JP2003057206A - Method for determining quantity in alloy phase in plated layer, and sliding property evaluation method in alloying melted zinc-plated steel plate - Google Patents

Method for determining quantity in alloy phase in plated layer, and sliding property evaluation method in alloying melted zinc-plated steel plate

Info

Publication number
JP2003057206A
JP2003057206A JP2001279774A JP2001279774A JP2003057206A JP 2003057206 A JP2003057206 A JP 2003057206A JP 2001279774 A JP2001279774 A JP 2001279774A JP 2001279774 A JP2001279774 A JP 2001279774A JP 2003057206 A JP2003057206 A JP 2003057206A
Authority
JP
Japan
Prior art keywords
phase
potential
steel sheet
amount
plating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001279774A
Other languages
Japanese (ja)
Other versions
JP3778037B2 (en
Inventor
Kyoko Fujimoto
京子 藤本
Makoto Shimura
眞 志村
Yoichi Tobiyama
洋一 飛山
Kazuaki Kyono
一章 京野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2001279774A priority Critical patent/JP3778037B2/en
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to US10/311,236 priority patent/US6835466B2/en
Priority to KR1020027009925A priority patent/KR100706593B1/en
Priority to EP01999801A priority patent/EP1273912A4/en
Priority to CA002399307A priority patent/CA2399307C/en
Priority to PCT/JP2001/010614 priority patent/WO2002046735A1/en
Priority to CNB018044646A priority patent/CN1299111C/en
Priority to TW090130123A priority patent/TW583311B/en
Priority to US10/182,780 priority patent/US6814848B2/en
Publication of JP2003057206A publication Critical patent/JP2003057206A/en
Application granted granted Critical
Publication of JP3778037B2 publication Critical patent/JP3778037B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/42Measuring deposition or liberation of materials from an electrolyte; Coulometry, i.e. measuring coulomb-equivalent of material in an electrolyte
    • G01N27/423Coulometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/20Metals
    • G01N33/202Constituents thereof
    • G01N33/2028Metallic constituents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/20Metals
    • G01N33/205Metals in liquid state, e.g. molten metals

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Coating With Molten Metal (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a determination method for the quantity of an alloy phase in a plated layer in plated covering metal materials, such as alloying melted zinc-plated steel plate for directly and accurately determining the quantity of the alloy phase in a plated layer. SOLUTION: In the method for determining the quantity of the alloy phase in the plated layer, a plated film metal material, having a plurality of types of alloy phases in a plated layer, is set to be the anode, the alloy phase in the plated layer is subjected to constant potential electrolysis in each of a plurality of potentials that are determined based on the dipping potential of a ground metal material and that of each alloy phase, and the quantity of each alloy phase in the plated layer is determined for each layer based on the amount of electricity that has flown in each electrolysis potential.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、めっき被覆金属材
のめっき層中合金相(合金化溶融亜鉛めっき鋼板を例に
とればζ相,δ1 相,Γ相が該当する)の定量方法およ
び摺動性評価方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for quantifying an alloy phase (corresponding to a ζ phase, a δ 1 phase, a Γ phase in a galvannealed steel sheet) in a plating layer of a plated metal material. The present invention relates to a slidability evaluation method.

【0002】[0002]

【従来の技術】めっき被覆金属材のめっき層としては、
金属単相のめっき層と複数種類の合金相を有するめっき
層がある。特に、複数種類の合金相を有するめっき製品
においては、製品の諸特性は合金相の組成および量に大
きく影響されることが知られている。
2. Description of the Related Art As a plated layer of a plated metal material,
There are metal single-phase plating layers and plating layers having multiple types of alloy phases. In particular, it is known that, in a plated product having a plurality of types of alloy phases, various characteristics of the product are greatly influenced by the composition and amount of the alloy phase.

【0003】このため、合金相の制御が、めっき特性の
向上のために必要不可欠である。表面処理鋼板の中でも
生産量の多い合金化溶融亜鉛めっき鋼板のめっき層は、
ZnとFeの合金相を有し、複数種類の合金相を有するめっ
き層の代表例である。また、上記した合金化溶融亜鉛め
っき鋼板において、めっきの諸特性に大きく影響する合
金相は、ZnとFeの合金相(ζ相,δ1 相,Γ相)であ
る。特にζ相は自動車車体防錆鋼板として好適な合金化
溶融亜鉛めっき鋼板の摺動性に大きな影響を与えるので
ある。
Therefore, control of the alloy phase is essential for improving the plating characteristics. Among the surface-treated steel sheets, the plated layer of the alloyed hot-dip galvanized steel sheet that produces a large amount of
This is a typical example of a plating layer having an alloy phase of Zn and Fe and a plurality of alloy phases. Further, in the above-mentioned alloyed hot-dip galvanized steel sheet, the alloy phase that greatly affects various plating characteristics is the alloy phase of Zn and Fe (ζ phase, δ 1 phase, Γ phase). In particular, the ζ phase has a great influence on the slidability of a galvannealed steel sheet suitable as an anticorrosive steel sheet for automobile bodies.

【0004】めっき鋼板の合金相構造の解析には、物理
的手法として、鋼板断面の光学顕微鏡あるいは走査電子
顕微鏡による観察が一般的に用いられている(西村昭
彦、稲垣淳一、中岡一秀:鉄と鋼,8,101(1986))。この
ような観察によれば、各合金相の発達の程度が定性的に
得られ、また各相の平均厚みのデータが定量的に得られ
るが、試料の調製や観察が煩雑であることが問題であ
る。
As a physical method for observing the alloy phase structure of a plated steel sheet, observation of the steel sheet cross section with an optical microscope or a scanning electron microscope is generally used (Akihiko Nishimura, Junichi Inagaki, Kazuhide Nakaoka: iron). And Steel, 8, 101 (1986)). According to such observation, the degree of development of each alloy phase can be qualitatively obtained, and the data of the average thickness of each phase can be quantitatively obtained, but the problem is that the preparation and observation of the sample are complicated. Is.

【0005】また、近年、めっき製品に期待される特性
の高度化により、めっき特性に悪影響を及ぼす微少量の
合金相が問題となっている。すなわち、合金化溶融亜鉛
めっき鋼板の場合、ζ相やΓ相の生成を抑制する必要が
あるが、これら微少量の合金相の同定は困難である。一
方、X線回折法を利用し、各合金相の回折強度とめっき
の諸特性との関係づけを行う検討が行われ、オンライン
測定への応用が図られている。
Further, in recent years, due to the sophistication of the characteristics expected of plated products, a minute amount of alloy phases that adversely affect the plating characteristics has become a problem. That is, in the case of a galvannealed steel sheet, it is necessary to suppress the formation of the ζ phase and the Γ phase, but it is difficult to identify these minute amounts of alloy phases. On the other hand, using the X-ray diffraction method, studies have been conducted to correlate the diffraction intensity of each alloy phase with various characteristics of plating, and its application to online measurement has been attempted.

【0006】すなわち、合金化溶融亜鉛めっき鋼板にお
いて、各合金相のX線回折強度とめっき鋼板加工時の摺
動性や耐パウダリング性との関係が報告され(山田正
人、増子亜樹、林寿雄、松浦直樹:材料とプロセス,3,
591(1990) )、またX線回折のオンライン測定への応用
が報告されている(川辺順次、藤永忠男、木村肇、押場
和也、安部忠広、高橋俊雄:川崎製鉄技報,18,129(198
6))。
That is, in the alloyed hot-dip galvanized steel sheet, the relationship between the X-ray diffraction intensity of each alloy phase and the slidability and powdering resistance during the processing of the plated steel sheet was reported (Masato Yamada, Aki Masuko, Hisao Hayashi). , Naoki Matsuura: Materials and Processes, 3,
591 (1990)) and the application of X-ray diffraction to online measurement (Kawabe Sequential, Tadao Fujinaga, Hajime Kimura, Kazuya Oshiba, Tadahiro Abe, Toshio Takahashi: Kawasaki Steel Engineering Report, 18,129 (198).
6)).

【0007】しかし、これらの方法は各合金相の絶対量
を直接求める手法ではなく、各合金相の定量を行うため
には、各合金相の含有量が既知の標準試料を用いて検量
線を作成し、標準試料との強度比から含有量を算出する
必要がある。すなわち、例えば合金化溶融亜鉛めっき鋼
板における微少量のζ相やΓ相の定量においては、ζ相
やΓ相の含有量が既知である標準試料がないと測定がで
きない。
However, these methods are not methods for directly obtaining the absolute amount of each alloy phase, and in order to quantify each alloy phase, a calibration curve is prepared using a standard sample whose content of each alloy phase is known. It is necessary to prepare and calculate the content from the strength ratio with the standard sample. That is, for example, in the determination of a very small amount of ζ phase or Γ phase in a galvannealed steel sheet, it cannot be measured without a standard sample whose content of ζ phase or Γ phase is known.

【0008】一方、化学的手法としては、定電流アノー
ド電解法(電解剥離法)が用いられ、この方法では、時
間−電位曲線を用いて各相に対応する電位平坦部の時間
を測定し、電気量から各めっき合金相の厚みを求める
(S.C.Britton: J.Inst.Metals,58,211(1936) )。しか
し、上記方法の場合、ζ相やΓ相の少ない合金化溶融亜
鉛めっき鋼板では電位の変曲点(各相の電解終点)が不
明瞭であり、ζ相やΓ相のような微少量の相の定量は困
難である。
On the other hand, as a chemical method, a constant current anodic electrolysis method (electrolytic stripping method) is used. In this method, a time-potential curve is used to measure a time of a potential flat portion corresponding to each phase, The thickness of each plating alloy phase is determined from the amount of electricity (SCBritton: J.Inst.Metals, 58,211 (1936)). However, in the case of the above method, the inflection point (electrolytic end point of each phase) of the galvannealed steel sheet with a small amount of ζ phase or Γ phase is unclear, and a very small amount such as ζ phase or Γ phase. Phase quantification is difficult.

【0009】また、この方法の場合、めっき層における
各合金相の均一な溶解が困難である。また、上記した方
法を合金化溶融亜鉛めっき鋼板に適用する場合、鉄濃度
の高いΓ相が残渣として残るため、平坦部の溶解時間を
そのままめっき厚に換算することに問題があることが報
告されている(黒沢進:表面技術,45,234(1994))。
Further, in the case of this method, it is difficult to uniformly dissolve each alloy phase in the plating layer. In addition, when the above method is applied to the galvannealed steel sheet, it is reported that there is a problem in converting the melting time of the flat portion to the plating thickness as it is because the Γ phase having a high iron concentration remains as a residue. (Susumu Kurosawa: Surface Technology, 45,234 (1994)).

【0010】また試料の表面状態によって時間−電流曲
線の形状が変動し、めっき最表面に微少量存在する合金
相、例えば合金化溶融亜鉛めっき鋼板のζ相の定量はさ
らに困難であった。
Further, the shape of the time-current curve fluctuates depending on the surface condition of the sample, and it has been more difficult to quantify the alloy phase existing in a very small amount on the outermost surface of the plating, for example, the ζ phase of the galvannealed steel sheet.

【0011】[0011]

【発明が解決しようとする課題】本発明は、前記した従
来技術の問題点を解決し、めっき層中合金相を、直接、
精度良く定量することが可能なめっき被覆金属材のめっ
き層中合金相(合金化溶融亜鉛めっき鋼板を例にとれば
ζ相,δ1 相,Γ相が該当する)の定量方法および合金
化溶融亜鉛めっき鋼板の摺動性評価方法を提供すること
を目的とする。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems of the prior art by directly changing the alloy phase in the plating layer directly.
Quantitative method and alloying melting of alloying phase in plating layer of plated metal material that can be accurately quantified (zeta phase, δ 1 phase, Γ phase are applicable in case of galvannealed steel sheet) It is an object to provide a slidability evaluation method for galvanized steel sheets.

【0012】[0012]

【課題を解決するための手段】第1の発明は、めっき層
中に複数種類の合金相を有するめっき被覆金属材をアノ
ードとし、素地金属材の浸漬電位および各合金相の浸漬
電位に基づいて定めた複数の電位のそれぞれにおいてめ
っき層中合金相を定電位電解し、各電解電位において流
れた電気量に基づきめっき層中各合金相の相別定量を行
うことを特徴とするめっき層中合金相の定量方法であ
る。
According to a first aspect of the present invention, a plating-coated metal material having a plurality of alloy phases in a plating layer is used as an anode, based on the immersion potential of a base metal material and the immersion potential of each alloy phase. An alloy in the plating layer characterized by performing a constant potential electrolysis of the alloy phase in the plating layer at each of a plurality of defined potentials and performing phase-specific quantification of each alloy phase in the plating layer based on the amount of electricity flowing at each electrolysis potential. It is a method of quantifying the phase.

【0013】第2の発明は、合金化溶融亜鉛めっき鋼板
をアノードとし、硫酸亜鉛−塩化ナトリウム水溶液中
で、電位:−940 〜−920mV vs SCEの電位の範囲内で電
解操作を行い、流れた電気量に基づきめっき層中ζ相を
定量することを特徴とする合金化溶融亜鉛めっき鋼板の
めっき層中ζ相の定量方法である。第3の発明は、合金
化溶融亜鉛めっき鋼板をアノードとし、硫酸亜鉛−塩化
ナトリウム水溶液中で、電位:−940 〜−920mV vs SCE
の電位の範囲内で電解操作を行い、流れた電気量に基づ
きめっき層中ζ相を定量し、引き続き前記アノードであ
る合金化溶融亜鉛めっき鋼板を電位:−900 〜−840mV
の電位の範囲内で電解操作を行い、流れた電気量に基づ
きめっき層中δ1 相を定量することを特徴とする合金化
溶融亜鉛めっき鋼板のめっき層中ζ相およびδ1 相の定
量方法である。
A second invention uses an alloyed hot-dip galvanized steel sheet as an anode, electrolytically operates in a zinc sulfate-sodium chloride aqueous solution within a potential range of -940 to -920 mV vs SCE, and flows. A method for quantifying the ζ phase in a plated layer of a galvannealed steel sheet, which comprises quantifying the ζ phase in the plated layer based on the amount of electricity. A third invention uses an alloyed hot-dip galvanized steel sheet as an anode, and in a zinc sulfate-sodium chloride aqueous solution, potential: -940 to -920 mV vs SCE.
The electrolysis operation is performed within the range of the electric potential, and the ζ phase in the plating layer is quantified based on the amount of electricity that has flowed, and then the galvannealed steel sheet that is the anode has a potential of −900 to −840 mV.
Method of quantifying ζ phase and δ 1 phase in galvanized galvanized steel sheet characterized by quantifying δ 1 phase in galvanized layer based on the amount of electricity flowing by electrolyzing in the range of electric potential Is.

【0014】第4の発明は、合金化溶融亜鉛めっき鋼板
をアノードとし、硫酸亜鉛−塩化ナトリウム水溶液中
で、電位:−940 〜−920mV vs SCEの電位の範囲内で電
解操作を行い、流れた電気量に基づきめっき層中ζ相を
定量し、引き続き前記アノードである合金化溶融亜鉛め
っき鋼板を電位:−900 〜−840mV の電位の範囲内で電
解操作を行い、流れた電気量に基づきめっき層中δ1
を定量し、引き続き前記アノードである合金化溶融亜鉛
めっき鋼板を電位:−830 〜−800mV の電位の範囲内で
電解操作を行い、 流れた電気量に基づきめっき層中Γ相
を定量することを特徴とする合金化溶融亜鉛めっき鋼板
のめっき層中ζ相、δ1 相およびΓ相の定量方法であ
る。
In a fourth aspect of the present invention, an alloyed hot-dip galvanized steel sheet is used as an anode, and an electrolytic operation is carried out in a zinc sulfate-sodium chloride aqueous solution within a potential range of -940 to -920 mV vs SCE to flow. Quantify the ζ phase in the plating layer based on the amount of electricity, and then electrolyze the alloyed hot dip galvanized steel sheet that is the anode within the range of potential: -900 to -840 mV, and perform plating based on the amount of electricity that flows. Δ 1 phase in the layer was quantified, and then the galvannealed steel sheet as the anode was electrolyzed within the range of potential: −830 to −800 mV, and the Γ phase in the plated layer was calculated based on the amount of electricity flowing. Is a method for quantifying the ζ phase, δ 1 phase and Γ phase in the plating layer of the galvannealed steel sheet.

【0015】前記した第1〜4の発明においては、電解
が定電位電解であることが好ましい。第5の発明は、合
金化溶融亜鉛めっき鋼板をアノードとし、硫酸亜鉛−塩
化ナトリウム水溶液中で、電位:−940 〜−920mV vs S
CEの電位の範囲内で電解操作を行い、流れた電気量が一
定量より少ないものを摺動性の良好な合金化溶融亜鉛め
っき鋼板とすることを特徴とする合金化溶融亜鉛めっき
鋼板の摺動性評価方法である。
In the above-mentioned first to fourth inventions, it is preferable that the electrolysis is a constant potential electrolysis. A fifth invention uses a galvannealed steel sheet as an anode, and in a zinc sulfate-sodium chloride aqueous solution, potential: -940 to -920 mV vs S.
Electrolytic operation is carried out within the CE potential range, and the amount of electricity flowing is less than a certain amount to make an alloyed hot dip galvanized steel sheet with good slidability. This is a motility evaluation method.

【0016】前記した第5の発明においては、電気量が
0.5C/cm2 以下であることが好ましく、 また電流密度
が5μm/cm2 になる時点を電解操作の終点とするのが
好ましい。なお、電位の単位として記載した vs SCE と
は、飽和カロメル電極に対する電位を示す。
In the above-mentioned fifth invention, the quantity of electricity is
It is preferably 0.5 C / cm 2 or less, and the time point at which the current density reaches 5 μm / cm 2 is preferably the end point of the electrolysis operation. In addition, vs SCE described as a unit of potential indicates a potential with respect to a saturated calomel electrode.

【0017】[0017]

【発明の実施の形態】以下、本発明をさらに詳細に説明
する。本発明者らは、上記した課題を解決するため鋭意
検討した結果、複数種類の合金相を有するめっき被覆金
属材の各合金相のそれぞれがめっき層の厚さ方向におい
て分離して存在する合金相の構造を利用し、各合金相の
みを選択的に溶解しうる電位で電解し、その時に流れた
電気量から各合金相を定量することが可能であることを
見出し、本発明に至った。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail below. As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that each alloy phase of the plating-coated metal material having a plurality of types of alloy phases exists separately in the thickness direction of the plating layer. It was found that it is possible to electrolyze only each alloy phase at a potential capable of selectively dissolving each alloy phase by utilizing the structure of (3), and to quantify each alloy phase from the amount of electricity flowing at that time, leading to the present invention.

【0018】すなわち、例えば合金化溶融亜鉛めっき鋼
板の場合、ζ相、δ1 相、Γ相それぞれの合金相のみを
選択的に溶解しうる電位で、順次、定電位電解し、各合
金相を溶解し、各電位で流れた電気量を測定することに
よって、それぞれの合金相を極めて精度良く定量するこ
とが可能であることを見出した。また、本発明者らは、
種々の摺動性を有する合金化溶融亜鉛めっき鋼板のζ相
の電解挙動を調査した。その結果、電解が終了するまで
の合計の電気量(電流密度×時間)が一定量以下の合金
化溶融亜鉛めっき鋼板は摺動性が良好であることを見出
した。
That is, for example, in the case of alloyed hot-dip galvanized steel sheet, constant potential electrolysis is sequentially performed at a potential capable of selectively melting only the ζ phase, δ 1 phase, and Γ phase alloy phases, and the alloy phases are separated. It was found that it is possible to quantify each alloy phase extremely accurately by measuring the amount of electricity that has melted and flowed at each potential. In addition, the present inventors
The electrolytic behavior of the ζ-phase of galvannealed steel sheets with various slidability was investigated. As a result, they have found that the galvannealed steel sheet having a total amount of electricity (current density × time) up to the completion of electrolysis is a certain amount or less has good slidability.

【0019】すなわち、第1の発明は、めっき層中に複
数種類の合金相を有するめっき被覆金属材をアノードと
し、素地金属材の浸漬電位および各合金相の浸漬電位に
基づいて定めた複数の電位のそれぞれにおいてめっき層
中合金相を定電位電解し、各電解電位において流れた電
気量に基づきめっき層中各合金相の相別定量を行うめっ
き層中合金相の定量方法である。
That is, in the first aspect of the present invention, a plating-coated metal material having a plurality of alloy phases in the plating layer is used as an anode, and a plurality of electrodes are defined based on the immersion potential of the base metal material and the immersion potential of each alloy phase. This is a method for quantifying the alloy phase in the plating layer, in which the alloy phase in the plating layer is subjected to constant potential electrolysis at each potential and the amount of each alloy phase in the plating layer is quantified by phase based on the amount of electricity flowing at each electrolysis potential.

【0020】なお、上記した浸漬電位とは、電解液に金
属を浸漬した場合の該金属の飽和カロメル電極に対する
電位を示し、上記した複数の電位としては、素地金属材
の浸漬電位と合金相の浸漬電位との間の電位および各合
金相の浸漬電位の間の電位を選択することができる。前
記した第1の発明においては、前記複数種類の合金相の
それぞれが、めっき層中において混合することなく、そ
れぞれの合金相がめっき層の厚さ方向において分離して
存在する複数種類の合金相であることが好ましい。
The above-mentioned immersion potential refers to the potential of the metal with respect to the saturated calomel electrode when the metal is immersed in the electrolytic solution, and the above-mentioned plurality of potentials include the immersion potential of the base metal material and the alloy phase. Potentials between the immersion potential and the immersion potential of each alloy phase can be selected. In the above-mentioned first invention, each of the plurality of types of alloy phases does not mix in the plating layer, and each of the alloy phases exists separately in the thickness direction of the plating layer. Is preferred.

【0021】これは、複数種類の合金相が上記した構造
を有する場合、各合金相の溶解電位で、各合金相をめっ
き層の表面側から素地金属材に向けてそれぞれ別個に定
電位電解でき、各合金相を相別に定量することが可能な
ためである。なお、上記した複数の電位として、素地金
属材の浸漬電位と素地金属材の表面(:直上表面)の合
金相の浸漬電位との間の電位およびそれぞれが直接接す
る各合金相の浸漬電位の間の電位を選択することができ
る。
This is because, when a plurality of types of alloy phases have the above-mentioned structure, each alloy phase can be separately subjected to constant potential electrolysis from the surface side of the plating layer toward the base metal material at the melting potential of each alloy phase. This is because it is possible to quantify each alloy phase for each phase. As the plurality of potentials described above, the potential between the immersion potential of the base metal material and the immersion potential of the alloy phase on the surface of the base metal material (: the surface immediately above) and the immersion potential of each alloy phase in direct contact with each other Can be selected.

【0022】本発明者らは、第1の発明に基づき、 さら
に次の知見を得た。 すなわち、合金化溶融亜鉛めっき鋼
板をアノードとし、硫酸亜鉛−塩化ナトリウム水溶液中
で、めっき層中合金相であるζ相、δ1 相およびΓ相
を、(A) 電位:−940 〜−920mV vs SCE、(B) 電位:−
900 〜−840mV vs SCEおよび(C) 電位:−830 〜−800m
V vs SCEのそれぞれの電位の範囲内で、かつ該順序で電
解し、前記(A) 、(B) および(C) それぞれの電位におい
て流れた電気量に基づき前記ζ相、δ1 相およびΓ相を
相別定量する方法を開発した。すなわち、前記した第2
〜4の発明である。
The present inventors have further obtained the following knowledge based on the first invention. That is, the alloyed hot-dip galvanized steel sheet was used as an anode, and in the zinc sulfate-sodium chloride aqueous solution, the ζ phase, δ 1 phase, and Γ phase, which are alloy phases in the plating layer, were (A) potential: −940 to −920 mV vs. SCE, (B) potential:-
900 to −840 mV vs SCE and (C) potential: −830 to −800 m
Within the respective potential ranges of V vs SCE and in that order, electrolysis is performed, and the ζ phase, δ 1 phase and Γ phase are calculated based on the amounts of electricity flowing at the respective potentials (A), (B) and (C). A method for phase-wise quantification of phases was developed. That is, the second
The inventions of 4 to 4.

【0023】これは、合金化溶融亜鉛めっき鋼板におい
ては、δ1 相の形成およびζ相、Γ相の抑制が必要なた
めである。前記した第2〜4の発明の好適態様において
は、前記電解が定電位電解であることが好ましい。これ
は、定電位電解を行うことによって、各合金相を選択的
に電解することが可能となるためである。
This is because it is necessary to form the δ 1 phase and suppress the ζ phase and the Γ phase in the galvannealed steel sheet. In the preferable embodiments of the second to fourth inventions described above, it is preferable that the electrolysis is a potentiostatic electrolysis. This is because it is possible to selectively electrolyze each alloy phase by performing constant potential electrolysis.

【0024】前記した第2〜4の発明においては、合金
化溶融亜鉛めっき鋼板などのめっき被覆金属材をアノー
ドとして、電解電位をめっき層中合金相の種類により適
宜設定し、電解で所定の合金相を選択的に溶解する。ま
た、上記した操作において、所定の合金相の電解電位の
範囲内(:溶解電位の範囲内)で正の電流が流れなくな
るまでの電気量を測定する。
In the above-mentioned second to fourth inventions, a galvanized metal material such as a galvannealed steel sheet is used as an anode, and the electrolytic potential is appropriately set according to the type of alloy phase in the plated layer, and a predetermined alloy is electrolyzed. Dissolve the phases selectively. In the above-mentioned operation, the amount of electricity until a positive current stops flowing within the range of the electrolytic potential of the predetermined alloy phase (: within the range of the melting potential) is measured.

【0025】すなわち、例えば、合金化溶融亜鉛めっき
鋼板の場合、めっき鋼板をアノードとし、硫酸亜鉛−塩
化ナトリウム水溶液中で、ζ相を(A) 電位:−940 〜−
920mV vs SCEの範囲内で電解し、正の電流が流れなくな
った後、δ1 相を(B) 電位:−900 〜−840mV vs SCEの
範囲内で電解し、正の電流が流れなくなった後、Γ相を
(C) 電位:−830 〜−800mV vs SCEの範囲内で正の電流
が流れなくなるまで電解する。
That is, for example, in the case of a galvannealed steel sheet, the galvanized steel sheet is used as an anode, and the ζ phase is (A) potential: −940 to − in an aqueous solution of zinc sulfate-sodium chloride.
After electrolyzing within the range of 920 mV vs SCE and no positive current flows, after the δ 1 phase is electrolyzed within the range of (B) potential: -900 to -840 mV vs SCE and no positive current flows , Γ phase
(C) Potential: Electrolyze until a positive current stops flowing within the range of −830 to −800 mV vs SCE.

【0026】なお、上記電位が各電位の範囲外の場合
は、所定の合金相の溶解が不十分となるか、各合金相の
選択的な溶解を行うことが困難となる。次に、それぞれ
の電位(:電位範囲内)で流れた電気量および各合金相
溶解に要する電気化学当量に基づき、ζ相、δ1 相およ
びΓ相の存在量を算出する。また、得られた算出値およ
びめっき鋼板の表面積に基づき、めっき鋼板単位面積当
たりの合金相の付着量を求めるか、または得られた算出
値、めっき鋼板の表面積および各合金相の密度に基づき
各合金相の厚みを求める。
If the above potential is out of the range of each potential, the predetermined alloy phase is insufficiently melted or it becomes difficult to selectively melt each alloy phase. Next, the abundances of the ζ phase, the δ 1 phase, and the Γ phase are calculated based on the amount of electricity flowing at each potential (: within the potential range) and the electrochemical equivalent required for melting each alloy phase. Further, based on the obtained calculated value and the surface area of the plated steel sheet, the adhesion amount of the alloy phase per unit area of the plated steel sheet is obtained, or the obtained calculated value, the surface area of the plated steel sheet and the density of each alloy phase Determine the thickness of the alloy phase.

【0027】すなわち、合金化溶融亜鉛めっき鋼板の場
合、下記式(1) 、(2) によってζ相、δ1 相およびΓ相
の存在量を算出し、合金相(合金)i(:i=ζ相また
はδ 1 相またはΓ相)の付着量:Xi および厚み:Yi
を求めることができる。 Xi (g/m2)=〔C/F〕×〔M/2〕×〔 10000/A〕………(1) Yi (μm )=〔C/F〕×〔M/2〕×〔 10000/(ρ×A)〕×10-6…… ………(2) なお、上記式(1) 、(2) 中、 C:合金相iの溶解に要した電気量(C) F:ファラデー定数=96485 (C/mol ) M/2:合金iの平均当量(g/mol ) A:溶解した試料面積(cm2 ) ρ:合金iの密度(g/m3) 電解は、適宜選択した電解質溶液中で行えばよく、合金
化溶融亜鉛めっき鋼板の場合は、硫酸亜鉛−塩化ナトリ
ウム水溶液を用いるのが好適である。
That is, in the case of galvannealed steel sheet
If the following equations (1) and (2)1Phase and Γ phase
Of the alloy phase (alloy) i (: i = ζ phase)
Is δ 1Phase or Γ phase) adhesion amount: XiAnd thickness: Yi
Can be asked.   Xi(G / m2) = [C / F] × [M / 2] × [10000 / A] ……… (1)   Yi(Μm) = [C / F] × [M / 2] × [10000 / (ρ × A)] × 10-6...... ……… (2) In the above formulas (1) and (2), C: Electricity required for melting alloy phase i (C) F: Faraday constant = 96485 (C / mol) M / 2: average equivalent of alloy i (g / mol) A: Dissolved sample area (cm2) ρ: Density of alloy i (g / m3) Electrolysis may be carried out in an appropriately selected electrolyte solution, and the alloy
For hot dip galvanized steel, zinc sulfate-Natri chloride
It is preferable to use an aqueous solution of um.

【0028】これは、硫酸亜鉛−塩化ナトリウム水溶液
を用いることによって、ζ相、δ1相、Γ相各相の浸漬
電位の差が大きくなり、各合金相の選択的な溶解が容易
になるためである。また、めっき層の化学溶解作用が小
さく、かつ表面に生成する酸化皮膜などの影響を受け難
いためである。このような効果を十分に得るには、硫酸
亜鉛濃度は1〜50mass%、塩化ナトリウム濃度は1〜30
mass%とするのが好ましい。
This is because the use of the zinc sulfate-sodium chloride aqueous solution increases the difference in immersion potential between the ζ phase, the δ 1 phase and the Γ phase and facilitates the selective dissolution of each alloy phase. Is. In addition, the chemical dissolution action of the plating layer is small, and the plating layer is unlikely to be affected by the oxide film formed on the surface. To obtain such effects sufficiently, the concentration of zinc sulfate is 1 to 50 mass% and the concentration of sodium chloride is 1 to 30.
It is preferably set to mass%.

【0029】本発明によれば、電解で流れた電気量およ
び合金相溶解に要する電気化学当量に基づき、直接、合
金相を精度良く定量できる。さらに、本発明によれば、
合金相を、直接、精度良く定量できるため、標準試料の
各合金相を本発明の方法で定量し、得られた定量値とX
線回折法による回折強度との検量線を作成し、該検量線
およびX線回折装置を用いて、オンラインで合金相の定
量を行うことができる。
According to the present invention, the alloy phase can be directly and accurately quantified on the basis of the amount of electricity flowing by electrolysis and the electrochemical equivalent required for melting the alloy phase. Further according to the invention,
Since the alloy phase can be directly and accurately quantified, each alloy phase of the standard sample is quantified by the method of the present invention, and the obtained quantitative value and X
A calibration curve with the diffraction intensity by the line diffraction method is created, and the alloy phase can be quantified online by using the calibration curve and the X-ray diffractometer.

【0030】また、第5の発明は、合金化溶融亜鉛めっ
き鋼板をアノードとし、硫酸亜鉛−塩化ナトリウム水溶
液中で、電位:−940 〜−920mV vs SCEの電位の範囲内
で電解操作を行い、流れた電気量により摺動性の良好な
合金化溶融亜鉛めっき鋼板として評価することを特徴と
する合金化溶融亜鉛めっき鋼板の摺動性評価方法であ
る。
The fifth invention uses an alloyed hot-dip galvanized steel sheet as an anode and performs electrolytic operation in a zinc sulfate-sodium chloride aqueous solution within a potential range of potential: -940 to -920 mV vs SCE, It is a method of evaluating the slidability of an alloyed hot-dip galvanized steel sheet, characterized in that it is evaluated as an alloyed hot-dip galvanized steel sheet having good slidability according to the amount of electricity flowing.

【0031】定電位電解した際に流れる電気量が一定量
以下であれば、摺動性を評価する各種の試験において良
好な特性を得られる。摺動性を評価する試験としては円
筒平底カップ絞り試験が例示できる。定電位電解は硫酸
亜鉛−塩化ナトリウム系の電解液中で、めっき板(合金
化溶融亜鉛めっき鋼板)をアノードとして飽和カロメル
電極に対する電位が−940mV から−920mV で行う。電位
を−940mV から−920mV とする理由は、合金化溶融亜鉛
めっき層のうち摺動性に影響の大きい部分を選択的に電
解して定量するためである。硫酸亜鉛−塩化ナトリウム
系の電解液中で電解を行うのは、めっき層の化学溶解作
用が小さく、かつ表面に生成する酸化皮膜などの影響を
受け難いことが理由である。なお、電解液を変更する場
合は、合金化溶融亜鉛めっき層のうち摺動性に影響の大
きい部分を選択的に電解しうる電位が変化するので、予
備実験により確認しておく必要がある。
If the amount of electricity flowing during constant potential electrolysis is less than a certain amount, good characteristics can be obtained in various tests for evaluating slidability. As a test for evaluating slidability, a cylindrical flat-bottom cup drawing test can be exemplified. The potentiostatic electrolysis is carried out in a zinc sulfate-sodium chloride system electrolytic solution with a plated plate (alloyed galvanized steel sheet) as the anode and a potential of -940 mV to -920 mV to the saturated calomel electrode. The reason why the potential is changed from -940 mV to -920 mV is to selectively electrolyze and quantify a portion of the alloyed hot-dip galvanized layer that has a great influence on the slidability. The reason for performing electrolysis in a zinc sulfate-sodium chloride-based electrolytic solution is that the chemical dissolution action of the plating layer is small and it is not easily affected by the oxide film formed on the surface. When changing the electrolytic solution, the potential for selectively electrolyzing a portion of the alloyed hot-dip galvanized layer that has a great influence on the slidability changes, so it is necessary to confirm it by a preliminary experiment.

【0032】前記した第5の発明の第1の好適な態様で
ある第6の発明は、第5の発明の摺動性評価方法におい
て、電気量が 0.5C/cm2 以下であることを特徴とする
合金化溶融亜鉛めっき鋼板の摺動性評価方法である。電
気量が 0.5C/cm2 以下であることをもってして摺動性
良好と判断すれば、円筒平底カップ絞り試験における摺
動性評価において良好な摺動性を有すると判断した場合
と同等の判断を得ることができる。より良好な摺動性を
有する合金化溶融亜鉛めっき鋼板を評価選別する場合
は、 0.3C/cm2 以下をもってして摺動性良好と判断す
ると良い。
The sixth invention, which is the first preferred aspect of the fifth invention, is characterized in that in the slidability evaluation method of the fifth invention, the quantity of electricity is 0.5 C / cm 2 or less. Is a method for evaluating slidability of a galvannealed steel sheet. If it is judged that the slidability is good because the amount of electricity is 0.5 C / cm 2 or less, the same judgment is made as when it is judged that the slidability is good in the slidability evaluation in the cylindrical flat-bottom cup drawing test. Can be obtained. When alloy hot-dip galvanized steel sheets having better slidability are evaluated and selected, 0.3 C / cm 2 or less may be determined to be good slidability.

【0033】また、前記した第5の発明の第2の好適な
態様および第6の発明の好適態様は、電流密度が5μA
/cm2 になる時点を電解操作の終点とすることを特徴と
する合金化溶融亜鉛めっき鋼板の摺動性評価方法であ
る。電流密度が5μA/cm2 になる時点まで電解を継続
すれば、実質的な電気量の測定結果として、摺動性評価
に適用できる。むしろ、電流密度が5μA/cm2 を超え
ての電気量測定は、コストの増大ばかりか、意図せざる
電解反応にかかる電気量を測定することとなり、かえっ
て誤った電気量の測定結果を導く可能性が大きくなるの
である。
In the second preferred embodiment of the fifth invention and the preferred embodiment of the sixth invention, the current density is 5 μA.
The method is for evaluating the slidability of a galvannealed steel sheet, which is characterized in that the end point of the electrolysis operation is the time point when / cm 2 is reached. If electrolysis is continued until the current density reaches 5 μA / cm 2 , it can be applied to the evaluation of slidability as the measurement result of the substantial amount of electricity. Rather, measuring the quantity of electricity when the current density exceeds 5 μA / cm 2 not only increases the cost, but also measures the quantity of electricity involved in the unintended electrolytic reaction, which may lead to incorrect measurement of the quantity of electricity. The nature will increase.

【0034】[0034]

【実施例】以下、本発明を実施例に基づいてさらに具体
的に説明する。 (実施例1)本実施例においては、合金化溶融亜鉛めっ
き鋼板の各合金相(:ζ相、δ1 相、Γ相)を、定電位
電解で相別定量した。
EXAMPLES The present invention will be described more specifically below based on examples. Example 1 In this example, each alloy phase (: ζ phase, δ 1 phase, Γ phase) of the galvannealed steel sheet was quantified by phase by constant potential electrolysis.

【0035】合金化溶融亜鉛めっき鋼板の試料として
は、15mmφの円形試料を用い、該試料の片面を腐食試験
用テープでシールして測定に供した。また、試料として
製造条件の異なる3種類の合金化溶融亜鉛めっき鋼板の
試料(試料A、試料B、試料C)を用い、各試料につい
てζ相、δ1 相およびΓ相の厚みを各3回測定した。
As a sample of the galvannealed steel sheet, a circular sample having a diameter of 15 mm was used, and one side of the sample was sealed with a tape for corrosion test and used for the measurement. In addition, as samples, samples of three types of galvannealed steel sheets under different manufacturing conditions (Sample A, Sample B, Sample C) were used, and the thickness of the ζ phase, the δ 1 phase, and the Γ phase was measured three times for each sample. It was measured.

【0036】図3に、測定に用いた電解装置を、縦断面
図(a) および模式図(b) によって示す。なお、図3にお
いて、1は電解装置、2は試料、3は白金リング(対
極)、4は飽和カロメル電極、5は白金線、6は電解
液、7は参照電極(RE:ReferenceElectrode )を示
す。
FIG. 3 shows the electrolysis apparatus used for the measurement by a vertical sectional view (a) and a schematic view (b). In FIG. 3, 1 is an electrolysis device, 2 is a sample, 3 is a platinum ring (counter electrode), 4 is a saturated calomel electrode, 5 is a platinum wire, 6 is an electrolytic solution, and 7 is a reference electrode (RE: Reference Electrode). .

【0037】電解液としては10%ZnSO4-20%NaCl水溶
液: 50ml を用いた。また、図3に示すように、参照電
極としては飽和カロメル電極、対極には白金を用いた。
ζ相の溶解は電位:−930mV vs SCE、δ1 相の溶解は電
位:−860mV vs SCE、Γ相の溶解は電位:−825mV vs S
CEで当該順序で行い、同一試料に対し、それぞれの電位
で正の電流が流れなくなるまでの電気量を測定した。
As the electrolytic solution, a 10% ZnSO 4 -20% NaCl aqueous solution: 50 ml was used. Further, as shown in FIG. 3, a saturated calomel electrode was used as the reference electrode and platinum was used as the counter electrode.
Dissolution of ζ phase: -930 mV vs SCE, dissolution of δ 1 phase: -860 mV vs SCE, dissolution of Γ phase: -825 mV vs S
The CE was performed in that order, and the amount of electricity until a positive current stopped flowing at each potential was measured for the same sample.

【0038】図4に、上記測定で得られた時間−電流曲
線を示す。また、表1に、各合金相の溶解に要した電気
量と各合金相溶解に要する電気化学当量に基づき前記し
た式(2) で算出した各合金相の厚みおよび同一試料につ
いての厚みの標準偏差:σを示す。なお、前記した式
(2) におけるM/2、A、ρは下記の通りである。
FIG. 4 shows the time-current curve obtained by the above measurement. In addition, Table 1 shows the thickness of each alloy phase calculated by the above formula (2) based on the amount of electricity required for melting each alloy phase and the electrochemical equivalent required for melting each alloy phase, and the standard of thickness for the same sample. Deviation: Shows σ. The above formula
M / 2, A, and ρ in (2) are as follows.

【0039】M/2; ζ相:32.2、δ1 相:32.2、Γ相:31.9(g/mol ) A;1.77(cm2 ) ρ; ζ相:7.18×106 、δ1 相:7.25×106 、Γ相:7.36×
106 (g/m3) 表1に示されるように、本発明によればめっき層中合金
相が微量な場合でも同一試料における定量値の標準偏
差:σが極めて小さく、合金相を、直接、精度良く定量
することが可能であることが分かった。
M / 2; ζ phase: 32.2, δ 1 phase: 32.2, Γ phase: 31.9 (g / mol) A; 1.77 (cm 2 ) ρ; ζ phase: 7.18 × 10 6 , δ 1 phase: 7.25 × 10 6 , Γ phase: 7.36 ×
10 6 (g / m 3 ) As shown in Table 1, according to the present invention, even if the alloy phase in the plating layer is very small, the standard deviation of the quantitative value in the same sample: σ is extremely small, and the alloy phase is directly It was found that it is possible to quantify with high accuracy.

【0040】[0040]

【表1】 [Table 1]

【0041】(実施例2)製造条件の異なる6種類の合
金化溶融亜鉛めっき鋼板の試料を用い、前記した実施例
1と同様の本発明方法で合金化溶融亜鉛めっき鋼板の合
金相:ζ相、Γ相を定量し、合金相の厚みを算出した。
また、上記した試料と同じロットの6種類の合金化溶融
亜鉛めっき鋼板を用い、X線回折装置によって合金相:
ζ相、Γ相のX線回折強度(ζ相:d=1.26Å、Γ相:
d=2.59Å)を測定した。
(Example 2) Using six kinds of alloyed hot-dip galvanized steel sheet samples under different manufacturing conditions, the alloy phase of the alloyed hot-dip galvanized steel sheet: ζ phase by the method of the present invention similar to the above-mentioned Example 1 , Γ phase was quantified, and the thickness of the alloy phase was calculated.
In addition, using six types of alloyed hot-dip galvanized steel sheets in the same lot as the sample described above, the alloy phase:
X-ray diffraction intensity of ζ phase and Γ phase (ζ phase: d = 1.26Å, Γ phase:
d = 2.59Å) was measured.

【0042】次に、前記した本発明方法で得られた定量
値(合金相の厚み)とX線回折強度との検量線を作成し
た。図1および図2に、上記で得られた検量線を示す。
図1および図2に示されるように、本発明方法で得られ
た合金相の定量値とX線回折強度とは良好な相関を有す
ることが分かった。
Next, a calibration curve of the quantitative value (thickness of alloy phase) obtained by the method of the present invention and the X-ray diffraction intensity was prepared. The calibration curve obtained above is shown in FIG. 1 and FIG.
As shown in FIGS. 1 and 2, it was found that there is a good correlation between the quantitative value of the alloy phase obtained by the method of the present invention and the X-ray diffraction intensity.

【0043】また、上記結果から、本発明方法に基づい
て得られた検量線およびX線回折装置を用いて、オンラ
インで、合金相の定量を精度よく行うことができる。 (実施例3)供試材とする合金化溶融亜鉛めっき鋼板を
次の方法で作製した。極低炭素鋼の供試材を転炉にて溶
製した後、連続鋳造によりスラブとした。このスラブを
スラブ加熱温度1150〜1250℃とし、熱延工程の最終仕上
げ温度を 920℃とし、 550℃で巻き取った。3.2mm 厚の
熱延板コイルを作成し、酸洗で黒皮除去後、冷間圧延
し、 0.8mm厚の冷延板とした。この鋼板を連続溶融亜鉛
めっきラインにおいて焼鈍温度 790〜830 ℃でめっき原
板とした。めっき浴への侵入板温は 460〜470 ℃、めっ
き浴の浴温は 460〜470 ℃、合金化温度は 490〜530 ℃
とした。片面のめっき付着量は40〜50g/m2 とし、両
面のめっき付着量を同一となるように製造した。
From the above results, the alloy phase can be accurately quantified online using the calibration curve and the X-ray diffractometer obtained based on the method of the present invention. (Example 3) A galvannealed steel sheet used as a test material was produced by the following method. An ultra-low carbon steel sample material was melted in a converter and then continuously cast into a slab. This slab was wound at 550 ° C with a slab heating temperature of 1150 to 1250 ° C and a final finishing temperature of 920 ° C in the hot rolling process. A 3.2 mm-thick hot-rolled sheet coil was prepared, and after removing the black skin by pickling, it was cold-rolled to obtain a 0.8 mm-thick cold-rolled sheet. This steel sheet was used as a plating original plate in a continuous hot dip galvanizing line at an annealing temperature of 790 to 830 ° C. Penetration plate temperature into the plating bath is 460 to 470 ℃, bath temperature of the plating bath is 460 to 470 ℃, alloying temperature is 490 to 530 ℃
And The coating amount on one surface was 40 to 50 g / m 2, and the coating amount on both surfaces was the same.

【0044】前記のように作製した合金化溶融亜鉛めっ
き鋼板を15mmφの円形に打ち抜いた後、−930mV vs SCE
で定電位電解した。電解液には、20mass%硫酸亜鉛−10
mass%塩化ナトリウム水溶液を用いた。電流密度が5μ
A/cm2 以下になるまで電解し、電解開始から流れた電
気量を測定した。電解に要する時間は10〜20分程度であ
った。
The alloyed hot-dip galvanized steel sheet produced as described above was punched into a circle of 15 mmφ, and then -930 mV vs SCE
At constant potential electrolysis. The electrolyte contains 20 mass% zinc sulfate-10
A mass% sodium chloride aqueous solution was used. Current density is 5μ
Electrolysis was carried out until A / cm 2 or less, and the amount of electricity flowing from the start of electrolysis was measured. The time required for electrolysis was about 10 to 20 minutes.

【0045】前記の電気量を測定した合金化溶融亜鉛め
っき鋼板について、摺動性の評価を行った。合金化溶融
亜鉛めっき鋼板には 1.5g/m2 の通常の防錆油を塗布
した後、33mmφの円筒平底カップ絞り試験を行い、限界
絞り比を求めた。限界絞り比は数字が小さいほど良好な
摺動性を示す。限界絞り比 2.0%以上…1、 1.9〜2.0
%…2、 1.8〜1.9 %…3、 1.7〜1.8 %…4、 1.7%
以下…5のように評点を定め、結果を表2に示す。
The slidability of the galvannealed steel sheet whose electric quantity was measured was evaluated. After applying 1.5 g / m 2 of ordinary rust preventive oil to the alloyed hot-dip galvanized steel sheet, a 33 mmφ cylindrical flat-bottom cup drawing test was performed to determine the limiting drawing ratio. The smaller the limit drawing ratio, the better the slidability. Limiting aperture ratio 2.0% or more ... 1, 1.9 to 2.0
%… 2, 1.8 to 1.9%… 3, 1.7 to 1.8%… 4, 1.7%
The scores are determined as shown below, and the results are shown in Table 2.

【0046】[0046]

【表2】 [Table 2]

【0047】電気量 0.5C/cm2 以下のめっき鋼板はど
れも摺動性が「評価3」以下で、良好な摺動性を示した
のに対して、 0.5C/cm2 を超える「試料5」では摺動
性が「評価5」と劣っている。特に電気量 0.3C/cm2
以下のめっき鋼板はすべて「評価1」で、特に優れた摺
動性を示した。上記の結果から、本発明方法により、合
金化溶融亜鉛めっき鋼板の摺動性を評価しうることが分
かる。
All of the plated steel sheets with an electric quantity of 0.5 C / cm 2 or less showed a good slidability of "Evaluation 3" or less, whereas the coated samples of more than 0.5 C / cm 2 In "5", the slidability is inferior to "Evaluation 5". Especially electricity 0.3C / cm 2
The following plated steel sheets were all "evaluation 1" and showed particularly excellent slidability. From the above results, it is understood that the slidability of the galvannealed steel sheet can be evaluated by the method of the present invention.

【0048】[0048]

【発明の効果】本発明によれば、めっき層中合金相が微
量な場合でも、合金相を直接かつ精度に優れた方法で相
別定量できる。また、本発明によれば、従来定量値が得
られなかった合金相が定量化でき、製品の品質向上、安
定生産に著しい効果が期待される。
According to the present invention, even if the alloy phase in the plating layer is very small, the alloy phase can be directly and quantitatively determined by a highly accurate method. Further, according to the present invention, it is possible to quantify the alloy phase for which a quantitative value has not been obtained in the past, and it is expected to have a remarkable effect on the quality improvement and stable production of the product.

【0049】また、本発明によれば、合金化溶融亜鉛め
っき鋼板の摺動性を評価することができる。
Further, according to the present invention, the slidability of the galvannealed steel sheet can be evaluated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法で得られた合金相:ζ相の定量値
(ζ相の厚み)とX線回折強度(d=1.26Å)との関係
を示すグラフ(検量線)である。
FIG. 1 is a graph (calibration curve) showing the relationship between the quantitative value of the alloy phase obtained by the method of the present invention: ζ phase (thickness of ζ phase) and the X-ray diffraction intensity (d = 1.26Å).

【図2】本発明方法で得られた合金相:Γ相の定量値
(Γ相の厚み)とX線回折強度(d=2.59Å)との関係
を示すグラフ(検量線)である。
FIG. 2 is a graph (calibration curve) showing the relationship between the quantitative value of the alloy phase: Γ phase (thickness of Γ phase) and the X-ray diffraction intensity (d = 2.59Å) obtained by the method of the present invention.

【図3】実施例で用いた電解装置を示す縦断面図(a) お
よび模式図(b) である。
FIG. 3 is a vertical cross-sectional view (a) and a schematic view (b) showing an electrolysis device used in Examples.

【図4】合金化溶融亜鉛めっき鋼板のめっき層定電位電
解時の時間−電流曲線の一例を示すグラフである。
FIG. 4 is a graph showing an example of a time-current curve during galvanostatic electrolysis of a galvannealed steel sheet.

【符号の説明】[Explanation of symbols]

1 電解装置 2 試料 3 白金リング(対極) 4 飽和カロメル電極 5 白金線 6 電解液 7 参照電極 1 Electrolysis device 2 samples 3 Platinum ring (counter electrode) 4 Saturated calomel electrode 5 platinum wire 6 Electrolyte 7 Reference electrode

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // G01N 23/20 G01N 27/46 301M (72)発明者 飛山 洋一 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 (72)発明者 京野 一章 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 Fターム(参考) 2G001 AA01 BA18 CA01 GA01 JA20 KA09 KA11 LA20 MA05 2G055 AA03 AA07 BA01 BA14 BA20 CA07 CA18 DA08 EA06 EA08 FA01 FA04 FA06 4K027 AA05 AA22 AB05 AB26 AB36 AB37 AE21 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) // G01N 23/20 G01N 27/46 301M (72) Inventor Yoichi Toiyama 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Prefecture Address Kawasaki Iron & Steel Co., Ltd. Technical Research Institute (72) Inventor Kazuno Kyono 1 Kawasaki-cho, Chuo-ku, Chiba, Chiba Prefecture Kawasaki Iron & Steel Co., Ltd. Technical Research Institute F-term (reference) 2G055 AA03 AA07 BA01 BA14 BA20 CA07 CA18 DA08 EA06 EA08 FA01 FA04 FA06 4K027 AA05 AA22 AB05 AB26 AB36 AB37 AE21

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 めっき層中に複数種類の合金相を有する
めっき被覆金属材をアノードとし、素地金属材の浸漬電
位および各合金相の浸漬電位に基づいて定めた複数の電
位のそれぞれにおいてめっき層中合金相を定電位電解
し、各電解電位において流れた電気量に基づきめっき層
中各合金相の相別定量を行うことを特徴とするめっき層
中合金相の定量方法。
1. A plating layer having a plurality of types of alloy phases in the plating layer as an anode, and the plating layer at each of a plurality of potentials determined based on the immersion potential of the base metal material and the immersion potential of each alloy phase. A method for quantifying alloy phases in a plating layer, which comprises performing constant potential electrolysis of a medium alloy phase and performing phase-specific quantification of each alloy phase in the plating layer based on the amount of electricity flowing at each electrolysis potential.
【請求項2】 合金化溶融亜鉛めっき鋼板をアノードと
し、硫酸亜鉛−塩化ナトリウム水溶液中で、電位:−94
0 〜−920mV vs SCEの電位の範囲内で電解操作を行い、
流れた電気量に基づきめっき層中ζ相を定量することを
特徴とする合金化溶融亜鉛めっき鋼板のめっき層中ζ相
の定量方法。
2. An alloyed hot-dip galvanized steel sheet is used as an anode, and in a zinc sulfate-sodium chloride aqueous solution, potential: -94.
Perform electrolysis within the range of 0 to -920 mV vs SCE potential,
A method for quantifying the ζ phase in a plated layer of a galvannealed steel sheet, which comprises quantifying the ζ phase in the plated layer based on the amount of electricity flowing.
【請求項3】 合金化溶融亜鉛めっき鋼板をアノードと
し、硫酸亜鉛−塩化ナトリウム水溶液中で、電位:−94
0 〜−920mV vs SCEの電位の範囲内で電解操作を行い、
流れた電気量に基づきめっき層中ζ相を定量し、引き続
き前記アノードである合金化溶融亜鉛めっき鋼板を電
位:−900 〜−840mV の電位の範囲内で電解操作を行
い、流れた電気量に基づきめっき層中δ1 相を定量する
ことを特徴とする合金化溶融亜鉛めっき鋼板のめっき層
中ζ相およびδ1 相の定量方法。
3. An alloyed hot-dip galvanized steel sheet is used as an anode in a zinc sulfate-sodium chloride aqueous solution to have a potential of −94.
Perform electrolysis within the range of 0 to -920 mV vs SCE potential,
The amount of ζ phase in the plating layer is quantified based on the amount of electricity that has flowed, and then the galvannealed steel sheet that is the anode is electrolyzed within the range of potential: -900 to -840 mV to determine the amount of electricity that has flowed. A method for quantifying the ζ phase and the δ 1 phase in the plating layer of the galvannealed steel sheet, which is characterized by quantifying the δ 1 phase in the plating layer.
【請求項4】 合金化溶融亜鉛めっき鋼板をアノードと
し、硫酸亜鉛−塩化ナトリウム水溶液中で、電位:−94
0 〜−920mV vs SCEの電位の範囲内で電解操作を行い、
流れた電気量に基づきめっき層中ζ相を定量し、引き続
き前記アノードである合金化溶融亜鉛めっき鋼板を電
位:−900 〜−840mV の電位の範囲内で電解操作を行
い、流れた電気量に基づきめっき層中δ1 相を定量し、
引き続き前記アノードである合金化溶融亜鉛めっき鋼板
を電位:−830 〜−800mV の電位の範囲内で電解操作を
行い、 流れた電気量に基づきめっき層中Γ相を定量する
ことを特徴とする合金化溶融亜鉛めっき鋼板のめっき層
中ζ相、δ1 相およびΓ相の定量方法。
4. An alloyed hot-dip galvanized steel sheet is used as an anode, and in a zinc sulfate-sodium chloride aqueous solution, potential: −94.
Perform electrolysis within the range of 0 to -920 mV vs SCE potential,
The amount of ζ phase in the plating layer is quantified based on the amount of electricity that has flowed, and then the galvannealed steel sheet that is the anode is electrolyzed within the range of potential: -900 to -840 mV to determine the amount of electricity that has flowed. Quantify the δ 1 phase in the plating layer based on
Subsequently, the alloyed hot-dip galvanized steel sheet as the anode is electrolyzed within a potential range of −830 to −800 mV, and the Γ phase in the plating layer is quantified based on the amount of electricity flowing. Determination method of ζ phase, δ 1 phase and Γ phase in galvanized galvanized steel sheet.
【請求項5】 合金化溶融亜鉛めっき鋼板をアノードと
し、硫酸亜鉛−塩化ナトリウム水溶液中で、電位:−94
0 〜−920mV vs SCEの電位の範囲内で電解操作を行い、
流れた電気量が一定量より少ないものを摺動性の良好な
合金化溶融亜鉛めっき鋼板とすることを特徴とする合金
化溶融亜鉛めっき鋼板の摺動性評価方法。
5. An alloyed hot-dip galvanized steel sheet is used as an anode, and in a zinc sulfate-sodium chloride aqueous solution, potential: -94.
Perform electrolysis within the range of 0 to -920 mV vs SCE potential,
A slidability evaluation method for an alloyed hot-dip galvanized steel sheet, characterized in that an alloyed hot-dip galvanized steel sheet having a good slidability is one in which the amount of electricity flowing is less than a certain amount.
【請求項6】 請求項5に記載の摺動性評価方法におい
て、電気量が 0.5C/cm2 以下であることを特徴とする
合金化溶融亜鉛めっき鋼板の摺動性評価方法。
6. The slidability evaluation method according to claim 5, wherein the amount of electricity is 0.5 C / cm 2 or less.
【請求項7】 請求項5又は6に記載の摺動性評価方法
において、電流密度が5μA/cm2 になる時点を電解操
作の終点とすることを特徴とする合金化溶融亜鉛めっき
鋼板の摺動性評価方法。
7. The sliding of alloyed hot-dip galvanized steel sheet according to claim 5 or 6, wherein the time point when the current density reaches 5 μA / cm 2 is the end point of the electrolytic operation. Dynamic evaluation method.
JP2001279774A 2000-12-05 2001-09-14 Determination method of alloy phase in plating layer Expired - Fee Related JP3778037B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2001279774A JP3778037B2 (en) 2000-12-05 2001-09-14 Determination method of alloy phase in plating layer
KR1020027009925A KR100706593B1 (en) 2000-12-05 2001-12-05 Method for determining alloy phase in plating layer and method for evaluating sliding property of alloy galvanized steel plate
EP01999801A EP1273912A4 (en) 2000-12-05 2001-12-05 Method for determining alloy phase in plating layer and method for evaluating sliding property of alloy galvanized steel plate
CA002399307A CA2399307C (en) 2000-12-05 2001-12-05 Method for determining quantity of alloy phase in plating layer and method for evaluating sliding property of alloyed hot-dip galvanized steel sheet
US10/311,236 US6835466B2 (en) 2001-05-28 2001-12-05 Alloyed galvanized steel plate having excellent slidability
PCT/JP2001/010614 WO2002046735A1 (en) 2000-12-05 2001-12-05 Method for determining alloy phase in plating layer and method for evaluating sliding property of alloy galvanized steel plate
CNB018044646A CN1299111C (en) 2000-12-05 2001-12-05 Method for determining alloy phase in plating layer and method for evaluating sliding property of alloy galvanized steel plate
TW090130123A TW583311B (en) 2000-12-05 2001-12-05 Method for determining alloy phase in plating layer and method for evaluating sliding property of alloy galvanized steel plate
US10/182,780 US6814848B2 (en) 2000-12-05 2001-12-05 Method for determining alloy phase in plating layer and method for evaluating sliding property of alloy galvanized steel plate

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2000-370672 2000-12-05
JP2000370672 2000-12-05
JP2001169393 2001-06-05
JP2001-169393 2001-06-05
JP2001279774A JP3778037B2 (en) 2000-12-05 2001-09-14 Determination method of alloy phase in plating layer

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2005275767A Division JP3844006B2 (en) 2000-12-05 2005-09-22 Method for evaluating slidability of galvannealed steel sheets
JP2005275766A Division JP3824011B2 (en) 2000-12-05 2005-09-22 Determination method of alloy phase in plating layer

Publications (2)

Publication Number Publication Date
JP2003057206A true JP2003057206A (en) 2003-02-26
JP3778037B2 JP3778037B2 (en) 2006-05-24

Family

ID=27345373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001279774A Expired - Fee Related JP3778037B2 (en) 2000-12-05 2001-09-14 Determination method of alloy phase in plating layer

Country Status (8)

Country Link
US (1) US6814848B2 (en)
EP (1) EP1273912A4 (en)
JP (1) JP3778037B2 (en)
KR (1) KR100706593B1 (en)
CN (1) CN1299111C (en)
CA (1) CA2399307C (en)
TW (1) TW583311B (en)
WO (1) WO2002046735A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1391530A4 (en) * 2001-05-28 2005-11-23 Jfe Steel Corp Alloy galvanized steel plate having excellent slidability
CN102471916B (en) * 2009-07-23 2013-04-24 杰富意钢铁株式会社 Stainless steel for fuel cell having excellent corrosion resistance and method for producing same
CN102997832A (en) * 2011-09-15 2013-03-27 上海宝钢工业检测公司 Automatic measuring system for tin plate surface oxide film coatings
KR102232487B1 (en) * 2017-10-05 2021-03-29 닛폰세이테츠 가부시키가이샤 Plating adhesion evaluation device, plating adhesion evaluation method, alloyed hot-dip galvanized steel sheet manufacturing facility, and alloyed hot-dip galvanized steel sheet manufacturing method
US11529594B2 (en) 2018-11-15 2022-12-20 Bonne O Inc. Beverage carbonation system and beverage carbonator

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4613593B1 (en) * 1967-01-19 1971-04-10
JPS60164243A (en) 1984-02-06 1985-08-27 Seiko Instr & Electronics Ltd Plated thickness measuring apparatus
FR2689244A1 (en) * 1992-03-25 1993-10-01 Lorraine Laminage Method of analysis of a metallic sample by dissolution of its surface, and device for its implementation.
JPH06116699A (en) 1992-10-07 1994-04-26 Nippon Steel Corp Method for quantitatively analyzing alloy phase of galvannealed steel sheet
CN1055510C (en) * 1993-06-25 2000-08-16 川崎制铁株式会社 Method of hot-dip-zinc-plating high-tension steel plate reduced in unplated portions
JPH0894553A (en) * 1994-09-21 1996-04-12 Kawasaki Steel Corp Method for measuring plating mass
US5698085A (en) * 1995-03-06 1997-12-16 National Science Council Coating analysis apparatus
WO1997001739A1 (en) * 1995-06-29 1997-01-16 Bekaert Naamloze Vennootschap Method and apparatus for measuring the thickness of a non-ferromagnetic conductive layer on a ferromagnetic conductive substrate
JP3612851B2 (en) * 1996-03-29 2005-01-19 Jfeスチール株式会社 Method for measuring plating adhesion
JP3557810B2 (en) * 1996-09-17 2004-08-25 Jfeスチール株式会社 Alloyed hot-dip galvanized steel sheet having excellent slidability and cratering resistance during electrodeposition coating, and method for producing the same

Also Published As

Publication number Publication date
TW583311B (en) 2004-04-11
CN1397018A (en) 2003-02-12
WO2002046735A1 (en) 2002-06-13
EP1273912A1 (en) 2003-01-08
CN1299111C (en) 2007-02-07
CA2399307A1 (en) 2002-06-13
CA2399307C (en) 2006-01-24
US20040084314A1 (en) 2004-05-06
KR20020077412A (en) 2002-10-11
KR100706593B1 (en) 2007-04-11
EP1273912A4 (en) 2005-02-02
JP3778037B2 (en) 2006-05-24
US6814848B2 (en) 2004-11-09

Similar Documents

Publication Publication Date Title
Lee et al. Mechanistic study on the cut-edge corrosion behaviors of Zn-Al-Mg alloy coated steel sheets in chloride containing environments
Dos Santos et al. Comparative study of the corrosion behavior of galvanized, galvannealed and Zn55Al coated interstitial free steels
Penney et al. Investigation into the effects of metallic coating thickness on the corrosion properties of Zn–Al alloy galvanising coatings
Balusamy et al. In-situ monitoring of local corrosion process of scratched epoxy coated carbon steel in simulated pore solution containing varying percentage of chloride ions by localized electrochemical impedance spectroscopy
Hamlaoui et al. Corrosion monitoring of galvanised coatings through electrochemical impedance spectroscopy
Lins et al. Electrochemical impedance spectroscopy and linear polarization applied to evaluation of porosity of phosphate conversion coatings on electrogalvanized steels
CN102459697B (en) The steel plate for container of corrodibility excellence and manufacture method thereof under adaptation when steam-laden pyroprocessing, resistance to rust and film
Queiroz et al. Electrochemical, chemical and morphological characterization of galvannealed steel coating
Wang et al. Corrosion behavior of Zn-Al alloys in saturated Ca (OH) 2 solution
Alvarez-Pampliega et al. Corrosion study on Al-rich metal-coated steel by odd random phase multisine electrochemical impedance spectroscopy
JP3824011B2 (en) Determination method of alloy phase in plating layer
Fushimi et al. Cross-section corrosion-potential profiles of aluminum-alloy brazing sheets observed by the flowing electrolyte scanning-droplet-cell technique
JP2003057206A (en) Method for determining quantity in alloy phase in plated layer, and sliding property evaluation method in alloying melted zinc-plated steel plate
Xhoffer et al. Quantitative phase analysis of galvannealed coatings by coulometric stripping
Sullivan et al. Zinc runoff from galvanised steel materials exposed in industrial/marine environment
CN113514528B (en) Method for measuring compactness of inhibition layer of hot dip galvanized sheet
JP6751924B2 (en) Evaluation method of corrosion resistance and repair method of plated products
JP3844006B2 (en) Method for evaluating slidability of galvannealed steel sheets
JP2018115942A (en) Hydrogen invasion evaluation method, hydrogen invasion evaluation system and hydrogen invasion evaluation cell
Glazunov Determination of the phase structure of metallic protective coatings by anodic dissolution
JP5013104B2 (en) Pinhole evaluation method
KR20030023635A (en) Alloyed hot-dip zinc-coated steel sheet with excellent sliding property
JP2003049255A (en) Galvannealed steel sheet with excellent sliding characteristic
Brasilb et al. Caroline C. Rodinea, Larissa A. Carvalhoa, Victor Hugo CA Regoa
JPH0843343A (en) Speedy evaluation method for uniform covering property of sn laid on pb-sn alloy plating layer

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140310

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees