JP2003057023A - Angle calibration apparatus using x-ray polyhedral mirror and angle calibration method using the same - Google Patents

Angle calibration apparatus using x-ray polyhedral mirror and angle calibration method using the same

Info

Publication number
JP2003057023A
JP2003057023A JP2001246510A JP2001246510A JP2003057023A JP 2003057023 A JP2003057023 A JP 2003057023A JP 2001246510 A JP2001246510 A JP 2001246510A JP 2001246510 A JP2001246510 A JP 2001246510A JP 2003057023 A JP2003057023 A JP 2003057023A
Authority
JP
Japan
Prior art keywords
ray
angle
reflection
polygon
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001246510A
Other languages
Japanese (ja)
Inventor
Shoi Cho
小威 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2001246510A priority Critical patent/JP2003057023A/en
Publication of JP2003057023A publication Critical patent/JP2003057023A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an angle calibration apparatus using an X-ray polyhedral mirror, and an angle calibration method using the same. SOLUTION: When the center axis of an X-ray polygon crystal 7 is set to [0, 1, -1] of a silicon single crystal, a surface index enabling geometric reflection becomes xhh and a large number of reflecting surfaces are obtained according to an extinction rule of X-ray diffraction of a diamond structure. Since a 110 axis is twice symmetry, these reflecting surfaces appear on an opposite side and, in this case, 340 reflecting surfaces in total can be utilized. Two orthogonal reflecting surfaces in the X-ray polygon crystal 7 are set so as to be made parallel to two posture adjusting tilt stages 5 and the center is allowed to coincide with the center of a rotary table 8 by an XY stage 5 and the reflection of X-rays is utilized to adjust the center line of the X-ray polygon crystal 7 so as to make the same parallel to the axis of the rotary table 8 so that the center line is almost overlapped with the axis of the rotary table 8. When the X-ray polygon crystal 7 after adjustment is rotated, Bragg reflection is successively generated and the position of a Bragg angle can be determined by a reflection intensity curve caught by an X-ray detector 9.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、X線多面鏡(X線
ポリゴン)を用いた角度較正装置及びそれを用いた角度
較正方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an angle calibration device using an X-ray polygonal mirror (X-ray polygon) and an angle calibration method using the same.

【0002】[0002]

【従来の技術】角度測定の基準としての可視光ポリゴン
は、精密インデックステーブルのような装置の角度位置
を較正するときに非常に使いやすい工具である。JIS
規格B7432に取り上げられるほど、実用面において
も重要な役割を果している。
BACKGROUND OF THE INVENTION Visible light polygons as a basis for angle measurements are a very easy tool to use when calibrating the angular position of a device such as a precision index table. JIS
The more it is taken up by the standard B7432, the more important it is in practical use.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うな可視光ポリゴンは光学製品である以上、加工の誤差
がある。また、回転テーブルの角度を較正する観点から
言えば、なるべく面数が多いポリゴンの方が良いが、精
密加工の限界から、有効反射ミラー面積10mm直径
で、かつコンパクトな36面以上の光学ポリゴンがなか
なか望めない。
However, since such a visible light polygon is an optical product, there is a processing error. From the viewpoint of calibrating the angle of the rotary table, a polygon with as many faces as possible is preferable, but due to the limit of precision processing, an optical polygon with an effective reflection mirror area of 10 mm diameter and a compact size of 36 faces or more is recommended. I can't quite hope for it.

【0004】さらに、光学ポリゴンを利用して角度位置
を較正するとき、光学オートコリメーターを併用する
が、空気の揺らぎの影響で、その検定精度の限界は1秒
角程度に留まる。従って、光学ポリゴンを使った標準的
な角度較正法では、一度に測定できる角度位置の数量お
よびその到達できる精度の両方面から高度な研究の要望
に答えられないのである。
Further, when the angular position is calibrated by using the optical polygon, an optical autocollimator is also used, but due to the influence of the fluctuation of the air, the limit of the verification accuracy is about 1 arcsecond. Therefore, the standard angle calibration method using the optical polygon cannot meet the demand of advanced research in terms of both the number of angular positions that can be measured at one time and the accuracy that can be reached.

【0005】しかしながら、可視光の反射をX線の回折
に、平面光学ミラーを完全結晶の原子配列に置き換える
ことによって、上記の事態が一変する。例えば、シリコ
ン単結晶〔0,1,−1〕を軸とした円柱状のX線ポリ
ゴンを用いてX線波長が0.7Åの時、計測可能な反射
面{hkk}は170もあり、結晶の2回対称から、時
計回りと逆時計回りの340個の反射が観測される。す
なわち、人工の光学ポリゴンより遙に数多く選ぶことが
でき、平均的に、1.1度おきに一つの角度位置を較正
することができる。また、もっと短い波長を利用すれ
ば、反射面の数がもっと増える。さらに、空気の揺らぎ
の影響が全くなく、大気中でも高い測定精度が得られ
る。
However, the above situation is completely changed by replacing the reflection of visible light with the diffraction of X-rays and replacing the plane optical mirror with the atomic arrangement of perfect crystals. For example, using a cylindrical X-ray polygon having a silicon single crystal [0,1, -1] as an axis, when the X-ray wavelength is 0.7Å, there are 170 measurable reflecting surfaces {hkk}, From the two-fold symmetry of, 340 clockwise and counterclockwise reflections are observed. That is, far more can be selected than artificial optical polygons, and on average, one angular position can be calibrated every 1.1 degrees. Also, if shorter wavelengths are used, the number of reflective surfaces will increase. Furthermore, there is no influence of air fluctuations, and high measurement accuracy can be obtained even in the atmosphere.

【0006】物理定数の時間依存性のような「無謀」と
思われる測定から、ゆっくりとした材料結晶のひずみ緩
和過程や低温における結晶中不純物拡散機構のような
「常識的」な計測まで、時間と空間とが隔てた二つの物
事を比較するには、絶対測定をさけて通れない。しか
し、高精度の絶対測定は、物質の評価にとって大切であ
るが、非常に手間がかかる仕事であるため、敬遠されが
ちである。
[0006] From the "reckless" measurement such as the time dependence of physical constants to the "common sense" measurement such as the slow strain relaxation process of a material crystal and the impurity diffusion mechanism in the crystal at low temperature To compare two things with space separated by space, you cannot avoid absolute measurement. However, while highly accurate absolute measurement is important for the evaluation of substances, it is a very labor-intensive task and is often avoided.

【0007】角度を正確かつ精密に測定することは、X
線回折学を利用した材料評価方法にとって、極めて重要
である。X線の波長λと結晶格子パラメータdと回折角
θとの間は、ブラッグ公式によって結ばれている。材料
評価の時、X線波長と回折の角度がわかると、その物性
に関わる格子間隔dを知ることができる。実験上、X線
の波長の絶対値を7〜8桁まで知ることはわりと容易で
あるが、複雑な仕掛けを持つ精密インデックステーブル
の角度正確度はいつもながら問題となり、波長の有効数
値と釣り合わない。なぜなら、精密インデックステーブ
ルに通常回転エンコーダが取り付けられているが、標準
機関が保証しているのは単体のエンコーダであり、それ
を組み込んだ回転テーブル全体を保証しているのではな
いからである。
Accurate and precise measurement of angles is a
It is extremely important for the material evaluation method using line diffraction. The wavelength λ of the X-ray, the crystal lattice parameter d, and the diffraction angle θ are connected by the Bragg formula. If the X-ray wavelength and the angle of diffraction are known during material evaluation, the lattice spacing d related to the physical properties can be known. It is relatively easy to know the absolute value of the X-ray wavelength up to 7 to 8 digits experimentally, but the angle accuracy of a precision index table with a complicated mechanism is always a problem, and it balances with the effective value of the wavelength. Absent. This is because the precision index table usually has a rotary encoder attached to it, but the standard organization guarantees that it is a single encoder, not the entire rotary table incorporating it.

【0008】また、たとえ装置のエンコーダによる角度
位置の読みが充分に信頼できるとしても、装置である以
上、半永久的に正確であり続ける保証がどこにもない。
従って、X線回折学の絶対測量を必要とする材料科学の
研究にとって、回転テーブル装置の高精度角度位置(全
周にわたり0.1秒角程度の正確さ、相対値に直すと1
-7)の較正法が必須である。
Further, even if the reading of the angular position by the encoder of the device is sufficiently reliable, there is no guarantee that it will be semi-permanently accurate as long as it is a device.
Therefore, for material science research that requires absolute measurement of X-ray diffraction, a highly accurate angular position of the rotary table device (accuracy of about 0.1 arcsecond over the entire circumference, and a relative value of 1)
A calibration method of 0 -7 ) is essential.

【0009】本発明は、上記状況に鑑みて、コンパクト
であり、角度を正確かつ精密に測定することができるX
線多面鏡を用いた角度較正装置及びそれを用いた角度較
正方法を提供することを目的とする。
In view of the above situation, the present invention is compact and can measure the angle accurately and precisely.
An object is to provide an angle calibration device using a line polygon mirror and an angle calibration method using the same.

【0010】[0010]

【課題を解決するための手段】本発明は、上記した目的
を達成するために、可視光の代わりにX線を利用し、光
学の反射面の代わりに、完全結晶の回折格子面を利用す
る。完全結晶の回折面同士のなす角度は結晶の対称性と
面指数によって、高精度に決められる。指定された波長
のX線に対して、その反射の起きる角度位置と角度幅は
X線の動力学回折理論によって完全に予測することがで
きる。
In order to achieve the above-mentioned object, the present invention uses X-rays instead of visible light, and uses a perfect crystal diffraction grating surface instead of an optical reflecting surface. . The angle formed by the diffraction planes of a perfect crystal is highly accurately determined by the symmetry of the crystal and the plane index. For X-rays of a specified wavelength, the angular position and angular width at which the reflection occurs can be completely predicted by the dynamic diffraction theory of X-rays.

【0011】まず、X線ポリゴン結晶の中心軸をシリコ
ン単結晶の〔0,1,−1〕とすると、幾何学的に反射
可能な面指数がxhhとなり、X線回折の消滅則に従え
ば、多数の反射面が得られる。110軸が2回対称であ
るため、これらの反射が反対側にも見られるので、この
場合、計340反射面が利用できる。分光された単色の
X線ビームがX線コリメータで広げられ、X線ポリゴン
結晶が全浴できるビームサイズが得られる一方、発散角
が秒以下に抑えられる。X線ポリゴン結晶内の2つの直
交する反射面を2つの姿勢調整チルトテーブルにおよそ
平行するように据え置き、X線の反射を利用して、X線
ポリゴン結晶の中心線を回転テーブルの軸に平行になる
ように調整し、さらに、xyステージで回転テーブルの
軸とおよそ重なるようにする。調整を終えたX線ポリゴ
ン結晶を回していけば、ブラッグ反射が次々と起こり、
X線検出器で捉えた反射強度曲線でブラッグ角度の位置
を決めることができる。温度差の補正とX線ポリゴン結
晶のX線に対する屈折補正を施せば、340の正しい幾
何学的な角度が得られる。
First, assuming that the central axis of the X-ray polygon crystal is [0, 1, -1] of the silicon single crystal, the geometrically reflective surface index is xhh, and according to the extinction rule of X-ray diffraction. , A large number of reflective surfaces can be obtained. Since the 110 axis is 2-fold symmetric, these reflections are also seen on the opposite side, so in this case a total of 340 reflecting surfaces are available. The separated monochromatic X-ray beam is spread by the X-ray collimator, and a beam size that allows the X-ray polygon crystal to be fully bathed is obtained, while the divergence angle is suppressed to less than a second. The two orthogonal reflecting surfaces in the X-ray polygon crystal are placed parallel to the two attitude adjustment tilt tables, and the center line of the X-ray polygon crystal is parallel to the axis of the rotary table by using the X-ray reflection. So that the axis of the rotary table is approximately overlapped with the xy stage. If you turn the adjusted X-ray polygon crystal, Bragg reflections will occur one after another,
The position of the Bragg angle can be determined by the reflection intensity curve captured by the X-ray detector. Correcting the temperature difference and refracting the X-ray of the X-ray polygonal crystal gives a correct geometric angle of 340.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照しながら詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below with reference to the drawings.

【0013】図1は本発明の実施例を示すX線多面鏡を
用いた角度較正装置のブロック図、図2はその要部構成
図である。
FIG. 1 is a block diagram of an angle calibrating apparatus using an X-ray polygon mirror showing an embodiment of the present invention, and FIG.

【0014】この図において、1はX線光源、2はX線
分光器(定波長高分解能モノクロメータ)、3はX線コ
リメータ、4はX線スリット、5は位置調整XYステー
ジ(以下、単にXYステージという)、6は姿勢調整チ
ルトステージ(以下、単にチルトステージという)、7
はX線多面鏡(X線ポリゴン結晶)、8はロータリエン
コーダ付き回転テーブル(以下、単に回転テーブルとい
う)、9は広角X線検出器、10はエレクトロニクス計
数装置、11は温度センサ、12は温度コントロール装
置、13はX線の出口である。
In this figure, 1 is an X-ray light source, 2 is an X-ray spectroscope (constant wavelength high resolution monochromator), 3 is an X-ray collimator, 4 is an X-ray slit, and 5 is a position adjusting XY stage (hereinafter, simply XY stage), 6 is a posture adjustment tilt stage (hereinafter, simply referred to as a tilt stage), 7
Is an X-ray polygon mirror (X-ray polygon crystal), 8 is a rotary table with a rotary encoder (hereinafter, simply referred to as a rotary table), 9 is a wide-angle X-ray detector, 10 is an electronic counter, 11 is a temperature sensor, and 12 is a temperature. The control device, 13 is the X-ray exit.

【0015】ここで、X線光源1としては、X線を作り
出すX線管球や放射光等を用いる。X線分光器2は、X
線光源1より、特定の波長のX線ビームを切り出す。X
線コリメータ3はX線の非対称反射を利用したもので、
単色されたX線ビームの発散をより小さくし、同時に散
乱面内のX線ビームサイズを広げる。X線ポリゴン結晶
7は完全結晶から切り出した上半部に細い円柱状(数m
m直径)の、下半分の基礎に太めの多面柱体の単結晶
(およそ10mm四方)を有し、全体の高さは30mm
程度である。チルトステージ6はX線ポリゴン結晶7の
中心線を回転テーブル8の軸に平行させるための調整機
構である。その回転テーブル8は被較正対象であり、X
線回折を起こさせる。広角X線検出器9は、X線の回折
強度を記録する。温度センサ11はX線分光器2とX線
コリメータ3とX線ポリゴン結晶7の温度をそれぞれモ
ニターする。
Here, as the X-ray light source 1, an X-ray tube that produces X-rays, radiant light, or the like is used. X-ray spectrometer 2
An X-ray beam having a specific wavelength is cut out from the linear light source 1. X
The line collimator 3 uses asymmetric reflection of X-rays,
It reduces the divergence of the monochromatic X-ray beam and at the same time widens the X-ray beam size in the scattering plane. The X-ray polygon crystal 7 has a thin cylindrical shape (several meters) in the upper half part cut out from the perfect crystal.
m diameter), with a thicker polyhedral single crystal (about 10 mm square) on the lower half foundation, the total height is 30 mm
It is a degree. The tilt stage 6 is an adjusting mechanism for making the center line of the X-ray polygon crystal 7 parallel to the axis of the rotary table 8. The rotary table 8 is an object to be calibrated , and X
Causes line diffraction. The wide-angle X-ray detector 9 records the X-ray diffraction intensity. The temperature sensor 11 monitors the temperatures of the X-ray spectroscope 2, the X-ray collimator 3, and the X-ray polygon crystal 7, respectively.

【0016】分光された単色X線ビームがX線コリメー
タ3で広げられ、X線ポリゴン結晶7が全体に照射でき
るビームサイズが得られるとともに、発散角が秒以下に
抑えられ、X線ポリゴン結晶7内の2つの直交する反射
面を2つのチルトステージ6におよそ平行するように据
え置き、X線の反射を利用して、X線ポリゴン結晶7の
中心線を回転テーブル8の軸に平行になるように調整
し、XYステージ5で中心をおよそ重なるように配置
し、調整を終えたX線ポリゴン結晶7を回していくこと
により、ブラッグ反射が次々と起こり、広角X線検出器
9で捉えた反射強度曲線でブラッグ角度の位置を決める
ようにしている。
The separated monochromatic X-ray beam is spread by the X-ray collimator 3 to obtain a beam size that can be irradiated on the entire X-ray polygon crystal 7, and the divergence angle is suppressed to a second or less, so that the X-ray polygon crystal 7 can be obtained. The two orthogonal reflecting surfaces of the inside are placed parallel to the two tilt stages 6, and the center line of the X-ray polygon crystal 7 is made parallel to the axis of the rotary table 8 by utilizing the reflection of X-rays. The X-ray polygon crystal 7 which has been adjusted and arranged so that the centers thereof are approximately overlapped with each other on the XY stage 5, and Bragg reflection occurs one after another, and the reflection captured by the wide-angle X-ray detector 9 is detected. The strength curve is used to determine the position of the Bragg angle.

【0017】X線ポリゴン結晶7の中心軸をシリコン単
結晶の〔0,1,−1〕とすると、幾何学的に反射可能
な面指数がxhhとなり、ダイヤモンド構造のX線回折
の消滅則に従えば、表1(資料1〜30)、表2(資料
31〜64)、表3(資料65〜98)、表4(資料9
9〜132)、表5(資料133〜166)、表6(資
料167〜200)、表7(資料201〜234)、表
8(資料235〜268)、表9(資料269〜30
2)、表10(資料303〜336)、表11(資料3
37〜340)のそれぞれのコラム1に示すような反射
面が得られる。
When the central axis of the X-ray polygonal crystal 7 is [0,1, -1] of a silicon single crystal, the geometrically reflective surface index becomes xhh, which is in accordance with the extinction rule of X-ray diffraction of a diamond structure. Accordingly, Table 1 (Materials 1 to 30), Table 2 (Materials 31 to 64), Table 3 (Materials 65 to 98), Table 4 (Material 9)
9-132), Table 5 (Materials 133-166), Table 6 (Materials 167-200), Table 7 (Materials 201-234), Table 8 (Materials 235-268), Table 9 (Materials 269-30).
2), Table 10 (Materials 303 to 336), Table 11 (Material 3)
37 to 340), a reflecting surface as shown in each column 1 is obtained.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【表3】 [Table 3]

【0021】[0021]

【表4】 [Table 4]

【0022】[0022]

【表5】 [Table 5]

【0023】[0023]

【表6】 [Table 6]

【0024】[0024]

【表7】 [Table 7]

【0025】[0025]

【表8】 [Table 8]

【0026】[0026]

【表9】 [Table 9]

【0027】[0027]

【表10】 [Table 10]

【0028】[0028]

【表11】 [Table 11]

【0029】X線波長を0.7nmと仮定して、それぞ
れのブラッグ角がコラム3およびコラム4にリストされ
る。各反射面の幾何学的位置がコラム5およびコラム6
に表される。110軸が2回対称であるため、これらの
反射が反対側にも見られるので、この例では、計340
反射面が利用できる。
Assuming an X-ray wavelength of 0.7 nm, the respective Bragg angles are listed in columns 3 and 4. The geometrical position of each reflecting surface is column 5 and column 6.
Represented by. Since the 110 axis is 2-fold symmetric, these reflections are also seen on the opposite side, so in this example, a total of 340
A reflective surface is available.

【0030】分光された単色のX線ビームがX線コリメ
ーター3で広げられ、X線ポリゴン結晶全体に照射でき
るビームサイズが得られる一方、発散角が秒以下に抑え
られる。X線ポリゴン結晶内の2つ直交する反射面を2
つのチルトステージ5におよそ平行するように据え置
き、X線の反射を利用して、X線ポリゴン結晶7の中心
線を回転テーブル8の軸に平行になるように調整し、お
よそ重なるようにする。調整を終えたX線ポリゴン結晶
7を回していけば、ブラッグ反射が次々と起きて、X線
検出器9で捉えた反射強度でブラッグ角度の位置を決め
ることができる。温度差の補正とX線ポリゴン結晶のX
線に対する屈折補正を施せば、340の正しい幾何学的
な角度位置座標が得られる。
The separated monochromatic X-ray beam is spread by the X-ray collimator 3 to obtain a beam size capable of irradiating the entire X-ray polygon crystal, while the divergence angle is suppressed to less than a second. The two orthogonal reflecting surfaces in the X-ray polygon crystal are
The tilt stage 5 is placed so as to be approximately parallel to it, and the center line of the X-ray polygon crystal 7 is adjusted to be parallel to the axis of the rotary table 8 by utilizing the reflection of X-rays so that they are approximately overlapped. By rotating the X-ray polygon crystal 7 that has been adjusted, Bragg reflections occur one after another, and the position of the Bragg angle can be determined by the reflection intensity captured by the X-ray detector 9. Correction of temperature difference and X of X-ray polygon crystal
Refraction corrections to the line yield 340 correct geometrical angular position coordinates.

【0031】図3は本発明にかかる回転テーブルのロー
タリエンコーダの読み角度と累積誤差との関係を示す
図、図4は本発明にかかるエンコーダの読み角度と誤差
との関係を示す図である。
FIG. 3 is a diagram showing the relationship between the reading angle of the rotary encoder of the rotary table according to the present invention and the accumulated error, and FIG. 4 is a diagram showing the relationship between the reading angle of the encoder according to the present invention and the error.

【0032】X線多面鏡7を利用した回転テーブル8の
較正方法は、従来の可視光ポリゴンを利用した方法に比
べて、較正できる角度位置の数と精度ともに飛躍的に改
善される。回転テーブル8に付されたロータリエンコー
ダを含む装置全体の較正であることにより、装置の正確
性と信頼性を高めることができる。X線を利用したた
め、大気の可視光に対する屈折率の揺らぎがなく、大気
中で高精度の計測が可能となる。
The method of calibrating the rotary table 8 using the X-ray polygonal mirror 7 is remarkably improved in both the number of calibratable angular positions and the accuracy as compared with the conventional method using a visible light polygon. By calibrating the entire apparatus including the rotary encoder attached to the rotary table 8, the accuracy and reliability of the apparatus can be improved. Since X-rays are used, there is no fluctuation in the refractive index with respect to visible light in the atmosphere, and highly accurate measurement can be performed in the atmosphere.

【0033】以下、本発明にかかる機械調整について説
明する。
The mechanical adjustment according to the present invention will be described below.

【0034】(1)分光された単色のX線ビームがX線
コリメータ3で広げられ、X線ポリゴン結晶7の全体に
照射できるビームサイズが得られると同時にX線ビーム
の発散角が秒以下に抑えられる。
(1) The separated monochromatic X-ray beam is spread by the X-ray collimator 3 to obtain a beam size that can irradiate the entire X-ray polygon crystal 7, and at the same time the divergence angle of the X-ray beam is less than a second. It can be suppressed.

【0035】(2)回転テーブル8の軸をX線ビームに
直交するように設置する。
(2) The rotary table 8 is installed so that its axis is orthogonal to the X-ray beam.

【0036】(3)X線ポリゴン結晶7内の2つの直交
する反射面(例えば100と011方向;図5参照)を
2つのチルトステージ5におよそ平行するように据え置
き、X線の反射を利用して、チルトステージ角度位置と
X線反射が起きる位置の組を3組以上測定し、2次曲線
フィッティングで最適なチルトステージ角度位置を割り
出し、X線ポリゴン結晶7の中心線〔0,1,−1〕を
ロータリエンコーダ付き回転テーブル8の軸に平行にな
るように調整する。
(3) The two orthogonal reflecting surfaces (for example, 100 and 011 directions; see FIG. 5) in the X-ray polygon crystal 7 are placed so as to be approximately parallel to the two tilt stages 5, and the X-ray reflection is used. Then, three or more sets of the tilt stage angular position and the position where X-ray reflection occurs are measured, the optimum tilt stage angular position is determined by quadratic curve fitting, and the center line of the X-ray polygon crystal 7 [0, 1, -1] is adjusted to be parallel to the axis of the rotary table 8 with a rotary encoder.

【0037】(4)XYステージ5で、X線ポリゴン結
晶7の中心を回転テーブル8の回転中心とほぼ一致する
ようにする。
(4) On the XY stage 5, the center of the X-ray polygon crystal 7 is made to substantially coincide with the center of rotation of the rotary table 8.

【0038】(5)広角X線検出器9の窓をX線ビーム
と同じ高度に合わせ設置する。
(5) The window of the wide-angle X-ray detector 9 is installed at the same height as the X-ray beam.

【0039】以下、数値処理について0.06968n
mの波長と22.5℃のシリコンを例にとって説明す
る。
The numerical processing is 0.06968n
A description will be given by taking a wavelength of m and silicon of 22.5 ° C.

【0040】反射面(コラム1)の基準面に対する幾
何学的な角度位置(コラム3)とその面がX線を反射す
る物理的な角度位置(コラム4)の差を取り、一つの数
列が得られるが、その数列を大きさの順に再配列する
と、コラム5が得られる。2回対称を考慮にいれて、X
線ポリゴン結晶の170の反射面より340個の反射角
度位置が得られる。その指数と順番をコラム1と最後の
コラム8にリストする。
The difference between the geometrical angular position of the reflecting surface (column 1) with respect to the reference surface (column 3) and the physical angular position at which the surface reflects X-rays (column 4) is calculated, and one number sequence is Columns 5 are obtained by rearranging the sequences in order of size. Taking into account the 2-fold symmetry, X
From the 170 reflecting surfaces of the line polygon crystal, 340 reflection angle positions can be obtained. The index and order are listed in column 1 and last column 8.

【0041】得られた配列(コラム5)X0−X33
9は、結晶ポリゴン結晶7を回転させるとき次々と生じ
るX線反射の順番で、これに屈折と温度差による補正を
施して、その角度位置は角度の基準となる座標(コラム
6)である。
Obtained Sequence (Column 5) X0-X33
Reference numeral 9 is the order of X-ray reflection that occurs one after another when the crystal polygonal crystal 7 is rotated, and is corrected by refraction and temperature difference, and its angular position is a coordinate (column 6) that serves as a reference of the angle.

【0042】X線反射の起こるとろこの回転テーブル
8の読み値をY0−Y339(コラム7)とする。
When the X-ray reflection occurs, the reading value of the rotary table 8 is Y0-Y339 (column 7).

【0043】Zi=Yi−Xiを誤差(コラム8)
で、エンコーダの読みが真の角度位置とのずれを意味す
る。
Zi = Yi-Xi is an error (column 8)
Therefore, the reading of the encoder means the deviation from the true angular position.

【0044】′Zi=Yi−Xiより、コラム8のデ
ータから平均のオフセット分を差し引いて、誤差(コラ
ム8)が得られ、エンコーダの読みが真の角度位置との
ずれを意味する。
An error (column 8) is obtained by subtracting the average offset amount from the data in column 8 from'Zi = Yi-Xi ', and the reading of the encoder means the deviation from the true angular position.

【0045】累積誤差はZi積算で得られる。The cumulative error is obtained by Zi integration.

【0046】なお、本発明は上記実施例に限定されるも
のではなく、本発明の趣旨に基づいて種々の変形が可能
であり、これらを本発明の範囲から排除するものではな
い。
The present invention is not limited to the above embodiments, and various modifications can be made based on the spirit of the present invention, and these modifications are not excluded from the scope of the present invention.

【0047】[0047]

【発明の効果】以上、詳細に説明したように、本発明に
よれば、以下のような効果を奏することができる。
As described in detail above, according to the present invention, the following effects can be achieved.

【0048】X線を利用しているため、空気の屈折の揺
らぎを受けることがなく、また、完全結晶におけるX線
の動力学回折を利用しているため、角度位置決め精度を
1秒角度より10倍程度以上に小さくすることができ
る。さらに、完全結晶の原子配列を利用するため、加工
精度と形の制限を受けることがなく、高品質で、かつコ
ンパクトと安価にX線ポリゴンミラーが得られる。利用
できる面の数は可視光のものより遙に多くて、通常に利
用する0.07nm波長のX線の場合、300面程度の
位置を利用することができ、波長をもっと短くすれば、
さらにその数を劇的に増やすことができる。
Since X-rays are used, there is no fluctuation in the refraction of air, and because dynamic diffraction of X-rays in a perfect crystal is used, the angular positioning accuracy is 10 seconds from 1 second angle. It can be made more than double. Further, since the atomic arrangement of the perfect crystal is used, the X-ray polygon mirror can be obtained with high quality, compactness and low cost without being restricted by processing accuracy and shape. The number of faces that can be used is much larger than that of visible light, and in the case of commonly used 0.07 nm wavelength X-rays, it is possible to use the position of about 300 faces, and if the wavelength is made shorter,
Moreover, the number can be dramatically increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示すX線多面鏡を用いた角度
較正装置のブロック図である。
FIG. 1 is a block diagram of an angle calibration device using an X-ray polygon mirror showing an embodiment of the present invention.

【図2】本発明の実施例を示すX線多面鏡を用いた角度
較正装置の構成図である。
FIG. 2 is a configuration diagram of an angle calibration device using an X-ray polygon mirror showing an embodiment of the present invention.

【図3】本発明にかかる回転テーブルのロータリエンコ
ーダの読み角度と累積誤差との関係を示す図
FIG. 3 is a diagram showing a relationship between a reading angle of a rotary encoder of a rotary table according to the present invention and a cumulative error.

【図4】本発明にかかるエンコーダの読み角度と誤差と
の関係を示す図である。
FIG. 4 is a diagram showing a relationship between a reading angle and an error of the encoder according to the present invention.

【図5】本発明にかかるX線ポリゴン結晶の面位を示す
図である。
FIG. 5 is a diagram showing a plane position of an X-ray polygon crystal according to the present invention.

【符号の説明】[Explanation of symbols]

1 X線光源 2 X線分光器(定波長高分解能モノクロメータ) 3 X線コリメータ 4 X線スリット 5 位置調整XYステージ 6 姿勢調整チルトステージ 7 X線多面鏡(X線ポリゴン結晶) 8 ロータリエンコーダ付き回転テーブル 9 広角X線検出器 10 エレクトロニクス計数装置 11 温度センサ 12 温度コントロール装置 13 X線の出口 1 X-ray light source 2 X-ray spectrometer (constant wavelength high resolution monochromator) 3 X-ray collimator 4 X-ray slit 5 Position adjustment XY stage 6 Posture adjustment tilt stage 7 X-ray polygon mirror (X-ray polygon crystal) 8 Rotary table with rotary encoder 9 Wide-angle X-ray detector 10 Electronics counter 11 Temperature sensor 12 Temperature control device 13 X-ray exit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】(a)X線光源と、(b)X線分光器と、
(c)X線コリメータと、(d)X線多面鏡と、(e)
該X線多面鏡内の2つの直交する反射面をおよそ平行す
るように据え置く2つの姿勢調整チルトステージと、
(f)中心合わせのxyステージと、(g)X線の反射
を利用して、前記X線多面鏡の中心線を軸に平行になる
ように調整し、およそ重なるように配置する精密回転イ
ンデックステーブルと、(h)前記X線多面鏡の反射を
捉える広角X線検出器とを備えることを特徴とするX線
多面鏡を用いた角度較正装置。
1. An (a) X-ray light source, (b) an X-ray spectrometer,
(C) X-ray collimator, (d) X-ray polygon mirror, (e)
Two attitude adjusting tilt stages that set up two orthogonal reflecting surfaces in the X-ray polygon mirror so as to be approximately parallel to each other;
(F) A precision rotation index in which the center line of the X-ray polygon mirror is adjusted to be parallel to the axis by using the xy stage for centering and (g) reflection of X-rays and arranged so as to be approximately overlapped. An angle calibration device using an X-ray polygonal mirror, comprising: a table; and (h) a wide-angle X-ray detector that captures the reflection of the X-ray polygonal mirror.
【請求項2】 分光されたX線ビームがX線コリメータ
で広げられ、X線多面鏡全体が照射できるビームサイズ
が得られるとともに、発散角が秒以下に抑えられ、前記
X線多面鏡内の2つの直交する反射面を2つの姿勢調整
チルトステージにおよそ平行するように据え置き、X線
の反射を利用して、前記X線多面鏡の中心線を回転テー
ブルの軸に平行になるように調整し、前記xyステージ
でその中心線と回転インデックステーブルの軸とおよそ
重なるように配置し、調整を終えた前記X線多面鏡を回
していくことにより、ブラッグ反射が次々と起こり、広
角X線検出器で捉えた反射強度曲線でブラッグ角度の位
置を決めることを特徴とするX線多面鏡を用いた角度較
正方法。
2. The dispersed X-ray beam is expanded by an X-ray collimator to obtain a beam size that can be irradiated by the entire X-ray polygon mirror, and the divergence angle is suppressed to less than a second, so that the X-ray polygon mirror The two orthogonal reflecting surfaces are installed so as to be substantially parallel to the two attitude adjustment tilt stages, and the center line of the X-ray polygon mirror is adjusted to be parallel to the axis of the rotary table by using the reflection of X-rays. Then, by disposing the xy stage so that its center line and the axis of the rotary index table are approximately overlapped with each other and rotating the X-ray polygon mirror that has been adjusted, Bragg reflection occurs one after another to detect wide-angle X-rays. An angle calibration method using an X-ray polygonal mirror, characterized in that the position of the Bragg angle is determined by the reflection intensity curve captured by the instrument.
【請求項3】 請求項2記載のX線多面鏡を用いた角度
較正方法において、温度差の補正と前記X線多面鏡のX
線に対する屈折補正を施し、多数の正しい幾何学的な角
度を得ることを特徴とするX線多面鏡を用いた角度較正
方法。
3. An angle calibration method using an X-ray polygonal mirror according to claim 2, wherein correction of temperature difference and X of the X-ray polygonal mirror are performed.
An angle calibration method using an X-ray polygonal mirror, wherein refraction correction is performed on a line to obtain a large number of correct geometric angles.
JP2001246510A 2001-08-15 2001-08-15 Angle calibration apparatus using x-ray polyhedral mirror and angle calibration method using the same Pending JP2003057023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001246510A JP2003057023A (en) 2001-08-15 2001-08-15 Angle calibration apparatus using x-ray polyhedral mirror and angle calibration method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001246510A JP2003057023A (en) 2001-08-15 2001-08-15 Angle calibration apparatus using x-ray polyhedral mirror and angle calibration method using the same

Publications (1)

Publication Number Publication Date
JP2003057023A true JP2003057023A (en) 2003-02-26

Family

ID=19076043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001246510A Pending JP2003057023A (en) 2001-08-15 2001-08-15 Angle calibration apparatus using x-ray polyhedral mirror and angle calibration method using the same

Country Status (1)

Country Link
JP (1) JP2003057023A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112556611A (en) * 2019-09-10 2021-03-26 株式会社三丰 Calibration method for X-ray measuring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112556611A (en) * 2019-09-10 2021-03-26 株式会社三丰 Calibration method for X-ray measuring device

Similar Documents

Publication Publication Date Title
CN102338662B (en) Oblique incidence broadband polarization spectrometer comprising phase element and optical measurement system
US9404872B1 (en) Selectably configurable multiple mode spectroscopic ellipsometry
EP1617210B1 (en) Method and apparatus for X-Ray reflectance measurement
JP2005515465A (en) Spectrometer with reduced polarization and multi-element depolarizer therefor
Kessler et al. Precision comparison of the lattice parameters of silicon monocrystals
CN106871822B (en) Spectrometer capable of measuring micro rotation angle of collimator and measuring method
JP4773899B2 (en) X-ray spectroscopic measurement method and X-ray spectroscopic apparatus
JP4764208B2 (en) Method for evaluating the orientation of polycrystalline materials
JPS63108236A (en) Spectral ellipsometer
TW201947196A (en) Calibration method for correspondence between optical sensing unit of spectrometer and wavelength of optical sensing unit and computer program product for executing calibration method
US20030025915A1 (en) Method for absolute calibration of an interferometer
JP2003057023A (en) Angle calibration apparatus using x-ray polyhedral mirror and angle calibration method using the same
JP2006201167A (en) Positioning device
Brucas et al. Calibration of precision polygon/autocollimator measurement system
Vishnyakov et al. Measuring the refractive index on a goniometer in the dynamic regime
JPH1038694A (en) Ellipsometer
Mielenz et al. Reflection correction for high-accuracy transmittance measurements on filter glasses
JP5208681B2 (en) Calibration method of measurement sensitivity in oblique incidence interferometer
JPH05273120A (en) Polarization analyzer
Murgai et al. PASCAL: Instrument for accurate precise characterization of Lambertian materials
JP2000213999A (en) X-ray stress measuring method
RU2129698C1 (en) X-ray reflectometer
JP3303910B2 (en) Spectrometer calibration or inspection method
Berger et al. Application of the/spl Omega/scan to the sorting of doubly rotated quartz blanks
JP2021124465A (en) Film thickness measurement device and film thickness measurement method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070410