JP2003057230A - Water quality measuring instrument - Google Patents

Water quality measuring instrument

Info

Publication number
JP2003057230A
JP2003057230A JP2001243701A JP2001243701A JP2003057230A JP 2003057230 A JP2003057230 A JP 2003057230A JP 2001243701 A JP2001243701 A JP 2001243701A JP 2001243701 A JP2001243701 A JP 2001243701A JP 2003057230 A JP2003057230 A JP 2003057230A
Authority
JP
Japan
Prior art keywords
cell
water
measuring
turbidity
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001243701A
Other languages
Japanese (ja)
Other versions
JP4232361B2 (en
Inventor
Takashi Kitamoto
尚 北本
Junko Hirano
順子 平野
Yasuko Ogiwara
保子 荻原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2001243701A priority Critical patent/JP4232361B2/en
Publication of JP2003057230A publication Critical patent/JP2003057230A/en
Application granted granted Critical
Publication of JP4232361B2 publication Critical patent/JP4232361B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a water quality measuring instrument that can measure chromatici ty, turbidity, and residual chlorine concentration of measured water by means of the identical measurement cell. SOLUTION: When chromaticity and turbidity are measured, the measured water and zero water are supplied alternately to a measuring cell 110 at a fixed flow rate by controlling solenoid valves SV1 and SV2. In addition, a chromaticity light source LC and a turbidity light source LT are turned on in pulses alternately. The light rays, emitted from the light sources LC and LT, are made incident on the measuring cell 110 through one window 11 of the cell 110 and are emitted from the other window 112 of the cell 110, after the light rays are reflected several times by the internal wall of the cell 110. The light rays, emitted from the cell 110, are respectively made incident on a chromaticity detector DC and a turbidity detector DT, and the detectors DC and DT respectively detect the chromaticity and turbidity of the measured water. When residual chlorine concentration is measured, a prescribed voltage is applied across an indicator electrode M and its counter electrode C. Consequently, the residual chlorine contained in the measured water is electrolyzed and an electric current is generated, while the water is made to pass through the sell 110. The residual chlorine concentration is calculated by measuring the electric current.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、濁度計、色度計お
よび残留塩素計(残塩計)として使用する水質計測器に
関し、特に、同一の測定セルを用いて濁度計及び色度計
としての光学的測定と残塩計としての電気化学的測定と
を同時に行うことができる水質計測器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water quality measuring instrument used as a turbidimeter, a colorimeter and a residual chlorine meter (residual salt meter), and more particularly to a turbidimeter and a chromaticity meter using the same measuring cell. The present invention relates to a water quality measuring instrument capable of simultaneously performing optical measurement as a meter and electrochemical measurement as a residual salt meter.

【0002】[0002]

【従来の技術】従来、水質の評価には、濁度、色度及び
残留塩素濃度が使用されている。これらの評価値のう
ち、濁度及び色度は、所定波長を有する光が測定液を通
過するときの吸光度を測定することにより得られ(光学
的測定)、残留塩素濃度は測定液を電気分解したときに
流れる電流の大きさを測定することにより得られる(電
気化学的測定)。
2. Description of the Related Art Conventionally, turbidity, chromaticity and residual chlorine concentration have been used to evaluate water quality. Among these evaluation values, turbidity and chromaticity are obtained by measuring the absorbance when light having a predetermined wavelength passes through the measurement solution (optical measurement), and the residual chlorine concentration is determined by electrolysis of the measurement solution. It is obtained by measuring the magnitude of the electric current that flows when (electrochemical measurement).

【0003】色度及び濁度の測定には、一般に、上水試
験法に定められる白金・コバルト法色度標準液が用いら
れる。図2は、色度及び濁度を測定するために従来使用
されている色度・濁度計の測定原理を説明するための概
略図である。同図において、色度・濁度計200は、白
色光源であるランプ210と、測定対象を収容する測定
セル230及び比較セル220と、複数のフィルタが設
けられるフィルタホイール240と、フィルタホイール
240上に設けられたフィルタを透過した光を検出する
検出器250と、ランプ210から照射された光を反射
して平行光として測定セル230及び測定セル220へ
それぞれ導く凹面鏡260及び261と、測定セル23
0又は比較セル220から出てフィルタホイール240
上のフィルタを通過した光をそれぞれ反射して検出器2
50へ導く凹面鏡622及び623とから主に構成され
ている。
For the measurement of chromaticity and turbidity, a platinum / cobalt method chromaticity standard solution specified in the tap water test method is generally used. FIG. 2 is a schematic diagram for explaining the measurement principle of a chromaticity / turbidity meter that has been conventionally used to measure chromaticity and turbidity. In the figure, a chromaticity / turbidity meter 200 includes a lamp 210 that is a white light source, a measurement cell 230 and a comparison cell 220 that contain a measurement target, a filter wheel 240 provided with a plurality of filters, and a filter wheel 240. Detector 250 for detecting the light transmitted through the filter provided in the, the concave mirrors 260 and 261 which reflect the light emitted from the lamp 210 and guide it as parallel light to the measurement cell 230 and the measurement cell 220, respectively, and the measurement cell 23.
0 or out of the comparison cell 220 and the filter wheel 240
Detectors 2 that reflect the light that has passed through the filter above
It is mainly composed of concave mirrors 622 and 623 leading to 50.

【0004】フィルタホイール240には、色度を測定
するための所定の波長の光のみを透過するフィルタ24
1と、濁度を測定するための、色度測定用波長とは異な
る他の所定波長の光のみを透過するフィルタ242とが
設けられている。色度測定用フィルタ241は例えば3
90nmの波長の光を透過し、濁度測定用フィルタ24
2は例えば660nmの波長の光を透過するものであ
る。フィルタホイール240は円盤状に形成されてお
り、上記フィルタ241、242は、交互に、互いに9
0度の角度をもって取りつけられる。そして、フィルタ
ホイール240が一定速度で回転することにより、測定
セル230を出た測定光及び比較セル220を出た比較
光は一定の時間間隔で周期的に検出器250により検出
される。
The filter wheel 240 has a filter 24 that transmits only light of a predetermined wavelength for measuring chromaticity.
1 and a filter 242 for measuring turbidity, which transmits only light having a predetermined wavelength different from the wavelength for measuring chromaticity. The chromaticity measurement filter 241 has, for example, 3
A turbidity measuring filter 24 that transmits light with a wavelength of 90 nm
Reference numeral 2 is for transmitting light having a wavelength of 660 nm, for example. The filter wheel 240 is formed in a disc shape, and the filters 241 and 242 are alternately arranged so as to be separated from each other.
It can be mounted at an angle of 0 degree. Then, as the filter wheel 240 rotates at a constant speed, the measurement light emitted from the measurement cell 230 and the comparison light emitted from the comparison cell 220 are periodically detected by the detector 250 at constant time intervals.

【0005】色度の測定に例えば390nmの光を用
い、濁度の測定に例えば660nmの光を用いるのは、
波長により測定液内の透過率特性が異なることによる。
図3は、色度10度の白金・コバルト法標準液の透過率
特性を示す図である。同図から明らかなように、390
nmの光の透過率は約60%、すなわち吸収率は約40
%であり、これにより色度の変化を検出することが可能
である。一方、660nmの光の透過率は100%であ
るため、色度の変化に影響されることなく濁度のみを検
出することが可能となる。
The use of light of, for example, 390 nm for measuring chromaticity and the use of light of, for example, 660 nm for measuring turbidity
This is because the transmittance characteristics in the measurement liquid differ depending on the wavelength.
FIG. 3 is a diagram showing the transmittance characteristics of a platinum / cobalt method standard liquid having a chromaticity of 10 degrees. As is clear from the figure, 390
nm light transmission is about 60%, that is, absorption is about 40
%, Which makes it possible to detect a change in chromaticity. On the other hand, since the transmittance of light of 660 nm is 100%, it is possible to detect only the turbidity without being affected by the change in chromaticity.

【0006】図4は、検出器250により検出された光
の強度すなわち測定セル230又は比較セル220を透
過した光の透過光量を示す図である。同図において、I
Cは色度の検出に使用される色度検出光であり、Itは
濁度の検出に使用される濁度検出光である。また、沿え
字のRは比較セル220を透過した光であることを示
し、沿え字のMは測定セル230を透過した光であるこ
とを示している。これらの信号から、色度光(390n
m)及び濁度光(660nm)の有効セル長における吸
光度(Ac、At)は、それぞれ次式で表される。
FIG. 4 is a diagram showing the intensity of light detected by the detector 250, that is, the amount of light transmitted through the measurement cell 230 or the comparison cell 220. In the figure, I
C is chromaticity detection light used for chromaticity detection, and It is turbidity detection light used for turbidity detection. Further, the trailing letter R indicates that the light has passed through the comparison cell 220, and the trailing letter M indicates that the light has passed through the measurement cell 230. From these signals, chromaticity light (390n
m) and the absorbance (Ac, At) of the turbidity light (660 nm) in the effective cell length are respectively represented by the following equations.

【0007】[0007]

【数1】 [Equation 1]

【0008】[0008]

【数2】 [Equation 2]

【0009】ここで、ICMM及びItMMは測定液を
入れた時の測定セル230透過光量を示し、ICRM及
びItRMは測定液を入れた時の比較セル220透過光
量を示し、ICM0及びItM0はゼロ液を入れた時の
測定セル230透過光量を示し、ICR0及びItR0
はゼロ液を入れた時の比較セル220透過光量を示す。
また、IM及びIRはそれぞれ測定セル長及び比較セル
長を示している。
Here, ICMM and ItMM indicate the amount of light transmitted through the measurement cell 230 when the measurement liquid is added, ICRM and ItRM indicate the amount of transmission light through the comparison cell 220 when the measurement liquid is added, and ICM0 and ItM0 indicate the zero liquid. Shows the amount of light transmitted through the measurement cell 230 when ICR0 and ItR0
Indicates the amount of light transmitted through the comparison cell 220 when the zero liquid was added.
Further, IM and IR indicate the measurement cell length and the comparison cell length, respectively.

【0010】この2つの吸光度から、色度及び濁度は次
式のように演算される。 色度C=β(Ac−αAt) ・・・(式3) 濁度T=γAt ・・・(式4) ここで、αは濁度補償係数、βは色度係数、γは濁度係
数を示す。
From these two absorbances, chromaticity and turbidity are calculated by the following equations. Chromaticity C = β (Ac−αAt) (Equation 3) Turbidity T = γAt (Equation 4) where α is a turbidity compensation coefficient, β is a chromaticity coefficient, and γ is a turbidity coefficient. Indicates.

【0011】このように、2種類の波長を用いることに
より、一台の装置を用いて、色度と濁度とを同時に測定
することが、従来行われている。
As described above, by using two kinds of wavelengths, it has been conventionally performed to measure chromaticity and turbidity at the same time by using one device.

【0012】また、残留塩素は、従来、検出極に回転電
極を使用して溶液中の遊離有効塩素を測定する手法が用
いられている。図5は、従来の残塩計の一例を示す断面
図である。同図に示すように、残塩計500は、ハウジ
ングすなわちセル510と、回転電極520と、Ag電
極530と、測定液が収容される測定槽540と、回転
電極520の電極面に汚れが付着することを防止するた
めに設けられるセラミックビーズ560を収容しセラミ
ックビーズ560の交換洗浄を容易にするビーズケース
570と、測定液が測定槽540内に滞留するのを防止
する目的で測定液を測定槽540からオーバーフローさ
せるために設けられるオーバーフロー槽550と、から
主に構成される。
For residual chlorine, conventionally, a method of measuring free available chlorine in a solution by using a rotating electrode as a detection electrode has been used. FIG. 5 is a sectional view showing an example of a conventional residual salt meter. As shown in the figure, in the residual salt meter 500, the housing or cell 510, the rotating electrode 520, the Ag electrode 530, the measuring tank 540 containing the measuring liquid, and the electrode surface of the rotating electrode 520 are contaminated. And a bead case 570 for accommodating the ceramic beads 560 provided to prevent the measurement liquid from facilitating exchange cleaning of the ceramic beads 560, and measuring the measurement liquid for the purpose of preventing the measurement liquid from staying in the measurement tank 540. It mainly comprises an overflow tank 550 provided to overflow from the tank 540.

【0013】上記構成において、回転電極520では、
次の還元反応が行われる。 Cl + 2e → 2Cl ・・・ (式5)
In the above structure, the rotary electrode 520 is
The following reduction reaction is carried out. Cl 2 + 2e → 2Cl (Equation 5)

【0014】また、Ag電極530では、次の電解酸化
反応が行われる。 2Ag → 2Ag + 2e ・・・(式6)
The following electrolytic oxidation reaction is carried out at the Ag electrode 530. 2Ag → 2Ag + + 2e - ··· ( Equation 6)

【0015】このとき、検出される電流は印加電圧Vの
増加に伴って増加するが、印加電圧値がある値に達する
と、電圧を上げても電流値が上がらないプラトー特性を
示す。図6は、プラトー特性(電流電位特性)を示す説
明図である。これは、回転電極520部分にて濃度分極
が発生し、回転電極520の表面に一定の厚さの拡散層
ができるためである。拡散電流は測定物質の原子価、濃
度、拡散定数、電極の面積及び回転数等の関数として表
されるが、濃度以外は全て一定の値とみなすことができ
るので、拡散電流idは次のように表される。 id = kC ・・・(式7) ここで、Cは測定液の濃度であり、kは定数である。ま
た、図6から明らかなように、印加電圧Vの値を選択す
ることにより、結合形有効塩素及び溶存塩素を分離し
て、遊離有効塩素量のみが選択的に測定される。
At this time, the detected current increases as the applied voltage V increases, but when the applied voltage value reaches a certain value, the current value does not increase even if the voltage is increased, which is a plateau characteristic. FIG. 6 is an explanatory diagram showing the plateau characteristic (current-potential characteristic). This is because concentration polarization occurs at the rotating electrode 520 and a diffusion layer having a constant thickness is formed on the surface of the rotating electrode 520. The diffusion current is expressed as a function of the valence, concentration, diffusion constant, electrode area, rotation speed, etc. of the substance to be measured, but since it can be regarded as a constant value except for the concentration, the diffusion current id is as follows. Represented by. id = kC (Formula 7) Here, C is the concentration of the measurement liquid, and k is a constant. Further, as is apparent from FIG. 6, by selecting the value of the applied voltage V, the bound effective chlorine and the dissolved chlorine are separated, and only the free effective chlorine amount is selectively measured.

【0016】[0016]

【発明が解決しようとする課題】しかしながら、上述し
たように、色度及び濁度は光学的測定により測定され、
残留塩素濃度は電気化学的測定により測定されるため、
従来の装置では同一の測定セルを用いて色度、濁度及び
残塩濃度を測定することができなかった。また、色度及
び濁度を測定する計測器と残塩計とでは測定セルを独立
して設ける必要から、水質評価のための装置の小型化及
び軽量化が困難であるという問題があった。また、濁度
及び色度計はセル長が長いため、必要とされる水量が多
いという問題があった。また、濁度と色度とを同時に測
定する計測器においては複数のフィルタをフィルタホイ
ールに搭載して回転させるため、モータの寿命が短いと
いう問題があった。更に、残塩計においては、従来使用
されてきたセルが非常に大きいため、必要水量が非常に
多いという問題点があった。
However, as mentioned above, chromaticity and turbidity are measured by optical measurements,
Since the residual chlorine concentration is measured by electrochemical measurement,
With the conventional device, it was not possible to measure chromaticity, turbidity and residual salt concentration using the same measuring cell. Further, there is a problem that it is difficult to reduce the size and weight of the device for water quality evaluation because it is necessary to separately provide measuring cells for the measuring instrument for measuring chromaticity and turbidity and the residual salt meter. Further, since the turbidity and colorimeter has a long cell length, there is a problem that a large amount of water is required. Further, in a measuring instrument that simultaneously measures turbidity and chromaticity, a plurality of filters are mounted on a filter wheel and rotated, so that there is a problem that the life of the motor is short. Further, in the residual salt meter, there is a problem that the amount of water required is very large because the cell used conventionally is very large.

【0017】本発明は、上記問題点を解決するためにな
されたもので、同一の測定セルで色度、濁度及び残留塩
素濃度を測定することができる水質計測器を提供するこ
とを目的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a water quality measuring instrument capable of measuring chromaticity, turbidity, and residual chlorine concentration in the same measuring cell. To do.

【0018】[0018]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係る水質計測器は、以下の構成にすること
である。
In order to achieve the above object, the water quality measuring instrument according to the present invention has the following constitution.

【0019】(1) 測定対象である測定水と、前記測
定水の色度又は濁度を測定する際の比較対象であるゼロ
水とが所定周期ごとに交互に通過させる測定セルと、前
記測定セル内へ所定波長を有する光を照射する光源と、
前記光源から照射され、前記測定セルを通過した光を検
出する検出器と、前記測定セル内を通過する前記測定水
及びゼロ水を電気分解するための電圧を前記測定セルに
印加する一対の電極と、を備えることを特徴とする水質
計測器。 (2) 前記光源は、当該光源から照射される光を前記
測定セルに対して所定の角度を以って入射可能な位置に
配置されることを特徴とする(1)記載の水質計測器。 (3) 前記光源は、色度測定のための第1の所定波長
を有する光を照射する第1の光源と、濁度測定のための
第2の所定波長を有する光を照射する第2の光源とを含
むことを特徴とする(1)記載の水質計測器。 (4) 前記第1の光源と前記第2の光源とは、前記所
定周期より短い所定周期を以って交互にパルス点灯され
ることを特徴とする(3)記載の水質計測器。 (5) 前記測定セルへ供給される前記測定水の流量及
び前記ゼロ水の流量をそれぞれ制御する電磁弁を備える
ことを特徴とする(1)乃至(4)に記載の水質計測
器。
(1) A measuring cell through which the measuring water to be measured and zero water to be compared when measuring the chromaticity or turbidity of the measuring water are alternately passed at predetermined intervals, and A light source for irradiating light having a predetermined wavelength into the cell,
A detector that detects light that has been emitted from the light source and that has passed through the measurement cell, and a pair of electrodes that applies a voltage for electrolyzing the measurement water and zero water that pass through the measurement cell to the measurement cell. And a water quality measuring instrument. (2) The water quality measuring instrument according to (1), wherein the light source is arranged at a position where light emitted from the light source can enter the measurement cell at a predetermined angle. (3) The light source emits light having a first predetermined wavelength for chromaticity measurement, and second light source for emitting light having a second predetermined wavelength for turbidity measurement. A water quality measuring instrument according to (1), which comprises a light source. (4) The water quality measuring instrument according to (3), wherein the first light source and the second light source are alternately pulse-lit with a predetermined cycle shorter than the predetermined cycle. (5) The water quality measuring instrument according to any one of (1) to (4), further comprising an electromagnetic valve that controls a flow rate of the measurement water and a flow rate of the zero water supplied to the measurement cell.

【0020】このように構成することにより、単一の測
定セルを使用して、色度、濁度及び残留塩素濃度を測定
することが可能となる。
With this configuration, it is possible to measure chromaticity, turbidity and residual chlorine concentration using a single measuring cell.

【0021】[0021]

【発明の実施の形態】以下、本発明に係る水質計測の一
実施形態を、図1を参照して説明する。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of water quality measurement according to the present invention will be described below with reference to FIG.

【0022】図1は、本実施形態に係る水質計測器の概
略構成を示す説明図である。
FIG. 1 is an explanatory view showing a schematic configuration of a water quality measuring instrument according to this embodiment.

【0023】同図において、計測器100は、ハウジン
グ101と、両端に光を通す窓111及び112を有す
る測定セル110とを有する。測定セル110の一方の
窓111の外側には、色度を測定するための例えば66
0nm波長を有する光を照射する色度光源LCと、濁度
を測定するための例えば390nm波長を有する光を照
射する濁度光源LTとが設けられている。色度光源LC
及び濁度光源LTは、例えばLEDから構成することが
できる。測定セル110の他方の窓112の外側には、
測定セル110を通過した光を検出する濁度検出器DT
及び色度検出器DCとが設けられている。
In the figure, a measuring instrument 100 has a housing 101 and a measuring cell 110 having windows 111 and 112 for transmitting light at both ends. On the outside of one window 111 of the measuring cell 110, for example, 66 for measuring chromaticity is provided.
A chromaticity light source LC that emits light having a wavelength of 0 nm and a turbidity light source LT that emits light having a wavelength of, for example, 390 nm for measuring turbidity are provided. Chromaticity light source LC
The turbidity light source LT can be composed of, for example, an LED. Outside the other window 112 of the measuring cell 110,
Turbidity detector DT for detecting light passing through the measuring cell 110
And a chromaticity detector DC.

【0024】測定セル110の側部であって、窓111
の近傍には、色度及び濁度を測定する対象である測定水
をハウジング101の外から測定セル110内へ導くパ
イプ120及び比較用の水(ゼロ水)をハウジング10
1の外から測定セル110内へ導くパイプ121が接続
されている。パイプ120、パイプ121は、例えば図
1に示すように互いに対面する位置に配設される。パイ
プ120へ測定水を供給する流路122には、パイプ1
20へ供給される測定水の流量を制御する電磁弁SV1
が設けられ、パイプ121へゼロ水を供給する流路12
3には、パイプ121へ供給されるゼロ水の流量を制御
する電磁弁SV2が設けられる。また、測定セル110
の側部であって、窓112の近傍には、測定セル110
を通された測定水又はゼロ水を排出するドレーンパイプ
124が設けられている。
The side of the measuring cell 110, the window 111
In the vicinity of the housing 10, a pipe 120 for guiding the measurement water, which is an object for measuring chromaticity and turbidity, from the outside of the housing 101 into the measurement cell 110 and water for comparison (zero water) are stored in the housing 10.
A pipe 121 is connected to the inside of the measuring cell 110 from outside 1. The pipe 120 and the pipe 121 are arranged at positions facing each other as shown in FIG. 1, for example. The flow path 122 that supplies the measurement water to the pipe 120 includes the pipe 1
Solenoid valve SV1 for controlling the flow rate of measurement water supplied to 20
And the flow path 12 for supplying zero water to the pipe 121.
3 is provided with a solenoid valve SV2 for controlling the flow rate of zero water supplied to the pipe 121. In addition, the measurement cell 110
In the vicinity of the window 112 on the side of the measuring cell 110
A drain pipe 124 for discharging the measured water or zero water passed through is provided.

【0025】測定セル110の中央部には、測定セル1
10内を通される水に電圧を印加するための指示電極M
及び対極Cが設けられており、また、指示電極Mの表面
電位を一定に保持するための参照電圧を示す参照電極R
が指示電極Mの近傍に設けられている。
At the center of the measuring cell 110, the measuring cell 1
Indicator electrode M for applying a voltage to the water passed through
And a counter electrode C, and a reference electrode R indicating a reference voltage for keeping the surface potential of the indicator electrode M constant.
Are provided in the vicinity of the indicator electrode M.

【0026】上記構成において、色度及び濁度を測定す
る場合は、電磁弁SV1及びSV2を制御することによ
り、測定水とゼロ水とが、一定流量で交互に供給され
る。そして、色度光源LC及び濁度光源LTが、供給さ
れる水が測定水及びゼロ水で切りかえられる間隔より短
い間隔で、交互に点灯(パルス点灯)される。色度光源
LC及び濁度光源LDは、窓111に直面する位置では
なく、色度及び濁度を測定する際に、色度及び濁度を測
定するための光を測定セル110に対して所定の角度を
以って入射可能な位置に、すなわち、図1に示す測定セ
ル110の軸線A上ではなく軸線Aに対して所定角度上
方又は下方に配設される。従って、色度光源LC及び濁
度光源LTから照射された光は、窓111から測定セル
110内に入射され、測定セル110の内壁で複数回反
射して、窓112から出射される。測定セル110から
出射された光は、色度検出器DC及び濁度検出器DTに
それぞれ入射され、検出される。色度検出器DC及び濁
度検出器DTにより検出された光量に基づいた色度及び
濁度の算出は公知の手法により行うことができる。
In the above structure, when measuring chromaticity and turbidity, the solenoid valves SV1 and SV2 are controlled to supply the measurement water and zero water alternately at a constant flow rate. Then, the chromaticity light source LC and the turbidity light source LT are alternately lit (pulsed) at intervals shorter than the interval at which the supplied water is switched between the measurement water and the zero water. The chromaticity light source LC and the turbidity light source LD provide light for measuring chromaticity and turbidity to the measurement cell 110 when measuring chromaticity and turbidity, not at a position facing the window 111. Is arranged at a position where it can be incident at an angle of, i.e., not above the axis A of the measuring cell 110 shown in FIG. 1 but above or below the axis A by a predetermined angle. Therefore, the light emitted from the chromaticity light source LC and the turbidity light source LT enters the measurement cell 110 through the window 111, is reflected by the inner wall of the measurement cell 110 multiple times, and exits through the window 112. The light emitted from the measurement cell 110 is incident on and detected by the chromaticity detector DC and the turbidity detector DT, respectively. The calculation of chromaticity and turbidity based on the amount of light detected by the chromaticity detector DC and the turbidity detector DT can be performed by a known method.

【0027】一方、残留塩素濃度を測定する場合は、指
示電極Mの表面電位が参照電極Rに対して一定の電位差
を保つように制御しつつ指示電極Mと対極Cとの間に所
定電圧が印加される。指示電極Mと対極Cとの間に印加
された電圧により、測定セル110中を通される測定水
中の残留塩素が電気分解されて、電流が発生するので、
この電流を測定することにより、残留塩素濃度を算出す
ることができる。残留塩素濃度の算出は、公知の手法に
より行うことができる。
On the other hand, when measuring the residual chlorine concentration, a predetermined voltage is applied between the indicator electrode M and the counter electrode C while controlling the surface potential of the indicator electrode M so as to maintain a constant potential difference with respect to the reference electrode R. Is applied. Due to the voltage applied between the indicator electrode M and the counter electrode C, residual chlorine in the measurement water passed through the measurement cell 110 is electrolyzed to generate a current.
The residual chlorine concentration can be calculated by measuring this current. The residual chlorine concentration can be calculated by a known method.

【0028】以上説明したように、本実施形態によれ
ば、単一の測定セル110を使用して、色度、濁度及び
残留塩素濃度を測定することが可能となる。
As described above, according to this embodiment, it is possible to measure chromaticity, turbidity and residual chlorine concentration using a single measuring cell 110.

【0029】また、色度及び濁度を測定する際に、色度
及び濁度を測定するための光を窓111に対して垂直で
はなく光路が傾斜するように入射し、測定セル110の
内壁で数回反射して窓112から出射するので、測定セ
ル110の長さに対して実効光路長が長くなる。すなわ
ち、従来と同程度の実効光路長を得るためには測定セル
110の長さを短くすることが可能となる。
When measuring chromaticity and turbidity, light for measuring chromaticity and turbidity is incident on the window 111 such that the light path is not vertical but is inclined, and the inner wall of the measuring cell 110 is measured. Since the light is reflected several times and emitted from the window 112, the effective optical path length becomes longer than the length of the measurement cell 110. That is, the length of the measuring cell 110 can be shortened in order to obtain an effective optical path length comparable to the conventional one.

【0030】また、測定水とゼロ水とを交互に測定セル
110内に通すことにより、測定の度に、光学的測定の
ゼロドリフトを補正することが可能となる。
Further, by alternately passing the measurement water and the zero water through the measurement cell 110, it is possible to correct the zero drift of the optical measurement at each measurement.

【0031】また、光源LC及びLTをパルス点灯する
ようにしたので、従来検出器への入射光の波長を変更す
るために使用されていたフィルタ、そのフィルタを一定
の時間間隔で切りかえるためのフィルタホイール、及び
フィルタホイールを回動させるためのモータを設ける必
要がなくなる。
Further, since the light sources LC and LT are pulse-lighted, a filter conventionally used for changing the wavelength of the incident light to the detector, and a filter for switching the filter at a constant time interval. It is not necessary to provide a motor for rotating the wheel and the filter wheel.

【0032】更に、残留塩素濃度を測る際にも測定水を
流し続けるフローセルタイプなので、従来の残塩計と比
較して、測定セルの小型化を図ることが可能となる。
Further, since it is a flow cell type in which the measuring water is kept flowing even when measuring the residual chlorine concentration, the measuring cell can be downsized as compared with the conventional residual salt meter.

【0033】[0033]

【発明の効果】以上説明したように、本発明によれば、
水質計測器に単一の測定セルのみを設け、同じ測定セル
を用いて色度、濁度及び残塩濃度を測定することが可能
となるという効果が得られる。
As described above, according to the present invention,
It is possible to provide the water quality measuring instrument with only a single measuring cell and to measure the chromaticity, turbidity and residual salt concentration using the same measuring cell.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態に係る水質計測器の概略構
成を示す説明図である。
FIG. 1 is an explanatory diagram showing a schematic configuration of a water quality measuring device according to an embodiment of the present invention.

【図2】色度及び濁度を測定するために従来使用されて
いる色度・濁度計の測定原理を説明するための概略図で
ある。
FIG. 2 is a schematic diagram for explaining the measurement principle of a chromaticity / turbidity meter that has been conventionally used for measuring chromaticity and turbidity.

【図3】色度10度の白金・コバルト法標準液の透過率
特性を示す図である。
FIG. 3 is a diagram showing transmittance characteristics of a platinum / cobalt method standard liquid having a chromaticity of 10 degrees.

【図4】図2に示した検出器により検出された光の強度
すなわち測定セル又は比較セルを透過した光の透過光量
を示す図である。
FIG. 4 is a diagram showing the intensity of light detected by the detector shown in FIG. 2, that is, the amount of light transmitted through a measurement cell or a comparison cell.

【図5】従来の残塩計の一例を示す断面図である。FIG. 5 is a sectional view showing an example of a conventional residual salt meter.

【図6】プラトー特性(電流電位特性)を示す説明図で
ある。
FIG. 6 is an explanatory diagram showing plateau characteristics (current-potential characteristics).

【符号の説明】[Explanation of symbols]

100 計測器 110 測定セル 111、112 窓 LC 色度光源 LT 濁度光源 DC 色度検出器 DT 濁度検出器 M 指示電極 R 参照電極 C 対極 SV1、SV2 電磁弁 100 measuring instruments 110 measuring cell 111,112 windows LC chromaticity light source LT turbidity light source DC chromaticity detector DT turbidity detector M indicator electrode R reference electrode C counter electrode SV1, SV2 solenoid valve

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01N 21/27 G01N 21/27 Z 27/416 27/46 316Z Fターム(参考) 2G057 AA01 AA02 AB01 AB06 AB07 AC01 BA01 DA11 DA13 2G059 AA01 AA05 BB04 BB05 EE01 EE11 FF08 GG02 GG03 GG08 HH02 HH06 JJ02 KK03 MM15 MM17 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) G01N 21/27 G01N 21/27 Z 27/416 27/46 316Z F term (reference) 2G057 AA01 AA02 AB01 AB06 AB07 AC01 BA01 DA11 DA13 2G059 AA01 AA05 BB04 BB05 EE01 EE11 FF08 GG02 GG03 GG08 HH02 HH06 JJ02 KK03 MM15 MM17

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 測定対象である測定水と、前記測定水の
色度又は濁度を測定する際の比較対象であるゼロ水とが
所定周期ごとに交互に通過させる測定セルと、 前記測定セル内へ所定波長を有する光を照射する光源
と、前記光源から照射され、前記測定セルを通過した光
を検出する検出器と、前記測定セル内を通過する前記測
定水及びゼロ水を電気分解するための電圧を前記測定セ
ルに印加する一対の電極と、を備えることを特徴とする
水質計測器。
1. A measurement cell in which measurement water as a measurement target and zero water as a comparison target when measuring the chromaticity or turbidity of the measurement water are alternately passed at predetermined intervals, and the measurement cell. A light source for irradiating light having a predetermined wavelength therein, a detector for detecting light emitted from the light source and passing through the measurement cell, and electrolyzing the measurement water and zero water passing through the measurement cell And a pair of electrodes for applying a voltage to the measuring cell for measuring the water quality.
【請求項2】 前記光源は、当該光源から照射される光
を前記測定セルに対して所定の角度を以って入射可能な
位置に配置されることを特徴とする請求項1記載の水質
計測器。
2. The water quality measurement according to claim 1, wherein the light source is arranged at a position where light emitted from the light source can enter the measurement cell at a predetermined angle. vessel.
【請求項3】 前記光源は、色度測定のための第1の所
定波長を有する光を照射する第1の光源と、濁度測定の
ための第2の所定波長を有する光を照射する第2の光源
とを含むことを特徴とする請求項1記載の水質計測器。
3. A first light source that emits light having a first predetermined wavelength for measuring chromaticity, and a first light source that emits light having a second predetermined wavelength for measuring turbidity. The water quality measuring instrument according to claim 1, further comprising two light sources.
【請求項4】 前記第1の光源と前記第2の光源とは、
前記所定周期より短い所定周期を以って交互にパルス点
灯されることを特徴とする請求項3記載の水質計測器。
4. The first light source and the second light source,
4. The water quality measuring instrument according to claim 3, wherein the pulse lighting is performed alternately with a predetermined cycle shorter than the predetermined cycle.
【請求項5】 前記測定セルへ供給される前記測定水の
流量及び前記ゼロ水の流量をそれぞれ制御する電磁弁を
備えることを特徴とする請求項1乃至4に記載の水質計
測器。
5. The water quality measuring instrument according to claim 1, further comprising an electromagnetic valve for controlling a flow rate of the measurement water and a flow rate of the zero water supplied to the measurement cell.
JP2001243701A 2001-08-10 2001-08-10 Water quality measuring instrument Expired - Fee Related JP4232361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001243701A JP4232361B2 (en) 2001-08-10 2001-08-10 Water quality measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001243701A JP4232361B2 (en) 2001-08-10 2001-08-10 Water quality measuring instrument

Publications (2)

Publication Number Publication Date
JP2003057230A true JP2003057230A (en) 2003-02-26
JP4232361B2 JP4232361B2 (en) 2009-03-04

Family

ID=19073752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001243701A Expired - Fee Related JP4232361B2 (en) 2001-08-10 2001-08-10 Water quality measuring instrument

Country Status (1)

Country Link
JP (1) JP4232361B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007098287A (en) * 2005-10-05 2007-04-19 Hitachi Ltd Method for controlling operation of water purifying process
JP2008070293A (en) * 2006-09-15 2008-03-27 Yokogawa Electric Corp Water quality measuring apparatus
WO2009078533A1 (en) * 2007-12-17 2009-06-25 Electronics And Telecommunications Research Institute Optical cavity enhanced turbidimeter and turbidity measuring method
US20110254533A1 (en) * 2008-01-09 2011-10-20 Weiyan Gong Coaxial Illumination Of Coulter Aperture In Full Function Hematology Analyzer
CN103105357A (en) * 2012-11-06 2013-05-15 苏州聚阳环保科技有限公司 Light intensity control detector for water quality detection
CN105823733A (en) * 2016-03-22 2016-08-03 超威电源有限公司 Method for rapidly and quantitatively measuring chlorine content
CN107084926A (en) * 2017-05-04 2017-08-22 北京清环智慧水务科技有限公司 Liquid clarity detection method, system and device
JP2018146367A (en) * 2017-03-03 2018-09-20 国立大学法人九州大学 Optical measurement system, optical cell, and optical measurement method
JP2018531395A (en) * 2015-07-21 2018-10-25 フルイドセンス インターナショナル インコーポレイテッド System and method for detecting particles in liquid or air
CN110749639A (en) * 2019-09-23 2020-02-04 北京华科仪科技股份有限公司 Full-automatic calibration device and method for electrode-method residual chlorine instrument
US11327007B2 (en) 2019-09-26 2022-05-10 Fluidsens International Inc. Compact and secure system and method for detecting particles in fluid
WO2023286400A1 (en) * 2021-07-16 2023-01-19 株式会社堀場アドバンスドテクノ Electrochemical measurement device and electrochemical measurement method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007098287A (en) * 2005-10-05 2007-04-19 Hitachi Ltd Method for controlling operation of water purifying process
JP2008070293A (en) * 2006-09-15 2008-03-27 Yokogawa Electric Corp Water quality measuring apparatus
US8345248B2 (en) 2007-12-17 2013-01-01 Electronics And Telecommunications Research Institute Optical cavity enhanced turbidimeter and turbidity measuring method
WO2009078533A1 (en) * 2007-12-17 2009-06-25 Electronics And Telecommunications Research Institute Optical cavity enhanced turbidimeter and turbidity measuring method
US8743352B2 (en) * 2008-01-09 2014-06-03 Weiyan Gong Coaxial illumination of coulter aperture in full function hematology analyzer
US20110254533A1 (en) * 2008-01-09 2011-10-20 Weiyan Gong Coaxial Illumination Of Coulter Aperture In Full Function Hematology Analyzer
CN103105357A (en) * 2012-11-06 2013-05-15 苏州聚阳环保科技有限公司 Light intensity control detector for water quality detection
US11119049B2 (en) 2015-07-21 2021-09-14 Fluidsens International Inc. Particles in liquid detection method and particles in liquid detection system and method to detect particles in the air
JP2018531395A (en) * 2015-07-21 2018-10-25 フルイドセンス インターナショナル インコーポレイテッド System and method for detecting particles in liquid or air
JP7258943B2 (en) 2015-07-21 2023-04-17 フルイドセンス インターナショナル インコーポレイテッド Particle detection system and method in liquid or air
JP2021144038A (en) * 2015-07-21 2021-09-24 フルイドセンス インターナショナル インコーポレイテッド System and method for detecting particles in liquid or in air
CN105823733A (en) * 2016-03-22 2016-08-03 超威电源有限公司 Method for rapidly and quantitatively measuring chlorine content
JP2018146367A (en) * 2017-03-03 2018-09-20 国立大学法人九州大学 Optical measurement system, optical cell, and optical measurement method
CN107084926A (en) * 2017-05-04 2017-08-22 北京清环智慧水务科技有限公司 Liquid clarity detection method, system and device
CN107084926B (en) * 2017-05-04 2019-10-11 北京清环智慧水务科技有限公司 Liquid clarity detection method, system and device
CN110749639A (en) * 2019-09-23 2020-02-04 北京华科仪科技股份有限公司 Full-automatic calibration device and method for electrode-method residual chlorine instrument
US11327007B2 (en) 2019-09-26 2022-05-10 Fluidsens International Inc. Compact and secure system and method for detecting particles in fluid
WO2023286400A1 (en) * 2021-07-16 2023-01-19 株式会社堀場アドバンスドテクノ Electrochemical measurement device and electrochemical measurement method

Also Published As

Publication number Publication date
JP4232361B2 (en) 2009-03-04

Similar Documents

Publication Publication Date Title
EP0576501B1 (en) Organic pollutant monitor
JP2003057230A (en) Water quality measuring instrument
JP4817100B2 (en) Water quality monitoring device
JP2007093398A (en) Measuring method of concentration of residual chlorine and measuring instrument therefor
KR20050002822A (en) Method for analysing liquids, in addition to a device therefor
JP3004558B2 (en) Water quality measurement device
JPH05505026A (en) Turbidity measurement
JP4742031B2 (en) Optical measuring device
US20080285012A1 (en) METHOD FOR MEASURING CHEMICAL LEVELS USING pH SHIFT
WO2008144201A1 (en) Apparatus for measuring chemical levels using ph shift
GB2312278A (en) Organic and/or biological pollution monitor
JP2007085881A (en) Method and instrument for measuring concentration of component
JP4660266B2 (en) Water quality inspection device
JP2008057996A (en) Measuring method of concentration of component to be inspected in water to be measured
JP4411657B2 (en) Residual chlorine concentration measuring composition and method for measuring residual chlorine concentration using this composition
GB2256043A (en) Organic pollutant monitor
JP2018526644A (en) Method and apparatus for determining substance concentration or substance in a liquid medium
US9207225B2 (en) Method for detecting a concentration of chlorate-ions in an aqueous solution, apparatus for detecting a concentration of chlorate-ions and control unit
US20070110632A1 (en) Light measurement automated zeroing and referencing system
CN114324287A (en) Hexavalent chromium monitoring system based on fluorescence detection
AU2022201120A1 (en) Systems, Subsystems And Methods For Measuring Water Characteristics In A Water Facility
JP3291879B2 (en) Photo-oxidative decomposition apparatus, method and apparatus for analyzing nitrogen compounds and phosphorus compounds in water using the same
JPH09127005A (en) Method for analyzing compound in water
JP2000258411A (en) Stool with urine inspection function
TW202004180A (en) Full-spectrum water quality analysis system including a light source generating device and a light source receiving and computing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4232361

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees