxide etch
US9040422B2 (en) 2013-03-05 2015-05-26 Applied Materials, Inc. Selective titanium nitride removal
US9064816B2 (en) 2012-11-30 2015-06-23 Applied Materials, Inc. Dry-etch for selective oxidation removal
US9064815B2 (en) 2011-03-14 2015-06-23 Applied Materials, Inc. Methods for etch of metal and metal-oxide films
US9111877B2 (en) 2012-12-18 2015-08-18 Applied Materials, Inc. Non-local plasma oxide etch
US9117855B2 (en) 2013-12-04 2015-08-25 Applied Materials, Inc. Polarity control for remote plasma
US9114438B2 (en) 2013-05-21 2015-08-25 Applied Materials, Inc. Copper residue chamber clean
US9132436B2 (en) 2012-09-21 2015-09-15 Applied Materials, Inc. Chemical control features in wafer process equipment
US9136273B1 (en) 2014-03-21 2015-09-15 Applied Materials, Inc. Flash gate air gap
US9159606B1 (en) 2014-07-31 2015-10-13 Applied Materials, Inc. Metal air gap
US9165786B1 (en) 2014-08-05 2015-10-20 Applied Materials, Inc. Integrated oxide and nitride recess for better channel contact in 3D architectures
US9190293B2 (en) 2013-12-18 2015-11-17 Applied Materials, Inc. Even tungsten etch for high aspect ratio trenches
US9236266B2 (en) 2011-08-01 2016-01-12 Applied Materials, Inc. Dry-etch for silicon-and-carbon-containing films
US9236265B2 (en) 2013-11-04 2016-01-12 Applied Materials, Inc. Silicon germanium processing
US9245762B2 (en) 2013-12-02 2016-01-26 Applied Materials, Inc. Procedure for etch rate consistency
US9263278B2 (en) 2013-12-17 2016-02-16 Applied Materials, Inc. Dopant etch selectivity control
US9287095B2 (en) 2013-12-17 2016-03-15 Applied Materials, Inc. Semiconductor system assemblies and methods of operation
US9287134B2 (en) 2014-01-17 2016-03-15 Applied Materials, Inc. Titanium oxide etch
US9293568B2 (en) 2014-01-27 2016-03-22 Applied Materials, Inc. Method of fin patterning
US9299537B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9299582B2 (en) 2013-11-12 2016-03-29 Applied Materials, Inc. Selective etch for metal-containing materials
US9299575B2 (en) 2014-03-17 2016-03-29 Applied Materials, Inc. Gas-phase tungsten etch
US9299538B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9309598B2 (en) 2014-05-28 2016-04-12 Applied Materials, Inc. Oxide and metal removal
US9324576B2 (en) 2010-05-27 2016-04-26 Applied Materials, Inc. Selective etch for silicon films
US9355856B2 (en) 2014-09-12 2016-05-31 Applied Materials, Inc. V trench dry etch
US9362130B2 (en) 2013-03-01 2016-06-07 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
US9373517B2 (en) 2012-08-02 2016-06-21 Applied Materials, Inc. Semiconductor processing with DC assisted RF power for improved control
US9378978B2 (en) 2014-07-31 2016-06-28 Applied Materials, Inc. Integrated oxide recess and floating gate fin trimming
US9378969B2 (en) 2014-06-19 2016-06-28 Applied Materials, Inc. Low temperature gas-phase carbon removal
US9385028B2 (en) 2014-02-03 2016-07-05 Applied Materials, Inc. Air gap process
US9390937B2 (en) 2012-09-20 2016-07-12 Applied Materials, Inc. Silicon-carbon-nitride selective etch
US9396989B2 (en) 2014-01-27 2016-07-19 Applied Materials, Inc. Air gaps between copper lines
US9406523B2 (en) 2014-06-19 2016-08-02 Applied Materials, Inc. Highly selective doped oxide removal method
US9425058B2 (en) 2014-07-24 2016-08-23 Applied Materials, Inc. Simplified litho-etch-litho-etch process
US9496167B2 (en) 2014-07-31 2016-11-15 Applied Materials, Inc. Integrated bit-line airgap formation and gate stack post clean
US9493879B2 (en) 2013-07-12 2016-11-15 Applied Materials, Inc. Selective sputtering for pattern transfer
US9553102B2 (en) 2014-08-19 2017-01-24 Applied Materials, Inc. Tungsten separation
US9576809B2 (en) 2013-11-04 2017-02-21 Applied Materials, Inc. Etch suppression with germanium
US9580338B2 (en) 2013-11-18 2017-02-28 Panasonic Intellectual Property Management Co., Ltd. Liquid treatment apparatus and liquid treatment method
US9591738B2 (en) 2008-04-03 2017-03-07 Novellus Systems, Inc. Plasma generator systems and methods of forming plasma
US9659753B2 (en) 2014-08-07 2017-05-23 Applied Materials, Inc. Grooved insulator to reduce leakage current
US9708201B2 (en) 2013-11-18 2017-07-18 Panasonic Intellectual Property Management Co., Ltd. Liquid treatment apparatus
US9773648B2 (en) 2013-08-30 2017-09-26 Applied Materials, Inc. Dual discharge modes operation for remote plasma
US9828261B2 (en) 2013-11-18 2017-11-28 Panasonic Intellectual Property Management Co., Ltd. Liquid treatment unit, toilet seat with washer, washing machine, and liquid treatment apparatus
US9847289B2 (en) 2014-05-30 2017-12-19 Applied Materials, Inc. Protective via cap for improved interconnect performance
JP2018014337A (en) * 2013-09-06 2018-01-25 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Power deposition control of inductively coupled plasma (ICP) reactor
US9903020B2 (en) 2014-03-31 2018-02-27 Applied Materials, Inc. Generation of compact alumina passivation layers on aluminum plasma equipment components
US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations

Cited By (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7767024B2 (en) 2004-02-26 2010-08-03 Appplied Materials, Inc. Method for front end of line fabrication
US7780793B2 (en) 2004-02-26 2010-08-24 Applied Materials, Inc. Passivation layer formation by plasma clean process to reduce native oxide growth
US8343307B2 (en) 2004-02-26 2013-01-01 Applied Materials, Inc. Showerhead assembly
US10593539B2 (en) 2004-02-26 2020-03-17 Applied Materials, Inc. Support assembly
KR100725037B1 (en) 2005-01-21 2007-06-07 세메스 주식회사 Apparatus and method for treating semiconductor device with plasma
US9591738B2 (en) 2008-04-03 2017-03-07 Novellus Systems, Inc. Plasma generator systems and methods of forming plasma
US9324576B2 (en) 2010-05-27 2016-04-26 Applied Materials, Inc. Selective etch for silicon films
US8771539B2 (en) 2011-02-22 2014-07-08 Applied Materials, Inc. Remotely-excited fluorine and water vapor etch
US9064815B2 (en) 2011-03-14 2015-06-23 Applied Materials, Inc. Methods for etch of metal and metal-oxide films
US8999856B2 (en) 2011-03-14 2015-04-07 Applied Materials, Inc. Methods for etch of sin films
US9236266B2 (en) 2011-08-01 2016-01-12 Applied Materials, Inc. Dry-etch for silicon-and-carbon-containing films
US8679982B2 (en) 2011-08-26 2014-03-25 Applied Materials, Inc. Selective suppression of dry-etch rate of materials containing both silicon and oxygen
US8679983B2 (en) 2011-09-01 2014-03-25 Applied Materials, Inc. Selective suppression of dry-etch rate of materials containing both silicon and nitrogen
US8927390B2 (en) 2011-09-26 2015-01-06 Applied Materials, Inc. Intrench profile
US9012302B2 (en) 2011-09-26 2015-04-21 Applied Materials, Inc. Intrench profile
TWI480919B (en) * 2011-11-04 2015-04-11 Psk Inc A plasma supply unit and a substrate processing device including the same
US8975152B2 (en) 2011-11-08 2015-03-10 Applied Materials, Inc. Methods of reducing substrate dislocation during gapfill processing
US9373517B2 (en) 2012-08-02 2016-06-21 Applied Materials, Inc. Semiconductor processing with DC assisted RF power for improved control
US9034770B2 (en) 2012-09-17 2015-05-19 Applied Materials, Inc. Differential silicon oxide etch
US9887096B2 (en) 2012-09-17 2018-02-06 Applied Materials, Inc. Differential silicon oxide etch
US9023734B2 (en) 2012-09-18 2015-05-05 Applied Materials, Inc. Radical-component oxide etch
US9390937B2 (en) 2012-09-20 2016-07-12 Applied Materials, Inc. Silicon-carbon-nitride selective etch
US9132436B2 (en) 2012-09-21 2015-09-15 Applied Materials, Inc. Chemical control features in wafer process equipment
US8765574B2 (en) 2012-11-09 2014-07-01 Applied Materials, Inc. Dry etch process
US8969212B2 (en) 2012-11-20 2015-03-03 Applied Materials, Inc. Dry-etch selectivity
US9064816B2 (en) 2012-11-30 2015-06-23 Applied Materials, Inc. Dry-etch for selective oxidation removal
US8980763B2 (en) 2012-11-30 2015-03-17 Applied Materials, Inc. Dry-etch for selective tungsten removal
US9111877B2 (en) 2012-12-18 2015-08-18 Applied Materials, Inc. Non-local plasma oxide etch
US8921234B2 (en) 2012-12-21 2014-12-30 Applied Materials, Inc. Selective titanium nitride etching
US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US9362130B2 (en) 2013-03-01 2016-06-07 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
US9607856B2 (en) 2013-03-05 2017-03-28 Applied Materials, Inc. Selective titanium nitride removal
US9040422B2 (en) 2013-03-05 2015-05-26 Applied Materials, Inc. Selective titanium nitride removal
US9093390B2 (en) 2013-03-07 2015-07-28 Applied Materials, Inc. Conformal oxide dry etch
US8801952B1 (en) 2013-03-07 2014-08-12 Applied Materials, Inc. Conformal oxide dry etch
US9184055B2 (en) 2013-03-15 2015-11-10 Applied Materials, Inc. Processing systems and methods for halide scavenging
US9991134B2 (en) 2013-03-15 2018-06-05 Applied Materials, Inc. Processing systems and methods for halide scavenging
US9153442B2 (en) 2013-03-15 2015-10-06 Applied Materials, Inc. Processing systems and methods for halide scavenging
US9093371B2 (en) 2013-03-15 2015-07-28 Applied Materials, Inc. Processing systems and methods for halide scavenging
US9023732B2 (en) 2013-03-15 2015-05-05 Applied Materials, Inc. Processing systems and methods for halide scavenging
US8895449B1 (en) 2013-05-16 2014-11-25 Applied Materials, Inc. Delicate dry clean
US9114438B2 (en) 2013-05-21 2015-08-25 Applied Materials, Inc. Copper residue chamber clean
US9493879B2 (en) 2013-07-12 2016-11-15 Applied Materials, Inc. Selective sputtering for pattern transfer
US9773648B2 (en) 2013-08-30 2017-09-26 Applied Materials, Inc. Dual discharge modes operation for remote plasma
JP2018014337A (en) * 2013-09-06 2018-01-25 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Power deposition control of inductively coupled plasma (ICP) reactor
US9209012B2 (en) 2013-09-16 2015-12-08 Applied Materials, Inc. Selective etch of silicon nitride
US8956980B1 (en) 2013-09-16 2015-02-17 Applied Materials, Inc. Selective etch of silicon nitride
US8951429B1 (en) 2013-10-29 2015-02-10 Applied Materials, Inc. Tungsten oxide processing
US9236265B2 (en) 2013-11-04 2016-01-12 Applied Materials, Inc. Silicon germanium processing
US9576809B2 (en) 2013-11-04 2017-02-21 Applied Materials, Inc. Etch suppression with germanium
US9299582B2 (en) 2013-11-12 2016-03-29 Applied Materials, Inc. Selective etch for metal-containing materials
US9711366B2 (en) 2013-11-12 2017-07-18 Applied Materials, Inc. Selective etch for metal-containing materials
US9520303B2 (en) 2013-11-12 2016-12-13 Applied Materials, Inc. Aluminum selective etch
US9708201B2 (en) 2013-11-18 2017-07-18 Panasonic Intellectual Property Management Co., Ltd. Liquid treatment apparatus
US9828261B2 (en) 2013-11-18 2017-11-28 Panasonic Intellectual Property Management Co., Ltd. Liquid treatment unit, toilet seat with washer, washing machine, and liquid treatment apparatus
US9580338B2 (en) 2013-11-18 2017-02-28 Panasonic Intellectual Property Management Co., Ltd. Liquid treatment apparatus and liquid treatment method
US9245762B2 (en) 2013-12-02 2016-01-26 Applied Materials, Inc. Procedure for etch rate consistency
US9117855B2 (en) 2013-12-04 2015-08-25 Applied Materials, Inc. Polarity control for remote plasma
US9263278B2 (en) 2013-12-17 2016-02-16 Applied Materials, Inc. Dopant etch selectivity control
US9287095B2 (en) 2013-12-17 2016-03-15 Applied Materials, Inc. Semiconductor system assemblies and methods of operation
US9190293B2 (en) 2013-12-18 2015-11-17 Applied Materials, Inc. Even tungsten etch for high aspect ratio trenches
US9287134B2 (en) 2014-01-17 2016-03-15 Applied Materials, Inc. Titanium oxide etch
US9293568B2 (en) 2014-01-27 2016-03-22 Applied Materials, Inc. Method of fin patterning
US9396989B2 (en) 2014-01-27 2016-07-19 Applied Materials, Inc. Air gaps between copper lines
US9385028B2 (en) 2014-02-03 2016-07-05 Applied Materials, Inc. Air gap process
US9299575B2 (en) 2014-03-17 2016-03-29 Applied Materials, Inc. Gas-phase tungsten etch
US9299537B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9299538B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9136273B1 (en) 2014-03-21 2015-09-15 Applied Materials, Inc. Flash gate air gap
US9903020B2 (en) 2014-03-31 2018-02-27 Applied Materials, Inc. Generation of compact alumina passivation layers on aluminum plasma equipment components
US9309598B2 (en) 2014-05-28 2016-04-12 Applied Materials, Inc. Oxide and metal removal
US9847289B2 (en) 2014-05-30 2017-12-19 Applied Materials, Inc. Protective via cap for improved interconnect performance
US9406523B2 (en) 2014-06-19 2016-08-02 Applied Materials, Inc. Highly selective doped oxide removal method
US9378969B2 (en) 2014-06-19 2016-06-28 Applied Materials, Inc. Low temperature gas-phase carbon removal
US9425058B2 (en) 2014-07-24 2016-08-23 Applied Materials, Inc. Simplified litho-etch-litho-etch process
US9496167B2 (en) 2014-07-31 2016-11-15 Applied Materials, Inc. Integrated bit-line airgap formation and gate stack post clean
US9159606B1 (en) 2014-07-31 2015-10-13 Applied Materials, Inc. Metal air gap
US9378978B2 (en) 2014-07-31 2016-06-28 Applied Materials, Inc. Integrated oxide recess and floating gate fin trimming
US9165786B1 (en) 2014-08-05 2015-10-20 Applied Materials, Inc. Integrated oxide and nitride recess for better channel contact in 3D architectures
US9659753B2 (en) 2014-08-07 2017-05-23 Applied Materials, Inc. Grooved insulator to reduce leakage current
US9553102B2 (en) 2014-08-19 2017-01-24 Applied Materials, Inc. Tungsten separation
US9355856B2 (en) 2014-09-12 2016-05-31 Applied Materials, Inc. V trench dry etch

Similar Documents

Publication Publication Date Title
JP2003059914A (en) Plasma treatment equipment
US9299579B2 (en) Etching method and plasma processing apparatus
KR101331420B1 (en) Substrate processing apparatus and method of manufacturing semiconductor device
JP3996771B2 (en) Vacuum processing apparatus and vacuum processing method
JP2002280378A (en) Batch-type remote plasma treatment apparatus
US20030141017A1 (en) Plasma processing apparatus
KR20180054495A (en) Dual-frequency surface wave plasma source
KR100712172B1 (en) Plasma processing apparatus and method of designing the same
US10781519B2 (en) Method and apparatus for processing substrate
TWI759348B (en) Method for processing object to be processed
JP6085106B2 (en) Plasma processing apparatus and plasma processing method
US9142435B2 (en) Substrate stage of substrate processing apparatus and substrate processing apparatus
KR20090089818A (en) Manufacturing method, manufacturing apparatus and manufacturing system of semiconductor device
JP2000082698A (en) Plasma processing apparatus
KR20170117341A (en) Method for preferential oxidation of silicon in substrates containing silicon and germanium
JP2009224772A (en) Semiconductor device manufacturing method, semiconductor device manufacturing apparatus, and semiconductor device manufacturing system
US20020139304A1 (en) Semiconductor manufacturing apparatus
JP2006278631A (en) Apparatus for manufacturing semiconductor device
KR101435866B1 (en) Substrate processing apparatus and method of manufacturing semiconductor device
US11145493B2 (en) Plasma etching apparatus and plasma etching method
US20230053083A1 (en) Plasma processing apparatus and film forming method
JPH08139037A (en) Vapor phase reaction equipment
KR20210103596A (en) Method for recovering surface of silicon structure and apparatus for treating substrate
JP2000082699A (en) Etching processing apparatus
KR20030027505A (en) Semiconductor processing apparatus having improved exhausting structure