JP2003059474A - Battery pack, battery pack structure, vehicle equipped with battery pack or battery pack structure, and control method of battery pack or battery pack structure - Google Patents

Battery pack, battery pack structure, vehicle equipped with battery pack or battery pack structure, and control method of battery pack or battery pack structure

Info

Publication number
JP2003059474A
JP2003059474A JP2001242166A JP2001242166A JP2003059474A JP 2003059474 A JP2003059474 A JP 2003059474A JP 2001242166 A JP2001242166 A JP 2001242166A JP 2001242166 A JP2001242166 A JP 2001242166A JP 2003059474 A JP2003059474 A JP 2003059474A
Authority
JP
Japan
Prior art keywords
battery
assembled battery
voltage
battery pack
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001242166A
Other languages
Japanese (ja)
Other versions
JP3994700B2 (en
Inventor
Takanori Ito
孝憲 伊藤
Hideaki Horie
英明 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2001242166A priority Critical patent/JP3994700B2/en
Publication of JP2003059474A publication Critical patent/JP2003059474A/en
Application granted granted Critical
Publication of JP3994700B2 publication Critical patent/JP3994700B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a battery pack capable of bringing the charge/discharge cycle life close to that of a battery pack assembled with cells containing no defects even in the charge/discharge cycle life in the case where defective cells having high internal resistance are mixed or internal resistance is increased caused by mixing of one or more cells whose capacities are early deteriorated. SOLUTION: This battery pack is equipped with a battery line in which x pieces of unit cells of a secondary battery are connected in series; a battery group in which y lines of the battery line are connected in parallel (wherein, x>=1, y>=2); a voltmeter 9 connected to the battery group in parallel and detecting the voltage of the battery group; a measured signal detecting means detecting a measured signal from the voltmeter 9; and a controller 12 connected to the voltmeter 9 and a generator 11, and the voltmeter 9 and a driving motor 10 respectively in series, and the controller 12 judges a charged state of the battery group based on the detected measured signal, and indicates charge/ discharge to the generator 11 and the driving motor 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、複数個の二次電池
単電池を組み合わせて成る組電池及びその制御方法に係
り、特に小型の二次電池を組み合わせて電気自動車等の
モータ駆動用電池として公的に使用できる組電池及びそ
の制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an assembled battery formed by combining a plurality of secondary battery unit cells and a control method thereof, and particularly as a battery for driving a motor of an electric vehicle or the like by combining small secondary batteries. The present invention relates to a publicly usable battery pack and a control method thereof.

【0002】[0002]

【従来の技術】近年、環境保護運動の高まりを背景とし
て、二酸化炭素排出規制が切に望まれる中、自動車業界
ではガソリン車等の化石燃料を使用する自動車に替え
て、電気自動車(EV)、ハイブリッド自動車(HEV)、燃料
電池自動車(FCV)の導入を促進すべく、これらの実用
化の鍵を握るモータ駆動用電池の開発が鋭意行われてい
る。この用途には、繰り返し充電が可能な二次電池が使
用される。EV、HEV、FCVのモータ駆動のような高出力及
び高エネルギー密度が要求される用途では、単一の大型
電池は事実上作れず、複数個の電池を直列に接続して構
成した組電池を使用することがこれまで一般的であっ
た。
2. Description of the Related Art In recent years, carbon dioxide emission regulations have been eagerly awaited against the backdrop of increasing environmental protection movements, and in the automobile industry, electric vehicles (EV) are being replaced by vehicles using fossil fuels such as gasoline vehicles. In order to promote the introduction of hybrid vehicles (HEVs) and fuel cell vehicles (FCVs), the development of motor drive batteries that hold the key to their practical use is being eagerly pursued. A rechargeable secondary battery is used for this purpose. For applications that require high output and high energy density, such as EV, HEV, and FCV motor drives, it is practically impossible to make a single large battery, and an assembled battery composed of multiple batteries connected in series can be used. It has been common to use.

【0003】しかし、この方法では単位電池の容量を非
常に大きくする必要があり、専用の製造ラインを設けて
生産する必要があった。また特に大容量が必要とされる
EV用電池等では、1個の電池が非常に重くなり取り扱い
が困難である。
However, in this method, it is necessary to make the capacity of the unit battery extremely large, and it is necessary to provide a dedicated production line for production. Also especially large capacity is required
For EV batteries, etc., one battery is very heavy and difficult to handle.

【0004】そこで、取り扱いの容易な小型の電池を多
数接続して、EV、HEV、FCV用途に供することが考えられ
ている。また、高出力、高エネルギー密度であるリチウ
ムイオン二次電池を自動車用組電池として充放電に使用
する場合、単電池を複数個並列に接続したグループを直
列に接続した組電池を用い、全体として400Vの電圧を得
るように考えられている。また、自動車用12V,42Vバッ
テリーを更に高性能、コンパクト、低コストにするため
には民生用のリチウムイオン電池を利用することが有望
となってくる。
Therefore, it is considered to connect a large number of small batteries, which are easy to handle, for EV, HEV and FCV applications. When using a high-output, high-energy-density lithium-ion secondary battery for charging and discharging as a battery pack for automobiles, use a battery pack in which multiple groups of parallel cells are connected in series, It is designed to get a voltage of 400V. Further, in order to further improve the performance, compactness, and cost reduction of the 12V and 42V batteries for automobiles, it will be promising to use consumer-use lithium ion batteries.

【0005】[0005]

【発明が解決しようとする課題】ところが、このような
組電池において、いずれかの1個以上のセルの内部抵抗
が高くなった場合、放電容量、出力が著しく低下すると
いう問題があった。この問題に対して特開平8-241705号
公報に記載の技術では、単電池の直列部分を含まない、
単電池の並列接続組の複数を直列接続したことによっ
て、全品正常品で構成されている組電池の充放電サイク
ル寿命に出来るだけ接近した組電池を提案している。
However, in such an assembled battery, there is a problem that the discharge capacity and the output are remarkably reduced when the internal resistance of any one or more cells becomes high. To solve this problem, the technique disclosed in Japanese Patent Laid-Open No. 8-241705 does not include the series portion of the unit cells.
By connecting a plurality of parallel-connected sets of single cells in series, we have proposed an assembled battery that is as close as possible to the charge / discharge cycle life of an assembled battery composed of all normal products.

【0006】しかしながら、内部抵抗が高いセルが並列
接続されている場合に充放電サイクルを行うと、正常品
とSOC(state of charge:充電状態)に差が出来る。そ
の結果を図7に示す。これは、1.2A放電−充電を6分ご
とに10サイクル行い、抵抗付き組電池と抵抗無し組電
池のSOCの差を表したもので、120分後には、△SOCが
マイナスの値を取っている。すなわち、抵抗付き組電池
のSOCの低下が起こっていることが分かる。SOCが低下す
ると組電池全体の劣化を促進させたり、出力低下の原因
ともなる。
However, when a charge / discharge cycle is performed when cells having a high internal resistance are connected in parallel, there is a difference between a normal product and an SOC (state of charge). The result is shown in FIG. 7. This shows the difference between the SOC of the battery pack with resistance and that of the battery pack without resistance after performing 10 cycles of 1.2A discharge-charge every 6 minutes. After 120 minutes, the value of △ SOC takes a negative value. There is. That is, it can be seen that the SOC of the assembled battery with a resistor is lowered. When SOC is lowered, deterioration of the entire battery pack is promoted and output is lowered.

【0007】本発明は、上記問題点に着目してなされた
もので、その目的とするところは、組電池に内部抵抗が
高いなどの異常品が混入した場合や、1個以上のセルの
劣化が早く、内部抵抗が高くなってしまった場合の充放
電サイクル寿命でも、全数正常品で構成されている組電
池の充放電サイクル寿命に接近させることの出来る組電
池、組電池構造体、組電池または組電池構造体を備えた
車両及び組電池または組電池構造体の制御方法を提供す
ることを目的とする。
The present invention has been made in view of the above-mentioned problems, and its purpose is to introduce an abnormal product such as high internal resistance into a battery pack or to deteriorate one or more cells. The battery pack, battery pack structure, and battery pack that can approach the charge / discharge cycle life of the battery pack consisting of 100% normal products even if the charge / discharge cycle life is high when the internal resistance becomes high. Another object of the present invention is to provide a vehicle equipped with an assembled battery structure and a method for controlling the assembled battery or the assembled battery structure.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、請求項1記載の発明では、二次電池単電池をx個直
列に接続した電池列と、該電池列をy列、並列に接続し
た電池群(ここでx≧1、y≧2)と、該電池群と並列に接
続され、該電池群の電圧を検出する電圧検出手段と、該
電圧検出手段からの計測信号を検知する計測信号検知手
段と、前記電圧検出手段と発電部、及び前記電圧検出手
段と放電部にそれぞれ直列に接続され、前記検知した計
測信号によって該電池群の充電状態を判断し、発電部及
び放電部に充放電を指示する充放電制御手段と、を備え
たことを特徴とする。
In order to achieve the above object, in the invention according to claim 1, a battery array in which x secondary battery cells are connected in series, and the battery array is connected in y array in parallel. A battery group (where x ≧ 1, y ≧ 2), a voltage detection unit that is connected in parallel with the battery group and that detects the voltage of the battery group, and a measurement that detects a measurement signal from the voltage detection unit. A signal detection unit, the voltage detection unit and the power generation unit, and the voltage detection unit and the discharge unit are respectively connected in series, the state of charge of the battery group is determined by the detected measurement signal, and the power generation unit and the discharge unit. And a charging / discharging control unit for instructing charging / discharging.

【0009】また、その好適な制御方法として、使用す
る二次電池単電池の初期放電時の容量C(Ah)と電圧値V
(V)の関係(C>0、V>0)において、(容量Cに対する
電圧Vの接線の傾きの絶対値)≧0.55を満たし、且つ初
期容量の2%以上充放電可能な電圧値を中心に充放電を実
施させるのが好ましく、また他の制御方法として、(容
量Cに対する電圧値Vの平均変化率の絶対値)≧0.55を
満たし、且つ初期容量の2%以上充放電可能な電圧値を中
心に充放電を実施させても良い。尚、ここで二次電池と
は、自動車用12V,42Vバッテリも含み、このような充放
電可能な電池を指すものである。
As a preferable control method thereof, the capacity C (Ah) and the voltage value V at the initial discharge of the secondary battery cell to be used are
In the relationship of (V) (C> 0, V> 0), (the absolute value of the slope of the tangent line of the voltage V with respect to the capacity C) ≧ 0.55 is satisfied, and the voltage value that can be charged / discharged by 2% or more of the initial capacity is centered It is preferable to carry out charge / discharge, and as another control method, a voltage value satisfying (absolute value of average change rate of voltage value V with respect to capacity C) ≧ 0.55 and capable of being charged / discharged by 2% or more of initial capacity Charge and discharge may be performed mainly. Incidentally, the secondary battery herein includes such 12V and 42V batteries for automobiles and refers to such a chargeable and dischargeable battery.

【0010】[0010]

【発明の作用および効果】本願発明にあっては、組電池
に内部抵抗が高い電池が含まれている場合、または特定
の電池の劣化が進んでしまった場合においても、全品正
常品で構成される組電池に接近した充放電サイクル寿命
が得られる。また組電池の充電状態を電圧から判断して
充放電を行うので、直接電池から判断する場合に比較し
て電池への負担が少なく、発熱も抑えられ、サイクル寿
命特性を上げることができる。さらに本組電池をサブモ
ジュールとして直列および/又は並列に接続、設置し、
さらには前記サブモジュールが各々脱着可能であること
で要求特性、仕様に合わせて出力等を設計できるため、
電気自動車、ハイブリット自動車、燃料電池自動車の電
源として、又は自動車用12V,42Vバッテリーとして用い
ることにより、信頼性の高い電気自動車、ハイブリット
自動車、燃料電池自動車、一般自動車を提供することが
できる。
According to the present invention, even if the assembled battery includes a battery having a high internal resistance, or even if the deterioration of a specific battery has progressed, all the products are configured as normal products. A charge / discharge cycle life approaching that of an assembled battery can be obtained. Further, since the charge state of the assembled battery is judged from the voltage to perform charging / discharging, the load on the battery is less, heat generation is suppressed and cycle life characteristics can be improved as compared with the case of judging directly from the battery. Furthermore, this battery pack is connected and installed in series and / or parallel as a sub-module,
Furthermore, since each of the sub-modules can be attached and removed, the output etc. can be designed according to the required characteristics and specifications.
By using as a power source for an electric vehicle, a hybrid vehicle, a fuel cell vehicle, or as a 12V, 42V battery for a vehicle, a highly reliable electric vehicle, hybrid vehicle, fuel cell vehicle, or general vehicle can be provided.

【0011】[0011]

【発明の実施の形態】図1は本実施の形態に使用される
サブモジュール構造体を表す概略図である。本組電池を
サブモジュールとして直列および/又は並列に接続、設
置し、さらには前記サブモジュールが各々脱着可能であ
ることで要求特性、仕様に合わせて出力等を設計できる
ものである。
1 is a schematic view showing a sub-module structure used in this embodiment. By connecting and installing the present assembled battery as a sub-module in series and / or parallel, and further, the sub-modules can be attached and detached, the output and the like can be designed according to required characteristics and specifications.

【0012】実施の形態の組電池は、二次電池単電池を
複数直列に接続した電池列を並列に接続することによっ
て大出力及び大容量を実現しながら、この組電池に内部
抵抗が高い電池が含まれている場合、または特定の電池
の劣化が進んでしまった場合においても、十分な充放電
サイクル寿命が得られる。また、組電池の充電状態を電
圧から判断して充放電を行うので、直接電池から判断す
る場合に比較して電池への負担が少なく、発熱も抑えら
れ、サイクル寿命特性を上げることができる。
The assembled battery of the embodiment is a battery having a high internal resistance while realizing a large output and a large capacity by connecting a plurality of secondary battery cells connected in series in parallel to each other in a battery row. Even when the content of the battery is included or when the deterioration of a specific battery has progressed, a sufficient charge / discharge cycle life can be obtained. Further, since the charge state of the assembled battery is judged from the voltage to perform charging / discharging, the load on the battery is less, heat generation is suppressed, and cycle life characteristics can be improved as compared with the case of judging directly from the battery.

【0013】図2はHEVに実施の形態の組電池を搭載し
た例を示す。特に大容量、大出力が要求され、かつ充放
電を繰り返すHEV,FCV用組電池、自動車用12V,42Vバッテ
リーとして好適に使用できる。
FIG. 2 shows an example in which the assembled battery of the embodiment is mounted on the HEV. Particularly, it can be suitably used as an assembled battery for HEV / FCV, which requires a large capacity and a large output and is repeatedly charged and discharged, and a 12V / 42V battery for automobiles.

【0014】(実施例)以下、本発明における組電池の
実施形態について実施例をもとに説明するが、本発明は
実施例に限定されるものではない。
(Embodiment) The embodiment of the assembled battery of the present invention will be described below based on an embodiment, but the present invention is not limited to the embodiment.

【0015】図3はリチウムイオン二次電池を2直列に
接続し、そのグループを3並列に接続した組電池を示
す。1〜6はリチウムイオン二次電池、7は正極、8は
負極である。尚、この組電池はm直列とn並列との組み
合わせ(m≧1、n≧2)の構成でも可能である。
FIG. 3 shows an assembled battery in which two lithium ion secondary batteries are connected in series and the groups are connected in three parallels. 1 to 6 are lithium ion secondary batteries, 7 is a positive electrode, and 8 is a negative electrode. The assembled battery may have a configuration of a combination of m series and n parallel (m ≧ 1, n ≧ 2).

【0016】実施例においては1〜5に正常品、6に正常
品の2倍の内部抵抗を有する電池とした。電池はリチウ
ムイオン二次電池を用いた。正極は基本的にはLiMn2O4
であるが、Li欠損タイプ又はLi過剰タイプであってもよ
い。また、Mnの一部はMnを除く遷移金属元素及び他の金
属元素の中から選ばれた少なくとも1種以上からなる金
属元素で置換されていても良い。また、O欠損タイプ又
はO過剰タイプでもよい。また、Oの一部をS,F,Clなどの
元素の中から選ばれた少なくとも1種からなる元素で置
換されていても良い。
In the examples, 1 to 5 are normal batteries, and 6 is a battery having double the internal resistance of the normal product. A lithium ion secondary battery was used as the battery. The positive electrode is basically LiMn 2 O 4
However, it may be a Li-deficient type or a Li-excess type. Further, part of Mn may be replaced with a metal element composed of at least one selected from transition metal elements other than Mn and other metal elements. Further, it may be an O-deficient type or an O-excessive type. Further, part of O may be replaced with at least one element selected from elements such as S, F and Cl.

【0017】負極としては、通常の非水電解質二次電池
に用いられる材料がいずれも使用可能であり、例えば、
金属リチウムやリチウム合金等のリチウム系金属、SnSi
O3等の金属酸化物、LiCoN2等の金属窒化物及び炭素材料
などを用いることができる。なお、本発明においては、
コークス、天然黒鉛、人造黒鉛及び難黒鉛化炭素などの
炭素材料を好適に用いることができる。
As the negative electrode, any of the materials used in ordinary non-aqueous electrolyte secondary batteries can be used.
Lithium-based metals such as metallic lithium and lithium alloys, SnSi
A metal oxide such as O 3 or the like, a metal nitride such as LiCoN 2 or a carbon material can be used. In the present invention,
Carbon materials such as coke, natural graphite, artificial graphite and non-graphitizable carbon can be preferably used.

【0018】電解液としては、各種リチウム塩を電解質
とし、これらを有機溶媒などの非水溶媒に溶解したもの
使用できる。この場合、電解質としては、LiClO4、LiAs
F6、LiPF6、LiBF6、LiCF3SO3、Li(CF3SO2)2Nなど従来公
知のものが挙げられる。また、有機溶媒としては、特に
限定されないが、カーボネート類、ラクトン類及びエー
テル類などが挙げられ、例えば、エチレンカーボネー
ト、プロピレンカーボネート、ジエチルカーボネート、
ジメチルカーボネート、メチルエチルカーボネート、1,
2−ジメトキシエタン、1,2−ジエトキシエタン、テトラ
ヒドロフラン、1,3−ジオキソラン及びγ―ブチロラク
トンなどの溶媒を単独又は2種以上を混合して用いるこ
とができる。なお、これらの非水溶媒や有機溶媒に溶解
される電解質の濃度は、0.5〜2.0モル/リットルにする
ことが好ましい。
As the electrolytic solution, various lithium salts as electrolytes, which are dissolved in a non-aqueous solvent such as an organic solvent, can be used. In this case, the electrolyte is LiClO 4 , LiAs
Known examples include F 6 , LiPF 6 , LiBF 6 , LiCF 3 SO 3 , and Li (CF 3 SO 2 ) 2 N. The organic solvent is not particularly limited, but examples thereof include carbonates, lactones, ethers, and the like, for example, ethylene carbonate, propylene carbonate, diethyl carbonate,
Dimethyl carbonate, methyl ethyl carbonate, 1,
Solvents such as 2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 1,3-dioxolane and γ-butyrolactone may be used alone or in admixture of two or more. The concentration of the electrolyte dissolved in these non-aqueous solvent or organic solvent is preferably 0.5 to 2.0 mol / liter.

【0019】また、本実施例のリチウム二次電池におい
ては、上記電解液以外の他の電解媒体を用いることも可
能であり、例えば、上記電解質を高分子マトリックスに
均一分散させた固体若しくは粘稠体、又はこれらに非水
溶媒を含浸させたものももちいることができる。この場
合、高分子マトリックスとしては、例えば、ポリエチレ
ンオキシド、ポリプロピレンオキシド、ポリアクリロニ
トリル及びポリフッ化ビニリデンなどを用いることがで
きる。
Further, in the lithium secondary battery of this embodiment, it is possible to use an electrolytic medium other than the above-mentioned electrolytic solution, for example, a solid or viscous material in which the above-mentioned electrolyte is uniformly dispersed in a polymer matrix. A body or a body obtained by impregnating these with a non-aqueous solvent can also be used. In this case, as the polymer matrix, for example, polyethylene oxide, polypropylene oxide, polyacrylonitrile, polyvinylidene fluoride or the like can be used.

【0020】更に、本実施例のリチウム二次電池におい
ては、正極と負極の短絡防止のためのセパレーターをも
設けることができる。かかるセパレーターとしては、ポ
リエチレン及びセルロースなどの高分子材料の多孔性シ
ートや、不織布が用いられる。
Further, in the lithium secondary battery of this embodiment, a separator for preventing short circuit between the positive electrode and the negative electrode can be provided. As such a separator, a porous sheet of a polymeric material such as polyethylene and cellulose, or a non-woven fabric is used.

【0021】(実施例1)実施例1は図3の組電池の構
成で、6の電池のみ内部抵抗が他の電池の2倍とされてい
る。構成される電池の負極はグラファイトである。充放
電は低電流で3A、各6分間実施した。充放電を行う中心
電圧は、容量Cに対する電圧値Vの平均変化率絶対値=
0.55である7.2Vで2000サイクル行った。2000サイクル
後、組電池の開放電圧は7.12V、内部抵抗は初期の1.02
倍、放電容量保持率は初期放電容量の92%であった。
(Embodiment 1) Embodiment 1 has the structure of the assembled battery shown in FIG. 3, in which only the battery of 6 has an internal resistance that is twice that of the other batteries. The negative electrode of the constructed battery is graphite. Charging / discharging was performed at a low current of 3 A for 6 minutes each. The center voltage for charging / discharging is the average change rate absolute value of the voltage value V with respect to the capacity C =
2000 cycles were performed at 7.2V which is 0.55. After 2000 cycles, the open-circuit voltage of the assembled battery is 7.12V, the internal resistance is 1.02 of the initial value.
The discharge capacity retention rate was 92% of the initial discharge capacity.

【0022】(実施例2)実施例2は図3の組電池の構
成で6の電池のみ内部抵抗が他の電池の2倍とされてい
る。構成される電池の負極はハードカーボンである。充
放電は低電流で3A各6分間実施した。充放電を行う中心
電圧は、容量Cに対する電圧値Vの平均変化率絶対値=
1である7.6Vで2000サイクル行った。2000サイクル後、
組電池の開放電圧は7.58V、内部抵抗は初期の1.01倍、
放電容量保持率は初期放電容量の93%であった。
(Embodiment 2) In the embodiment 2, the battery pack of FIG. 3 has a structure in which only the battery 6 has an internal resistance twice as high as that of the other batteries. The negative electrode of the constructed battery is hard carbon. Charging / discharging was carried out at a low current for 3 minutes each for 3 A. The center voltage for charging / discharging is the average change rate absolute value of the voltage value V with respect to the capacity C =
2000 cycles were performed at 7.6V which is 1. After 2000 cycles,
The open-circuit voltage of the assembled battery is 7.58V, the internal resistance is 1.01 times the initial value,
The discharge capacity retention rate was 93% of the initial discharge capacity.

【0023】(比較例1)比較例1は図3の組電池の構
成で全て正常品で構成されている。構成される電池の負
極はハードカーボンである。充放電は低電流で3A、各6
分間実施した。充放電を行う中心電圧は(容量Cに対す
る電圧値Vの平均変化率絶対値)=1である7.6Vで2000
サイクル行った。2000サイクル後、組電池の開放電圧は
7.6V、内部抵抗は初期の1.002倍、放電容量保持率は初
期放電容量の98%であった。
(Comparative Example 1) In Comparative Example 1, the assembled battery shown in FIG. 3 is composed of all normal products. The negative electrode of the constructed battery is hard carbon. Charge and discharge are low current 3A, 6 each
It was carried out for a minute. The center voltage for charging / discharging is 2000 at 7.6V, which is (average absolute change rate of voltage value V with respect to capacity C) = 1.
Went cycle. After 2000 cycles, the open circuit voltage of the battery pack is
The internal resistance was 7.6 V, 1.002 times the initial value, and the discharge capacity retention rate was 98% of the initial discharge capacity.

【0024】(比較例2)比較例2は図3の組電池の構
成で、6の電池のみ内部抵抗が他の電池の2倍とされてい
る。構成される電池の負極はグラファイトである。充放
電は低電流で3A、各6分間実施した。充放電を行う中心
電圧は(容量Cに対する電圧値Vの平均変化率絶対値)
=0.5である7.6Vで2000サイクル行った。2000サイクル
後、開放電圧は6.4V、内部抵抗は初期の2.02倍、放電容
量保持率は初期放電容量の55%であった。
COMPARATIVE EXAMPLE 2 Comparative example 2 has the structure of the assembled battery shown in FIG. 3, in which only the battery No. 6 has an internal resistance that is twice that of the other batteries. The negative electrode of the constructed battery is graphite. Charging / discharging was performed at a low current of 3 A for 6 minutes each. The central voltage for charging / discharging is (absolute value of average change rate of voltage value V with respect to capacity C).
2000 cycles were performed at 7.6V = 0.5. After 2000 cycles, the open circuit voltage was 6.4 V, the internal resistance was 2.02 times the initial value, and the discharge capacity retention rate was 55% of the initial discharge capacity.

【表1】 (実施例3)実施例3は図3の組電池の構成で、6の電
池のみ内部抵抗が他の電池の2倍とされている。構成さ
れる電池の負極はグラファイトである。充放電は高電流
で30A、各1分間実施した。充放電を行う中心電圧は、容
量Cに対する電圧値Vの平均変化率絶対値=0.55である
7.2Vで2000サイクル行った。2000サイクル後、組電池の
開放電圧は7.09V、内部抵抗は初期の1.05倍、放電容量
保持率は初期放電容量の90%であった。
[Table 1] (Embodiment 3) Embodiment 3 has the structure of the assembled battery shown in FIG. 3, in which only the battery 6 has an internal resistance twice that of the other batteries. The negative electrode of the constructed battery is graphite. Charging / discharging was performed at a high current of 30 A for 1 minute each. The center voltage for charging / discharging is the average absolute change rate of the voltage value V with respect to the capacity C = 0.55.
2000 cycles were performed at 7.2V. After 2000 cycles, the open circuit voltage of the assembled battery was 7.09 V, the internal resistance was 1.05 times the initial value, and the discharge capacity retention rate was 90% of the initial discharge capacity.

【0025】(実施例4)実施例4は図3の組電池の構
成で、6の電池のみ内部抵抗が他の電池の2倍とされてい
る。構成される電池の負極はハードカーボンである。充
放電は高電流で30A、各1分間実施した。充放電を行う中
心電圧は、容量Cに対する電圧値Vの平均変化率絶対値
=1である7.6Vで2000サイクル行った。2000サイクル
後、組電池の開放電圧は7.50V、内部抵抗は初期の1.04
倍、放電容量保持率は初期放電容量の91%であった。
(Embodiment 4) Embodiment 4 has a structure of the assembled battery of FIG. 3, in which only the battery 6 has an internal resistance twice as high as that of the other batteries. The negative electrode of the constructed battery is hard carbon. Charging / discharging was performed at a high current of 30 A for 1 minute each. The center voltage for charging / discharging was 2000 cycles at 7.6 V where the absolute value of the average change rate of the voltage value V with respect to the capacity C was 1. After 2000 cycles, the open-circuit voltage of the battery pack is 7.50V and the internal resistance is 1.04 of the initial value.
The discharge capacity retention rate was 91% of the initial discharge capacity.

【0026】(比較例3)比較例3は図3の組電池の構
成で全て正常品で構成されている。構成される電池の負
極はハードカーボンである。充放電は高電流で30A、各1
分間実施した。充放電を行う中心電圧は(容量Cに対す
る電圧値Vの平均変化率絶対値)=1である7.6Vで2000
サイクル行った。2000サイクル後、組電池の開放電圧は
7.58V、内部抵抗は初期の1.01倍、放電容量保持率は初
期放電容量の97%であった。
(Comparative Example 3) In Comparative Example 3, the assembled battery shown in FIG. 3 is composed of all normal products. The negative electrode of the constructed battery is hard carbon. Charge and discharge are high current 30A, 1 each
It was carried out for a minute. The center voltage for charging / discharging is 2000 at 7.6V, which is (average absolute change rate of voltage value V with respect to capacity C) = 1.
Went cycle. After 2000 cycles, the open circuit voltage of the battery pack is
The value was 7.58V, the internal resistance was 1.01 times the initial value, and the discharge capacity retention rate was 97% of the initial discharge capacity.

【0027】(比較例4)比較例4は図3の組電池の構
成で、6の電池のみ内部抵抗が他の電池の2倍とされてい
る。構成される電池の負極はグラファイトである。充放
電は高電流で30A、各1分間実施した。充放電を行う中心
電圧は、容量Cに対する電圧値Vの平均変化率絶対値=
0.5である7.6Vで2000サイクル行った。2000サイクル
後、開放電圧は6.2V、内部抵抗は初期の2.52倍、放電容
量保持率は初期放電容量の45%であった。
(Comparative Example 4) Comparative Example 4 has the structure of the assembled battery of FIG. 3, in which only the battery No. 6 has an internal resistance that is twice that of the other batteries. The negative electrode of the constructed battery is graphite. Charging / discharging was performed at a high current of 30 A for 1 minute each. The center voltage for charging / discharging is the average change rate absolute value of the voltage value V with respect to the capacity C =
2000 cycles were performed at 7.6V which is 0.5. After 2000 cycles, the open-circuit voltage was 6.2 V, the internal resistance was 2.52 times the initial value, and the discharge capacity retention rate was 45% of the initial discharge capacity.

【表2】 尚、実施例1〜4、比較例1〜4は図4に示すフローチ
ャートにより充放電サイクルを実施した。表1,2から
も分かるように、放電電流の大きさに関わらず、容量C
に対する電圧値Vの平均変化率絶対値≧0.55での電圧で
充放電サイクル試験を実施することによって、全品正常
品の組電池の充放電サイクル特性に近づいていることが
わかる。この原因としては内部抵抗が高い電池と正常品
の電池のSOCに差が付いたとき、お互いの電圧差でSOCを
無くす方向に向かう。しかし、この範囲外ではSOCに差
が付いても電圧差がないのでSOCに差が付いたまま充放
電が行われ、組電池が劣化すると考えられる。
[Table 2] Incidentally, in Examples 1 to 4 and Comparative Examples 1 to 4, the charging / discharging cycle was carried out according to the flowchart shown in FIG. As can be seen from Tables 1 and 2, the capacity C is irrespective of the magnitude of the discharge current.
It can be seen that the charge / discharge cycle characteristics of the assembled battery of all normal products are approached by carrying out the charge / discharge cycle test at a voltage in which the absolute value of the average change rate of the voltage value V is 0.55 or more. The reason for this is that when there is a difference between the SOC of a battery with high internal resistance and the SOC of a normal battery, the voltage difference between them tends to eliminate SOC. However, outside this range, there is no voltage difference even if there is a difference in SOC, so it is considered that charging / discharging is performed with a difference in SOC and the battery pack deteriorates.

【0028】(実施例5)実施例5は図3の組電池の構
成で、6の電池のみ内部抵抗が他の電池の2倍とされてい
る。構成される電池の負極はグラファイトである。充放
電は低電流で3A、各6分間。充放電を行う中心電圧は、
容量Cに対する電圧Vの接線の傾きの絶対値=0.56であ
る7.15Vで2000サイクル行った。2000サイクル後、組電
池の開放電圧は7.12V、内部抵抗は初期の1.02倍、放電
容量保持率は初期放電容量の91%であった。
(Embodiment 5) Embodiment 5 has the structure of the assembled battery shown in FIG. 3, and the internal resistance of only the battery of 6 is twice that of the other batteries. The negative electrode of the constructed battery is graphite. Charge and discharge are low current 3A, 6 minutes each. The central voltage for charging and discharging is
2000 cycles were performed at 7.15V where the absolute value of the slope of the tangent to the voltage V with respect to the capacitance C was 0.56. After 2000 cycles, the open circuit voltage of the assembled battery was 7.12 V, the internal resistance was 1.02 times the initial value, and the discharge capacity retention rate was 91% of the initial discharge capacity.

【0029】(実施例6)実施例6は図3の組電池の構
成で、6の電池のみ内部抵抗が他の電池の2倍とされてい
る。構成される電池の負極はハードカーボンである。充
放電は低電流で3A、各6分間。充放電を行う中心電圧
は、容量Cに対する電圧Vの接線の傾きの絶対値=1で
ある7.58Vで2000サイクル行った。2000サイクル後、組
電池の開放電圧は7.55V、内部抵抗は初期の1.01倍、放
電容量保持率は初期放電容量の92%であった。
(Embodiment 6) Embodiment 6 has the structure of the assembled battery shown in FIG. 3, and the internal resistance of only the battery 6 is twice that of the other batteries. The negative electrode of the constructed battery is hard carbon. Charge and discharge are low current 3A, 6 minutes each. The center voltage for charging / discharging was 20008 cycles at 7.58 V where the absolute value of the tangent slope of the voltage V with respect to the capacity C = 1. After 2000 cycles, the open circuit voltage of the assembled battery was 7.55 V, the internal resistance was 1.01 times the initial value, and the discharge capacity retention rate was 92% of the initial discharge capacity.

【0030】(比較例5)比較例5は図3の組電池の構
成で全て正常品で構成されている。構成される電池の負
極はハードカーボンである。充放電は低電流で3A、各6
分間。充放電を行う中心電圧は、容量Cに対する電圧V
の接線の傾きの絶対値=0.99である7.58Vで2000サイク
ル行った。2000サイクル後、組電池の開放電圧は7.57
V、内部抵抗は初期の1.003倍、放電容量保持率は初期放
電容量の98%であった。
(Comparative Example 5) In Comparative Example 5, the assembled battery shown in FIG. 3 is composed of all normal products. The negative electrode of the constructed battery is hard carbon. Charge and discharge are low current 3A, 6 each
Minutes. The central voltage for charging / discharging is the voltage V with respect to the capacity C.
2000 cycles were carried out at 7.58 V where the absolute value of the slope of the tangent of = 0.99. After 2000 cycles, the open circuit voltage of the battery pack is 7.57
V, the internal resistance was 1.003 times the initial value, and the discharge capacity retention rate was 98% of the initial discharge capacity.

【0031】(比較例6)比較例6は図3の組電池の構
成で6の電池のみ内部抵抗が他の電池の2倍とされてい
る。構成される電池の負極はグラファイトである。充放
電は低電流で3A、各6分間。充放電を行う中心電圧は、
容量Cに対する電圧Vの接線の傾きの絶対値=0.51であ
る7.61Vで2000サイクル行った。2000サイクル後、開放
電圧は6.41V、内部抵抗は初期の2.04倍、放電容量保持
率は初期放電容量の53%であった。
(Comparative Example 6) Comparative Example 6 has the structure of the assembled battery shown in FIG. 3, and the internal resistance of only the battery 6 is twice that of the other batteries. The negative electrode of the constructed battery is graphite. Charge and discharge are low current 3A, 6 minutes each. The central voltage for charging and discharging is
2000 cycles were performed at 7.61 V where the absolute value of the tangent of the voltage V with respect to the capacitance C was 0.51. After 2000 cycles, the open circuit voltage was 6.41 V, the internal resistance was 2.04 times the initial value, and the discharge capacity retention rate was 53% of the initial discharge capacity.

【表3】 (実施例7)実施例7は図3の組電池の構成で、6の電
池のみ内部抵抗が他の電池の2倍とされている。構成さ
れる電池の負極はグラファイトである。充放電は低電流
で30A、各1分間。充放電を行う中心電圧は、容量Cに対
する電圧Vの接線の傾きの絶対値=0.55である7.19Vで2
000サイクル行った。2000サイクル後、組電池の開放電
圧は7.1910V、内部抵抗は初期の1.04倍、放電容量保持
率は初期放電容量の92%であった。
[Table 3] (Embodiment 7) Embodiment 7 has the structure of the assembled battery shown in FIG. 3, in which only battery No. 6 has an internal resistance double that of other batteries. The negative electrode of the constructed battery is graphite. Charge and discharge are low current 30A, 1 minute each. The central voltage for charging / discharging is 7.19V, which is the absolute value of the tangent slope of the voltage V with respect to the capacitance C = 0.55, which is 2
000 cycles were performed. After 2000 cycles, the open circuit voltage of the assembled battery was 7.1910 V, the internal resistance was 1.04 times the initial value, and the discharge capacity retention rate was 92% of the initial discharge capacity.

【0032】(実施例8)実施例8は図3の組電池の構
成で、6の電池のみ内部抵抗が他の電池の2倍とされてい
る。構成される電池の負極はハードカーボンである。充
放電は低電流で30A、各1分間。充放電を行う中心電圧
は、容量Cに対する電圧Vの接線の傾きの絶対値=1.05
である7.61Vで2000サイクル行った。2000サイクル後、
組電池の開放電圧は7.52V、内部抵抗は初期の1.02倍、
放電容量保持率は初期放電容量の93%であった。
(Embodiment 8) Embodiment 8 has the structure of the assembled battery shown in FIG. 3, and the internal resistance of only the battery of 6 is twice that of the other batteries. The negative electrode of the constructed battery is hard carbon. Charge and discharge are low current 30A, 1 minute each. The central voltage for charging / discharging is the absolute value of the tangent slope of the voltage V with respect to the capacity C = 1.05.
2000 cycles at 7.61V. After 2000 cycles,
The open-circuit voltage of the assembled battery is 7.52V, the internal resistance is 1.02 times the initial value,
The discharge capacity retention rate was 93% of the initial discharge capacity.

【0033】(比較例7)比較例7は図3の組電池の構
成で全て正常品で構成されている。構成される電池の負
極はハードカーボンである。充放電は低電流で30A、各1
分間。充放電を行う中心電圧は(容量Cに対する電圧V
の接線の傾きの絶対値)=1である7.6Vで2000サイクル
行った。2000サイクル後、組電池の開放電圧は7.57V、
内部抵抗は初期の1.03倍、放電容量保持率は初期放電容
量の96%であった。
(Comparative Example 7) Comparative Example 7 has the structure of the assembled battery shown in FIG. The negative electrode of the constructed battery is hard carbon. Charge and discharge are low current 30A, 1 each
Minutes. The central voltage for charging / discharging is (voltage V
2000 cycles were carried out at 7.6 V, which is the absolute value of the tangent line slope of 1. After 2000 cycles, the open-circuit voltage of the assembled battery is 7.57V,
The internal resistance was 1.03 times the initial value, and the discharge capacity retention rate was 96% of the initial discharge capacity.

【0034】(比較例8)比較例8は図3の組電池の構
成で、6の電池のみ内部抵抗が他の電池の2倍とされてい
る。構成される電池の負極はグラファイトである。充放
電は低電流で30A、各1分間。充放電を行う中心電圧は、
容量Cに対する電圧Vの接線の傾きの絶対値=0.51であ
る7.6Vで2000サイクル行った。2000サイクル後、開放電
圧は6.3V、内部抵抗は初期の2.50倍、放電容量保持率は
初期放電容量の48%であった。
(Comparative Example 8) Comparative Example 8 has the structure of the assembled battery shown in FIG. 3, and the internal resistance of only the battery of 6 is twice that of the other batteries. The negative electrode of the constructed battery is graphite. Charge and discharge are low current 30A, 1 minute each. The central voltage for charging and discharging is
2000 cycles were performed at 7.6 V where the absolute value of the tangent slope of the voltage V with respect to the capacitance C was 0.51. After 2000 cycles, the open-circuit voltage was 6.3 V, the internal resistance was 2.50 times the initial value, and the discharge capacity retention rate was 48% of the initial discharge capacity.

【表4】 尚、実施例5〜8、比較例5〜8は図5に示すフローチ
ャートにより充放電サイクルを実施した。表3、4から
も分かるように放電電流の大きさに関わらず、容量Cに
対する電圧Vの接線の傾きの絶対値≧0.55での電圧で充
放電サイクル試験を実施することによって、全品正常品
の組電池の充放電サイクル特性に近づいていることがわ
かる。この原因としては、容量Cに対する電圧Vの接線
の傾きの絶対値≧0.55となる電圧では内部抵抗が高い電
池と正常品の電池のSOCに差が付いたときお互いの電圧
差でSOCを無くす方向に向かう。しかし、容量Cに対す
る電圧Vの接線の傾きの絶対値<0.55ではSOCに差が付
いても電圧差がないのでSOCに差が付いたまま充放電が
行われ、組電池が劣化すると考えられる。
[Table 4] Incidentally, in Examples 5 to 8 and Comparative Examples 5 to 8, the charge and discharge cycle was carried out according to the flowchart shown in FIG. As can be seen from Tables 3 and 4, regardless of the magnitude of the discharge current, the charge / discharge cycle test was performed at a voltage where the absolute value of the tangent slope of the voltage V with respect to the capacity C was ≧ 0.55. It can be seen that the charge and discharge cycle characteristics of the assembled battery are approaching. The reason for this is that when the absolute value of the tangent slope of the voltage V with respect to the capacity C is ≧ 0.55 and there is a difference in SOC between the battery with a high internal resistance and a normal battery, the SOC is eliminated by the voltage difference between them. Head to. However, when the absolute value of the tangent slope of the voltage V with respect to the capacity C is <0.55, there is no voltage difference even if there is a difference in SOC. Therefore, it is considered that charging / discharging is performed with the difference in SOC and the assembled battery deteriorates.

【0035】図6にHEVあるいはFCVを例に制御方法を説
明する。図3は2直列に接続し、そのグループを3並列に
接続した組電池となっているが、m直列とn並列との組
み合わせ(mは1以上、nは2以上)の構成でも可能であ
る。9は組電池の総電圧を測定する電圧計、10は駆動
用のモータ、11は発電機で例えればオルタネーターや
燃料電池、12は負極8とコントローラである。
FIG. 6 illustrates a control method using HEV or FCV as an example. FIG. 3 shows an assembled battery in which two groups are connected in series and three groups are connected in parallel, but a combination of m series and n parallel (m is 1 or more, n is 2 or more) is also possible. . Reference numeral 9 is a voltmeter for measuring the total voltage of the assembled battery, 10 is a driving motor, 11 is a generator, for example, an alternator or a fuel cell, and 12 is a negative electrode 8 and a controller.

【0036】電圧が、容量Cに対する電圧値Vの平均変
化率絶対値≧0.55から外れた場合、または、容量Cに対
する電圧値Vの接線の傾きの絶対値≧0.55から外れた場
合、組電池は基本的に適正な電圧より高い状態になって
いるので、コントローラ12が作動し、組電池を放電さ
せる。そして適切な電圧に戻った場合にまた充放電を繰
り返す。これにより、信頼性の高いHEVあるいはFCVを提
供することができる。
When the voltage deviates from the absolute value ≧ 0.55 of the average change rate of the voltage value V with respect to the capacity C or from the absolute value ≧ 0.55 of the tangent slope of the voltage value V with respect to the capacity C, the assembled battery is Since the voltage is basically higher than the proper voltage, the controller 12 operates to discharge the assembled battery. Then, when the voltage returns to an appropriate level, charging and discharging are repeated. This makes it possible to provide a highly reliable HEV or FCV.

【0037】[0037]

【発明の効果】以上説明したように、本発明を用いるこ
とによって、組電池に内部抵抗が高い電池、または特定
の電池の劣化が進んでしまった場合においても、全品正
常品で構成される組電池に接近した充放電サイクル寿命
が得られる。また、この組電池は、電気自動車、ハイブ
リット自動車、燃料電池自動車の電源として、又は自動
車用12V,42Vバッテリーとして用いることにより、信頼
性の高い電気自動車、ハイブリット自動車、燃料電池自
動車、一般自動車を提供できる。
As described above, by using the present invention, even if the assembled battery has a high internal resistance or a specific battery is deteriorated, all the assembled products are normal products. A charge / discharge cycle life close to that of a battery can be obtained. Further, this battery pack provides a highly reliable electric vehicle, hybrid vehicle, fuel cell vehicle, and general vehicle by being used as a power source for an electric vehicle, a hybrid vehicle, a fuel cell vehicle, or as a 12V, 42V battery for an automobile. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施の形態の組電池構造体を表す概略図であ
る。
FIG. 1 is a schematic diagram showing an assembled battery structure according to an embodiment.

【図2】実施の形態の組電池を搭載したハイブリッド車
両を表す概略図である。
FIG. 2 is a schematic diagram showing a hybrid vehicle equipped with the assembled battery of the embodiment.

【図3】実施例の組電池を表す概略図である。FIG. 3 is a schematic diagram showing an assembled battery of an example.

【図4】実施例1〜4及び比較例1〜4の充放電実験に
用いる充放電制御を表すフローチャートである。
FIG. 4 is a flowchart showing charge / discharge control used in charge / discharge experiments of Examples 1 to 4 and Comparative examples 1 to 4.

【図5】実施例5〜8及び比較例5〜8の充放電実験に
用いる充放電制御を表すフローチャートである。
FIG. 5 is a flowchart showing charge / discharge control used in charge / discharge experiments of Examples 5-8 and Comparative examples 5-8.

【図6】実施の形態の組電池をHEVあるいはFCVに適用し
た場合のシステム図である。
FIG. 6 is a system diagram when the assembled battery of the embodiment is applied to HEV or FCV.

【図7】内部抵抗差がある電池を2並列にした際に充放
電サイクル試験を行った場合のSOCの差の変化を表す図
である。
FIG. 7 is a diagram showing changes in SOC difference when a charge / discharge cycle test is performed when two batteries having a difference in internal resistance are arranged in parallel.

【符号の説明】[Explanation of symbols]

1〜6 リチウムイオン二次電池 7 正極 8 負極 9 電圧計 10 駆動用モータ 11 発電機 12 コントローラ 13 サブモジュール構造体 14 電池群 15 接続端子 16 ケース 17 ハイブリッド自動車 18 エンジン 19 組電池 1-6 Lithium ion secondary battery 7 Positive electrode 8 Negative electrode 9 Voltmeter 10 Drive motor 11 generator 12 Controller 13 Sub-module structure 14 batteries 15 connection terminals 16 cases 17 hybrid cars 18 engine 19 batteries

フロントページの続き Fターム(参考) 5H029 AJ05 AJ14 AK03 AL01 AL02 AL06 AL07 AL12 AM03 AM04 AM05 AM07 AM16 BJ23 HJ18 HJ19 5H030 AA09 AS08 BB00 BB10 DD01 DD08 DD20 FF41 5H040 AA03 AA06 AS07 AY02 AY06 DD05 NN05 5H115 PA08 PA11 PA15 PG04 PI16 PO02 PO17 PU01 PU21 SE06 TI01 TI05 TR19 TU04 TU16 TU17 UI35 Continued front page    F term (reference) 5H029 AJ05 AJ14 AK03 AL01 AL02                       AL06 AL07 AL12 AM03 AM04                       AM05 AM07 AM16 BJ23 HJ18                       HJ19                 5H030 AA09 AS08 BB00 BB10 DD01                       DD08 DD20 FF41                 5H040 AA03 AA06 AS07 AY02 AY06                       DD05 NN05                 5H115 PA08 PA11 PA15 PG04 PI16                       PO02 PO17 PU01 PU21 SE06                       TI01 TI05 TR19 TU04 TU16                       TU17 UI35

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 二次電池単電池をx個直列に接続した電
池列と、 該電池列をy列、並列に接続した電池群(ここでx≧1、y
≧2)と、 該電池群と並列に接続され、該電池群の電圧を検出する
電圧検出手段と、 該電圧検出手段からの計測信号を検知する計測信号検知
手段と、 前記電圧検出手段と発電部、及び前記電圧検出手段と放
電部にそれぞれ直列に接続され、前記検知した計測信号
によって該電池群の充電状態を判断し、発電部、放電部
に充放電を指示する充放電制御手段と、 を備えたことを特徴とする組電池。
1. A battery array in which x secondary battery cells are connected in series, and a battery group in which the battery arrays are connected in y rows (where x ≧ 1, y
≧ 2), a voltage detection unit that is connected in parallel with the battery group and that detects the voltage of the battery group, a measurement signal detection unit that detects the measurement signal from the voltage detection unit, the voltage detection unit and the power generation unit. Unit, and the voltage detection unit and the discharge unit are respectively connected in series, the state of charge of the battery group is determined by the detected measurement signal, the power generation unit, the charge and discharge control unit for instructing the discharge unit charging and discharging, An assembled battery characterized by having.
【請求項2】 請求項1に記載の組電池をサブモジュー
ルとし、 該サブモジュールが直列及び/又は並列に接続されて設
置されることを特徴とする組電池構造体。
2. An assembled battery structure comprising the assembled battery according to claim 1 as a sub-module, and the sub-modules being connected in series and / or in parallel.
【請求項3】 請求項2に記載の組電池構造体におい
て、 前記サブモジュールを、各々脱着可能としたことを特徴
とする組電池構造体。
3. The assembled battery structure according to claim 2, wherein each of the sub-modules is removable.
【請求項4】 電気自動車、ハイブリット自動車、又は
燃料電池自動車において、 前記各車両を、請求項1ないし3いずれか1つに記載の
組電池または組電池構造体を備えた車両としたことを特
徴とする組電池又は組電池構造体を備えた車両。
4. An electric vehicle, a hybrid vehicle, or a fuel cell vehicle, wherein each vehicle is a vehicle including the assembled battery or the assembled battery structure according to any one of claims 1 to 3. A vehicle including an assembled battery or an assembled battery structure.
【請求項5】 請求項1ないし3いずれか1つに記載の組
電池または組電池構造体の制御方法であって、 使用する二次電池単電池の初期放電時の容量C(Ah)と電
圧値V(V)の関係(C>0、V>0)において、 容量Cに対する電圧Vの接線の傾きの絶対値≧0.55を満
たし、 且つ、初期容量の2%以上充放電可能な電圧値を中心に充
放電を実施させることを特徴とする組電池または組電池
構造体の制御方法。
5. The method for controlling the assembled battery or assembled battery structure according to claim 1, wherein the secondary battery cell used has a capacity C (Ah) and a voltage at initial discharge. In the relationship of the value V (V) (C> 0, V> 0), the absolute value of the slope of the tangent line of the voltage V to the capacity C ≧ 0.55 is satisfied, and the voltage value that can be charged / discharged by 2% or more of the initial capacity is A method of controlling an assembled battery or an assembled battery structure, which is characterized in that charge and discharge are performed mainly.
【請求項6】 請求項1ないし3いずれか1つに記載の組
電池または組電池構造体の制御方法であって、 使用する二次電池単電池の初期放電時の容量C(Ah)と電
圧値V(V)の関係(C>0、V>0)において、 容量Cに対する電圧値Vの平均変化率絶対値≧0.55を満
たし、 且つ、初期容量の2%以上充放電可能な電圧値を中心に充
放電を実施させることを特徴とする組電池または組電池
構造体の制御方法。
6. A method for controlling an assembled battery or an assembled battery structure according to claim 1, wherein the secondary battery cell to be used has a capacity C (Ah) and a voltage at initial discharge. In the relationship of the value V (V) (C> 0, V> 0), the absolute value of the average change rate ≧ 0.55 of the voltage value V with respect to the capacity C is satisfied, and the voltage value capable of charging and discharging 2% or more of the initial capacity is A method of controlling an assembled battery or an assembled battery structure, which is characterized in that charge and discharge are performed mainly.
JP2001242166A 2001-08-09 2001-08-09 Assembled battery, assembled battery structure, assembled battery or vehicle equipped with assembled battery structure, and control method of assembled battery or assembled battery structure Expired - Fee Related JP3994700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001242166A JP3994700B2 (en) 2001-08-09 2001-08-09 Assembled battery, assembled battery structure, assembled battery or vehicle equipped with assembled battery structure, and control method of assembled battery or assembled battery structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001242166A JP3994700B2 (en) 2001-08-09 2001-08-09 Assembled battery, assembled battery structure, assembled battery or vehicle equipped with assembled battery structure, and control method of assembled battery or assembled battery structure

Publications (2)

Publication Number Publication Date
JP2003059474A true JP2003059474A (en) 2003-02-28
JP3994700B2 JP3994700B2 (en) 2007-10-24

Family

ID=19072487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001242166A Expired - Fee Related JP3994700B2 (en) 2001-08-09 2001-08-09 Assembled battery, assembled battery structure, assembled battery or vehicle equipped with assembled battery structure, and control method of assembled battery or assembled battery structure

Country Status (1)

Country Link
JP (1) JP3994700B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008293703A (en) * 2007-05-22 2008-12-04 Panasonic Ev Energy Co Ltd Manufacturing method of battery pack, and battery pack
JP2021044151A (en) * 2019-09-11 2021-03-18 三洋化成工業株式会社 Lithium ion battery module and method for charging lithium ion battery module
CN116742106A (en) * 2022-10-11 2023-09-12 荣耀终端有限公司 Battery module, charging control method and electronic equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5517692B2 (en) 2010-03-26 2014-06-11 三菱重工業株式会社 Battery pack and battery control system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008293703A (en) * 2007-05-22 2008-12-04 Panasonic Ev Energy Co Ltd Manufacturing method of battery pack, and battery pack
WO2008146587A1 (en) * 2007-05-22 2008-12-04 Panasonic Ev Energy Co., Ltd. Set battery manufacturing method, and set battery
US8470470B2 (en) 2007-05-22 2013-06-25 Panasonic Ev Energy Co., Ltd. Battery pack manufacturing method, and battery pack
JP2021044151A (en) * 2019-09-11 2021-03-18 三洋化成工業株式会社 Lithium ion battery module and method for charging lithium ion battery module
JP7500170B2 (en) 2019-09-11 2024-06-17 三洋化成工業株式会社 Lithium-ion battery module and method for charging the lithium-ion battery module
CN116742106A (en) * 2022-10-11 2023-09-12 荣耀终端有限公司 Battery module, charging control method and electronic equipment
CN116742106B (en) * 2022-10-11 2024-05-17 荣耀终端有限公司 Battery module, charging control method and electronic equipment

Also Published As

Publication number Publication date
JP3994700B2 (en) 2007-10-24

Similar Documents

Publication Publication Date Title
US10408886B2 (en) Apparatus and method for estimating SOC of secondary battery including blended cathode material
KR100903244B1 (en) Assembled battery system, method for charging assembled battery, and charging cleaner
KR100697741B1 (en) Electric condensing system, regenerative electric condensing system and vehicle
CN102035028B (en) Nonaqueous electrolyte battery, battery pack and vehicle
CN105409052B (en) Double storage systems and method with lithium ion and lead-acid battery cells
US11594777B2 (en) Dual energy storage system and starter battery module
US9406982B2 (en) Secondary battery reuse method, vehicle drive power source, and vehicle
US6773849B2 (en) Battery set and method for producing electric power output
US20120226455A1 (en) Anomalously Charged State Detection Device and Test Method for Lithium Secondary Cell
KR20060103199A (en) Battery pack and vehicle
KR20140122740A (en) Control device for secondary battery, and soc detection method
EP2874272B1 (en) Charging control method for secondary cell and charging control device for secondary cell
US20100230191A1 (en) Electrochemical cell with a non-graphitizable carbon electrode and energy storage assembly
US20030198866A1 (en) Battery and related method
US20210152010A1 (en) Method for charging battery and charging system
JP3994700B2 (en) Assembled battery, assembled battery structure, assembled battery or vehicle equipped with assembled battery structure, and control method of assembled battery or assembled battery structure
Sneha et al. A Concise review of different standards for performance testing of Lithium-ion Batteries for Electric Vehicle applications
WO2014184861A1 (en) Battery system, mobile body and power storage system provided with battery system, and control method for battery system
Burke et al. The UC Davis emerging lithium battery test project
JP2003059541A (en) Battery pack, battery pack structure, vehicle equipped with battery pack or battery pack structure, and cotrol method of battery pack or battery pack structure
JP2004311308A (en) Secondary battery comprising unit cell battery for detecting capacity, battery pack and battery pack unit, and electric vehicle mounting battery pack and battery pack unit
JP2022015513A (en) Battery module
JPH11215731A (en) Apparatus and method for charging of lithium ion battery
JP2000040528A (en) Battery for hybrid vehicle
KR20160074597A (en) Electrode for an electrical energy storage battery, comprising a material consisting of lifepo_4 and at least two other particular compounds

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20041118

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050830

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees