JP2003056374A - Variable valve system controller for engine - Google Patents

Variable valve system controller for engine

Info

Publication number
JP2003056374A
JP2003056374A JP2001248923A JP2001248923A JP2003056374A JP 2003056374 A JP2003056374 A JP 2003056374A JP 2001248923 A JP2001248923 A JP 2001248923A JP 2001248923 A JP2001248923 A JP 2001248923A JP 2003056374 A JP2003056374 A JP 2003056374A
Authority
JP
Japan
Prior art keywords
cylinder
valve
intake
engine
cylinders
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001248923A
Other languages
Japanese (ja)
Other versions
JP4019664B2 (en
Inventor
Hisao Kawasaki
尚夫 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2001248923A priority Critical patent/JP4019664B2/en
Publication of JP2003056374A publication Critical patent/JP2003056374A/en
Application granted granted Critical
Publication of JP4019664B2 publication Critical patent/JP4019664B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To unify suction efficiency between cylinders in an engine having a degraded characteristic of suction efficiency among the cylinders. SOLUTION: In a V-type 8-cylinder engine having a two-plane crank shaft arrangement in which four crank pins are arranged by a 90 deg. phase difference and positioned on two orthogonal planes, exhaust valve closing timing is advanced while intake valve opening timing is delayed in a cylinder, whose interval (crank shaft) from the just previous combustion cylinder is not 180 degrees, in setting operation areas (S1-S3) excepting idling and the like. In this way, a valve overlapping quantity is reduced, and consequently, a residual gas amount is reduced. Intake valve closing timing is corrected in the direction increasing an intake gas total amount for increasing a fresh air amount and respective correction quantities for increasing suction efficiency are computed, and then, control to the valve timing corrected with the respective correction values is carried out (S4-S6, S8).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電磁駆動式など開
閉時期を任意に可変制御できるエンジンの吸・排気弁
(可変動弁)を制御する装置に関し、特に、該装置によ
り気筒間の燃焼効率を均一化する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for controlling intake / exhaust valves (variable valve actuation) of an engine, such as an electromagnetic drive type, which can arbitrarily control opening / closing timings, and more particularly to a combustion efficiency between cylinders by the device. Technology for equalizing

【0002】[0002]

【従来の技術】V型8気筒エンジンとして、2プレーン
・クランクシャフトと称されるクランク配置がある。こ
のものは、図2(A)〜(C)に示すように、4個のク
ランクピンが90°ずつの位相を持って配列されてお
り、直交する2平面上に位置する。
2. Description of the Related Art As a V-type 8-cylinder engine, there is a crank arrangement called a 2-plane crankshaft. As shown in FIGS. 2 (A) to 2 (C), in this structure, four crank pins are arranged with a phase of 90 ° each, and they are located on two orthogonal planes.

【0003】もう一つは、図2(D)〜(E)に示すよ
うに、バンク毎のクランク配置が直列4気筒と同じで、
4個のクランクピンが180°ずつの位相を持って配列
されており、1平面上に位置するので、シングルプレー
ン・クランクシャフトと称されるクランク配置である。
上記2プレーン・クランクシャフトのクランク配置は、
慣性力のバランスが良いため、乗り心地を重視する乗用
車では専らこのクランク配置が採用される。
The other is, as shown in FIGS. 2D to 2E, the crank arrangement for each bank is the same as that of the in-line 4-cylinder engine.
Since four crank pins are arranged with a phase of 180 ° each and are located on one plane, the crank arrangement is called a single plane crankshaft.
The crank arrangement of the above 2 plane crankshaft is
Because of the good balance of inertial force, this crank arrangement is exclusively used for passenger cars that emphasize riding comfort.

【0004】しかし、このクランク配置は、左右のバン
クで燃焼順序が交互とならず同一バンク内の燃焼間隔が
不等間隔となるため、吸・排気の脈動を全気筒に対して
効果的に利用することが困難である。仮に脈動効果(慣
性過給)を180°間隔の2気筒に合わせて設定して
も、残りの2気筒にはその効果が得られず、エンジン全
体としての出力が犠牲になっている。
However, with this crank arrangement, the combustion order does not alternate between the left and right banks, and the combustion intervals within the same bank are unequal, so the intake and exhaust pulsations are effectively used for all cylinders. Difficult to do. Even if the pulsation effect (inertial supercharging) is set for two cylinders at 180 ° intervals, the effect cannot be obtained for the remaining two cylinders, and the output of the engine as a whole is sacrificed.

【0005】脈動を効果的に利用するためには、両バン
クにまたがる長大な吸・排気マニホールドのレイアウト
が必要となり現実的でない。なお、特開平6−2292
12号には、バンク毎の吸入空気量のずれを検出し、バ
ンク毎のバルブタイミングを、吸入空気量のずれが無く
なるように補正することが開示されているが、上記の2
プレーン・クランクシャフトのV型8気筒エンジンに採
用した場合、同一バンク内の気筒間で生じる吸入空気量
のバラツキに対し、バンク毎のバルブタイミングの補正
では対処できない。
In order to effectively utilize the pulsation, a large layout of intake and exhaust manifolds extending over both banks is required, which is not realistic. Incidentally, JP-A-6-2292
No. 12 discloses that the deviation of the intake air amount for each bank is detected and the valve timing for each bank is corrected so as to eliminate the deviation of the intake air amount.
When adopted in a V-type 8-cylinder engine with a plain crankshaft, correction of valve timing for each bank cannot deal with variations in intake air amount that occur between cylinders in the same bank.

【0006】本発明は、このような従来の課題に着目し
てなされたもので、燃焼間隔が不等間隔で気筒間の吸入
効率条件が同等でないときに吸入空気量を均等化して燃
焼性のバラツキを無くせるようにしたエンジンの可変動
弁制御装置を提供することを目的とする。
The present invention has been made in view of such a conventional problem. When the combustion intervals are unequal and the intake efficiency conditions between the cylinders are not equal, the intake air amount is equalized to improve the combustibility. An object of the present invention is to provide a variable valve operating control system for an engine that can eliminate variations.

【0007】[0007]

【課題を解決するための手段】このため、請求項1に係
る発明は、気筒毎に吸・排気弁のバルブ特性を独立に制
御可能であり、気筒群に1本の排気管が接続され、か
つ、気筒群内で各気筒間の燃焼間隔が相違するエンジン
であって、前記各気筒間の燃焼間隔が相違する気筒群
で、他の気筒に比較して吸入効率が劣る気筒の吸気弁ま
たは排気弁の少なくとも一方のバルブ特性を、吸入効率
を高める方向に変化させることを特徴とする。
Therefore, in the invention according to claim 1, the valve characteristics of the intake and exhaust valves can be independently controlled for each cylinder, and one exhaust pipe is connected to the cylinder group. And, in an engine in which the combustion interval between the cylinders in the cylinder group is different, the cylinder group in which the combustion interval between the cylinders is different, and the intake valve of the cylinder whose intake efficiency is inferior to other cylinders or It is characterized in that the valve characteristic of at least one of the exhaust valves is changed so as to increase the suction efficiency.

【0008】請求項1に係る発明によると、吸入効率が
劣る気筒のバルブ特性を変化させて吸入効率を他の気筒
と同等に高めることにより、エンジン全体のポテンシャ
ルを高めることができ、出力性能、燃費が改善される。
また、請求項2に係る発明は、前記エンジンは、1つの
バンクに4気筒ずつの気筒群を持つ8気筒エンジンであ
って、4個のクランクピンが90°ずつの位相を持って
配列されて、直交する2平面上に位置する2プレーン・
クランクシャフトのクランク配置であることを特徴とす
る。
According to the first aspect of the present invention, the valve characteristic of the cylinder having the poor intake efficiency is changed to increase the intake efficiency to be equal to that of the other cylinders, whereby the potential of the entire engine can be increased and the output performance, Fuel efficiency is improved.
In the invention according to claim 2, the engine is an 8-cylinder engine having a group of four cylinders in each bank, and four crankpins are arranged with a phase of 90 °. , 2 planes located on 2 orthogonal planes
It is characterized by the crank arrangement of the crankshaft.

【0009】請求項2に係る発明によると、既述のよう
に、2プレーン・クランクシャフトのクランク配置とす
ることで、慣性力のバランスが良い効果を確保しつつ、
該クランク配置で課題となっている気筒間の吸入空気量
のバラツキを解消できる。また、請求項3に係る発明
は、少なくとも1つの気筒群で、直前の燃焼気筒との燃
焼間隔が180°の各気筒と、それ以外の各気筒と、で
バルブ特性を変更することを特徴とする。
According to the second aspect of the present invention, as described above, the crank arrangement of the two-plane crankshaft ensures a good balance of inertial forces,
It is possible to eliminate the variation in the intake air amount between the cylinders, which is a problem in the crank arrangement. Further, the invention according to claim 3 is characterized in that, in at least one cylinder group, the valve characteristics are changed between each cylinder having a combustion interval of 180 ° from the immediately preceding combustion cylinder and each cylinder other than that. To do.

【0010】請求項3に係る発明によると、上記8気筒
エンジンでは、同一バンク内での燃焼間隔は理想的には
等間隔つまり180°であり、前燃焼気筒との間隔が1
80°である気筒は、一般的に排気干渉等の影響を受け
にくい。逆に、それ以外の気筒は、排気干渉等の影響を
受けて吸入効率が低下する。したがって、その2つの群
に分けてバルブ特性を変更することでエンジン全体の吸
入効率を高めることができる。
According to the invention of claim 3, in the above 8-cylinder engine, the combustion intervals in the same bank are ideally equal intervals, that is, 180 °, and the interval with the pre-combustion cylinder is 1.
A cylinder having an angle of 80 ° is generally not easily affected by exhaust interference or the like. On the contrary, in the other cylinders, the intake efficiency is reduced due to the influence of exhaust interference or the like. Therefore, the intake efficiency of the entire engine can be increased by changing the valve characteristics by dividing into two groups.

【0011】また、請求項4に係る発明は、少なくとも
1つの気筒群で、直前の燃焼気筒との燃焼間隔が180
°の各気筒と、同じく燃焼間隔が90°の気筒と、同じ
く燃焼間隔が270°の気筒と、でバルブ特性を変更す
ることを特徴とする。請求項4に係る発明によると、上
記8気筒エンジンで、バンク毎に直前の燃焼気筒との燃
焼間隔が180°の気筒は2つあり、残りは、同じく燃
焼間隔が90°の気筒と、同じく燃焼間隔が270°の
気筒であるので、それぞれバルブ特性を変更することで
エンジン全体の吸入効率を高めることができる。
Further, in the invention according to claim 4, in at least one cylinder group, the combustion interval from the immediately preceding combustion cylinder is 180.
It is characterized in that the valve characteristics are changed between each cylinder of which the combustion interval is 90 °, a cylinder of which the combustion interval is 90 °, and a cylinder of which the combustion interval is 270 °. According to the invention of claim 4, in the above-mentioned eight-cylinder engine, there are two cylinders having a combustion interval of 180 ° from the immediately preceding combustion cylinder for each bank, and the remaining cylinders have the same combustion interval of 90 °. Since the cylinder has a combustion interval of 270 °, the intake efficiency of the entire engine can be increased by changing the valve characteristics.

【0012】また、請求項5に係る発明は、少なくとも
1つの気筒群で、吸入効率の劣る気筒の排気弁閉時期
を、他の気筒に比較して早くすることを特徴とする。請
求項5に係る発明によると、吸入効率の劣る気筒の排気
弁閉時期を、他の気筒に比較して早くすることにより、
当該気筒のバルブオーバラップ量を小さくして残留ガス
量を減少させ、相対的に新気量を増大することで吸入効
率を高めることができる。
Further, the invention according to claim 5 is characterized in that, in at least one cylinder group, the exhaust valve closing timing of the cylinder having inferior intake efficiency is earlier than that of the other cylinders. According to the invention of claim 5, by making the exhaust valve closing timing of the cylinder having the poor suction efficiency earlier than that of the other cylinders,
The intake efficiency can be improved by reducing the valve overlap amount of the cylinder to reduce the residual gas amount and relatively increasing the fresh air amount.

【0013】また、請求項6に係る発明は、少なくとも
1つの気筒群で、吸入効率の劣る気筒の吸気弁開時期
を、他の気筒に比較して遅くすることを特徴とする。請
求項6に係る発明によると、吸入効率の劣る気筒の吸気
弁開時期を、他の気筒に比較して遅くすることにより、
当該気筒のバルブオーバラップ量を小さくして残留ガス
量を減少させ、相対的に新気量を増大することで吸入効
率を高めることができる。
The invention according to claim 6 is characterized in that, in at least one cylinder group, the intake valve opening timing of a cylinder having a poor intake efficiency is delayed as compared with other cylinders. According to the invention of claim 6, by delaying the intake valve opening timing of the cylinder having the poor intake efficiency as compared with the other cylinders,
The intake efficiency can be improved by reducing the valve overlap amount of the cylinder to reduce the residual gas amount and relatively increasing the fresh air amount.

【0014】また、請求項7に係る発明は、少なくとも
1つの気筒群で、吸入効率の劣る気筒の吸気弁閉時期
を、吸入空気量が増大するように補正することを特徴と
する。請求項7に係る発明によると、吸気慣性により吸
入ガス総量が最大となる吸気弁閉時期は下死点後所定量
遅角された位置にある。そこで、該吸入ガス総量が最大
となる時期に近づける方向に吸気弁閉時期を補正するこ
とにより、吸入ガス総量を増大させることにより、吸入
空気量(吸入効率)を増大させることができる。
The invention according to claim 7 is characterized in that, in at least one cylinder group, the intake valve closing timing of a cylinder having a poor intake efficiency is corrected so that the intake air amount increases. According to the invention of claim 7, the intake valve closing timing at which the total intake gas amount becomes maximum due to the intake inertia is at a position delayed by a predetermined amount after the bottom dead center. Therefore, the intake air amount (intake efficiency) can be increased by increasing the total intake gas amount by correcting the intake valve closing timing in the direction of approaching the time when the total intake gas amount becomes maximum.

【0015】また、請求項8に係る発明は、吸・排気の
脈動による吸気慣性過給効果が小さい領域では、前記バ
ルブ特性を変化させることなく、気筒間で同一のバルブ
特性に維持することを特徴とする。請求項8に係る発明
によると、アイドル等の低負荷領域では、元々の吸気量
が小さく他気筒からの影響も小さいため、吸・排気の脈
動効果が小さく、バルブ特性を変えると残留ガスの差に
よる燃焼差が大きくなってしまう。そこで、このような
領域では、気筒間で同一のバルブ特性に維持することに
より、良好な性能を確保する。
Further, the invention according to claim 8 is to maintain the same valve characteristic between cylinders without changing the valve characteristic in a region where the intake inertia supercharging effect due to the pulsation of intake and exhaust is small. Characterize. According to the invention of claim 8, in a low load region such as idle, the original intake amount is small and the influence from other cylinders is small, so the pulsation effect of intake and exhaust is small, and the difference in residual gas when the valve characteristic is changed. The difference in combustion will increase. Therefore, in such a region, good performance is secured by maintaining the same valve characteristic between the cylinders.

【0016】[0016]

【発明の実施の形態】以下に本発明の実施形態を説明す
る。図1は、2プレーンクランクシャフトを採用し、図
2に示すような燃焼順序であるV型8気筒エンジンを例
にとって説明する。以下、本発明の実施形態を図に基づ
いて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. FIG. 1 illustrates a V-type 8-cylinder engine that employs a 2-plane crankshaft and has a combustion sequence as shown in FIG. Hereinafter, embodiments of the present invention will be described with reference to the drawings.

【0017】図1は、実施形態におけるエンジンのシス
テム構成図である。図1において、車両に搭載されるV
型8気筒エンジン1の各気筒には、エアクリーナ2、電
制スロットルチャンバ3、吸気コレクタ4、吸気マニホ
ールド5、吸気弁6を介して空気が吸入される。該V型
8気筒エンジン1は、図2(A)〜(C)に示すよう
に、4個のクランクピンが90°ずつの位相を持って配
列された既述の2プレーン・クランクシャフトと称され
るクランク配置を有する。
FIG. 1 is a system configuration diagram of an engine in the embodiment. In FIG. 1, V mounted on the vehicle
Air is drawn into each cylinder of the type 8 cylinder engine 1 through an air cleaner 2, an electronically controlled throttle chamber 3, an intake collector 4, an intake manifold 5, and an intake valve 6. The V-type 8-cylinder engine 1 is referred to as the above-mentioned two-plane crankshaft in which four crankpins are arranged at 90 ° phases as shown in FIGS. 2 (A) to (C). Has a crank arrangement that is

【0018】各気筒の燃焼室内に燃料(ガソリン)を直
接噴射する電磁式の燃料噴射弁7が設けられており、該
燃料噴射弁7から噴射される燃料と吸入空気とによって
燃焼室内に混合気が形成される。燃焼室内に形成された
混合気は、点火栓8によって着火燃焼する。ただし、エ
ンジン1を上記の直接噴射式ガソリンエンジンに限定す
るものではなく、吸気ポートに燃料を噴射する構成のエ
ンジンであってもよい。
An electromagnetic fuel injection valve 7 for directly injecting fuel (gasoline) is provided in the combustion chamber of each cylinder, and the fuel and intake air injected from the fuel injection valve 7 cause a mixture in the combustion chamber. Is formed. The air-fuel mixture formed in the combustion chamber is ignited and burned by the spark plug 8. However, the engine 1 is not limited to the above direct injection gasoline engine, and may be an engine configured to inject fuel into the intake port.

【0019】エンジン1からの排気は、排気弁9、排気
マニホールド10、触媒11及びマフラー12を介して
大気中に放出される。排気マニホールド10は、各バン
ク(気筒群)に1本の排気管10A、10Bが接続さ
れ、それらを下流側で合流した構造を有している。前記
吸気弁6及び排気弁9は、それぞれ弁駆動装置13によ
り開閉を電子制御される。
Exhaust gas from the engine 1 is discharged into the atmosphere through an exhaust valve 9, an exhaust manifold 10, a catalyst 11 and a muffler 12. The exhaust manifold 10 has a structure in which one exhaust pipe 10A, 10B is connected to each bank (cylinder group), and these are joined on the downstream side. The opening and closing of the intake valve 6 and the exhaust valve 9 are electronically controlled by a valve driving device 13.

【0020】エンジン1の各種状態を検出するセンサ類
として、吸入空気量を検出するエアフローメータ14、
スロットル開度を検出するスロットルセンサ15、各気
筒の基準クランク角で基準信号を出力すると共に微小ク
ランク角毎に単位角信号を出力し該信号に基づいて機関
回転速度を検出できるクランク角センサ16、エンジン
冷却水温度を検出する水温センサ17等が設けられる。
As sensors for detecting various states of the engine 1, an air flow meter 14 for detecting an intake air amount,
A throttle sensor 15 for detecting the throttle opening, a crank angle sensor 16 capable of outputting a reference signal at the reference crank angle of each cylinder and outputting a unit angle signal for each minute crank angle, and detecting the engine rotation speed based on the signal. A water temperature sensor 17 and the like for detecting the engine cooling water temperature are provided.

【0021】前記各種センサ類からの検出信号はコント
ロールユニット18に入力され、コントロールユニット
18は、これらの検出信号に基づいて前記燃料噴射弁7
に燃料噴射信号を出力して燃料噴射制御を行い、前記点
火栓8に点火信号を出力して点火制御を行い、更に、前
記弁駆動装置13に弁駆動信号を出力して吸気弁6及び
排気弁9の開閉を制御する。
The detection signals from the various sensors are input to the control unit 18, which controls the fuel injection valve 7 based on these detection signals.
A fuel injection signal is output to control the fuel injection, an ignition signal is output to the spark plug 8 to perform ignition control, and a valve drive signal is output to the valve drive device 13 to intake valve 6 and exhaust gas. It controls the opening and closing of the valve 9.

【0022】ここで、前記吸気弁6及び排気弁9と、こ
れらを駆動するための弁駆動装置13からなる電磁動弁
装置のハードウエアについて、図3に基づいて説明す
る。図3において、シリンダヘッド21に従来と同様の
方法で、排気弁9は取り付けられている。即ち、シリン
ダヘッド21に設けられるバルブガイド22に、排気弁
9のステム31が摺動自由に挿通されており、ステム3
1上端部には、バルブコッター等を介してアッパーシー
ト32が取り付けられ、該アッパーシート32と、シリ
ンダヘッド側のロアシートとの間に、排気弁9を閉弁方
向に付勢する(自由長から所定量圧縮された)閉弁用ス
プリング33が配設されている。
Here, the hardware of the electromagnetic valve device including the intake valve 6 and the exhaust valve 9 and the valve drive device 13 for driving them will be described with reference to FIG. In FIG. 3, the exhaust valve 9 is attached to the cylinder head 21 in the same manner as the conventional one. That is, the stem 31 of the exhaust valve 9 is slidably inserted into the valve guide 22 provided in the cylinder head 21, and the stem 3
An upper seat 32 is attached to an upper end portion of the cylinder 1 via a valve cotter or the like, and the exhaust valve 9 is biased in the valve closing direction between the upper seat 32 and the lower seat on the cylinder head side (from a free length. A valve closing spring 33 (compressed by a predetermined amount) is provided.

【0023】そして、排気弁9が全閉状態で、後述する
閉弁用電磁石43でアーマチャを吸着している状態にお
いて、前記ステム31の上端部から、所定量離間して、
言い換えれば所定のバルブクリアランスを持って、弁駆
動装置13の可動軸40が、前記ステム31と同軸上に
配設されるようになっている。前記弁駆動装置13は、
非磁性体製のハウジング41と、前記可動軸40に一体
に設けられてハウジング41内に摺動自由に収納される
アーマチャ42と、該アーマチャ42を磁気吸引可能に
アーマチャ42の上面に対向する位置でハウジング42
内に固定配置される閉弁用電磁石43と、該アーマチャ
42を磁気吸引して排気弁4を開弁保持可能にアーマチ
ャ42の下面に対向する位置でハウジング41内に固定
配置される開弁用電磁石44と、排気弁4の開弁方向に
向けてアーマチャ42を付勢する開弁用スプリング45
と、を含んで構成されている。
When the exhaust valve 9 is fully closed and the armature is attracted by the valve-closing electromagnet 43, which will be described later, the stem 31 is separated from the upper end by a predetermined amount,
In other words, the movable shaft 40 of the valve drive device 13 is arranged coaxially with the stem 31 with a predetermined valve clearance. The valve drive device 13 is
A housing 41 made of a non-magnetic material, an armature 42 integrally provided on the movable shaft 40 and slidably housed in the housing 41, and a position facing the upper surface of the armature 42 so that the armature 42 can be magnetically attracted. In housing 42
A valve-closing electromagnet 43 fixedly disposed inside the valve body, and a valve-closing electromagnet 43 fixedly disposed inside the housing 41 at a position facing the lower surface of the armature 42 so that the exhaust valve 4 can be held open by magnetic attraction of the armature 42. An electromagnet 44 and a valve opening spring 45 for urging the armature 42 toward the valve opening direction of the exhaust valve 4.
And are included.

【0024】そして、図4に示すように、閉弁用電磁石
43と開弁用電磁石44とを共に消磁したときに、排気
弁9は、半開位置となるように構成されており、この半
開位置から前記閉弁用電磁石43のみを通電励磁する
と、アーマチャ42は開弁用スプリング45を押し縮め
る方向に閉弁用電磁石43によって磁気吸引され、一方
前記半開位置から開弁用電磁石44のみを通電励磁する
と、アーマチャ42は閉弁用スプリング33を押し縮め
て排気弁9を開弁する方向に開弁用電磁石44によって
磁気吸引される。
As shown in FIG. 4, when the valve closing electromagnet 43 and the valve opening electromagnet 44 are both demagnetized, the exhaust valve 9 is arranged in a half open position. When only the valve-closing electromagnet 43 is energized and excited, the armature 42 is magnetically attracted by the valve-closing electromagnet 43 in a direction to compress the valve-opening spring 45, while only the valve-opening electromagnet 44 is energized and excited from the half-open position. Then, the armature 42 is magnetically attracted by the valve opening electromagnet 44 in the direction in which the valve closing spring 33 is pressed and contracted to open the exhaust valve 9.

【0025】以上、排気弁9の開閉動作について示した
が、吸気弁6についても全く同様の構成によって同様に
動作する。そして、始動前に、前記吸気弁6及び排気弁
9を前記半開位置から、開弁(全開)位置または閉弁位
置に保持する初期化を行った後、エンジン運転状態に応
じて設定された開閉時期に開閉されるように開閉制御が
行なわれる。
Although the opening / closing operation of the exhaust valve 9 has been described above, the intake valve 6 also operates in the same manner with a completely similar structure. Then, before starting, the intake valve 6 and the exhaust valve 9 are initialized from the half-open position to the open (fully open) position or the closed position, and then opened / closed according to the engine operating state. Opening / closing control is performed so that it is opened / closed at the time.

【0026】ところで、本実施形態における2プレーン
・クランクシャフトのV型8気筒エンジンは、既述した
ように、左右のバンクで燃焼順序が交互とならず同一バ
ンク内の燃焼間隔が不等間隔となるため(図5参照)、
吸・排気の脈動を効果的に利用した吸気慣性過給を行え
ず、各気筒の爆発圧力がばらつくことになる。すなわ
ち、エンジン1は、前記弁駆動装置13によって気筒毎
に吸気弁6及び排気弁9のバルブ特性を独立に制御可能
であり、各気筒群に1本の排気管10A、10Bが接続
され、かつ、気筒群内で各気筒間の燃焼間隔が相違す
る。
By the way, in the V-type 8-cylinder engine having the two-plane crankshaft in this embodiment, as described above, the combustion order does not alternate between the left and right banks, and the combustion intervals in the same bank are not uniform. (See Figure 5),
Intake inertial supercharging that effectively utilizes intake and exhaust pulsations cannot be performed, and the explosion pressure of each cylinder will vary. That is, the engine 1 can independently control the valve characteristics of the intake valve 6 and the exhaust valve 9 for each cylinder by the valve drive device 13, one exhaust pipe 10A, 10B is connected to each cylinder group, and The combustion intervals between the cylinders in the cylinder group are different.

【0027】そこで、本発明では残留ガスが増大して燃
焼が悪化する気筒に対し、バルブタイミングを変更する
ことで、その気筒の残留ガス量を減らし、あるいは吸入
新気量を増やし、各気筒の燃焼特性を均等化することに
よって、エンジン全体の燃焼効率を高め、ポテンシャル
を向上させる。すなわち、前記各気筒間の燃焼間隔が相
違する気筒群で、他の気筒に比較して吸入効率が劣る気
筒の吸気弁または排気弁の少なくとも一方のバルブ特性
を、吸入効率を高める方向に変化させる残留ガス量を減
らす方法として、吸気弁6と排気弁9のバルブオーバー
ラップ量を縮小する方向に変化させる方法がある。具体
的には、図6に示すように、排気弁9の閉時期(EV
C)を早めるか、図7に示すように吸気弁6の開時期
(IVO)を遅らせることの少なくとも一方を行うこと
で実現できる。
Therefore, in the present invention, by changing the valve timing for the cylinder in which the residual gas increases and the combustion deteriorates, the residual gas amount of the cylinder is reduced or the intake fresh air amount is increased, so that By equalizing the combustion characteristics, the combustion efficiency of the entire engine is increased and the potential is improved. That is, in a group of cylinders having different combustion intervals between the cylinders, the valve characteristics of at least one of the intake valve and the exhaust valve of the cylinder whose intake efficiency is inferior to the other cylinders are changed to increase the intake efficiency. As a method of reducing the residual gas amount, there is a method of changing the valve overlap amount of the intake valve 6 and the exhaust valve 9 in a direction of reducing the valve overlap amount. Specifically, as shown in FIG. 6, the closing timing of the exhaust valve 9 (EV
This can be achieved by advancing C) or delaying the opening timing (IVO) of the intake valve 6 as shown in FIG. 7.

【0028】また、図8に示すように、バルブオーバラ
ップ中心が元々上死点より大きく進角側に設定されてい
る場合は、排気弁9の閉時期(EVC)及び吸気弁6の
開時期(IVO)を、同量ずつ遅角させてもバルブオー
バラップ量を同一としたまま残留ガス量を減らすことが
できる。また、吸入ガスの総量を増やすことで、吸入新
気量を増加させる方法として、吸気弁6の閉時期(IV
C)を吸入ガス総量が増える方向に変えることで実現で
きる。図9に示すように、吸気慣性により吸入空気量が
最大となる吸気弁閉時期IVCは下死点後所定量遅角さ
れた位置にある。そこで、該吸入空気量最大となるIV
CQmaxに近づける方向にIVCを補正する。一般的なエ
ンジンでは、IVC自体が最も空気が入る位置に設定さ
れているため、実現性が無いが、本実施形態のように吸
気弁を電磁駆動してIVC制御により吸入空気量を制御
するものでは有効である。
Further, as shown in FIG. 8, when the valve overlap center is originally set on the advance side larger than the top dead center, the closing timing (EVC) of the exhaust valve 9 and the opening timing of the intake valve 6 are set. Even if (IVO) is retarded by the same amount, the residual gas amount can be reduced while keeping the valve overlap amount the same. In addition, as a method of increasing the intake fresh air amount by increasing the total amount of intake gas, the closing timing of the intake valve 6 (IV
This can be achieved by changing C) so that the total amount of inhaled gas increases. As shown in FIG. 9, the intake valve closing timing IVC at which the intake air amount is maximized due to the intake inertia is at a position retarded by a predetermined amount after bottom dead center. Therefore, IV that maximizes the intake air amount
The IVC is corrected in the direction closer to CQmax. In a general engine, the IVC itself is set to the position where the air is most admitted, so that it is not feasible. However, as in the present embodiment, the intake valve is electromagnetically driven to control the intake air amount by IVC control. Then it is effective.

【0029】そして、上記排気干渉等の影響は、エンジ
ンの運転条件(回転速度、負荷、大気圧等)によって変
化する。したがって、前記吸入空気量のバラツキ補正の
有無及びその補正量は、エンジン運転条件によって変化
させるのが望ましい。例えば、アイドル運転時は、排気
干渉の影響がほとんど無く、逆に各気筒のバルブタイミ
ングを変えることによる残留ガス量変化の影響が大き
い。そのため、回転の安定度の低下等を招く可能性があ
るため、補正自体を行わないことが望ましい。
The influence of the exhaust interference and the like changes depending on the engine operating conditions (rotational speed, load, atmospheric pressure, etc.). Therefore, it is desirable that the presence / absence of the variation correction of the intake air amount and the correction amount thereof are changed according to the engine operating conditions. For example, during idle operation, there is almost no effect of exhaust gas interference, and conversely, there is a large effect of changes in the residual gas amount due to changes in the valve timing of each cylinder. Therefore, there is a possibility that the stability of rotation may be deteriorated, so it is desirable not to perform the correction itself.

【0030】以下、図10〜図14に示したフローチャ
ートにしたがって、各実施形態を説明する。図10にお
いて、ステップ1では、各種センサからの検出信号に基
づいて、エンジン運転領域(回転速度、負荷等)を検出
する。ステップ2では、検出された現在のエンジン運転
領域が、吸入空気量のバラツキが大きく、該バラツキ補
正を行う設定領域であるかを判定する。具体的には、前
記アイドル等の低負荷領域を除く中・高負荷領域を吸入
空気量補正を行う設定領域とする。
Each embodiment will be described below with reference to the flowcharts shown in FIGS. In FIG. 10, in step 1, the engine operating region (rotational speed, load, etc.) is detected based on detection signals from various sensors. In step 2, it is determined whether or not the detected current engine operating region is a setting region in which the variation of the intake air amount is large and the variation correction is performed. Specifically, the medium / high load region excluding the low load region such as the idle is set as the setting region for correcting the intake air amount.

【0031】ステップ2で、設定領域と判定されたとき
は、ステップ3へ進み、吸入空気量を補正する気筒を判
別する。具体的には、同一バンク内で前回燃焼行程にあ
った気筒からの間隔(クランク角度)が180°のとき
は、排気脈動効果が得られるので吸入効率が高いが、9
0°のとき、または、270°のときは排気干渉を生じ
て排気脈動効果が得られず吸気効率が低下し、吸入空気
量を増量補正する必要がある。図5を参照して、左バン
クの第7気筒および第5気筒、右バンクの第8気筒およ
び第4気筒は、前燃焼気筒との間隔が180°であるの
で、吸入空気量補正を行わず、左バンクの第1気筒およ
び第3気筒、右バンクの第6気筒および第2気筒は前燃
焼気筒との間隔が270°または90°なので吸入空気
量の補正を行う気筒と判別する。
If it is determined in step 2 that the region is the set region, the process proceeds to step 3 and the cylinder whose intake air amount is to be corrected is determined. Specifically, when the interval (crank angle) from the cylinder that was in the previous combustion stroke in the same bank is 180 °, the exhaust pulsation effect is obtained, so the intake efficiency is high.
When the angle is 0 ° or 270 °, exhaust interference occurs, the exhaust pulsation effect cannot be obtained, the intake efficiency decreases, and the intake air amount needs to be increased and corrected. Referring to FIG. 5, since the seventh cylinder and fifth cylinder in the left bank and the eighth cylinder and fourth cylinder in the right bank are 180 ° apart from the pre-combustion cylinder, intake air amount correction is not performed. Since the first cylinder and the third cylinder in the left bank and the sixth cylinder and the second cylinder in the right bank have an interval of 270 ° or 90 ° from the pre-combustion cylinder, they are determined as cylinders for which the intake air amount is corrected.

【0032】ステップ4では、吸入空気量補正する気筒
に対して、エンジン運転条件に基づいて排気弁9の閉時
期EVCを早める補正の補正量を算出する。ステップ5
では、同じく吸気弁6の開時期IVOを遅らせる補正の
補正量を算出する。ステップ6では、同じく吸気弁6の
閉時期IVCを前記吸入空気量最大となるIVCQmaxに
近づける補正の補正量を算出する。
In step 4, for the cylinder whose intake air amount is to be corrected, a correction amount for correcting the closing timing EVC of the exhaust valve 9 is calculated based on the engine operating conditions. Step 5
Then, similarly, a correction amount for correcting the opening timing IVO of the intake valve 6 is calculated. In step 6, a correction amount for similarly correcting the closing timing IVC of the intake valve 6 to IVCQmax that maximizes the intake air amount is calculated.

【0033】ここで、ステップ4〜ステップ6での補正
量は、エンジン運転条件に基づいて前記前燃焼気筒との
間隔が180°の気筒に対する吸入空気量の低下量を、
補正できるように、EVCを早めIVOを遅らせてバル
ブオーバラップ量を減少することにより残留ガス量を減
少し、かつ、IVCQmaxに近づけて吸入ガス総量を増大
するような補正を行うための補正量として算出する。
Here, the correction amount in steps 4 to 6 is the reduction amount of the intake air amount with respect to the cylinder whose interval from the pre-combustion cylinder is 180 ° based on the engine operating conditions.
As a correction amount for correcting the amount of residual gas by advancing EVC and delaying IVO to reduce the valve overlap amount so that it can be corrected, and increasing the total intake gas amount by approaching IVCQmax. calculate.

【0034】ステップ2で、吸入空気量のバラツキ補正
を行う設定領域でないと判定されたときは、ステップ7
へ進んでバルブタイミングの補正量を0とし、補正を禁
止する。ステップ8では、上記のように算出された各補
正量で補正して設定されたバルブタイミング信号を出力
して、吸気弁6及び排気弁9のバルブタイミングを制御
する。
If it is determined in step 2 that the setting range is not for correcting the variation of the intake air amount, step 7
Then, the correction amount of the valve timing is set to 0 and the correction is prohibited. In step 8, the valve timing signals corrected by the respective correction amounts calculated as described above and set are output to control the valve timings of the intake valve 6 and the exhaust valve 9.

【0035】図11は、第2の実施形態のフローチャー
トを示し、EVCとIVOのみを補正し、IVCの補正
は行わないものを示す。このものでは、EVCを早めI
VOを遅らせてバルブオーバラップ量を減少するものだ
けでなく、図8に示したように、バルブオーバラップ量
を一定のまま、EVCおよびIVOを等量ずつ遅角する
ようにしてもよい。
FIG. 11 shows a flow chart of the second embodiment in which only EVC and IVO are corrected and IVC is not corrected. With this, EVC hastened I
Not only is VO delayed to reduce the valve overlap amount, but as shown in FIG. 8, EVC and IVO may be retarded by equal amounts while the valve overlap amount is kept constant.

【0036】図12に示す第3の実施形態のフローチャ
ートでは、EVCのみを進角補正し、図13に示す第4
の実施形態のフローチャートでは、IVOのみを遅角補
正し、図14に示す第4の実施形態のフローチャートで
は、IVCのみをIVCQmaxに近づける補正のみを行う
ものである。
In the flowchart of the third embodiment shown in FIG. 12, only the EVC is advanced and corrected, and the fourth embodiment shown in FIG.
In the flowchart of this embodiment, only IVO is retarded, and in the flowchart of the fourth embodiment shown in FIG. 14, only IVC is corrected so as to approach IVCQmax.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施形態におけるエンジンのシステム構成図。FIG. 1 is a system configuration diagram of an engine according to an embodiment.

【図2】実施の形態における電磁動弁装置の吸・排気弁
閉弁状態時の構成を示す断面図。
FIG. 2 is a cross-sectional view showing a configuration of the electromagnetic valve device according to the embodiment when the intake / exhaust valve is closed.

【図3】同上電磁動弁装置の排気弁開状態時の構成を示
す断面図。
FIG. 3 is a cross-sectional view showing the configuration of the solenoid valve device when the exhaust valve is open.

【図4】2プレーン・クランクシャフトのV型8気筒エ
ンジンの概略構成と作用を、シングルプレーン・クラン
クシャフトのV型8気筒エンジンの作用と比較して示し
た図。
FIG. 4 is a diagram showing the schematic configuration and operation of a V-type 8-cylinder engine having a two-plane crankshaft, in comparison with the operation of a V-type 8-cylinder engine having a single-plane crankshaft.

【図5】同上2プレーン・クランクシャフトのV型8気
筒エンジンの燃焼行程順序を説明する図。
FIG. 5 is a diagram for explaining a combustion stroke sequence of a V-type 8-cylinder engine having a two-plane crankshaft.

【図6】排気弁の閉時期を早めて残留ガス量を減らす方
法を示す図。
FIG. 6 is a diagram showing a method of advancing the closing timing of the exhaust valve to reduce the residual gas amount.

【図7】吸気弁の開時期を遅らせて残留ガス量を減らす
方法を示す図。
FIG. 7 is a diagram showing a method of delaying the opening timing of the intake valve to reduce the residual gas amount.

【図8】排気弁の閉時期と吸気弁の開時期を遅らせて残
留ガス量を減らす方法を示す図。
FIG. 8 is a diagram showing a method of delaying the closing timing of the exhaust valve and the opening timing of the intake valve to reduce the residual gas amount.

【図9】吸気弁閉時期を吸入ガス総量最大となる方向に
補正して吸入空気量を増大する方法を示す図。
FIG. 9 is a diagram showing a method of increasing the intake air amount by correcting the intake valve closing timing to a direction that maximizes the total intake gas amount.

【図10】第1の実施形態の制御ルーチンを示すフロー
チャート。
FIG. 10 is a flowchart showing a control routine of the first embodiment.

【図11】第2の実施形態の制御ルーチンを示すフロー
チャート。
FIG. 11 is a flowchart showing a control routine of the second embodiment.

【図12】第3の実施形態の制御ルーチンを示すフロー
チャート。
FIG. 12 is a flowchart showing a control routine of the third embodiment.

【図13】第4の実施形態の制御ルーチンを示すフロー
チャート。
FIG. 13 is a flowchart showing a control routine of a fourth embodiment.

【図14】第5の実施形態の制御ルーチンを示すフロー
チャート。
FIG. 14 is a flowchart showing a control routine of the fifth embodiment.

【符号の説明】[Explanation of symbols]

1 V型8気筒エンジン 6 吸気弁 9 排気弁 13 弁駆動装置 14 エアフローメータ 16 クランク角センサ 18 コントロールユニット 1 V type 8 cylinder engine 6 intake valve 9 Exhaust valve 13 Valve drive 14 Air flow meter 16 crank angle sensor 18 control unit

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3G018 AA07 AB16 BA31 CA12 EA31 EA32 EA35 FA09 GA00 GA06 GA07 GA32 3G092 AA01 AA06 AA11 AA15 AB02 BA01 BA02 BA04 DA01 DA02 DA03 DA07 DA12 EA03 EA04 FA00 FA01 FA02 FA15 FA48 HA01Z HA06Z HE01Z HE03Z HE04Z HE08Z    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 3G018 AA07 AB16 BA31 CA12 EA31                       EA32 EA35 FA09 GA00 GA06                       GA07 GA32                 3G092 AA01 AA06 AA11 AA15 AB02                       BA01 BA02 BA04 DA01 DA02                       DA03 DA07 DA12 EA03 EA04                       FA00 FA01 FA02 FA15 FA48                       HA01Z HA06Z HE01Z HE03Z                       HE04Z HE08Z

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】気筒毎に吸・排気弁のバルブ特性を独立に
制御可能であり、気筒群に1本の排気管が接続され、か
つ、気筒群内で各気筒間の燃焼間隔が相違するエンジン
であって、 前記各気筒間の燃焼間隔が相違する気筒群で、他の気筒
に比較して吸入効率が劣る気筒の吸気弁または排気弁の
少なくとも一方のバルブ特性を、吸入効率を高める方向
に変化させることを特徴とするエンジンの可変動弁制御
装置。
1. A valve characteristic of an intake / exhaust valve can be independently controlled for each cylinder, one exhaust pipe is connected to a cylinder group, and combustion intervals between the cylinders in the cylinder group are different. In a cylinder group in which the combustion intervals between the cylinders are different, the valve characteristics of at least one of an intake valve and an exhaust valve of a cylinder whose intake efficiency is inferior to those of other cylinders are set to increase the intake efficiency. A variable valve control device for an engine, which is characterized by changing to.
【請求項2】前記エンジンは、1つのバンクに4気筒ず
つの気筒群を持つ8気筒エンジンであって、4個のクラ
ンクピンが90°ずつの位相を持って配列されて、直交
する2平面上に位置する2プレーン・クランクシャフト
のクランク配置であることを特徴とする請求項1に記載
のエンジンの可変動弁制御装置。
2. The engine is an 8-cylinder engine having a cylinder group of 4 cylinders in each bank, and 4 crankpins are arranged in phases of 90 ° each to form two orthogonal planes. 2. The variable valve operating system for an engine according to claim 1, wherein the crank arrangement is a two-plane crankshaft located above.
【請求項3】少なくとも1つの気筒群で、直前の燃焼気
筒との燃焼間隔が180°の各気筒と、それ以外の各気
筒と、でバルブ特性を変更することを特徴とする請求項
2に記載のエンジンの可変動弁制御装置。
3. The valve characteristic of at least one cylinder group, wherein the valve characteristic is changed between each cylinder having a combustion interval of 180 ° from the immediately preceding combustion cylinder and each cylinder other than that. A variable valve control device for the engine described.
【請求項4】少なくとも1つの気筒群で、直前の燃焼気
筒との燃焼間隔が180°の各気筒と、同じく燃焼間隔
が90°の気筒と、同じく燃焼間隔が270°の気筒
と、でバルブ特性を変更することを特徴とする請求項2
または請求項3に記載のエンジンの可変動弁制御装置。
4. A valve comprising at least one cylinder group, each cylinder having a combustion interval of 180 ° from the immediately preceding combustion cylinder, a cylinder having a combustion interval of 90 °, and a cylinder having a combustion interval of 270 °. 3. The characteristic is changed.
Alternatively, the variable valve operating system for the engine according to claim 3.
【請求項5】少なくとも1つの気筒群で、吸入効率の劣
る気筒の排気弁閉時期を、他の気筒に比較して早くする
ことを特徴とする請求項1〜請求項4のいずれか1つに
記載のエンジンの可変動弁制御装置。
5. The exhaust valve closing timing of a cylinder having inferior intake efficiency in at least one cylinder group is set to be earlier than that of the other cylinders. A variable valve operating system for an engine according to.
【請求項6】少なくとも1つの気筒群で、吸入効率の劣
る気筒の吸気弁開時期を、他の気筒に比較して遅くする
ことを特徴とする請求項1〜請求項5のいずれか1つに
記載のエンジンの可変動弁制御装置。
6. The intake valve opening timing of a cylinder having inferior intake efficiency in at least one cylinder group is delayed as compared with other cylinders. A variable valve operating system for an engine according to.
【請求項7】少なくとも1つの気筒群で、吸入効率の劣
る気筒の吸気弁閉時期を、吸入空気量が増大するように
補正することを特徴とする請求項1〜請求項6のいずれ
か1つに記載のエンジンの可変動弁制御装置。
7. The method according to claim 1, wherein at least one cylinder group corrects an intake valve closing timing of a cylinder having a poor intake efficiency so as to increase an intake air amount. A variable valve control system for an engine according to item 3.
【請求項8】吸・排気の脈動による吸気慣性過給効果が
小さい領域では、前記バルブ特性を変化させることな
く、気筒間で同一のバルブ特性に維持することを特徴と
する請求項1〜請求項7のいずれか1つに記載のエンジ
ンの可変動弁制御装置。
8. The same valve characteristic is maintained between cylinders without changing the valve characteristic in a region where the effect of intake / inertial supercharging due to intake / exhaust pulsation is small. Item 8. A variable valve operating system for an engine according to any one of items 7.
JP2001248923A 2001-08-20 2001-08-20 Variable valve control system for engine Expired - Lifetime JP4019664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001248923A JP4019664B2 (en) 2001-08-20 2001-08-20 Variable valve control system for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001248923A JP4019664B2 (en) 2001-08-20 2001-08-20 Variable valve control system for engine

Publications (2)

Publication Number Publication Date
JP2003056374A true JP2003056374A (en) 2003-02-26
JP4019664B2 JP4019664B2 (en) 2007-12-12

Family

ID=19078004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001248923A Expired - Lifetime JP4019664B2 (en) 2001-08-20 2001-08-20 Variable valve control system for engine

Country Status (1)

Country Link
JP (1) JP4019664B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100655A (en) * 2005-10-06 2007-04-19 Toyota Motor Corp Control device for internal combustion engine
JP2007100569A (en) * 2005-10-03 2007-04-19 Toyota Motor Corp Engine
JP2009293537A (en) * 2008-06-06 2009-12-17 Toyota Motor Corp Control device for internal combustion engine
WO2011057697A1 (en) * 2009-11-13 2011-05-19 Bayerische Motoren Werke Aktiengesellschaft Internal combustion engine having eight cylinders in v-configuration
JP2017115628A (en) * 2015-12-22 2017-06-29 ダイハツ工業株式会社 Control device of internal combustion engine

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100569A (en) * 2005-10-03 2007-04-19 Toyota Motor Corp Engine
US7424874B2 (en) 2005-10-03 2008-09-16 Toyota Jidosha Kabushiki Kaisha Engine with intake valves operated by camshaft
JP4661511B2 (en) * 2005-10-03 2011-03-30 トヨタ自動車株式会社 engine
JP2007100655A (en) * 2005-10-06 2007-04-19 Toyota Motor Corp Control device for internal combustion engine
JP2009293537A (en) * 2008-06-06 2009-12-17 Toyota Motor Corp Control device for internal combustion engine
WO2011057697A1 (en) * 2009-11-13 2011-05-19 Bayerische Motoren Werke Aktiengesellschaft Internal combustion engine having eight cylinders in v-configuration
CN102575588A (en) * 2009-11-13 2012-07-11 宝马股份公司 Internal combustion engine having eight cylinders in v-configuration
US8468987B2 (en) 2009-11-13 2013-06-25 Bayerische Motoren Werke Aktiengesellschaft Internal combustion engine having eight cylinders in a V-configuration
JP2017115628A (en) * 2015-12-22 2017-06-29 ダイハツ工業株式会社 Control device of internal combustion engine

Also Published As

Publication number Publication date
JP4019664B2 (en) 2007-12-12

Similar Documents

Publication Publication Date Title
US7066136B2 (en) Output control system for internal combustion engine
US9297348B2 (en) Methods and systems for variable displacement engine control
US7730870B2 (en) Engine dynamic load leveling
US9169788B2 (en) Methods and systems for variable displacement engine control
US9151216B2 (en) Methods and systems for variable displacement engine control
US7748354B2 (en) System and method for adaptive control of variable valve lift tappet switching
JP2001263110A (en) Control device for variable valve engine
JP2006046293A (en) Intake air control device for internal combustion engine
JP2001159348A (en) Intake control device for engine
JP2002213259A (en) Valve control device for internal combustion engine
US6502546B2 (en) Intake air control system of engine
JPH1037727A (en) Intake/exhaust valve control device of multiple cylinder engine and control method therefor
JP2001271682A (en) Intake control device for engine
JP3601386B2 (en) Engine intake air control system
JP2003056374A (en) Variable valve system controller for engine
JP4000747B2 (en) Ignition timing control device for variable valve engine
JP7304181B2 (en) EGR device
JP3620381B2 (en) Control device for variable valve engine
JPH09166030A (en) Combustion controller for internal combustion engine
JP3565119B2 (en) Variable valve control device
JP3885456B2 (en) Variable valve control device
JPH10103092A (en) Engine controller with electromagnetic intake-exhaust valve
JP2004068617A (en) Controlling device for internal combustion engine
JP2000045804A (en) Torque control device for internal combustion engine
JP2001159350A (en) Fuel pressure control device for engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070917

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4019664

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 6

EXPY Cancellation because of completion of term