JP4764208B2 - Method for evaluating the orientation of polycrystalline materials - Google Patents

Method for evaluating the orientation of polycrystalline materials Download PDF

Info

Publication number
JP4764208B2
JP4764208B2 JP2006059655A JP2006059655A JP4764208B2 JP 4764208 B2 JP4764208 B2 JP 4764208B2 JP 2006059655 A JP2006059655 A JP 2006059655A JP 2006059655 A JP2006059655 A JP 2006059655A JP 4764208 B2 JP4764208 B2 JP 4764208B2
Authority
JP
Japan
Prior art keywords
diffraction
sample
distribution function
ray
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006059655A
Other languages
Japanese (ja)
Other versions
JP2007240192A (en
Inventor
章宏 姫田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rigaku Corp
Original Assignee
Rigaku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Corp filed Critical Rigaku Corp
Priority to JP2006059655A priority Critical patent/JP4764208B2/en
Publication of JP2007240192A publication Critical patent/JP2007240192A/en
Application granted granted Critical
Publication of JP4764208B2 publication Critical patent/JP4764208B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明はX線回折法を用いて多結晶材料の配向性を評価する方法に関し、特に、配向性を定量的に評価する方法に関する。   The present invention relates to a method for evaluating the orientation of a polycrystalline material using an X-ray diffraction method, and more particularly to a method for quantitatively evaluating the orientation.

X線回折現象を利用して多結晶材料の配向性を評価する手法としては,ロッキングカーブの半価幅を測定して定性的に評価する手法や,定量的な手法としては,極点測定を用いて配向分布関数(ODF)を算出する手法がある。   The X-ray diffraction phenomenon is used to evaluate the orientation of polycrystalline materials. The method is to qualitatively measure the half-width of the rocking curve, and the quantitative method is pole measurement. There is a method for calculating an orientation distribution function (ODF).

前者の半価幅を求める手法は,配向性を定量的に把握できないことと,ロッキングカーブでピークにならないような弱い配向については評価できないという問題がある。それでも,実際的な手法として,同一測定装置の同一測定条件で多数の試料を測定して,得られた半価幅を相対的に比較することが行われてきたが,別の装置や異なる測定条件で求められた半価幅との比較は困難である。その理由は,半価幅の値が測定光学系の違いによって差異が生じ,絶対値に信頼性が乏しいためである。   The former method for obtaining the half-value width has a problem that the orientation cannot be quantitatively grasped and a weak orientation that does not become a peak in the rocking curve cannot be evaluated. Nevertheless, as a practical method, many samples have been measured under the same measurement conditions using the same measurement device, and the obtained half-value widths have been relatively compared. It is difficult to compare with the half-value width obtained under the conditions. The reason is that the half-value width varies depending on the measurement optical system, and the absolute value is not reliable.

後者の極点測定には,χ(カイ)軸を持った複雑なゴニオメータが必要であり,また,測定に時間がかかるという問題がある。また,この場合も,弱い配向の評価においては,X線照射面積の補正やバックグラウンドの算出が複雑な点から,その定量性評価は困難であった。   The latter extreme point measurement requires a complicated goniometer with a chi-axis and has a problem that the measurement takes time. In this case as well, in the evaluation of weak orientation, it is difficult to evaluate the quantitativeness because the correction of the X-ray irradiation area and the calculation of the background are complicated.

そこで,定量的な配向性評価が可能な手法として,次の特許文献1に記載された評価方法が開発された。
特開2004−45369号公報
Therefore, an evaluation method described in the following Patent Document 1 has been developed as a method capable of quantitative orientation evaluation.
JP 2004-45369 A

この特許文献1に記載された評価方法は,試料の表面の法線方向のまわりに軸対称となる配向密度分布関数(関数の形を特徴づける特性パラメータを含んでいる)を仮定して,この配向密度分布関数に基づいて理論的な回折X線強度を求めている。そして,特性パラメータを含む理論ロッキングカーブが,測定ロッキングカーブに最も近づくように,特性パラメータを定めている。これにより,試料の配向状態を定量的に評価することが可能になった。   The evaluation method described in Patent Document 1 assumes an orientation density distribution function (including characteristic parameters characterizing the shape of the function) that is axially symmetric around the normal direction of the surface of the sample. The theoretical diffraction X-ray intensity is obtained based on the orientation density distribution function. The characteristic parameters are determined so that the theoretical rocking curve including the characteristic parameters is closest to the measured rocking curve. As a result, the orientation state of the sample can be quantitatively evaluated.

上述の特許文献1に記載された評価方法は配向密度分布関数というものを用いているが,この配向密度関数は,「試料の結晶子の被測定格子面の法線が試料の表面の法線に対して傾斜する角度φ」についての関数である。ここで,「試料の結晶子の被測定格子面」とは,回折に寄与する格子面(以下,回折面という)のことである。この回折面の法線が試料表面の法線に一致しているときが,傾斜角度φ=ゼロである。配向密度分布関数としてガウス関数を想定すると,このガウス関数は,回折面の傾斜角度φ=ゼロのときに,最も配向密度が高く,傾斜角度φが大きくなるにつれて,配向密度が減少していく。   The evaluation method described in the above-mentioned Patent Document 1 uses an orientation density distribution function. This orientation density function indicates that the normal line of the measured lattice plane of the sample crystallite is the normal line of the sample surface. It is a function for the angle “tilt with respect to”. Here, the “lattice surface to be measured of the crystallite of the sample” refers to a lattice surface that contributes to diffraction (hereinafter referred to as a diffraction surface). When the normal of the diffraction surface coincides with the normal of the sample surface, the tilt angle φ is zero. Assuming a Gaussian function as the orientation density distribution function, this Gaussian function has the highest orientation density when the tilt angle φ of the diffraction surface is zero, and the orientation density decreases as the tilt angle φ increases.

しかしながら,現実の回折現象を考えると,回折X線強度が傾斜角度φに依存する状況は,次の二つの点で,ガウス関数とは異なっている。   However, considering the actual diffraction phenomenon, the situation where the diffraction X-ray intensity depends on the tilt angle φ differs from the Gaussian function in the following two points.

第1の点は周期性の有無である。現実の回折現象では,傾斜角度φが360度(2πラジアン)になれば,すなわち,回折面が1回転して元に戻ってくれば,φが0度のときと同じ回折強度になる。これに対して,ガウス関数では,φが360度になっても,関数の値は減少したままであり,φが0度のときの値には戻らない。すなわち,現実の回折現象では,回折X線強度は2πラジアンの周期をもった周期性を示すが,ガウス関数はそのような周期性を備えていない。   The first point is the presence or absence of periodicity. In an actual diffraction phenomenon, if the tilt angle φ is 360 degrees (2π radians), that is, if the diffraction surface rotates once and returns, the diffraction intensity becomes the same as when φ is 0 degrees. On the other hand, in the Gaussian function, even when φ reaches 360 degrees, the value of the function remains reduced and does not return to the value when φ is 0 degrees. That is, in the actual diffraction phenomenon, the diffracted X-ray intensity exhibits periodicity with a period of 2π radians, but the Gaussian function does not have such periodicity.

第2の点は結晶の対称性に起因する回折ピークの重なりの有無である。現実の回折現象では,考慮している回折面とは異なるミラー指数をもつ別の回折面も,同じ回折角度で回折現象を起こすことがある。すなわち,ミラー指数が異なる等価な回折面が存在する。したがって,現実には,傾斜角度φを変化させていって,特定の回折角度で回折X線を測定していくと,等価な回折面からの回折X線強度が重なり合って検出されることになる。結晶系の対称性が最も低い結晶であっても,φ=180度のところでは,考慮している回折面とは反対のミラー指数をもつ別の回折面からの回折現象が生じるはずである。ガウス関数は,このような結晶の対称性に起因する回折X線の重なりは考慮していない。六方晶や立方晶などの対称性の高い結晶では,等価な回折面が多くなり,考慮している回折面のミラー指数にもよるが,傾斜角度φが60度や90度のところにも回折ピークが現れることがある。   The second point is the presence or absence of overlapping of diffraction peaks due to crystal symmetry. In the actual diffraction phenomenon, another diffraction surface having a mirror index different from that of the considered diffraction surface may cause the diffraction phenomenon at the same diffraction angle. That is, there are equivalent diffractive surfaces with different Miller indices. Therefore, in reality, when the diffracted X-ray is measured at a specific diffraction angle while the inclination angle φ is changed, the diffracted X-ray intensities from the equivalent diffracting surfaces are detected in an overlapping manner. . Even if the crystal system has the lowest symmetry, a diffraction phenomenon from another diffractive surface having a mirror index opposite to the considered diffractive surface should occur at φ = 180 degrees. The Gaussian function does not take into account the overlap of diffracted X-rays caused by such crystal symmetry. In crystals with high symmetry such as hexagonal crystals and cubic crystals, the number of equivalent diffractive surfaces increases, and depending on the Miller index of the diffractive surface being considered, it is also diffracted when the tilt angle φ is 60 or 90 degrees. A peak may appear.

上述の二つの相違点が存在するので,配向密度分布関数として単純にガウス関数を選択すると,理論ロッキングカーブと測定ロッキングカーブとは,傾斜角度φが大きくなるにつれて,原理的に,一致しなくなってくる。したがって,特に配向度の低い試料(傾斜角度φが大きいところまで回折X線強度が広がっている試料)については,配向性の定量的な評価についての信頼性が乏しくなる。   Since the above two differences exist, when the Gaussian function is simply selected as the orientation density distribution function, the theoretical rocking curve and the measured rocking curve are not consistent in principle as the tilt angle φ increases. come. Therefore, the reliability of the quantitative evaluation of the orientation is poor particularly for a sample with a low degree of orientation (a sample in which the diffraction X-ray intensity spreads to a point where the inclination angle φ is large).

この発明は上述の問題点を解決するためになされたものであり、その目的は、配向密度分布関数に適切な周期性をもたせて,かつ,回折面(被測定格子面)の対称性を考慮することで,傾斜角度φが大きいところでも,配向性の定量的な評価についての信頼性が向上するような,多結晶材料の配向性の評価方法を提供することにある。   The present invention has been made in order to solve the above-mentioned problems, and an object of the present invention is to give an appropriate periodicity to the orientation density distribution function and to take into consideration the symmetry of the diffraction surface (lattice surface to be measured). Thus, an object of the present invention is to provide a method for evaluating the orientation of a polycrystalline material so that the reliability of quantitative evaluation of the orientation is improved even when the inclination angle φ is large.

この発明の多結晶材料の配向性の評価方法は,次の(a)乃至(d)の段階を備えている。(a)多結晶材料からなる試料の表面の法線方向のまわりに軸対称となる回折面法線分布関数Pを仮定する段階。この回折面法線分布関数Pは,(a1)試料の結晶子の被測定格子面の法線が試料の表面の法線に対して傾斜する角度φについての配向密度分布関数ρを,前記傾斜角度φについて2πラジアンの周期で周期化したものであり,(a2)前記周期化した配向密度分布関数ρを,前記被測定格子面とその等価な格子面とについて足し合わせたものであり,かつ,(a3)関数の形を特徴づける特性パラメータを含んでいる。(b)試料の表面に対して入射角αでX線を入射して,試料の前記被測定格子面で反射した回折X線の強度を測定し,入射角αを変化させて前記被測定格子面からの回折X線の強度の変化を求めて,測定ロッキングカーブを得る段階。前記被測定格子面からの回折X線は入射X線に対して角度2θ0をなし,前記入射角αはα=θ0+φの関係となる。(c)前記回折面法線分布関数Pに基づいて理論的な回折X線強度を計算し,前記特性パラメータを含んだ状態での理論ロッキングカーブを求める段階。(d)前記理論ロッキングカーブが前記測定ロッキングカーブに最も近づくように前記特性パラメータを定め,これによって前記回折面法線分布関数Pを決定する段階。 The method for evaluating the orientation of a polycrystalline material according to the present invention comprises the following steps (a) to (d). (A) A step of assuming a diffraction surface normal distribution function P that is axially symmetric around the normal direction of the surface of the sample made of the polycrystalline material. This diffraction surface normal distribution function P is obtained by (a1) expressing the orientation density distribution function ρ at an angle φ at which the normal of the measured lattice plane of the crystallite of the sample is inclined with respect to the normal of the surface of the sample. The angle φ is periodic with a period of 2π radians, (a2) the periodic orientation density distribution function ρ is added to the measured lattice plane and its equivalent lattice plane , and , (A3) includes characteristic parameters that characterize the shape of the function. (B) An X-ray is incident on the surface of the sample at an incident angle α, the intensity of the diffracted X-ray reflected from the measured grating surface of the sample is measured, and the incident angle α is changed to change the measured grating. Obtaining the measurement rocking curve by determining the change in the intensity of the diffracted X-ray from the surface. The diffracted X-ray from the measured grating surface forms an angle 2θ0 with respect to the incident X-ray, and the incident angle α has a relationship of α = θ0 + φ. (C) calculating a theoretical diffracted X-ray intensity based on the diffractive surface normal distribution function P, and obtaining a theoretical rocking curve in a state including the characteristic parameter. (D) determining the characteristic parameter so that the theoretical rocking curve is closest to the measured rocking curve, thereby determining the diffraction surface normal distribution function P;

回折面法線分布関数Pとして,上述のように,配向密度分布関数を周期化し,かつ,その配向密度分布関数を被測定格子面とその等価な格子面とについて足し合わせたものを用いることにより,この回折面法線密度分布関数Pに基づいて理論的な回折X線強度分布を計算すると,そのロッキングカーブは,現実の回折現象を良く反映したものになる。そのようにして得られた理論ロッキングカーブを測定ロッキングカーブにフィッティングさせて特性パラメータを求めれば,配向性の定量評価の信頼性が向上する。 As described above, the diffraction surface normal distribution function P is obtained by periodicizing the orientation density distribution function and adding the orientation density distribution function to the measured lattice plane and its equivalent lattice plane as described above. When the theoretical diffraction X-ray intensity distribution is calculated based on the diffraction surface normal density distribution function P, the rocking curve well reflects the actual diffraction phenomenon. By fitting the theoretical rocking curve thus obtained to the measured rocking curve and obtaining the characteristic parameters, the reliability of quantitative evaluation of orientation is improved.

なお,測定ロッキングカーブを求める段階では,測定値を実際に曲線でつなげることを必要とするものではなく,理論ロッキングカーブとのフィッティング作業が可能な測定データがあれば足りる。したがって,離散値の測定データで足りる。   Note that at the stage of obtaining the measurement rocking curve, it is not necessary to actually connect the measured values with the curve, and it is sufficient if there is measurement data that can be fitted to the theoretical rocking curve. Therefore, discrete measurement data is sufficient.

この発明の多結晶材料の配向性の評価方法は,配向密度分布関数を周期化し,かつ、その配向密度分布関数を被測定格子面とその等価な格子面とについて足し合わせて回折面法線分布関数を作り,その回折面法線分布関数に基づいて理論ロッキングカーブを求めているので,配向密度分布関数をそのまま用いていた従来方法に比べて,理論ロッキングカーブが現実の回折現象をより忠実に反映するようになり,配向性の定量評価の信頼性がさらに向上する。 The method for evaluating the orientation of the polycrystalline material according to the present invention includes a periodic distribution of the orientation density distribution function and the addition of the orientation density distribution function with respect to the measured grating plane and its equivalent grating plane to the diffraction plane normal distribution. Since the theoretical rocking curve is calculated based on the diffraction surface normal distribution function, the theoretical rocking curve is more faithful to the actual diffraction phenomenon than the conventional method using the orientation density distribution function as it is. This improves the reliability of quantitative evaluation of orientation.

以下,本発明の実施例を,図面を参照して詳しく説明する。まず,測定ロッキングカーブを求める方法を説明する。図1は本発明を実施するためのX線回折装置のひとつの実施例を示す平面図である。平行X線ビームからなる入射X線10は,試料12の表面に対して入射角αで入射し,試料12で反射した回折X線14は受光スリット16とソーラースリット18を通過し,結晶アナライザー19(Ge(111))を経て,X線検出器20で検出される。すなわち,このX線回折装置は平行ビーム法である。ソーラースリット18に加えて,結晶アナライザー19を用いることにより,より高い分解能を実現している。なお,後述する測定例では,X線源としてシンクロトロン放射光とX線管の2種類を使っているが,シンクロトロン放射光を使った場合だけ,図1に示すとおり,結晶アナライザー19を用いている。X線管を使った場合は,結晶アナライザー19を省略して,ソーラースリット18から出たX線をそのままX線検出器20に入射させている。X線管を使った場合は,結晶アナライザー19を用いると十分なX線検出強度が得られないためである。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. First, a method for obtaining a measurement rocking curve will be described. FIG. 1 is a plan view showing one embodiment of an X-ray diffraction apparatus for carrying out the present invention. The incident X-ray 10 formed of a parallel X-ray beam is incident on the surface of the sample 12 at an incident angle α, and the diffracted X-ray 14 reflected by the sample 12 passes through the light receiving slit 16 and the solar slit 18 to be crystal analyzer 19 It is detected by the X-ray detector 20 via (Ge (111)). That is, this X-ray diffractometer is a parallel beam method. By using a crystal analyzer 19 in addition to the solar slit 18, higher resolution is realized. In the measurement examples described later, two types of synchrotron radiation and X-ray tube are used as the X-ray source. However, only when synchrotron radiation is used, a crystal analyzer 19 is used as shown in FIG. ing. When an X-ray tube is used, the crystal analyzer 19 is omitted and the X-rays emitted from the solar slit 18 are directly incident on the X-ray detector 20. This is because when an X-ray tube is used, sufficient X-ray detection intensity cannot be obtained when the crystal analyzer 19 is used.

受光系(受光スリット16,ソーラースリット18,結晶アナライザー19,X線検出器20)は入射X線10に対して2θ0の角度の位置に配置される。試料12の被測定格子面のブラッグ角(入射X線10の波長に依存する)はθ0である。試料12は試料回転台22に載っており,この試料回転台22はゴニオメータ中心24(図1の紙面に垂直である)の回りに回転できる。また,試料12は水平な回転軸28(ゴニオメータ中心24に対して垂直である)の回りに回転できる。すなわち,試料12は面内回転が可能である。受光系は検出器回転台26に載っており,この検出器回転台26もゴニオメータ中心24の回りに回転できる。 The light receiving system (light receiving slit 16, solar slit 18, crystal analyzer 19, X-ray detector 20) is disposed at an angle of 2θ 0 with respect to the incident X-ray 10. The Bragg angle (depending on the wavelength of the incident X-ray 10) of the measurement surface of the sample 12 is θ 0 . The sample 12 is placed on a sample turntable 22, and the sample turntable 22 can rotate around a goniometer center 24 (perpendicular to the paper surface of FIG. 1). Also, the sample 12 can rotate about a horizontal rotation axis 28 (perpendicular to the goniometer center 24). That is, the sample 12 can be rotated in the plane. The light receiving system is mounted on a detector turntable 26, and this detector turntable 26 can also rotate around the goniometer center 24.

試料12の被測定格子面を決定し,使用するX線の波長を決定すれば,上述のブラッグ角θ0が定まる。図2(A)において,入射角αをθ0に等しくすれば,回折に寄与する被測定格子面30は試料12の表面に平行となる。当然ながら,被測定格子面30の法線は試料表面の法線と平行になる。換言すれば,試料表面に平行な被測定格子面を有する結晶子だけが回折に寄与する。そして,そのような結晶子からの回折X線14が検出される。一方,図2(B)において,試料12を角度φだけ回転させて入射角α=θ0+φにすると,被測定格子面30が試料表面に対して角度φだけ傾斜しているような結晶子だけが回折に寄与することになる。このように,検出器を2θ0の位置に固定しておいて試料12を回転させると,入射角αが変わり,それぞれの傾斜角φに相当する結晶子(すなわち,試料表面に対して角度φだけ配向している結晶子)からの回折X線強度情報が得られる。 If the measurement lattice plane of the sample 12 is determined and the wavelength of the X-ray to be used is determined, the aforementioned Bragg angle θ 0 is determined. In FIG. 2A, when the incident angle α is made equal to θ 0 , the measured grating surface 30 that contributes to diffraction is parallel to the surface of the sample 12. Naturally, the normal line of the measured grating surface 30 is parallel to the normal line of the sample surface. In other words, only crystallites having a measured lattice plane parallel to the sample surface contribute to diffraction. Then, the diffracted X-ray 14 from such a crystallite is detected. On the other hand, in FIG. 2B, when the sample 12 is rotated by an angle φ so that the incident angle α = θ 0 + φ, the crystallite in which the measured lattice plane 30 is inclined by the angle φ with respect to the sample surface. Only contributes to diffraction. Thus, when the sample 12 is rotated with the detector fixed at the position of 2θ 0 , the incident angle α changes, and the crystallites corresponding to the respective inclination angles φ (ie, the angle φ relative to the sample surface). Diffracted X-ray intensity information from crystallites that are only oriented.

ところで,本発明は,試料表面の法線方向のまわりに軸対称となる配向密度分布関数ρを仮定しているので,回折強度の測定にあたっては,試料を面内回転させている。こうすることにより,理論ロッキングカーブと測定ロッキングカーブとの比較が可能になる。なお,試料の配向性がもともと軸対称であることが予想される場合は,試料を面内回転させなくてもよい。   By the way, the present invention assumes an orientation density distribution function ρ that is axially symmetric around the normal direction of the sample surface. Therefore, in measuring the diffraction intensity, the sample is rotated in-plane. This makes it possible to compare the theoretical rocking curve with the measured rocking curve. Note that if it is expected that the orientation of the sample is originally axially symmetric, the sample need not be rotated in-plane.

上述のように,検出器の位置を2θ0に固定して,入射角αを変えて回折X線強度Iを測定すれば,α−Iのロッキングカーブが得られる。なお,回折X線強度を正確に求めるには,回折ピークの積分強度を求めるのが好ましい。積分強度を求めることについては,上述の特許文献1に記載されている。 As described above, if the position of the detector is fixed at 2θ 0 and the diffraction X-ray intensity I is measured by changing the incident angle α, a rocking curve of α-I can be obtained. In order to accurately determine the diffraction X-ray intensity, it is preferable to determine the integrated intensity of the diffraction peak. The calculation of the integrated intensity is described in the above-mentioned Patent Document 1.

次に,理論ロッキングカーブを求める方法を説明する。図3は結晶子の被測定格子面の法線ベクトルnを極座標で表示した斜視図である。試料12の表面上にXY平面を仮定し,試料表面の法線方向をZ軸とする。結晶子の被測定格子面の法線ベクトルnは極座標(φ,ξ)で表すことができる。角度φは,法線ベクトルnがZ軸(試料表面の法線)から傾斜する角度である。角度ξは,法線ベクトルnをXY平面に投影したときのX軸からの方位角である。 Next, a method for obtaining the theoretical rocking curve will be described. FIG. 3 is a perspective view in which the normal vector n of the measurement lattice plane of the crystallite is displayed in polar coordinates. An XY plane is assumed on the surface of the sample 12 , and the normal direction of the sample surface is the Z axis. The normal vector n of the measured lattice plane of the crystallite can be expressed by polar coordinates (φ, ξ). The angle φ is an angle at which the normal vector n is inclined from the Z axis (the normal of the sample surface). The angle ξ is an azimuth angle from the X axis when the normal vector n is projected onto the XY plane.

法線ベクトルnを有する結晶子の配向密度分布関数ρは,一般的に,φとξとzの関数である。zは試料の表面からの深さである。すなわち,ρ=ρ(φ,ξ,z)である。そのような結晶子の存在確率(配向確率)は,図4の(1)式で表される。この配向確率を全方向で積分すると1になるはずであり,それが,(2)式に示すような規格化条件になる。完全にランダムに配向しているような多結晶材料ではρ=一定である。ρがZ軸まわりに軸対称であると仮定すると,ρはξに依存しなくなる。   The orientation density distribution function ρ of a crystallite having a normal vector n is generally a function of φ, ξ, and z. z is the depth from the surface of the sample. That is, ρ = ρ (φ, ξ, z). The existence probability (orientation probability) of such a crystallite is expressed by equation (1) in FIG. If this orientation probability is integrated in all directions, it should be 1, which is a normalization condition as shown in equation (2). For polycrystalline materials that are perfectly randomly oriented, ρ = constant. Assuming that ρ is axisymmetric about the Z axis, ρ does not depend on ξ.

この実施例では,この配向密度分布関数として,φ=2πラジアンの周期で周期化したガウス関数を用いている。周期化したガウス関数は図4の(3)式で表される。(3)式において,Gは規格化因子であり,Hは周期化したガウス関数の半価幅(FWHM)であり,角度の次元をもつ。このHが関数の形を特徴づける特性パラメータとなる。Hが決まれば,ρの関数形が定まり,関数形が定まると,後述するように,理論的な回折X線強度を計算できる。   In this embodiment, a Gaussian function periodicized with a period of φ = 2π radians is used as the orientation density distribution function. The periodic Gaussian function is expressed by equation (3) in FIG. In Equation (3), G is a normalization factor, H is the half width (FWHM) of a periodic Gaussian function, and has an angle dimension. This H becomes a characteristic parameter characterizing the shape of the function. Once H is determined, the function form of ρ is determined, and once the function form is determined, the theoretical diffraction X-ray intensity can be calculated as will be described later.

Nは周期性の多重度に関連する値であり,1ずつ変化する整数である。(3)式は,厳密には,Nが無限大のときに周期関数となる。実際の計算ではNを有限の値にするが,Nをどれぐらいまで大きくしたらよいかは,測定試料の配向度(Hの大きさ)とφの値に依存する。φの範囲は「0〜π」ラジアンなので,(3)式において,k=0,±1,±2,……のように,順次,Σの中の項目を加えていき,kを増加しても(3)式の値がほとんど変化しなくなるところで(例えば,kを増加しても(3)式の値の変化分が10のマイナス5乗より小さくなるところで),kの増加を打ち切っている。   N is a value related to the multiplicity of periodicity, and is an integer that changes by one. Strictly speaking, equation (3) becomes a periodic function when N is infinite. In actual calculations, N is a finite value, but how much N should be increased depends on the degree of orientation of the measurement sample (the magnitude of H) and the value of φ. Since the range of φ is “0 to π” radians, in Eq. (3), items in Σ are added sequentially as k = 0, ± 1, ± 2,. However, when the value of the expression (3) hardly changes (for example, even if k is increased, the change of the value of the expression (3) becomes smaller than 10 minus 5), the increase of k is discontinued. Yes.

Hは試料表面からの深さzに依存すると仮定しているので,H(z)と表現している。このHは,深さzに依存しないものとして取り扱うこともできる。GはHの関数であり,図5の(4)〜(6)式で計算できる。Hが十分大きいとき,すなわち,配向性がほとんどないときは,Gは(7)式のようになり,このとき,配向密度分布関数ρは(8)式のようになって,無配向モデルに連続的に移行する。無配向のときは,配向密度分布関数ρは,傾斜角度φに依存しない一様な定数(1/4π)となる。   Since H is assumed to depend on the depth z from the sample surface, it is expressed as H (z). This H can also be handled as not depending on the depth z. G is a function of H and can be calculated by the equations (4) to (6) in FIG. When H is sufficiently large, that is, when there is almost no orientation, G becomes as shown in Equation (7), and at this time, the orientation density distribution function ρ becomes as shown in Equation (8) and becomes an unoriented model. Transition continuously. When there is no orientation, the orientation density distribution function ρ is a uniform constant (1 / 4π) independent of the tilt angle φ.

図6は,周期化したガウス関数を用いた配向密度分布関数ρのグラフである。Hの大きさをパラメータとして,横軸に傾斜角度φを,縦軸に関数ρの値をとっている。Hが大きくなるにつれて,関数ρが無配向に近づく様子がよくわかる。Hを無限大にすると,ρはφに依存せずに,一定の値(1/4π)になる。   FIG. 6 is a graph of the orientation density distribution function ρ using a periodic Gaussian function. Using the magnitude of H as a parameter, the horizontal axis represents the inclination angle φ and the vertical axis represents the value of the function ρ. It can be clearly seen that the function ρ approaches non-orientation as H increases. When H is infinite, ρ does not depend on φ and becomes a constant value (1 / 4π).

次に,現実の回折現象を考える。回折X線は,回折角が等しい全ての回折面(すなわち,格子面間隔が等しい全ての回折面)から観測される。したがって,現実の回折X線強度に反映されるものは,ミラー指数が異なっていて同一の回折角を有する全ての回折面(等価な回折面)の配向密度分布を重ね合わせたもの(すなわち、足し合わせたもの)(これを,以下,回折面法線分布と呼ぶ)である。図6のグラフに示した関数は,ひとつのミラー指数の回折面についての,周期化した配向密度分布関数ρである。回折面法線分布関数Pは,試料の結晶系がどのようなものか(六方晶か立方晶かなど),そして,測定対象とする回折面(被測定格子面)のミラー指数が何であるのか,に依存する。それによって,測定対象とする回折面に等価な回折面(ミラー指数が異なっていて回折角が等しい回折面)が,何個存在していて,それらが傾斜角度φのどこに出現するか,が決まるからである。回折面法線分布関数Pは,それらの等価な回折面についての配向密度分布関数ρを足し合わせたものになる。ゆえに,現実の回折現象を反映する回折面法線分布関数Pは,試料の結晶系と,測定対称の回折面のミラー指数とを指定することで,初めて,求めることができる。以下,結晶系とミラー指数を指定して,回折面法線分布関数Pの形を説明する。 Next, consider the actual diffraction phenomenon. Diffracted X-rays are observed from all diffractive surfaces having the same diffraction angle (that is, all diffractive surfaces having the same lattice plane spacing). Therefore, what is reflected in the actual diffracted X-ray intensity is a superposition of orientation density distributions of all diffractive surfaces (equivalent diffractive surfaces) having different Miller indices and having the same diffraction angle (ie, addition). the combined one) (this is hereinafter is referred to as a diffraction plane normal distribution). The function shown in the graph of FIG. 6 is a periodic orientation density distribution function ρ for a diffractive surface of one Miller index. The diffractive surface normal distribution function P is what the crystal system of the sample is (such as hexagonal or cubic), and what is the Miller index of the diffractive surface to be measured (measured grating surface) , Depends on This determines how many diffractive surfaces (diffractive surfaces with different Miller indices and equal diffraction angles) are present, and where they appear at the tilt angle φ. Because. The diffractive surface normal distribution function P is the sum of the orientation density distribution functions ρ for those equivalent diffractive surfaces. Therefore, the diffractive surface normal distribution function P reflecting the actual diffraction phenomenon can be obtained for the first time by specifying the crystal system of the sample and the mirror index of the diffractive surface of measurement symmetry. The shape of the diffraction surface normal distribution function P will be described below by designating the crystal system and Miller index.

第1の例は,試料の結晶系が六方晶であって,(001)面の法線が試料面法線方向を向く確率が高くなっているように配向している試料である。すなわち,(001)面が試料の表面に平行になるような配向性を備える試料である。その配向性の程度が,強く配向しているものか,弱く配向しているものかを,定量的に評価するために,回折面法線分布関数Pを求めるものである。   The first example is a sample in which the crystal system of the sample is a hexagonal crystal, and the (001) plane normal is oriented so that there is a high probability of facing the sample plane normal direction. That is, the sample has an orientation such that the (001) plane is parallel to the surface of the sample. In order to quantitatively evaluate whether the degree of orientation is strongly oriented or weakly oriented, a diffractive surface normal distribution function P is obtained.

(001)面に等価な回折面は,ほかに,(00−1)がある。なお,ミラー指数の表現方法として,マイナス符号は,マイナス符号の右側にある数字に付いているもの,と理解する。(001)面がφ=0度の位置にあるときは,(00−1)面はφ=180度(πラジアン)の位置にある。これらの二つの等価な回折面から生じる回折現象についての回折面法線分布関数P(φ,z)は,(001)面の配向密度分布関数ρと,(00−1)面の配向密度分布関数ρ(πラジアンだけずれている)を,互いに重ね合わせたものになり,図7の(9)式のようになる。回折面法線分布は,試料表面の法線方向のまわりに軸対称であると仮定しているので,方位角ξには依存しない。全方位で回折面法線分布関数Pを積分すると,(10)式が成立する。   Another diffraction plane equivalent to the (001) plane is (00-1). It should be understood that the minus sign is attached to the number on the right side of the minus sign as a method of expressing the Miller index. When the (001) plane is at a position of φ = 0 degrees, the (00-1) plane is at a position of φ = 180 degrees (π radians). The diffraction surface normal distribution function P (φ, z) for the diffraction phenomenon arising from these two equivalent diffraction surfaces is the (001) plane orientation density distribution function ρ and the (00-1) plane orientation density distribution. Functions ρ (shifted by π radians) are superimposed on each other, as shown in equation (9) in FIG. The diffractive surface normal distribution is assumed to be axially symmetric around the normal direction of the sample surface and therefore does not depend on the azimuth angle ξ. When the diffractive surface normal distribution function P is integrated in all directions, Equation (10) is established.

図8は上述の(9)式の回折面法線分布関数Pをグラフに描いたものである。このグラフは,φ=0度におけるピークのほかに,φ=180度のところにもピークを持っている。図6の配向密度分布関数ρのグラフと比較すると,その違いがよくわかる。図8のグラフでは,H=180度で,すでに,無配向モデル,ρ=(1/2π),に近づいている。これに対して,図6のグラフでは,H=180度では,まだ,無配向モデル,ρ=(1/4π),からは離れている。   FIG. 8 is a graph showing the diffractive surface normal distribution function P of the above equation (9). This graph has a peak at φ = 180 degrees in addition to a peak at φ = 0 degrees. Compared with the graph of the orientation density distribution function ρ in FIG. In the graph of FIG. 8, H = 180 degrees, and it is already approaching the non-oriented model, ρ = (1 / 2π). On the other hand, in the graph of FIG. 6, at H = 180 degrees, it is still far from the non-oriented model, ρ = (1 / 4π).

現実の回折現象を考えてみると,上述のように六方晶の(001)面が試料表面に平行になっているような試料を想定した場合,φ=0度で回折ピークが現れて,かつ,φ=180度のところでも回折ピークが現れる(試料ホルダー等がX線の邪魔をしなければ,の話であるが)。したがって,図8のグラフのような回折面法線分布関数Pの方が,図6の配向密度分布関数ρよりも,現実の回折現象をうまく表していることになる。   Considering the actual diffraction phenomenon, when a sample having a hexagonal (001) plane parallel to the sample surface as described above is assumed, a diffraction peak appears at φ = 0 degrees, and , A diffraction peak also appears at φ = 180 degrees (if the sample holder or the like does not interfere with X-rays). Therefore, the diffraction surface normal distribution function P as shown in the graph of FIG. 8 represents the actual diffraction phenomenon better than the orientation density distribution function ρ of FIG.

結晶系がどのようなものであっても,そして,回折面のミラー指数がどのようなものであっても,その回折面からの回折現象を考えると,最低でも,φ=180度のところに別の回折ピークが存在する。ゆえに,対称性が最も低い回折面であっても,図8に示すような回折面法線分布関数Pのグラフが得られることになる。   Whatever the crystal system and what the Miller index of the diffractive surface is, considering the diffraction phenomenon from the diffractive surface, at least at φ = 180 degrees There is another diffraction peak. Therefore, even for the diffraction surface with the lowest symmetry, a graph of the diffraction surface normal distribution function P as shown in FIG. 8 is obtained.

次に,回折面法線分布関数Pから,理論的な回折X線強度(理論ロッキングカーブ)を求める方法を説明する。回折X線強度Iは,図7の(11)式で求めることができる。回折X線強度Iは入射角α(図2を参照)に依存して変化する。(11)式の右辺中のCは入射角αに依存しない定数部分である。定数Cはロッキングカーブの形には影響を与えずに,ロッキングカーブ全体の強度に影響を与えるだけである。tは薄膜試料からの回折X線を測定すると仮定した場合の薄膜試料の厚さ,θ0はブラッグ角,zは試料表面からの深さ,μは試料の線吸収係数である。また,αは入射角度であって,α=θ0+φ,βは出射角度であって,β=θ0−φである。 Next, a method for obtaining the theoretical diffraction X-ray intensity (theoretical rocking curve) from the diffraction surface normal distribution function P will be described. The diffracted X-ray intensity I can be obtained by equation (11) in FIG. The diffracted X-ray intensity I varies depending on the incident angle α (see FIG. 2). C in the right side of the equation (11) is a constant part that does not depend on the incident angle α. The constant C does not affect the shape of the rocking curve, but only affects the strength of the entire rocking curve. t is the thickness of the thin film sample when it is assumed to measure diffracted X-rays from the thin film sample, θ 0 is the Bragg angle, z is the depth from the sample surface, and μ is the linear absorption coefficient of the sample. Α is an incident angle, α = θ 0 + φ, β is an emission angle, and β = θ 0 −φ.

試料の結晶系及び回折面が別の種類のものになっても,(11)式中の回折面法線分布関数Pの関数形が異なるだけであり,(11)式自体は共通である。したがって,以下の説明では,試料の結晶系と回折面が異なると,回折面法線分布関数Pの関数形がどのように異なるかを中心に説明する。   Even if the crystal system and the diffraction surface of the sample are different types, only the function form of the diffraction surface normal distribution function P in the equation (11) is different, and the equation (11) itself is common. Therefore, the following description will focus on how the functional form of the diffraction surface normal distribution function P differs when the crystal system of the sample and the diffraction surface are different.

第2の例は,試料の結晶系が立方晶であって,(111)面の法線が試料面法線方向を向く確率が高くなっているように配向している試料である。この(111)面に等価な回折面は,それ自身を含めて8個あり,ほかに,(−1−1−1),(11−1),(1−11),(−111),(−1−11),(−11−1),(1−1−1)がある。(111)面がφ=0度の向きにある場合,(−1−1−1)面はφ=πラジアンの向きにある。(11−1),(1−11),(−111)の三つの面はφ=70.5度の向きにあり,(−1−11),(−11−1),(1−1−1)の三つの面はφ=109.5度の向きにある。これらの8個の等価な回折面から生じる回折現象についての回折面法線分布関数P(φ,z)は,図9の(12)式のようになる。(12)式中のρ(111)とρ(11-1)は,図10の(13)式と(14)式で表される。(13)式中のG(111)と(14)式中のG(11-1)は,図11の(15)式と(16)式で表される。 The second example is a sample in which the crystal system of the sample is cubic and oriented so that the normal of the (111) plane is high in the sample surface normal direction. There are eight diffractive surfaces equivalent to the (111) plane, including itself. In addition, (-1-1-1), (11-1), (1-11), (-111), (-1-11), (-11-1), and (1-1-1). When the (111) plane is oriented at φ = 0 degrees, the (-1-1-1) plane is oriented at φ = π radians. The three planes (11-1), (1-11), and (−111) are oriented at φ = 70.5 degrees, and (−1-11), (-11-1), (1-1 The three planes of -1) are oriented at φ = 109.5 degrees. The diffraction surface normal distribution function P (φ, z) for the diffraction phenomenon generated from these eight equivalent diffraction surfaces is expressed by the equation (12) in FIG. Ρ (111) and ρ (11-1) in the equation (12) are expressed by the equations (13) and (14) in FIG. G (111) in the equation (13) and G (11-1) in the equation (14 ) are expressed by the equations (15) and (16) in FIG.

図12は上述の(12)式の回折面法線分布関数Pをグラフに描いたものである。このグラフは,Hが小さいところ(配向度が強いところ)では,φ=0度におけるピークのほかに,φ=70.5度と,φ=109.5度と,φ=180度のところにもピークを持っている。H=30度ぐらいになると,φ=0度のピークをもつ分布と,φ=70.5度のピークをもつ分布が,互いに重なるようになる。H=90度になると,回折ピークの重なりを反映して,全体の分布がφ=90度を中心とした,なだらかなピークとなり,その後,Hが増えるにつれて,無配向モデル,ρ=2/π,に近づいていく。   FIG. 12 is a graph showing the diffractive surface normal distribution function P of the above equation (12). This graph shows that when H is small (the degree of orientation is strong), in addition to the peak at φ = 0 °, φ = 70.5 °, φ = 109.5 °, and φ = 180 °. Even has a peak. When H = about 30 degrees, a distribution having a peak of φ = 0 degrees and a distribution having a peak of φ = 70.5 degrees overlap each other. When H = 90 degrees, reflecting the overlap of diffraction peaks, the overall distribution becomes a gentle peak centered at φ = 90 degrees, and thereafter, as H increases, the non-oriented model, ρ = 2 / π , Approaching.

第3の例は,試料の結晶系が立方晶であって,(110)面の法線が試料面法線方向を向く確率が高くなっているように配向している試料である。この(110)面に等価な回折面は,それ自身を含めて12個あり,ほかに,(−1−10),(101),(10−1),(011),(01−1),(1−10),(−110),(−101),(−10−1),(0−11),(0−1−1)がある。(110)面がφ=0度の向きにある場合,(−1−10)面はφ=πラジアンの向きにある。(101),(10−1),(011),(01−1)の四つの面はφ=60度の向きにあり,(1−10),(−110)の二つの面はφ=π/2ラジアン(90度)の向きにあり,(−101),(−10−1),(0−11),(0−1−1)の四つの面はφ=120度の向きにある。これらの12個の等価な回折面から生じる回折現象についての回折面法線分布関数P(φ,z)は,図13の(17)式のようになる。(17)式中のρ(110),ρ(101)及びρ(1-10)は,図14の(18)式,(19)式及び(20)式で表される。(18)〜(20)式中の規格化因子G(111),G(101)及びG(1-10)は,図11の(15)式及び(16)式と同様の手法で求めることができる。 The third example is a sample in which the crystal system of the sample is cubic and oriented so that the normal of the (110) plane is high in the sample surface normal direction. There are twelve diffractive surfaces equivalent to the (110) plane including itself, and in addition, (-1-10), (101), (10-1), (011), (01-1) , (1-10), (−110), (−101), (−10-1), (0-11), and (0-1-1). When the (110) plane is oriented at φ = 0 degrees, the (−1-10) plane is oriented at φ = π radians. The four surfaces (101), (10-1), (011), and (01-1) are oriented at φ = 60 degrees, and the two surfaces (1-10) and (−110) are φ = It is in the direction of π / 2 radians (90 degrees), and the four surfaces (−101), (−10-1), (0-11), and (0-1-1) are in the direction of φ = 120 degrees. is there. The diffraction surface normal distribution function P (φ, z) for the diffraction phenomenon generated from these 12 equivalent diffraction surfaces is expressed by equation (17) in FIG. Ρ (110) , ρ (101), and ρ (1-10) in the equation (17) are expressed by the equations (18), (19), and (20) in FIG. Normalization factors G (111) , G (101) and G (1-10 ) in equations (18) to (20) should be obtained by the same method as equations (15) and (16) in FIG. Can do.

図15は上述の(17)式の回折面法線分布関数Pをグラフに描いたものである。このグラフは,Hが小さいところ(配向度が強いところ)では,φ=0度におけるピークのほかに,φ=60度,90度,120度,180度のところにもピークを持っている。回折ピークの重なり合いにより,H=60度では,すでに,無配向モデル,ρ=3/π,に近づいている。   FIG. 15 is a graph showing the diffraction surface normal distribution function P of the above-described equation (17). This graph has peaks at φ = 60 °, 90 °, 120 °, and 180 ° in addition to the peak at φ = 0 ° when H is small (where the degree of orientation is strong). Due to the overlapping of diffraction peaks, the non-oriented model, ρ = 3 / π, is already approached at H = 60 degrees.

第4の例は,試料の結晶系が立方晶であって,(100)面の法線が試料面法線方向を向く確率が高くなっているように配向している試料である。この(100)面に等価な回折面は,それ自身を含めて6個あり,ほかに,(−100),(010),(0−10),(001),(00−1)がある。(100)面がφ=0度の向きにある場合,(−100)面はφ=πラジアンの向きにある。(010),(0−10),(001),(00−1)の四つの面はφ=π/2ラジアン(90度)の向きにある。これらの6個の等価な回折面から生じる回折現象についての回折面法線分布関数P(φ,z)は,図16の(21)式のようになる。(21)式中のρ(100)とρ(010)は,図17の(22)式と(23)式で表される。(22)式と(23)式中の規格化因子G(100)とG(010)は,図11の(15)式及び(16)式と同様の手法で求めることができる。 The fourth example is a sample in which the crystal system of the sample is cubic and oriented so that the normal of the (100) plane is high in the sample surface normal direction. There are six diffractive surfaces equivalent to the (100) plane, including itself, and there are (-100), (010), (0-10), (001), and (00-1). . When the (100) plane is oriented at φ = 0 degrees, the (−100) plane is oriented at φ = π radians. The four surfaces (010), (0-10), (001), and (00-1) are in the direction of φ = π / 2 radians (90 degrees). A diffraction surface normal distribution function P (φ, z) for a diffraction phenomenon generated from these six equivalent diffraction surfaces is expressed by equation (21) in FIG. Ρ (100) and ρ (010 ) in equation (21) are expressed by equations (22) and (23) in FIG. The normalization factors G (100) and G (010 ) in the equations (22) and (23) can be obtained by the same method as the equations (15) and (16) in FIG.

図18は上述の(21)式の回折面法線分布関数Pをグラフに描いたものである。このグラフは,Hが小さいところ(配向度が強いところ)では,φ=0度におけるピークのほかに,φ=90度,180度のところにもピークを持っている。H=90度では,無配向モデル,ρ=3/(2π),に近づいている。   FIG. 18 is a graph showing the diffraction surface normal distribution function P of the above equation (21). This graph has peaks at φ = 90 ° and 180 ° in addition to the peak at φ = 0 ° when H is small (where the degree of orientation is strong). At H = 90 degrees, it approaches the non-oriented model, ρ = 3 / (2π).

次に,具体的な測定例を説明する。図19はガラス基板上にスパッタリングで成膜した厚さ30nmのAu(金)の多結晶薄膜(結晶系は立方晶)の(111)反射を測定した例であり,X線源としては放射光を使い,波長0.12nmのX線を取り出して用いている。グラフ中の丸印は,それぞれの入射角度αについて,積分強度で求めた回折X線強度である。また,グラフ中の曲線は理論ロッキングカーブであり,図9の(12)式及び図12のグラフに示した回折面法線分布関数を仮定して,図7の(11)式で回折X線強度(ロッキングカーブ)を計算して,この理論ロッキングカーブが測定値に一致するようにガウス分布の半価幅Hを定めたものである。この場合,最小二乗法を用いてカーブフィッティングを行った。測定値と理論カーブが非常に良く一致している。そのときのHは69±4度であった。これは,配向性が非常に弱い結晶である。このように配向性が非常に弱い試料でも,配向度を定量的に評価できる。   Next, a specific measurement example will be described. FIG. 19 shows an example in which (111) reflection of a 30 nm thick Au (gold) polycrystalline thin film (crystal system is cubic) formed by sputtering on a glass substrate is measured. As an X-ray source, synchrotron radiation is used. The X-ray with a wavelength of 0.12 nm is extracted and used. The circles in the graph are the diffracted X-ray intensities obtained by the integrated intensity for each incident angle α. Further, the curve in the graph is a theoretical rocking curve, and the diffraction surface normal distribution function shown in the equation (12) of FIG. 9 and the graph of FIG. 12 is assumed, and the diffraction X-ray is expressed by the equation (11) of FIG. The intensity (rocking curve) is calculated, and the half width H of the Gaussian distribution is determined so that this theoretical rocking curve matches the measured value. In this case, curve fitting was performed using the least square method. The measured value and the theoretical curve agree very well. At that time, H was 69 ± 4 degrees. This is a crystal with very weak orientation. Thus, the degree of orientation can be quantitatively evaluated even with a sample having very weak orientation.

一方,周期化をしていない配向密度分布関数をそのまま用いて理論ロッキングカーブを求めて(すなわち,特許文献1に記載された従来技術を用いて理論ロッキングカーブを求めて),これを,同じ測定ロッキングカーブにフィッティングさせた場合には,Hは81±16度であった。   On the other hand, the theoretical rocking curve is obtained by using the orientation density distribution function without periodicity (that is, the theoretical rocking curve is obtained using the conventional technique described in Patent Document 1), and this is the same measurement. When fitted to a rocking curve, H was 81 ± 16 degrees.

さらに,同じ試料について,CuKα線で測定した測定ロッキングカーブについても,同様に,周期化したガウス関数を用いて理論ロッキングカーブを求めてフィッティングをした場合,Hは68±5度であった。一方,従来技術を用いて理論ロッキングカーブを求めてフィッティングをした場合には,Hは89±25度であった。   Further, with respect to the measurement rocking curve measured with the CuKα ray for the same sample, H was 68 ± 5 ° when fitting was performed by obtaining a theoretical rocking curve using a periodic Gaussian function. On the other hand, when the theoretical rocking curve was obtained using the conventional technique and fitting was performed, H was 89 ± 25 degrees.

以上の配向性評価結果を,図20の一覧表に示す。本発明の方法によれば,従来技術の方法に比べて,取得した半価幅Hの値が小さくなっている。従来技術では,配向密度分布関数の周期性や,等価な回折面による回折ピークの重なりを考慮していないので,理論ロッキングカーブは現実のロッキングカーブよりも,回折ピークの幅が小さくなる(回折ピークがシャープになる)傾向にある。そのような理論ロッキングカーブを測定ロッキングカーブにフィッティングさせると,得られる評価結果は,逆に,求められた半価幅Hの値が実際のものよりは大きくなる傾向にある。図20の一覧表は,そのような傾向に合致した結果になっている。当然ながら,本発明で求められたHの値(すなわち,配向度の指標)の方が信頼性が高いものである。   The above orientation evaluation results are shown in the list of FIG. According to the method of the present invention, the acquired half-value width H is smaller than that of the prior art method. In the prior art, the periodicity of the orientation density distribution function and the overlap of diffraction peaks due to equivalent diffraction surfaces are not taken into consideration, so the theoretical rocking curve has a smaller width than the actual rocking curve (diffraction peak). Tend to be sharp). When such a theoretical rocking curve is fitted to the measured rocking curve, the obtained evaluation result tends to be larger than the actual half-value width H. The list of FIG. 20 is a result that matches such a tendency. Naturally, the value of H obtained by the present invention (that is, the orientation degree index) is more reliable.

上述の従来では,回折面法線の分布関数として,周期化したガウス関数を用いたが,周期化する関数としては,ガウス関数のほかに,ローレンツ関数や擬ヴォイド関数を用いることもできる。   In the conventional method described above, a periodic Gaussian function is used as the distribution function of the diffractive surface normal, but a Lorentz function or a pseudo-void function can be used in addition to the Gaussian function.

本発明を実施するためのX線回折装置のひとつの実施例を示す平面図である。It is a top view which shows one Example of the X-ray-diffraction apparatus for implementing this invention. 試料内の被測定格子面でX線が回折する様子を示す説明図である。It is explanatory drawing which shows a mode that X-ray | X_line is diffracted by the to-be-measured lattice plane in a sample. 結晶子の被測定格子面の法線ベクトルを極座標で表示した斜視図である。It is the perspective view which displayed the normal vector of the to-be-measured lattice plane of a crystallite in the polar coordinate. 配向密度分布関数に関係する数式である。It is a mathematical formula related to the orientation density distribution function. 規格化因子の数式である。It is a mathematical expression of the normalization factor. 配向密度分布関数ρのグラフである。It is a graph of orientation density distribution function (rho). 六方晶(001)の回折面法線分布関数の数式と,回折X線強度の数式である。It is a numerical formula of a diffractive surface normal distribution function of hexagonal crystal (001) and a numerical formula of diffracted X-ray intensity. 六方晶(001)の回折面法線分布関数のグラフである。It is a graph of the diffraction surface normal distribution function of a hexagonal crystal (001). 立方晶(111)の回折面法線分布関数の数式である。It is a numerical formula of a diffractive surface normal distribution function of a cubic crystal (111). 立方晶(111)の回折面法線分布関数に関係する数式である。It is a mathematical formula related to the diffraction surface normal distribution function of cubic (111). 立方晶(111)の回折面法線分布関数に関係する数式である。It is a mathematical formula related to the diffraction surface normal distribution function of cubic (111). 立方晶(111)の回折面法線分布関数のグラフである。It is a graph of the diffraction surface normal distribution function of a cubic crystal (111). 立方晶(110)の回折面法線分布関数の数式である。It is a numerical formula of a diffractive surface normal distribution function of a cubic crystal (110). 立方晶(110)の回折面法線分布関数に関係する数式である。It is a mathematical formula related to the diffraction surface normal distribution function of the cubic crystal (110). 立方晶(110)の回折面法線分布関数のグラフである。It is a graph of the diffraction surface normal distribution function of a cubic crystal (110). 立方晶(100)の回折面法線分布関数の数式である。3 is a mathematical expression of a cubic (100) diffraction surface normal distribution function. 立方晶(100)の回折面法線分布関数に関係する数式である。It is a mathematical formula related to the diffraction plane normal distribution function of cubic (100). 立方晶(100)の回折面法線分布関数のグラフである。It is a graph of the diffraction surface normal distribution function of a cubic crystal (100). 厚さ30nmのAu薄膜の(111)反射の測定例である。It is a measurement example of (111) reflection of an Au thin film having a thickness of 30 nm. 測定結果の一覧表である。It is a list of measurement results.

符号の説明Explanation of symbols

10 入射X線
12 試料
14 回折X線
16 受光スリット
18 ソーラースリット
20 X線検出器
22 試料回転台
24 ゴニオメータ中心
26 検出器回転台
28 回転軸
30 被測定格子面
DESCRIPTION OF SYMBOLS 10 Incident X-ray 12 Sample 14 Diffraction X-ray 16 Light receiving slit 18 Solar slit 20 X-ray detector 22 Sample turntable 24 Goniometer center 26 Detector turntable 28 Rotating shaft 30 Measurement lattice plane

Claims (2)

次の段階を備える多結晶材料の配向性の評価方法。
(a)多結晶材料からなる試料の表面の法線方向のまわりに軸対称となる回折面法線分布関数Pを仮定する段階。この回折面法線分布関数Pは,(a1)試料の結晶子の被測定格子面の法線が試料の表面の法線に対して傾斜する角度φについての配向密度分布関数ρを,前記傾斜角度φについて2πラジアンの周期で周期化したものであり,(a2)前記周期化した配向密度分布関数ρを,前記被測定格子面とその等価な格子面とについて足し合わせたものであり,かつ,(a3)関数の形を特徴づける特性パラメータを含んでいる。
(b)試料の表面に対して入射角αでX線を入射して,試料の前記被測定格子面で反射した回折X線の強度を測定し,入射角αを変化させて前記被測定格子面からの回折X線の強度の変化を求めて,測定ロッキングカーブを得る段階。前記被測定格子面からの回折X線は入射X線に対して角度2θ0をなし,前記入射角αはα=θ0+φの関係となる。
(c)前記回折面法線分布関数Pに基づいて理論的な回折X線強度を計算し,前記特性パラメータを含んだ状態での理論ロッキングカーブを求める段階。
(d)前記理論ロッキングカーブが前記測定ロッキングカーブに最も近づくように前記特性パラメータを定め,これによって前記回折面法線分布関数Pを決定する段階。
A method for evaluating the orientation of a polycrystalline material comprising the following steps.
(A) A step of assuming a diffraction surface normal distribution function P that is axially symmetric around the normal direction of the surface of the sample made of the polycrystalline material. This diffraction surface normal distribution function P is obtained by (a1) expressing the orientation density distribution function ρ at an angle φ at which the normal of the measured lattice plane of the crystallite of the sample is inclined with respect to the normal of the surface of the sample. The angle φ is periodic with a period of 2π radians, (a2) the periodic orientation density distribution function ρ is added to the measured lattice plane and its equivalent lattice plane , and , (A3) includes characteristic parameters that characterize the shape of the function.
(B) An X-ray is incident on the surface of the sample at an incident angle α, the intensity of the diffracted X-ray reflected from the measured grating surface of the sample is measured, and the incident angle α is changed to change the measured grating. Obtaining the measurement rocking curve by determining the change in the intensity of the diffracted X-ray from the surface. The diffracted X-ray from the measured grating surface forms an angle 2θ0 with respect to the incident X-ray, and the incident angle α has a relationship of α = θ0 + φ.
(C) calculating a theoretical diffracted X-ray intensity based on the diffractive surface normal distribution function P, and obtaining a theoretical rocking curve in a state including the characteristic parameter.
(D) determining the characteristic parameter so that the theoretical rocking curve is closest to the measured rocking curve, thereby determining the diffraction surface normal distribution function P;
前記回折面法線分布関数Pは,周期化したガウス関数を前記被測定格子面とその等価な格子面とについて足し合わせたものであることを特徴とする請求項1記載の配向性の評価方法。 2. The method for evaluating orientation according to claim 1, wherein the diffraction surface normal distribution function P is obtained by adding a periodic Gaussian function to the lattice surface to be measured and its equivalent lattice surface. .
JP2006059655A 2006-03-06 2006-03-06 Method for evaluating the orientation of polycrystalline materials Expired - Fee Related JP4764208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006059655A JP4764208B2 (en) 2006-03-06 2006-03-06 Method for evaluating the orientation of polycrystalline materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006059655A JP4764208B2 (en) 2006-03-06 2006-03-06 Method for evaluating the orientation of polycrystalline materials

Publications (2)

Publication Number Publication Date
JP2007240192A JP2007240192A (en) 2007-09-20
JP4764208B2 true JP4764208B2 (en) 2011-08-31

Family

ID=38585883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006059655A Expired - Fee Related JP4764208B2 (en) 2006-03-06 2006-03-06 Method for evaluating the orientation of polycrystalline materials

Country Status (1)

Country Link
JP (1) JP4764208B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103616393A (en) * 2013-12-02 2014-03-05 中国工程物理研究院化工材料研究所 Simple crystal orientation method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4971383B2 (en) * 2009-03-25 2012-07-11 株式会社リガク X-ray diffraction method and X-ray diffraction apparatus
CN103547713B (en) * 2011-06-02 2016-01-20 信越化学工业株式会社 The system of selection of polycrystalline silicon rod and the manufacture method of silicon single crystal
JP5828795B2 (en) 2012-04-04 2015-12-09 信越化学工業株式会社 Method for evaluating degree of crystal orientation of polycrystalline silicon, method for selecting polycrystalline silicon rod, and method for producing single crystal silicon
JP5947248B2 (en) * 2013-06-21 2016-07-06 信越化学工業株式会社 Selection method of polycrystalline silicon rod
JP5923463B2 (en) * 2013-06-26 2016-05-24 信越化学工業株式会社 Method for evaluating crystal grain size distribution of polycrystalline silicon, method for selecting polycrystalline silicon rod, polycrystalline silicon rod, polycrystalline silicon lump, and method for producing single crystalline silicon
WO2021039379A1 (en) * 2019-08-30 2021-03-04 国立研究開発法人産業技術総合研究所 Orientation distribution calculation method, orientation distribution analysis device, and orientation distribution analysis program

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3726080B2 (en) * 2002-05-23 2005-12-14 株式会社リガク Method for evaluating orientation of polycrystalline materials
US6792075B2 (en) * 2002-08-21 2004-09-14 Hypernex, Inc. Method and apparatus for thin film thickness mapping

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103616393A (en) * 2013-12-02 2014-03-05 中国工程物理研究院化工材料研究所 Simple crystal orientation method
CN103616393B (en) * 2013-12-02 2015-08-05 中国工程物理研究院化工材料研究所 Simple and easy crystal orientation method

Also Published As

Publication number Publication date
JP2007240192A (en) 2007-09-20

Similar Documents

Publication Publication Date Title
JP4764208B2 (en) Method for evaluating the orientation of polycrystalline materials
US6052191A (en) Coating thickness measurement system and method of measuring a coating thickness
US9612212B1 (en) Ellipsometer and method of inspecting pattern asymmetry using the same
EP3187856B1 (en) Birefringence measurement device and birefringence measurement method
JP6230618B2 (en) Apparatus and method for surface mapping using in-plane oblique incidence diffraction
KR20120027262A (en) X-ray scattering measurement device and x-ray scattering measurement method
KR20150025745A (en) Rotating-Element Ellipsometer and method for measuring Mueller-matirx elements of the sample using the same
CN105593982A (en) Broadband and wide field angle compensator
US8953743B2 (en) X-ray stress measurement method and apparatus
WO2015146287A1 (en) Beam generation unit and small-angle x-ray scattering device
TW201344148A (en) Dual angles of incidence and azimuth angles optical metrology
JP2821585B2 (en) In-plane distribution measuring method and apparatus
JP5361843B2 (en) Optical anisotropy evaluation method and evaluation apparatus
JP2005528594A (en) X-ray diffraction apparatus and method
JP7240321B2 (en) Methods of assembling optical systems and minimizing distortion due to retardance in optical assemblies
JP2011106920A (en) Rotation/inclination measuring device and method thereof
JP2952284B2 (en) X-ray optical system evaluation method
JP2006112964A (en) Optical sensor device
EP3036533B1 (en) Methods for fabricating platelets of a monochromator for x-ray photoelectron spectroscopy
JP4971733B2 (en) Birefringence measuring apparatus, birefringence measuring method, program, and recording medium
JP6896262B1 (en) Reflective type polarization separation diffraction element and optical measuring device equipped with this
JP2006105748A (en) Analyzing method accompanied by incidence of beam
JP2012013659A (en) Measuring method for reflectivity curve of x-ray and of neutron radiation, and measuring instrument
JP2009109374A (en) X-ray wavefront sensor
JP2004239875A (en) Method and device for detecting aberration of optical lens, and diffraction grating for sensing aberration

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110610

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4764208

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees