JP2003059517A - Gas humidity determining method for solid polymer fuel cell, control device for solid polymer fuel cell and solid polymer fuel cell - Google Patents

Gas humidity determining method for solid polymer fuel cell, control device for solid polymer fuel cell and solid polymer fuel cell

Info

Publication number
JP2003059517A
JP2003059517A JP2001251566A JP2001251566A JP2003059517A JP 2003059517 A JP2003059517 A JP 2003059517A JP 2001251566 A JP2001251566 A JP 2001251566A JP 2001251566 A JP2001251566 A JP 2001251566A JP 2003059517 A JP2003059517 A JP 2003059517A
Authority
JP
Japan
Prior art keywords
gas
humidity
absolute humidity
fuel cell
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001251566A
Other languages
Japanese (ja)
Inventor
Fumio Kimura
二三夫 木村
Masashi Inoue
勝支 井上
Hiroshi Yamakawa
山川  洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2001251566A priority Critical patent/JP2003059517A/en
Publication of JP2003059517A publication Critical patent/JP2003059517A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably obtain a high cell output as much as possible while securely restraining within a given allowance instability of cell output due to excess of gas humidity in a solid polymer fuel cell. SOLUTION: With the solid polymer fuel cell adjusting absolute humidity xa, xb of fuel gas F or oxidant gas with a humidity adjustment means 4, 5, a corresponding absolute humidity xm is found when an index parameter σbecomes equal to a set threshold σm in correlation with the index parameter indicating variation of vibrational fluctuation of the cell output v and adjusted absolute humidity x by the humidity adjustment means 4, 5, and this corresponding absolute humidity xm is to be targeted absolute humidity xam, xbm in humidity adjustment by the humidity adjustment means 4, 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、固体高分子電解質
膜を挟持する一方のガス拡散電極(燃料極)に水素ガス
含有の燃料ガスを供給し、かつ、他方のガス拡散電極
(酸素極)に酸素ガス含有の酸化剤ガスを供給し、これ
らガス拡散電極に供給する燃料ガス又は酸化剤ガスの絶
対湿度を湿度調整手段により調整する固体高分子型燃料
電池に関し、詳しくは、固体高分子型燃料電池のガス湿
度決定方法、そのガス湿度決定方法の実施に使用する固
体高分子型燃料電池の制御装置、並びに、固体高分子型
燃料電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention supplies a fuel gas containing hydrogen gas to one gas diffusion electrode (fuel electrode) sandwiching a solid polymer electrolyte membrane, and the other gas diffusion electrode (oxygen electrode). The present invention relates to a solid polymer fuel cell in which an oxygen gas-containing oxidant gas is supplied to the gas diffusion electrode and the absolute humidity of the fuel gas or the oxidant gas supplied to these gas diffusion electrodes is adjusted by a humidity adjusting means. The present invention relates to a gas humidity determination method for a fuel cell, a solid polymer fuel cell control device used for implementing the gas humidity determination method, and a polymer electrolyte fuel cell.

【0002】[0002]

【従来の技術】固体高分子型の燃料電池では、燃料極と
してのガス拡散電極に供給する燃料ガスや酸素極として
のガス拡散電極に供給する酸化剤ガスが絶対湿度の低い
湿度不足の状態にあると、固体高分子電解質膜が乾燥し
て電解質膜のプロトン伝導性が低下することで電池出力
の低下を招き、また逆に、それら燃料ガスや酸化剤ガス
が絶対湿度の高すぎる湿度過剰の状態にあると、電極部
でガス中水分の凝縮が生じて凝縮水が電極部でのガス流
通の障害になることで電極のガス拡散性が低下して電池
出力の不安定化を招く。そして特に、この電池出力の不
安定化(具体的には図4に示す如き電池出力の振動的な
変動)は装置の劣化を助長して電池の耐用年数を低下さ
せる要因になる。
2. Description of the Related Art In a polymer electrolyte fuel cell, the fuel gas supplied to a gas diffusion electrode as a fuel electrode and the oxidant gas supplied to a gas diffusion electrode as an oxygen electrode are in a state of low humidity with insufficient absolute humidity. If so, the solid polymer electrolyte membrane dries and the proton conductivity of the electrolyte membrane decreases, leading to a decrease in battery output, and conversely, those fuel gas and oxidant gas have too high absolute humidity and excessive humidity. In this state, the water content in the gas is condensed in the electrode part, and the condensed water interferes with the gas flow in the electrode part, so that the gas diffusivity of the electrode is lowered and the battery output is destabilized. And, in particular, the destabilization of the battery output (specifically, the oscillatory fluctuation of the battery output as shown in FIG. 4) promotes the deterioration of the device and becomes a factor of reducing the service life of the battery.

【0003】このことから、固体高分子型燃料電池で
は、ガス拡散電極に供給する燃料ガスや酸化剤ガスの絶
対湿度を最適なものに調整することが必要になるが、従
来、この湿度調整については、電解質膜の膜抵抗値が閾
値よりも大きくなると対象ガスに対する加湿量を増大さ
せ、かつ、電解質膜の膜抵抗値が閾値よりも小さくて電
池の出力電圧が閾値よりも小さくなると対象ガスに対す
る加湿量を減少させる調整方式が提案されている(特開
平11−162490号公報参照)。
For this reason, in the polymer electrolyte fuel cell, it is necessary to adjust the absolute humidity of the fuel gas and the oxidant gas supplied to the gas diffusion electrode to the optimum one. When the membrane resistance value of the electrolyte membrane becomes larger than the threshold value, the amount of humidification to the target gas is increased, and when the membrane resistance value of the electrolyte membrane is smaller than the threshold value and the output voltage of the battery becomes smaller than the threshold value, An adjustment method for reducing the amount of humidification has been proposed (see Japanese Patent Application Laid-Open No. 11-162490).

【0004】また別方式として、電池の出力電圧が閾値
まで低下するごとに所定時間だけ対象ガスを加湿する、
あるいは、電池の出力電圧が閾値まで低下するごとに対
象ガスに対する加湿のON・OFFを交互に行なうとい
った調整方式も提案されている(特開平11−1914
23号公報参照)。
As another method, the target gas is humidified for a predetermined time each time the output voltage of the battery drops to a threshold value.
Alternatively, an adjustment method has also been proposed in which humidification for a target gas is alternately turned on and off each time the output voltage of the battery drops to a threshold value (Japanese Patent Laid-Open No. 11-1914).
23).

【0005】[0005]

【発明が解決しようとする課題】しかし、これら従来の
調整方式では、ガス拡散電極に供給する燃料ガスや酸化
剤ガスの絶対湿度を最適なものにする機能に未だ欠け、
この為、耐用年数の低下要因となる前述のガス湿度過剰
による電池出力の不安定化を一定の許容限度内に確実に
止めながら極力高い電池出力を安定的に得られるように
することが未だ難しい問題があった。
However, these conventional adjustment methods still lack the function of optimizing the absolute humidity of the fuel gas and the oxidant gas supplied to the gas diffusion electrode.
For this reason, it is still difficult to obtain a stable battery output as high as possible while reliably stopping the instability of the battery output due to excessive gas humidity, which causes a decrease in service life, within a certain allowable limit. There was a problem.

【0006】そしてまた、研究の結果、燃料極に供給す
る燃料ガスに純水素ガスを用いる場合に比べ、水素ガス
含有の混合ガス(一般には原燃料を改質処理して生成し
た改質ガス)を用いる場合の方が、さらには、水素ガス
濃度の低い混合ガスを用いる場合の方が、図4に示す如
く同じガス湿度条件のもとでも電池出力vが低くなると
ともにガス湿度過剰による電池出力の不安定化を生じ易
いことが判明し、このことから、水素ガス含有の混合ガ
スを燃料ガスに用いる場合には、水素ガス以外の含有ガ
ス(二酸化炭素ガスなど)を除去して、その混合ガスを
純水素ガス化した上で燃料極に供給することで電池出力
の向上と安定化を図るといったことも考えられるが、こ
の場合、水素ガス以外の含有ガスを除去する除去手段の
付加装備のために電池の全体構成が大型化するとともに
装置コストが大きく増大し、また、このことが使用燃料
ガスの多様化による固体高分子型燃料電池の汎用化を妨
げる要因にもなっていた。
[0006] Further, as a result of research, compared to the case where pure hydrogen gas is used as the fuel gas supplied to the fuel electrode, a mixed gas containing hydrogen gas (generally, a reformed gas produced by reforming raw fuel) When using a mixed gas having a low hydrogen gas concentration, the battery output v becomes lower under the same gas humidity conditions as shown in FIG. It was found that destabilization of hydrogen gas is likely to occur. Therefore, when using a mixed gas containing hydrogen gas as the fuel gas, remove the contained gas other than hydrogen gas (carbon dioxide gas, etc.) It is also possible to improve the cell output and stabilize it by supplying it to the fuel electrode after converting the gas to pure hydrogen gas, but in this case, it is necessary to add a device to remove the contained gas other than hydrogen gas. for Overall structure of the pond has greatly increased system cost while large, also This has been also a factor that prevents the generalization of a polymer electrolyte fuel cell according to the diversification of uses fuel gas.

【0007】以上の実情に鑑み、本発明の主たる課題
は、合理的な湿度調整方式を採ることにより、耐用年数
の低下要因となる前述のガス湿度過剰による電池出力の
不安定化を一定の許容限度内に確実に止めながら極力高
い電池出力を安定的に得られるようにする点にある。
In view of the above situation, the main object of the present invention is to allow a certain degree of instability of the battery output due to the excessive gas humidity, which causes a reduction in service life, by adopting a rational humidity adjustment method. The point is to ensure that the battery output is as high as possible while being reliably stopped within the limit.

【0008】[0008]

【課題を解決するための手段】〔1〕請求項1に係る発
明は固体高分子型燃料電池のガス湿度決定方法に係り、
その特徴は、固体高分子電解質膜を挟持する一方のガス
拡散電極に水素ガス含有の燃料ガスを供給し、かつ、他
方のガス拡散電極に酸素ガス含有の酸化剤ガスを供給
し、これらガス拡散電極に供給する燃料ガス又は酸化剤
ガスの絶対湿度を湿度調整手段により調整する固体高分
子型燃料電池について、電池出力の振動的な変動の大小
を示す所定の指標変数と前記湿度調整手段による調整絶
対湿度との相関上で前記指標変数が設定閾値に等しくな
るときの対応する絶対湿度を求め、この対応絶対湿度を
前記湿度調整手段による湿度調整での目標絶対湿度にす
る点にある。
[1] The invention according to claim 1 relates to a method for determining gas humidity of a polymer electrolyte fuel cell,
The feature is that the fuel gas containing hydrogen gas is supplied to one gas diffusion electrode sandwiching the solid polymer electrolyte membrane, and the oxidant gas containing oxygen gas is supplied to the other gas diffusion electrode to diffuse these gases. Regarding a polymer electrolyte fuel cell in which the absolute humidity of the fuel gas or oxidant gas supplied to the electrode is adjusted by the humidity adjusting means, a predetermined index variable indicating the magnitude of the oscillatory fluctuation of the cell output and the adjustment by the humidity adjusting means Corresponding absolute humidity is obtained when the index variable becomes equal to the set threshold value in correlation with the absolute humidity, and this corresponding absolute humidity is set as the target absolute humidity in the humidity adjustment by the humidity adjusting means.

【0009】つまり、この方法によれば、対象ガス(燃
料ガス又は酸化剤ガス)の湿度過剰による電池出力の不
安定化が前述の如く電池出力の振動的な変動という形で
生じることに対し、その変動の大小を示す所定の指標変
数と湿度調整手段による調整絶対湿度との相関上で指標
変数が設定閾値に等しくなるときの対応絶対湿度を湿度
調整における目標絶対湿度にするから、この目標絶対湿
度の設定下において湿度調整手段により対象ガスの絶対
湿度をその目標絶対湿度に調整することにより、耐用年
数の低下要因となるガス湿度過剰による電池出力の不安
定化を一定の許容限度(上記の設定閾値に対応する限
度)内に確実に止めながら、その範囲内で最大量の水分
を対象ガスから電解質膜へ安定的に補充するようにして
極力高い電池出力を安定的に得ることができる。
That is, according to this method, destabilization of the battery output due to excessive humidity of the target gas (fuel gas or oxidant gas) occurs in the form of oscillatory fluctuation of the battery output as described above. Since the corresponding absolute humidity when the index variable becomes equal to the set threshold value on the correlation between the predetermined index variable showing the magnitude of the fluctuation and the absolute humidity adjusted by the humidity adjusting means is the target absolute humidity in the humidity adjustment, this target absolute By adjusting the absolute humidity of the target gas to the target absolute humidity by the humidity adjusting means under the humidity setting, destabilization of the battery output due to excessive gas humidity, which is a factor of decreasing the service life, becomes a certain allowable limit (above). The maximum amount of water within that range can be stably replenished from the target gas to the electrolyte membrane while ensuring that the battery output is as high as possible. It is possible to obtain the Joteki.

【0010】また、この方法によれば、種々の燃料ガス
を用いることに対し、その使用燃料ガスについての上記
相関上で指標変数が設定閾値に等しくなるときの対応絶
対湿度を求めるだけで対応できるから、改質ガスなどの
混合ガスを燃料ガスに用いる場合において水素ガス以外
の含有ガスを除去する除去手段を付加装備するといった
ことも不要にでき、この点で、電池全体構成の小型化及
び装置コストの低減が可能になるとともに、使用燃料ガ
スの多様化による固体高分子型燃料電池の汎用化も促進
することができる。
Further, according to this method, it is possible to cope with the use of various fuel gases by simply obtaining the corresponding absolute humidity when the index variable becomes equal to the set threshold value on the above correlation for the fuel gas used. Therefore, when a mixed gas such as a reformed gas is used as the fuel gas, it is not necessary to additionally equip a removing means for removing the contained gas other than the hydrogen gas. The cost can be reduced, and the versatility of the polymer electrolyte fuel cell can be promoted by diversifying the fuel gas used.

【0011】〔2〕請求項2に係る発明は、請求項1に
係る発明の実施に好適な実施形態を特定するものであ
り、その特徴は、水素ガス濃度が互いに異なる複数種の
試験燃料ガスの各々について前記の対応絶対湿度を求め
ておき、これら複数の対応絶対湿度と各試験燃料ガスの
水素ガス濃度との対応関係に基づき、実際に使用する燃
料ガスの水素ガス濃度に応じた実使用燃料ガスについて
の前記対応絶対湿度を求めて、この実使用燃料ガスにつ
いての対応絶対湿度を前記湿度調整手段による湿度調整
での目標絶対湿度にする点にある。
[2] The invention according to claim 2 specifies an embodiment suitable for carrying out the invention according to claim 1, and is characterized in that a plurality of types of test fuel gas having different hydrogen gas concentrations are provided. For each of the above, the corresponding absolute humidity is calculated in advance, and based on the correspondence relationship between these multiple corresponding absolute humidity and the hydrogen gas concentration of each test fuel gas, actual use according to the hydrogen gas concentration of the fuel gas actually used The point is that the corresponding absolute humidity for the fuel gas is obtained and the corresponding absolute humidity for the actually used fuel gas is set as the target absolute humidity in the humidity adjustment by the humidity adjusting means.

【0012】つまり、前記指標変数が設定閾値になると
きの対応絶対湿度(すなわち、ガス湿度過剰による電池
出力の不安定化を一定の許容限度内に確実に止めながら
極力高い電池出力を安定的に得ることができる対象ガス
の絶対湿度)は、前述の如く燃料ガスの水素ガス濃度に
よって異なるが、上記方法によれば、水素ガス濃度が互
いに異なる複数種の試験燃料ガスの各々についての前記
対応絶対湿度と各試験燃料ガスの水素ガス濃度との対応
関係に基づき、実際に使用する燃料ガスの水素ガス濃度
に応じた実使用燃料ガスについての前記対応絶対湿度を
求めるから、実際に使用する燃料ガスについての前記対
応絶対湿度を求めるにあたり、その使用燃料ガスについ
ての前記相関(指標変数と調整絶対湿度との相関)を逐
一把握する必要がなく、試験燃料ガスについての上記対
応関係を把握しておくだけで種々の燃料ガスの使用に対
応でき、この点で、請求項1に係るガス湿度決定方法の
実施を容易にすることができる。
That is, the corresponding absolute humidity when the index variable becomes the set threshold value (that is, the destabilization of the battery output due to the excessive gas humidity is surely stopped within a certain allowable limit, and the battery output as high as possible is stabilized. The absolute humidity of the target gas that can be obtained differs depending on the hydrogen gas concentration of the fuel gas as described above, but according to the above method, the corresponding absolute value for each of the plurality of types of test fuel gas having different hydrogen gas concentrations is obtained. Based on the correspondence between the humidity and the hydrogen gas concentration of each test fuel gas, the corresponding absolute humidity of the actually used fuel gas corresponding to the hydrogen gas concentration of the fuel gas actually used is calculated. It is necessary to grasp the correlation (correlation between the index variable and the adjusted absolute humidity) for the fuel gas used in the calculation of the corresponding absolute humidity for Ku, can support the use of various fuel gas just know the above relationship for the test fuel gas, in this respect, it is possible to facilitate the implementation of the gas humidity determining method according to claim 1.

【0013】〔3〕請求項3に係る発明は、請求項2に
係るガス湿度決定方法の実施に使用する固体高分子型燃
料電池の制御装置に係り、その特徴は、水素ガス濃度が
互い異なる複数種の試験燃料ガスの各々についての前記
対応絶対湿度と各試験燃料ガスの水素ガス濃度との対応
関係を記憶する記憶手段と、実際に使用する燃料ガスの
水素ガス濃度を検出する濃度検出手段と、前記記憶手段
が記憶している前記対応関係に基づき前記濃度検出手段
による検出水素ガス濃度に応じた実使用燃料ガスについ
ての前記対応絶対湿度を求めて、この実使用燃料ガスに
ついての対応絶対湿度を前記湿度調整手段による湿度調
整での目標絶対湿度にするガス湿度決定手段とを設けて
ある点にある。
[3] The invention according to claim 3 relates to a controller for a polymer electrolyte fuel cell used for carrying out the gas humidity determining method according to claim 2, which is characterized in that hydrogen gas concentrations are different from each other. Storage means for storing the correspondence relationship between the corresponding absolute humidity and the hydrogen gas concentration of each test fuel gas for each of a plurality of types of test fuel gas, and a concentration detecting means for detecting the hydrogen gas concentration of the fuel gas actually used And the corresponding absolute humidity for the actually used fuel gas in accordance with the hydrogen gas concentration detected by the concentration detecting means based on the corresponding relationship stored in the storage means, and the corresponding absolute humidity for the actually used fuel gas is obtained. And a gas humidity determining means for setting the humidity to a target absolute humidity in the humidity adjustment by the humidity adjusting means.

【0014】つまり、この構成によれば、ガス湿度決定
手段が実使用燃料ガスの検出水素ガス濃度に応じて、そ
の実使用燃料ガスについての前記対応絶対湿度を記憶手
段に記憶の前記対応関係(試験燃料ガスの各々について
の前記対応絶対湿度と水素ガス濃度との対応関係)に基
づき自動的に求め、そして、その求めた対応絶対湿度を
湿度調整手段による湿度調整での目標絶対湿度として自
動的に設定するから、請求項2に係るガス湿度決定方法
の実施として、作業者が実使用燃料ガスの検出水素ガス
濃度に応じて、その実使用燃料ガスについての前記対応
絶対湿度を前記対応関係に基づき人為操作により求め
て、その求めた対応絶対湿度を目標絶対湿度として人為
操作により設定するに比べ、固体高分子型燃料電池の実
使用面で種々の燃料ガスの使用に対する対応性を一層効
果的に高めることができる。
That is, according to this configuration, the gas humidity determining means stores the corresponding absolute humidity of the actually used fuel gas in the storage means according to the detected hydrogen gas concentration of the actually used fuel gas. Corresponding relationship between the corresponding absolute humidity for each fuel gas and the hydrogen gas concentration) is obtained automatically, and the obtained corresponding absolute humidity is automatically set as the target absolute humidity in the humidity adjustment by the humidity adjusting means. Since the setting is performed, as the implementation of the gas humidity determination method according to claim 2, the operator manually sets the corresponding absolute humidity of the actually used fuel gas according to the detected hydrogen gas concentration of the actually used fuel gas based on the corresponding relationship. Compared to the case where the calculated absolute humidity is set as the target absolute humidity by manual operation, it is possible to use various fuels in the practical use of polymer electrolyte fuel cells. Scan correspondence to the use of a can be enhanced more effectively.

【0015】なお、請求項3に係る発明の実施におい
て、ガス湿度決定手段による上記の如き目標絶対湿度の
自動設定は、燃料電池の実使用において、使用燃料ガス
に応じ初期設定的にのみ行なうもの、あるいは、使用燃
料ガスにおける水素ガス濃度の変化に応じて随時に行な
うもののいずれにしてもよい。
In the practice of the invention according to claim 3, the automatic setting of the target absolute humidity as described above by the gas humidity determining means is carried out only in an initial setting according to the fuel gas used in actual use of the fuel cell. Alternatively, it may be performed at any time depending on the change in the hydrogen gas concentration in the fuel gas used.

【0016】また、濃度検出手段による燃料ガスの水素
ガス濃度検出は、水素ガス濃度そのものの検出に代え、
燃料ガスにおける水素ガス以外の含有ガスの濃度を検出
して、その検出結果に基づき燃料ガスにおける水素ガス
濃度を判定する検出形態のものであってもよい。
Further, the hydrogen gas concentration detection of the fuel gas by the concentration detection means is replaced with the detection of the hydrogen gas concentration itself,
The detection mode may be one in which the concentration of the contained gas other than hydrogen gas in the fuel gas is detected and the hydrogen gas concentration in the fuel gas is determined based on the detection result.

【0017】〔4〕請求項4に係る発明は固体高分子型
燃料電池に係り、その特徴は、固体高分子電解質膜を挟
持する一方のガス拡散電極に水素ガス含有の燃料ガスを
供給し、かつ、他方のガス拡散電極に酸素ガス含有の酸
化剤ガスを供給し、これらガス拡散電極に供給する燃料
ガス又は酸化剤ガスの絶対湿度を湿度調整手段により調
整する構成において、電池出力を検出する出力検出手段
と、この出力検出手段により検出される電池出力に基づ
き、電池出力の振動的な変動の大小を示す所定の指標変
数が設定閾値に等しくなるように前記湿度調整手段の湿
度調整出力を自動調整する制御手段とを設けてある点に
ある。
[4] The invention according to claim 4 relates to a polymer electrolyte fuel cell, which is characterized in that a fuel gas containing hydrogen gas is supplied to one gas diffusion electrode sandwiching a polymer electrolyte membrane, Further, the battery output is detected in the configuration in which the oxygen gas-containing oxidant gas is supplied to the other gas diffusion electrode and the absolute humidity of the fuel gas or the oxidant gas supplied to these gas diffusion electrodes is adjusted by the humidity adjusting means. Based on the output detection means and the battery output detected by the output detection means, the humidity adjustment output of the humidity adjustment means is set so that a predetermined index variable indicating the magnitude of the oscillatory fluctuation of the battery output becomes equal to the set threshold value. It is provided with a control means for automatic adjustment.

【0018】つまり、この構成によれば、対象ガス(燃
料ガス又は酸化剤ガス)の湿度過剰による電池出力の不
安定化が電池出力の振動的な変動という形で生じること
に対し、出力検出手段による検出電池出力に基づき、そ
の電池出力の変動の大小を示す所定の指標変数が設定閾
値に等しくなるように湿度調整手段の湿度調整出力が自
動調整されることで、請求項1に係る発明との対比で言
えば、前記の相関上で指標変数が設定閾値に等しくなる
ときの対応絶対湿度に対象ガスの絶対湿度が調整され、
これにより、請求項1に係る発明と同様に、耐用年数の
低下要因となるガス湿度過剰による電池出力の不安定化
を一定の許容限度(上記の設定閾値に対応する限度)内
に確実に止めながら、その範囲内で最大量の水分を対象
ガスから電解質膜へ安定的に補充するようにして極力高
い電池出力を安定的に得ることができる。
That is, according to this configuration, the destabilization of the battery output due to excessive humidity of the target gas (fuel gas or oxidant gas) occurs in the form of oscillatory fluctuation of the battery output, whereas the output detection means According to the invention according to claim 1, the humidity adjusting output of the humidity adjusting means is automatically adjusted based on the detected battery output by the device 1 so that the predetermined index variable indicating the magnitude of the fluctuation of the battery output becomes equal to the set threshold value. In terms of contrast, the absolute humidity of the target gas is adjusted to the corresponding absolute humidity when the index variable becomes equal to the set threshold on the above correlation,
As a result, similarly to the invention according to claim 1, the destabilization of the battery output due to the excessive gas humidity, which causes the reduction of the service life, is reliably stopped within a certain allowable limit (the limit corresponding to the above-mentioned set threshold). However, it is possible to stably obtain a battery output as high as possible by stably replenishing the electrolyte membrane with the maximum amount of water within the range from the target gas.

【0019】また、この構成によれば、種々の燃料ガス
を用いることに対し、検出電池出力に基づき湿度調整手
段の湿度調整出力を自動調整する制御だけで対応できる
から、これも請求項1に係る発明と同様、改質ガスなど
の混合ガスを燃料ガスに用いる場合において水素ガス以
外の含有ガスを除去する除去手段を付加装備するといっ
たことも不要にできて、電池全体構成の小型化及び装置
コストの低減が可能になるとともに、使用燃料ガスの多
様化による固体高分子型燃料電池の汎用化も促進するこ
とができる。
Further, according to this structure, it is possible to cope with the use of various fuel gases only by the control of automatically adjusting the humidity adjusting output of the humidity adjusting means on the basis of the output of the detection battery. Similar to the invention described above, when a mixed gas such as a reformed gas is used as the fuel gas, it is not necessary to additionally equip a removing means for removing the contained gas other than the hydrogen gas, and the overall size of the battery and the device can be reduced. The cost can be reduced, and the versatility of the polymer electrolyte fuel cell can be promoted by diversifying the fuel gas used.

【0020】〔5〕請求項5に係る発明は、請求項4に
係る発明の実施に好適な実施形態を特定するものであ
り、その特徴は、前記固体高分子電解質膜とそれを挟持
する一方及び他方の前記ガス拡散電極とを備えるセルの
多数を電気的に直列接続する状態で多数積層して電池ス
タックを形成する構成において、それら多数のセルのう
ちの一部数の代表セルの出力電圧を前記出力検出手段の
検出対象出力にしてある点にある。
[5] The invention according to claim 5 specifies an embodiment suitable for carrying out the invention according to claim 4, and is characterized in that the solid polymer electrolyte membrane is sandwiched between the solid polymer electrolyte membrane and the solid polymer electrolyte membrane. And a configuration in which a large number of cells including the other gas diffusion electrode are stacked in a state of being electrically connected in series to form a battery stack, the output voltage of a part of the representative cells of the large number of cells is The point is that the output is detected by the output detection means.

【0021】つまり、電池スタックの出力電圧の変動は
個々のセルの出力電圧の変動に比べ、多数のセルの直列
接続により平均化された比較的緩慢なものになる傾向が
あり、このことから上記の如く多数のセルのうちの一部
数の代表セルの出力電圧を前記出力検出手段の検出対象
出力にすれば、電池スタックの出力電圧を出力検出手段
の検出対象出力にするに比べ、出力検出手段の検出出力
に基づき湿度調整出力を自動調整する前述の制御におけ
る制御感度を高めることができて、感度の高い制御が要
求されるに場合に好適なものになり、特に多数のセルの
中でも出力電圧の変動が生じ易い箇所のセルを上記の代
表セルにすれば一層感度の高い制御を可能にすることが
できる。
That is, the fluctuation of the output voltage of the battery stack tends to be relatively slow, averaged by the series connection of a large number of cells, as compared with the fluctuation of the output voltage of the individual cells. When the output voltage of a part of the representative cells of the large number of cells is set as the detection target output of the output detection means as compared with the case where the output voltage of the battery stack is set as the detection target output of the output detection means, the output detection means It is possible to increase the control sensitivity in the above-mentioned control that automatically adjusts the humidity adjustment output based on the detection output of, and is suitable when high-sensitivity control is required. If the cell in the portion where the fluctuation of (3) easily occurs is set to the representative cell described above, it is possible to perform control with higher sensitivity.

【0022】なお、請求項1〜5に係る発明の実施にお
いて、湿度調整手段による絶対湿度の調整は、燃料極と
してのガス拡散電極に供給する燃料ガスと酸素極として
のガス拡散電極に供給する酸化剤ガスとの両方に対して
実施する形態、あるいは、それら燃料ガスと酸化剤ガス
とのいずれか一方にのみ実施する形態のいずれを採って
もよい。
In the practice of the invention according to claims 1 to 5, the absolute humidity is adjusted by the humidity adjusting means to supply the fuel gas supplied to the gas diffusion electrode serving as the fuel electrode and the gas diffusion electrode serving as the oxygen electrode. Either the embodiment for both the oxidant gas or the embodiment for only one of the fuel gas and the oxidant gas may be adopted.

【0023】また、請求項1〜5に係る発明の実施にお
いて、湿度調整手段は、対象ガスの絶対湿度を加湿によ
り調整するもの、あるいは、除湿により調整するものの
いずれであってもよく、対象ガスとしての燃料ガスや酸
化剤ガスの調整前の湿度条件に応じていずれかを採用す
ればよい。
In the practice of the invention according to claims 1 to 5, the humidity adjusting means may be either one that adjusts the absolute humidity of the target gas by humidification or one that adjusts it by dehumidification. Either of them may be adopted depending on the humidity condition before the adjustment of the fuel gas or the oxidant gas.

【0024】そしてまた、湿度調整手段を加湿による絶
対湿度の調整と除湿による絶対湿度の調整との両方を行
なえるものにしておけば、対象ガスの調整前湿度条件の
変化や目標絶対湿度の変更などに対する対応性を一層高
めることができる。
If the humidity adjusting means is capable of both adjusting the absolute humidity by humidifying and adjusting the absolute humidity by dehumidifying, the change of the humidity condition before adjustment of the target gas and the change of the target absolute humidity are performed. It is possible to further improve the responsiveness to the above.

【0025】[0025]

【発明の実施の形態】〔第1実施形態〕図1は固体高分
子型燃料電池を示し、1はセル2を多数積層して形成し
た電池スタック、3は原燃料Fiを改質処理して改質ガ
スFを生成する改質装置、4は燃料ガスとしての改質ガ
スFに対する燃料側の調湿器、5は酸化剤ガスとしての
空気Aに対する酸素側の調湿器である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS [First Embodiment] FIG. 1 shows a polymer electrolyte fuel cell, 1 is a cell stack formed by stacking a large number of cells 2, and 3 is a reforming treatment of raw fuel Fi. A reforming device for generating the reformed gas F, 4 is a fuel side humidity controller for the reformed gas F as a fuel gas, and 5 is an oxygen side humidity controller for the air A as an oxidant gas.

【0026】電池スタック1を形成するセル2は、図2
に示す如く、固体高分子電解質膜6を燃料極(アノー
ド)としてのガス拡散電極7と酸素極(カソード)とし
てのガス拡散電極8とにより挟持して膜挟持体9を形成
し、その膜挟持体9をさらに、反応ガス流路として用い
る多数の溝10a,10bを両面に形成したガス不透過
性のセパレータ10により挟持して構成してある。
The cells 2 forming the battery stack 1 are shown in FIG.
As shown in FIG. 2, the solid polymer electrolyte membrane 6 is sandwiched between the gas diffusion electrode 7 as a fuel electrode (anode) and the gas diffusion electrode 8 as an oxygen electrode (cathode) to form a membrane sandwiching body 9, and the membrane sandwiching is performed. The body 9 is further configured to be sandwiched by gas-impermeable separators 10 having a large number of grooves 10a and 10b used as reaction gas flow paths formed on both surfaces.

【0027】また、各電極7,8は多孔質材で形成した
電極本体7a,8aの電解質側の面にガス透過性の触媒
層7b,8bを備えさせた構成にしてあり、この構成に
より、図3に模式的に示す如く、燃料極7ではそれに面
するセパレータ10の溝10aに燃料ガスとしての改質
ガスFを通過させることで、その改質ガスFを電解質膜
6の側に拡散させて触媒層7bの触媒作用及び電解質膜
6のプロトン(H+)伝導作用の下で次の(式1)に示
すアノード反応を進行させ、また、酸素極8ではそれに
面するセパレータ10の溝10bに酸化剤ガスとしての
空気Aを通過させることで、その空気Aを電解質膜6の
側に拡散させて触媒層8bの触媒作用及び電解質膜6を
通じての燃料極7の側からのプロトン(H+)伝導の下
で次の(式2)に示すカソード反応を進行させ、これら
反応に伴う外部回路11での電子e‐の流れもって負荷
側に電力供給する。
Further, each electrode 7, 8 has a structure in which gas-permeable catalyst layers 7b, 8b are provided on the surface of the electrode bodies 7a, 8a made of a porous material on the electrolyte side. As schematically shown in FIG. 3, in the fuel electrode 7, the reformed gas F as the fuel gas is passed through the groove 10a of the separator 10 facing the fuel electrode 7 to diffuse the reformed gas F to the electrolyte membrane 6 side. Under the catalytic action of the catalyst layer 7b and the proton (H + ) conduction action of the electrolyte membrane 6, the anodic reaction shown in the following (Equation 1) proceeds, and at the oxygen electrode 8, the groove 10b of the separator 10 facing the oxygen electrode 8 faces. The air A as the oxidant gas is passed through the air to diffuse the air A to the side of the electrolyte membrane 6 and the catalytic action of the catalyst layer 8b and the proton (H + from the side of the fuel electrode 7 through the electrolyte membrane 6). ) Under conduction, The to cathode reaction proceeded, the power supplied to the load side with electrons e- flow in the external circuit 11 associated with these reactions.

【0028】H2→2H++2e‐ ……(式1) 1/2O2+2H++2e‐→H2O ……(式2)H 2 → 2H + + 2e- (Equation 1) 1 / 2O 2 + 2H + + 2e- → H 2 O (Equation 2)

【0029】そして、燃料ガスとしての改質ガスFの流
路と酸化剤ガスとしての空気Aの流路を仕切るためのセ
パレータ10を導電材(例えば膨張黒鉛)で形成して多
数のセル2を積層することで、それらセル2を電気的に
直列に接続した電池スタック1を形成し、この電池スタ
ック1の両端間で負荷側の要求電位差を得る。
A separator 10 for partitioning the flow path of the reformed gas F as the fuel gas and the flow path of the air A as the oxidant gas is formed of a conductive material (for example, expanded graphite) to form a large number of cells 2. By stacking them, a battery stack 1 in which the cells 2 are electrically connected in series is formed, and a required potential difference on the load side is obtained between both ends of the battery stack 1.

【0030】なお、固体高分子電解質膜6には、パーフ
ロロカーボンスルホン酸膜や、スルホン酸基を有するポ
リスチレン系陽イオン交換膜をカチオン導電性膜にした
ものなど、湿潤状態においてプロトン伝導性を有するも
のであれば種々の材質のものを使用でき、また、電極本
体7a,8aの代表例としては多孔質カーボン薄板を挙
げることができ、触媒層7b,8bの代表例としては白
金系の触媒層を挙げることができる。
The solid polymer electrolyte membrane 6 has proton conductivity in a wet state, such as a perfluorocarbon sulfonic acid membrane or a polystyrene cation exchange membrane having a sulfonic acid group as a cation conductive membrane. Any of various materials can be used, and a porous carbon thin plate can be cited as a typical example of the electrode bodies 7a and 8a, and a platinum-based catalyst layer can be cited as a typical example of the catalyst layers 7b and 8b. Can be mentioned.

【0031】改質装置3は、原燃料Fiを脱硫処理した
後に触媒の存在下で水蒸気と反応させて一酸化炭素ガス
を含む水素ガス富裕の中間改質ガスを生成(水蒸気改質
処理)し、続いて、その中間改質ガス中の一酸化炭素ガ
スを触媒の存在下で水蒸気と反応させて二酸化炭素ガス
にし(CO変成処理)、さらに、そのCO変成処理後に
おいて未だ中間改質ガス中に残る微量の一酸化炭素ガス
を触媒作用により選択酸化して、最終的に一酸化炭素ガ
スをほぼ除去した水素ガスと二酸化炭素ガスとを主成分
とする改質ガスFを生成するものである。
The reformer 3 desulfurizes the raw fuel Fi and then reacts it with steam in the presence of a catalyst to produce an intermediate reformed gas rich in hydrogen gas containing carbon monoxide gas (steam reforming treatment). Then, the carbon monoxide gas in the intermediate reformed gas is reacted with steam in the presence of a catalyst to form carbon dioxide gas (CO shift treatment), and further, in the intermediate reformed gas after the CO shift treatment. The carbon monoxide gas remaining in the above is selectively oxidized by a catalytic action to finally produce a reformed gas F mainly composed of hydrogen gas and carbon dioxide gas from which carbon monoxide gas is almost removed. .

【0032】なお、原燃料Fiによっては、改質ガスF
中に水素ガス及び二酸化炭素ガス以外の微量の他のガス
(例えば窒素ガス)が存在する場合もある。
Depending on the raw fuel Fi, the reformed gas F
There may be a small amount of other gas (for example, nitrogen gas) other than hydrogen gas and carbon dioxide gas.

【0033】燃料側の調湿器4は、改質装置3により生
成した燃料ガスとしての改質ガスFを電池スタック1に
おける各セル2の燃料極7に送る途中で加湿又は除湿し
てその改質ガスFの絶対湿度xaを調整し、また、酸素
側の調湿器5は、同じく酸化剤ガスとしての空気Aを電
池スタック1における各セル2の酸素極7に送る途中で
加湿又は除湿してその空気Aの絶対湿度xbを調整する
ものであり、これら調湿器4,5は、水Wを貯留する密
閉型容器12a,12bと、その容器内の貯留水Wを加
熱するヒータ13a,13bと、容器内の貯留水Wを冷
却水Cと熱交換させて冷却する冷却器13a′,13
b′と、先端を容器底部において貯留水W中で開口させ
た螺旋構造のガス導入管14a,14bと、先端を貯留
水W上の容器内空間で開口させたガス送出管15a,1
5bとを備えている。
The fuel-side humidity controller 4 humidifies or dehumidifies the reformed gas F as a fuel gas generated by the reformer 3 to the fuel electrode 7 of each cell 2 in the cell stack 1 to modify it. The absolute humidity xa of the quality gas F is adjusted, and the humidity controller 5 on the oxygen side also humidifies or dehumidifies the air A as an oxidant gas while sending it to the oxygen electrode 7 of each cell 2 in the battery stack 1. The humidity control units 4 and 5 adjust the absolute humidity xb of the air A. The humidity control units 4 and 5 store the water W in the sealed containers 12a and 12b and the heater 13a that heats the stored water W in the container. 13b and coolers 13a ', 13 for cooling the stored water W in the container by exchanging heat with the cooling water C.
b ′, gas introduction pipes 14a, 14b having a spiral structure with a tip opened in the reservoir water W at the bottom of the container, and gas delivery pipes 15a, 1b having a tip opened in the container space above the reservoir water W.
5b and.

【0034】つまり、これら調湿器4,5では、湿度調
整の対象ガスF,Aをヒータ13a,13b又は冷却器
13a′,13b′により温度調整した貯留水Wと螺旋
構造のガス導入管14a,14bの管内通過過程で熱交
換させた上で、その対象ガスF,Aをガス導入管14
a,14bの先端から貯留水W中に吐出させてバブリン
グ処理し、このバブリング処理により対象ガスF,Aを
所定温度の水蒸気飽和状態にする露点制御的な調整形態
で加湿又は除湿して、それら対象ガスF,Aの絶対湿度
xa,xbを調整する。そして、貯留水W上の容器内空
間に溜まる湿度調整後の改質ガスF及び空気Aをガス送
出管15a,15bを通じ容器12a,12bから取り
出して電池スタック1に送る。
In other words, in these humidity controllers 4 and 5, the stored water W whose temperature is adjusted by the heaters 13a and 13b or the coolers 13a 'and 13b' and the target gas F and A for humidity adjustment and the gas introduction pipe 14a having a spiral structure are provided. , 14b are heat-exchanged during passage through the pipes, and then the target gases F and A are introduced into the gas introduction pipes 14
a and 14b are discharged from the tips of the stored water W into a bubbling process, and the bubbling process humidifies or dehumidifies the target gases F and A in a dew-point-controlled adjustment mode for bringing the target gases F and A into a water vapor saturated state at a predetermined temperature. The absolute humidity xa, xb of the target gas F, A is adjusted. Then, the reformed gas F and the air A after the humidity adjustment, which accumulates in the space inside the container on the stored water W, are taken out from the containers 12a, 12b through the gas delivery pipes 15a, 15b and sent to the battery stack 1.

【0035】16a,16bは湿度調整手段としての各
調湿器4,5における貯留水W上のガスF,Aの温度t
a,tbを検出する温度センサ、18aは各調湿器4,
5での湿度調整における目標絶対湿度xam,xbmに
対応する設定値として湿度調整後の水蒸気飽和状態にあ
るガスF,Aの目標温度tam,tbm(換言すれば目
標絶対湿度xam,xbmに対応する露点温度)を設定
する設定手段であり、18は温度センサ16a,16b
の検出情報に基づき各調湿器4,5におけるヒータ13
a,13bの加熱出力、又は、冷却器13a′,13
b′の冷却出力を調整することで、湿度調整後の水蒸気
飽和状態にあるガスF,Aの温度ta,tbが設定手段
18aにより設定された目標温度tam,tbmになる
ように(換言すれば、湿度調整後のガスF,Aの絶対湿
度xa,xbが目標絶対湿度xam,xbmになるよう
に)各調湿器4,5の貯留水温度を調整する制御器であ
る。
Reference numerals 16a and 16b denote temperatures t of the gases F and A on the stored water W in the humidity controllers 4 and 5 as humidity adjusting means.
A temperature sensor for detecting a and tb, and 18a for each humidity controller 4,
As the set values corresponding to the target absolute humidity xam, xbm in the humidity adjustment of No. 5, the target temperatures tam, tbm of the gases F, A in the water vapor saturated state after humidity adjustment (in other words, corresponding to the target absolute humidity xam, xbm) Dew point temperature) is a setting means, and 18 is a temperature sensor 16a, 16b.
Heater 13 in each of the humidity controllers 4 and 5 based on the detection information of
a, 13b heating output, or coolers 13a ', 13
By adjusting the cooling output of b ′, the temperatures ta and tb of the gases F and A in the water vapor saturated state after the humidity adjustment become the target temperatures tam and tbm set by the setting means 18a (in other words, , So that the absolute humidity xa, xb of the gas F, A after the humidity adjustment becomes the target absolute humidity xam, xbm).

【0036】なお、va,vbは冷却器13a′,13
b′に対する冷却水Cの供給量を調整する弁であり、こ
れら弁va,vbによる冷却水供給量の調整をもって容
器内貯留水Wに対する冷却器13a′,13b′の冷却
出力を調整する。
Va and vb are coolers 13a 'and 13a
It is a valve for adjusting the supply amount of the cooling water C to b ', and the cooling output of the coolers 13a' and 13b 'to the stored water W in the container is adjusted by adjusting the cooling water supply amount by these valves va and vb.

【0037】一方、上記目標温度tam,tbmの設定
については、図4に示す如く、燃料ガス(純水素ガスな
いし改質ガス)の水素ガス濃度によって、また、調湿器
4,5による調整絶対湿度x(xaないしxb)によっ
てセル2の出力電圧vが変化するとともに出力電圧vの
振動的な変動の大小が変化する傾向があることに対し、
図5に示すように、水素ガス濃度が互いに異なる複数種
の試験燃料ガスF1〜F3の各々について、出力電圧v
の振動的な変動の大小を示す指標変数σ(本例では標準
偏差)と調湿器4,5による調整絶対湿度x(xaない
しxb)との相関上で指標変数σが設定閾値σmに等し
くなるときの対応する絶対湿度xm1〜xm3を求めて
おく。
On the other hand, as to the setting of the target temperatures tam and tbm, as shown in FIG. 4, the hydrogen gas concentration of the fuel gas (pure hydrogen gas or reformed gas) and the absolute values adjusted by the humidity controllers 4 and 5 are used. While the output voltage v of the cell 2 changes depending on the humidity x (xa or xb), the magnitude of the oscillatory fluctuation of the output voltage v tends to change.
As shown in FIG. 5, for each of the plurality of types of test fuel gas F1 to F3 having different hydrogen gas concentrations, the output voltage v
On the correlation between the index variable σ (standard deviation in this example) that indicates the magnitude of the oscillatory fluctuation of and the absolute humidity x (xa or xb) adjusted by the humidity controllers 4 and 5, the index variable σ is equal to the set threshold σm. Then, the corresponding absolute humidity xm1 to xm3 is calculated.

【0038】そして、これら試験燃料ガスF1〜F3の
各々についての上記対応絶対湿度xm1〜xm3と各試
験燃料ガスF1〜F3の水素ガス濃度との対応関係Kに
基づき、実際に使用する燃料ガスFの水素ガス濃度dに
応じた実使用燃料ガスについての前記対応絶対湿度xm
を求め、この求めた対応絶対湿度xmを調湿器4,5に
よる湿度調整での目標絶対湿度(xamないしxbm)
にするように、その求めた対応絶対湿度xmに対応する
露点温度を前記の目標温度(tamないしtbm)とし
て設定手段18aにより設定する。
Then, based on the corresponding relationship K between the corresponding absolute humidity xm1 to xm3 of each of the test fuel gases F1 to F3 and the hydrogen gas concentration of each of the test fuel gas F1 to F3, the fuel gas F actually used is used. The corresponding absolute humidity xm of the actual fuel gas according to the hydrogen gas concentration d of
Then, the corresponding absolute humidity xm is calculated as the target absolute humidity (xam or xbm) in the humidity adjustment by the humidity controllers 4 and 5.
As described above, the dew point temperature corresponding to the calculated corresponding absolute humidity xm is set by the setting means 18a as the target temperature (tam or tbm).

【0039】すなわち、この設定操作を燃料ガスF及び
酸化剤ガスAの夫々について行なうことで、前記構成の
固体高分子型燃料電池の運転において、出力電圧vの振
動的な変動といった形で生じる電池出力の不安定化を一
定の許容限度内に確実に止めながら、その範囲内で最大
量の水分を電極7,8への供給ガスF,Aから電解質膜
へ安定的に補充して極力高い電池出力を安定的に得られ
るようにする。
That is, by carrying out this setting operation for each of the fuel gas F and the oxidant gas A, a battery which is generated in the form of an oscillatory fluctuation of the output voltage v in the operation of the solid polymer electrolyte fuel cell having the above-mentioned structure. A battery which is as high as possible by reliably stopping the destabilization of the output within a certain allowable limit and steadily replenishing the electrolyte membrane with the maximum amount of water from the supply gas F, A to the electrodes 7, 8 within that range. Make the output stable.

【0040】なお、本例において上記指標変数に用いる
標準偏差σは次の(式3)により定義されるものであ
る。出力電圧vの振動的変動の振幅X(確率変数)の平
均をE(X)と書くとき、 σ=E〔X−E(X)〕2の正平方根 ……(式3)
In this example, the standard deviation σ used for the index variable is defined by the following (formula 3). When the average of the amplitude X (random variable) of the oscillatory fluctuation of the output voltage v is written as E (X), σ = E [X−E (X)] 2 square root (Equation 3)

【0041】〔第2実施形態〕第1実施形態では目標絶
対湿度xam,xbmの設定としての目標温度tam,
tbmの設定を人為操作により行なう例を示したが、こ
れに代え、改質装置3から送出される改質ガスFの水素
ガス濃度dを検出する濃度検出手段17(図1において
破線で示す)を設けるとともに、図6に示す如く制御器
18に、複数の試験燃料ガスF1〜F3についての前記
対応関係Kを記憶する記憶手段18mを設ける。
[Second Embodiment] In the first embodiment, the target temperature tam, which is set as the target absolute humidity xam, xbm,
Although an example in which tbm is set manually is shown, instead of this, a concentration detecting means 17 (shown by a broken line in FIG. 1) for detecting the hydrogen gas concentration d of the reformed gas F sent from the reformer 3. In addition to the above, the controller 18 is provided with a storage means 18m for storing the correspondence K for a plurality of test fuel gases F1 to F3 as shown in FIG.

【0042】そしてまた、制御器18に、その記憶手段
18mが記憶している前記対応関係Kに基づき濃度検出
手段17による検出水素ガス濃度dに応じた実使用燃料
ガスFについての前記対応絶対湿度xmを求めて、この
実使用燃料ガスFについての対応絶対湿度xmを調湿器
4,5による湿度調整での目標絶対湿度(xamないし
xbm)にするように、その求めた対応絶対湿度xmに
対応する露点温度を前記の目標温度(tamないしtb
m)として自動設定するガス湿度決定手段18nを設
け、これにより、目標絶対湿度xam,xbmの設定と
しての目標温度tam,tbmの設定を自動化する。
Further, in the controller 18, the corresponding absolute humidity of the actually used fuel gas F corresponding to the hydrogen gas concentration d detected by the concentration detecting means 17 based on the correspondence K stored in the storing means 18m. xm is calculated, and the corresponding absolute humidity xm for this actually used fuel gas F is made to be the target absolute humidity (xam or xbm) in the humidity adjustment by the humidity adjusters 4 and 5. The corresponding dew point temperature is set to the target temperature (tam to tb).
m) is provided with a gas humidity determining means 18n that is automatically set, thereby automating the setting of the target temperatures tam and tbm as the setting of the target absolute humidity xam and xbm.

【0043】〔第3実施形態〕図7に示す如く第1実施
形態で示した固体高分子型燃料電池において、多数のセ
ル2のうちの代表セルの出力電圧vを検出する出力検出
手段19を設ける。
[Third Embodiment] As shown in FIG. 7, in the solid polymer electrolyte fuel cell shown in the first embodiment, an output detecting means 19 for detecting the output voltage v of a representative cell of a large number of cells 2 is provided. Set up.

【0044】また、制御器18を、出力検出手段19に
より検出される出力電圧vに基づき、その出力電圧vの
振動的な変動の大小を示す指標変数σ(前述と同様の標
準偏差)が設定閾値σmに等しくなるように調湿器4,
5の湿度調整出力(すなわち、ヒータ13a,13bの
加熱出力、又は、冷却器13a′,13b′の冷却出
力)を自動調整する構成にする。
Further, the controller 18 sets the index variable σ (standard deviation similar to the above) indicating the magnitude of the oscillatory fluctuation of the output voltage v based on the output voltage v detected by the output detecting means 19. Humidifier 4, so that it becomes equal to the threshold σm
The humidity adjustment output of No. 5 (that is, the heating output of the heaters 13a and 13b or the cooling output of the coolers 13a 'and 13b') is automatically adjusted.

【0045】つまり、この湿度調整出力の自動調整によ
り、図5に示す実使用燃料ガスFについての指標変数σ
と調湿器4,5による調整絶対湿度x(xaないしx
b)との相関上で指標変数σが設定閾値σmに等しくな
るときの対応絶対湿度xmに対象ガスF,Aの絶対湿度
(xaないしxb)を調整し、これにより、第1実施形
態と同様に、出力電圧vの振動的な変動といった形で生
じる電池出力の不安定化を一定の許容限度内に確実に止
めながら、その範囲内で最大量の水分を電極7,8への
供給ガスF,Aから電解質膜へ安定的に補充して極力高
い電池出力を安定的に得られるようにする。
In other words, by the automatic adjustment of the humidity adjustment output, the index variable σ for the actually used fuel gas F shown in FIG.
And absolute humidity x (xa to x
The absolute humidity (xa to xb) of the target gases F and A is adjusted to the corresponding absolute humidity xm when the index variable σ becomes equal to the set threshold value σm in correlation with b), and as a result, similar to the first embodiment. In addition, while reliably destabilizing the instability of the battery output that occurs in the form of oscillatory fluctuation of the output voltage v within a certain allowable limit, the maximum amount of moisture within that range is supplied to the gas F supplied to the electrodes 7, 8. , A to the electrolyte membrane in a stable manner to obtain a battery output as high as possible in a stable manner.

【0046】なお、この第3実施形態において上記指標
変数に用いる標準偏差σは、電池運転中の各時点とそれ
よりも一定時間だけ前の時点との間における出力電圧v
の振動的変動について算出するものにしてある。
The standard deviation σ used for the index variable in the third embodiment is the output voltage v between each time point during battery operation and a time point that is a fixed time before the time point.
Is calculated with respect to the vibrational fluctuation of.

【0047】〔別実施形態〕次に別の実施形態を列記す
る。
[Other Embodiments] Next, other embodiments will be listed.

【0048】原燃料Fiとしては天然ガス、プロパン、
灯油、バイオガスなど種々の燃料を使用でき、また、酸
化剤ガスAも空気に限定されるものではなく空気以外の
酸素ガス含有ガスや純酸素ガスであってもよい。
As the raw fuel Fi, natural gas, propane,
Various fuels such as kerosene and biogas can be used, and the oxidant gas A is not limited to air but may be oxygen gas-containing gas other than air or pure oxygen gas.

【0049】燃料ガスFや酸化剤ガスAの絶対湿度x
a,xbを調整する方式は、前述の実施形態で示したバ
ブリング方式に限られるものではなく、加湿による調整
については加湿用水を対象ガスに噴霧する噴霧方式、加
湿用水を膜透過させて対象ガスに供給する膜加湿方式、
超音波により加湿用水をミスト化して対象ガスに供給す
る超音波加湿方式など種々の加湿方式を採用でき、ま
た、除湿による調整についても対象ガスを冷却コイルに
より冷却してガス中水分を凝縮させる冷却コイル方式、
対象ガス中の水分を膜透過により除去する膜除湿方式、
吸湿材により対象ガス中の水分を除去する吸湿方式など
種々の除湿方式を採用できる。
Absolute humidity x of fuel gas F and oxidant gas A
The method of adjusting a and xb is not limited to the bubbling method shown in the above-described embodiment, and for adjustment by humidification, a spray method of spraying the humidifying water on the target gas, a target gas by permeating the humidifying water through the membrane. A membrane humidification method,
Various humidification methods such as ultrasonic humidification method in which the water for humidification is misted by ultrasonic waves and supplied to the target gas can be adopted.For adjustment by dehumidification, the target gas is cooled by the cooling coil to condense the moisture in the gas. Coil system,
Membrane dehumidification method that removes the moisture in the target gas through the membrane.
Various dehumidifying methods such as a hygroscopic method for removing the moisture in the target gas by the hygroscopic material can be adopted.

【0050】前述の実施形態では、加湿による絶対湿度
の調整と除湿による絶対湿度の調整との両方が可能な調
湿器4,5をもって燃料ガスF及び酸化剤ガスAの絶対
湿度xa,xbを調整する例を示したが、加湿による絶
対湿度の調整のみを行なう加湿器と除湿による絶対湿度
の調整のみを行なう除湿器とを各別に対象ガスの供給路
に介装した構成にして、それら加湿器又は除湿器により
対象ガスの絶対湿度を調整するようにしてもよい。
In the above-described embodiment, the absolute humidity xa and xb of the fuel gas F and the oxidant gas A are controlled by the humidity controllers 4 and 5 capable of both adjusting the absolute humidity by humidifying and adjusting the absolute humidity by dehumidifying. Although an example of adjustment was shown, a humidifier that only adjusts the absolute humidity by humidification and a dehumidifier that only adjusts the absolute humidity by dehumidification are separately installed in the supply path for the target gas The absolute humidity of the target gas may be adjusted by a device or a dehumidifier.

【0051】また、湿度調整前における燃料ガスFや酸
化剤ガスAの絶対湿度が目標絶対湿度xam,xbmよ
りも常に低湿側にあるような場合には、加湿による絶対
湿度の調整のみを行なう構成にしてもよく、逆に湿度調
整前における燃料ガスFや酸化剤ガスAの絶対湿度が目
標絶対湿度xam,xbmよりも常に高湿側にあるよう
な場合には、除湿による絶対湿度の調整のみを行なう構
成にしてもよい。
Further, when the absolute humidity of the fuel gas F or the oxidant gas A before humidity adjustment is always lower than the target absolute humidity xam, xbm, only the absolute humidity is adjusted by humidification. However, conversely, if the absolute humidity of the fuel gas F or the oxidant gas A before the humidity adjustment is always higher than the target absolute humidity xam, xbm, only the absolute humidity adjustment by dehumidification is necessary. May be configured to perform.

【0052】前述の実施形態では、指標変数σが設定閾
値σmになるようにする形態の湿度調整を燃料ガスFと
酸化剤ガスAとの両方に対して施す例を示したが、この
形態の湿度調整を燃料ガスFと酸化剤ガスAとのいずれ
か一方にのみ施すようにしてもよく、また場合によって
は、燃料ガスFと酸化剤ガスAとのいずれか一方に対す
る加湿処理や除湿処理そのものを省略する構成にしても
よい。
In the above-described embodiment, an example has been shown in which the humidity is adjusted so that the index variable σ becomes the set threshold value σm for both the fuel gas F and the oxidant gas A. Humidity adjustment may be performed on only one of the fuel gas F and the oxidant gas A, and in some cases, the humidification process or dehumidification process itself on either the fuel gas F or the oxidant gas A may be performed. May be omitted.

【0053】指標変数は前述の標準偏差σに限らず、電
池出力の振動的な変動の大小を示し得るものであれば種
々のものを採用でき、電池出力の振動的な変動における
振幅の単純平均値を指標変数にするようにしてもよい。
The index variable is not limited to the above-mentioned standard deviation σ, but various variables can be adopted as long as they can show the magnitude of the oscillatory fluctuation of the battery output, and the simple average of the amplitude in the oscillatory fluctuation of the battery output can be adopted. The value may be used as an index variable.

【0054】また、指標変数σが設定閾値σmになるよ
うにする形態の湿度調整を行なうのに、前述の各実施形
態では、多数のセル2のうちの代表セルの出力電圧vの
振動的な変動の大小を示す指標変数を用いるようにした
が、場合によっては、電池スタック1の出力電圧の振動
的な変動の大小を示す指標変数を用いるようにしてもよ
い。
Further, in order to perform the humidity adjustment in such a manner that the index variable σ becomes the set threshold value σm, in each of the above-described embodiments, the output voltage v of the representative cell of the large number of cells 2 is oscillated. Although the index variable indicating the magnitude of the fluctuation is used, the index variable indicating the magnitude of the oscillatory fluctuation of the output voltage of the battery stack 1 may be used in some cases.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施形態を示す燃料電池の構成図FIG. 1 is a configuration diagram of a fuel cell showing a first embodiment.

【図2】セル構造を示す分解斜視図FIG. 2 is an exploded perspective view showing a cell structure.

【図3】燃料電池の発電原理を示す図FIG. 3 is a diagram showing a power generation principle of a fuel cell.

【図4】水素ガス濃度と調整絶対湿度と電池出力との関
係を示すグラフ
FIG. 4 is a graph showing the relationship between hydrogen gas concentration, adjusted absolute humidity, and battery output.

【図5】指標変数と調整絶対湿度との相関を示すグラフFIG. 5 is a graph showing the correlation between index variables and adjusted absolute humidity.

【図6】第2実施形態を示す制御器のブロック図FIG. 6 is a block diagram of a controller showing a second embodiment.

【図7】第3実施形態を示す燃料電池の構成図FIG. 7 is a configuration diagram of a fuel cell showing a third embodiment.

【符号の説明】[Explanation of symbols]

1 電池スタック 2 セル 4,5 湿度調整手段 6 電解質膜 7 ガス拡散電極(燃料極) 8 ガス拡散電極(酸素極) 17 濃度検出手段 18 制御手段 18m 記憶手段 18n ガス湿度決定手段 19 出力検出手段 A 酸化剤ガス F 燃料ガス(実使用燃料ガス) F1〜F3 試験燃料ガス K 対応絶対湿度と水素ガス濃度との対
応関係 v 電池出力(セル出力電圧) xa 燃料ガスの調整絶対湿度 xb 酸化剤ガスの調整絶対湿度 xm1〜xm3 試験燃料ガスについての対応絶対湿
度 xm 使用燃料ガスについての対応絶対湿
度 xam 燃料ガスの目標絶対湿度 xbm 酸化剤ガスの目標絶対湿度 σ 指標変数 σm 設定閾値
1 Battery Stack 2 Cell 4, 5 Humidity Adjusting Means 6 Electrolyte Membrane 7 Gas Diffusion Electrode (Fuel Electrode) 8 Gas Diffusion Electrode (Oxygen Electrode) 17 Concentration Detection Means 18 Control Means 18m Storage Means 18n Gas Humidity Determination Means 19 Output Detection Means A Oxidizer gas F Fuel gas (actual fuel gas) F1 to F3 Test fuel gas K Correspondence between absolute humidity and hydrogen gas concentration v Battery output (cell output voltage) xa Fuel gas adjusted absolute humidity xb Oxidizer gas Adjusted absolute humidity xm1 to xm3 Correspondence absolute humidity for test fuel gas xm Correspondence absolute humidity for used fuel gas xam Fuel gas target absolute humidity xbm Oxidant gas target absolute humidity σ Index variable σm Setting threshold

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山川 洋 兵庫県尼崎市浜1丁目1番1号 株式会社 クボタ技術開発研究所内 Fターム(参考) 2G004 ZA01 2G060 AA08 AB02 AE19 AF09 EB07 HC02 HC13 HC19 HC21 HE05 KA04 5H026 AA06 CC03 5H027 AA06 KK31 KK52    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hiroshi Yamakawa             1-1-1 Hama, Amagasaki City, Hyogo Prefecture Co., Ltd.             Kubota Technology Development Laboratory F-term (reference) 2G004 ZA01                 2G060 AA08 AB02 AE19 AF09 EB07                       HC02 HC13 HC19 HC21 HE05                       KA04                 5H026 AA06 CC03                 5H027 AA06 KK31 KK52

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 固体高分子電解質膜を挟持する一方のガ
ス拡散電極に水素ガス含有の燃料ガスを供給し、かつ、
他方のガス拡散電極に酸素ガス含有の酸化剤ガスを供給
し、これらガス拡散電極に供給する燃料ガス又は酸化剤
ガスの絶対湿度を湿度調整手段により調整する固体高分
子型燃料電池について、 電池出力の振動的な変動の大小を示す所定の指標変数と
前記湿度調整手段による調整絶対湿度との相関上で前記
指標変数が設定閾値に等しくなるときの対応する絶対湿
度を求め、 この対応絶対湿度を前記湿度調整手段による湿度調整で
の目標絶対湿度にする固体高分子型燃料電池のガス湿度
決定方法。
1. A fuel gas containing hydrogen gas is supplied to one of the gas diffusion electrodes sandwiching a solid polymer electrolyte membrane, and
Regarding the polymer electrolyte fuel cell in which the oxygen gas-containing oxidant gas is supplied to the other gas diffusion electrode and the absolute humidity of the fuel gas or oxidant gas supplied to these gas diffusion electrodes is adjusted by the humidity adjusting means. Corresponding absolute humidity when the index variable becomes equal to the set threshold value on the correlation between the predetermined index variable indicating the magnitude of the vibrational fluctuation of the and the absolute humidity adjusted by the humidity adjusting means, A method for determining a gas humidity of a polymer electrolyte fuel cell, which sets a target absolute humidity in the humidity adjustment by the humidity adjusting means.
【請求項2】 水素ガス濃度が互いに異なる複数種の試
験燃料ガスの各々について前記の対応絶対湿度を求めて
おき、 これら複数の対応絶対湿度と各試験燃料ガスの水素ガス
濃度との対応関係に基づき、実際に使用する燃料ガスの
水素ガス濃度に応じた実使用燃料ガスについての前記対
応絶対湿度を求めて、 この実使用燃料ガスについての対応絶対湿度を前記湿度
調整手段による湿度調整での目標絶対湿度にする請求項
1記載の固体高分子型燃料電池のガス湿度決定方法。
2. The above-mentioned corresponding absolute humidity is obtained for each of a plurality of types of test fuel gas having different hydrogen gas concentrations, and the correspondence relationship between the plurality of corresponding absolute humidity and the hydrogen gas concentration of each test fuel gas is set. Based on the above, the corresponding absolute humidity of the actually used fuel gas according to the hydrogen gas concentration of the actually used fuel gas is obtained, and the corresponding absolute humidity of this actually used fuel gas is the target for the humidity adjustment by the humidity adjusting means. The method for determining gas humidity of a polymer electrolyte fuel cell according to claim 1, wherein absolute humidity is used.
【請求項3】 請求項2記載のガス湿度決定方法の実施
に使用する固体高分子型燃料電池の制御装置であって、 水素ガス濃度が互い異なる複数種の試験燃料ガスの各々
についての前記対応絶対湿度と各試験燃料ガスの水素ガ
ス濃度との対応関係を記憶する記憶手段と、 実際に使用する燃料ガスの水素ガス濃度を検出する濃度
検出手段と、 前記記憶手段が記憶している前記対応関係に基づき前記
濃度検出手段による検出水素ガス濃度に応じた実使用燃
料ガスについての前記対応絶対湿度を求めて、この実使
用燃料ガスについての対応絶対湿度を前記湿度調整手段
による湿度調整での目標絶対湿度にするガス湿度決定手
段とを設けてある固体高分子型燃料電池の制御装置。
3. A controller for a polymer electrolyte fuel cell used for carrying out the method for determining gas humidity according to claim 2, wherein the measures are taken for each of a plurality of types of test fuel gas having different hydrogen gas concentrations. Storage means for storing the correspondence between the absolute humidity and the hydrogen gas concentration of each test fuel gas, a concentration detection means for detecting the hydrogen gas concentration of the fuel gas actually used, and the correspondence stored in the storage means. Based on the relationship, the corresponding absolute humidity of the actually used fuel gas according to the hydrogen gas concentration detected by the concentration detecting means is obtained, and the corresponding absolute humidity of the actually used fuel gas is the target in the humidity adjustment by the humidity adjusting means. A control device for a polymer electrolyte fuel cell, which is provided with a gas humidity determining means for setting an absolute humidity.
【請求項4】 固体高分子電解質膜を挟持する一方のガ
ス拡散電極に水素ガス含有の燃料ガスを供給し、かつ、
他方のガス拡散電極に酸素ガス含有の酸化剤ガスを供給
し、これらガス拡散電極に供給する燃料ガス又は酸化剤
ガスの絶対湿度を湿度調整手段により調整する固体高分
子型燃料電池であって、 電池出力を検出する出力検出手段と、この出力検出手段
により検出される電池出力に基づき、電池出力の振動的
な変動の大小を示す所定の指標変数が設定閾値に等しく
なるように前記湿度調整手段の湿度調整出力を自動調整
する制御手段とを設けてある固体高分子型燃料電池。
4. A fuel gas containing hydrogen gas is supplied to one of the gas diffusion electrodes sandwiching the solid polymer electrolyte membrane, and
A solid polymer fuel cell in which oxygen gas-containing oxidant gas is supplied to the other gas diffusion electrode, and the absolute humidity of the fuel gas or oxidant gas supplied to these gas diffusion electrodes is adjusted by a humidity adjusting means, Based on the output detecting means for detecting the battery output and the battery output detected by the output detecting means, the humidity adjusting means is set so that a predetermined index variable indicating the magnitude of the oscillatory fluctuation of the battery output becomes equal to a set threshold value. And a control means for automatically adjusting the humidity adjustment output of the polymer electrolyte fuel cell.
【請求項5】 前記固体高分子電解質膜とそれを挟持す
る一方及び他方の前記ガス拡散電極とを備えるセルの多
数を電気的に直列接続する状態で多数積層して電池スタ
ックを形成する構成において、 それら多数のセルのうちの一部数の代表セルの出力電圧
を前記出力検出手段の検出対象出力にしてある請求項4
記載の固体高分子型燃料電池。
5. A structure in which a large number of cells each including the solid polymer electrolyte membrane and one of the gas diffusion electrodes sandwiching the solid polymer electrolyte membrane are electrically connected in series to form a battery stack. The output voltage of a part of the representative cells of the large number of cells is the detection target output of the output detection means.
The polymer electrolyte fuel cell described.
JP2001251566A 2001-08-22 2001-08-22 Gas humidity determining method for solid polymer fuel cell, control device for solid polymer fuel cell and solid polymer fuel cell Pending JP2003059517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001251566A JP2003059517A (en) 2001-08-22 2001-08-22 Gas humidity determining method for solid polymer fuel cell, control device for solid polymer fuel cell and solid polymer fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001251566A JP2003059517A (en) 2001-08-22 2001-08-22 Gas humidity determining method for solid polymer fuel cell, control device for solid polymer fuel cell and solid polymer fuel cell

Publications (1)

Publication Number Publication Date
JP2003059517A true JP2003059517A (en) 2003-02-28

Family

ID=19080190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001251566A Pending JP2003059517A (en) 2001-08-22 2001-08-22 Gas humidity determining method for solid polymer fuel cell, control device for solid polymer fuel cell and solid polymer fuel cell

Country Status (1)

Country Link
JP (1) JP2003059517A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005243574A (en) * 2004-02-27 2005-09-08 Matsushita Electric Ind Co Ltd Fuel cell system
JP2005348528A (en) * 2004-06-03 2005-12-15 Railway Technical Res Inst Motor controller
JP2006059745A (en) * 2004-08-23 2006-03-02 Iwatani Internatl Corp Apparatus for monitoring cell voltage of hydrogen fuel cell, and method for using the same
JP2009198410A (en) * 2008-02-25 2009-09-03 Gunze Ltd Hydrogen gas sensor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005243574A (en) * 2004-02-27 2005-09-08 Matsushita Electric Ind Co Ltd Fuel cell system
JP2005348528A (en) * 2004-06-03 2005-12-15 Railway Technical Res Inst Motor controller
JP4533671B2 (en) * 2004-06-03 2010-09-01 財団法人鉄道総合技術研究所 Electric motor control device and vehicle
JP2006059745A (en) * 2004-08-23 2006-03-02 Iwatani Internatl Corp Apparatus for monitoring cell voltage of hydrogen fuel cell, and method for using the same
JP4659410B2 (en) * 2004-08-23 2011-03-30 岩谷産業株式会社 Cell voltage monitoring device for hydrogen fuel cell and method of using the same
JP2009198410A (en) * 2008-02-25 2009-09-03 Gunze Ltd Hydrogen gas sensor

Similar Documents

Publication Publication Date Title
US5843195A (en) Apparatus for reducing carbon monoxide concentration, apparatus for reducing methanol concentration, and fuel reformer utilizing the same
US7938891B2 (en) Using ionic liquids
CN102714331B (en) Fuel cell system and control method for fuel cell system
JP4886170B2 (en) Fuel cell system
US20090301297A1 (en) Producing Articles That Include Ionic Liquids
JP2001256988A (en) Fuel cell system and fuel cell operating method
JP4331125B2 (en) Operation control method and system for solid oxide fuel cell
JP4610815B2 (en) Polymer electrolyte fuel cell
US6746789B1 (en) Catalytic humidifier and heater for the fuel stream of a fuel cell
JP2004199988A (en) Fuel cell system
EP1349225B1 (en) Fuel cell with reactant humidification in manifolds
US6613465B2 (en) Control device for a fuel reforming apparatus
US20030198842A1 (en) Fuel cell power generation system and operation method therefor
JP2003059517A (en) Gas humidity determining method for solid polymer fuel cell, control device for solid polymer fuel cell and solid polymer fuel cell
JP2001236977A (en) Solid high polymer fuel cell generator and method of operating solid high polymer fuel cell
JP5411901B2 (en) Fuel cell system
JP3575650B2 (en) Molten carbonate fuel cell
KR102152207B1 (en) Air supplying system for a fuel cell
JPH1029804A (en) Carbon monoxide concentration-reducing device and method thereof
JP2012038608A (en) Fuel cell system and control method of reforming water supply amount in fuel cell system
JP5017739B2 (en) FUEL CELL DEVICE AND METHOD OF OPERATING FUEL CELL
JP2003031242A (en) Solid polymer fuel cell
JP2002367639A (en) Solid polymer fuel cell and driving method of the same
JP4686115B2 (en) Humidifier for polymer electrolyte fuel cell
JP2008027606A (en) Fuel cell system