JP3565119B2 - Variable valve control device - Google Patents

Variable valve control device Download PDF

Info

Publication number
JP3565119B2
JP3565119B2 JP34421499A JP34421499A JP3565119B2 JP 3565119 B2 JP3565119 B2 JP 3565119B2 JP 34421499 A JP34421499 A JP 34421499A JP 34421499 A JP34421499 A JP 34421499A JP 3565119 B2 JP3565119 B2 JP 3565119B2
Authority
JP
Japan
Prior art keywords
valve
timing
closing timing
intake
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34421499A
Other languages
Japanese (ja)
Other versions
JP2001159325A (en
Inventor
尚夫 川崎
勝博 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP34421499A priority Critical patent/JP3565119B2/en
Publication of JP2001159325A publication Critical patent/JP2001159325A/en
Application granted granted Critical
Publication of JP3565119B2 publication Critical patent/JP3565119B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Valve Device For Special Equipments (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電磁駆動式など開閉時期を任意に可変制御できる吸・排気弁を備えた可変動弁エンジンのトルクを調整する制御装置に関する。
【0002】
【従来の技術】
従来一般のエンジンでは、スロットル弁の開度によって吸入空気量を制御するが、近年、電磁駆動式の吸・排気弁を備え、主として吸気弁の閉時期の制御によって吸入空気量を制御するようにしたものが提案されている(特開平10−37727号公報参照) 。
【0003】
この種の吸入空気量制御では、スロットル弁を備えない場合は略大気圧に維持される吸気圧力、またスロットル弁を併用する場合はスロットル弁開度に応じた吸気圧力に対し、吸気弁の閉時期により決定される有効吸気行程に応じたシリンダ吸入空気の体積量を制御することで、要求トルクに応じた目標空気量を得るように制御することができる。
【0004】
【発明が解決しようとする課題】
しかしながら、正確には燃焼室内の残留ガス量に応じて目標空気量を得るための吸気弁閉時期が変化し、残留ガス量が多くなるほど閉時期を吸気下死点に近づけて有効吸気行程を増大する必要がある。したがって、残留ガス量を決定する排気弁の閉時期と吸気弁の開時期を考慮して(より正確には排気弁の開時期をも考慮して) 、吸気弁の閉時期を算出することが要求される。
【0005】
その場合、吸・排気弁の各バルブタイミングの制御を均等に行うと、例えば残留ガス量の変化に対し、吸気弁閉時期以外の排気弁の閉時期と吸気弁の開時期、さらには排気弁の開時期を含めた吸気弁の閉時期以外の制御の方が、吸気弁の閉時期の制御より応答性良く実行されると、吸気弁の閉時期が目標値に制御されるまでの過渡時におけるトルクのずれが大きくなり、良好な運転性を確保できないことがあった。
【0006】
例えば、内部EGR率を一定に維持しながら吸入空気量を増大する制御を行う場合、吸気弁の開時期と排気弁の閉時期、更には排気弁の開時期を変更しつつ、吸入空気量の増大分に内部EGR量(残留ガス量)の増大分を考慮して、吸気弁の閉時期を遅らせる制御を行うことになるが、吸気弁の開時期、排気弁の閉時期及び排気弁の開時期の変化に対して吸気弁の閉時期の変化が遅れると、残留ガス量の増大に対して吸入空気量が不足し、トルク不足となってしまい、運転性が大きく低下してしまう。
【0007】
即ち、内部EGR量(残留ガス量)の変化に追従して常に最適な空気量(新気量)を確保できるように、内部EGR量(残留ガス量)を決定する吸気弁の開時期と排気弁の閉時期、さらには排気弁の開時期の制御の応答性を、吸気弁の閉時期制御の応答性より低くする必要がある。
【0008】
本発明は、このような従来の課題に着目してなされたもので、吸・排気弁の各バルブタイミングの応答性を適切に設定することにより、良好な過渡性能が得られるようにした可変動弁の気量制御装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
このため、請求項1にかかる発明は、
エンジンの吸・排気弁の開閉時期を、設定した目標値とするように可変制御する可変動弁の制御装置において、吸気弁の開時期、排気弁の開時期及び閉時期におけるそれぞれの目標値の変化速度を、吸気弁の閉時期における目標値の変化速度より小さい値に設定したことを特徴とする。
【0010】
請求項1に係る発明によると、
吸気弁の開時期、排気弁の開時期及び閉時期の目標値を変更すると、該変更に応じた残留ガス量の変化に応じて吸気弁の閉時期の目標値も変更されるが、吸気弁閉時期以外の残留ガス量の変化に関与する吸気弁の開時期、排気弁の開時期及び閉時期の目標値の変化速度が、吸気弁の閉時期の目標値の変化速度より小さく制御される。
【0011】
これにより、残留ガス量の変化に追従して目標空気量を最適値に維持する制御を行なうことができ、過渡時にも高精度な吸入空気量制御ひいてはトルク制御を行なうことができ、急激なトルク変化を回避でき良好な運転性を維持できる。
【0012】
また、請求項2に係る発明は、
吸気弁の開時期、排気弁の開時期及び閉時期における目標値の変化速度に上限値を設けたことを特徴とする。
【0013】
請求項2に係る発明によると、
吸気弁の開時期、排気弁の開時期及び閉時期の目標値の変化速度は、上限値により規制されることで、吸気弁の閉時期の目標値の変化速度より小さく制御される。
【0014】
また、請求項3に係る発明は、
吸気弁の開時期、排気弁の開時期及び閉時期における目標値の変化速度に設けた上限値を、吸気弁の閉時期における目標値の変化速度に設けた上限値より小さくしたことを特徴とする。
【0015】
請求項3に係る発明によると、
吸気弁の開時期、排気弁の開時期及び閉時期の目標値の変化速度は、これら目標値の変化速度に対して設けた上限値が吸気弁の閉時期の目標値の変化速度に対して設けた上限値より小さく設定されることにより、吸気弁の閉時期の目標値の変化速度より小さく制御される。
【0016】
また、請求項4に係る発明は、
前記吸気弁の開時期、排気弁の開時期及び閉時期の目標値を加重平均演算により演算するときの過去の値に対する重みを、吸気弁閉時期の目標値を加重平均演算により演算するときの過去の値に対する重みより大きくしたことを特徴とする。
【0017】
請求項4に係る発明によると、
ノイズ等による過渡的な変動を回避するため制御目標値に対して加重平均演算を行うと、目標値への収束に遅れを有し、吸気弁の開時期、排気弁の開時期及び閉時期の目標値算出における加重平均演算の過去の重みを、吸気弁閉時期の目標値算出における加重平均演算の過去の重みより大きくすることにより、目標値への収束の遅れが大きくなる。
【0018】
これにより、吸気弁の開時期、排気弁の開時期及び閉時期の変化速度を、吸気弁閉時期の変化速度より小さくすることができる。
【0019】
【発明の実施の形態】
以下に本発明の実施の形態について説明する。
図1は本発明の一実施形態を示す可変動弁の制御装置を備えたエンジンのシステム図である。
【0020】
エンジン1の各気筒のピストン2により画成される燃焼室3には、点火栓4を囲むように、電磁駆動式の吸気弁5及び排気弁6を備えている。7は吸気通路、8は排気通路である。
【0021】
吸気弁5及び排気弁6の電磁駆動装置(吸・排気弁と共に可変動弁を構成する) の基本構造を図2に示す。弁体20の弁軸21にプレート状の可動子22が取付けられており、この可動子22はスプリング23,24により中立位置に付勢されている。この可動子22の下側に開弁用電磁コイル25が配置され、上側に閉弁用電磁コイル26が配置されている。
【0022】
そして、エンジン1の始動前にこれら開弁用電磁コイル25及び閉弁用電磁コイル26を交互に通電して可動子22を共振させ、振幅が十分大きくなったところで、いずれかの電磁コイルに可動子22を吸着保持する。
【0023】
その後は、閉弁から開弁させる際は、可動子22を吸着している上側の閉弁用電磁コイル26への通電を停止した後、スプリング23の付勢力で可動子22を下方に移動させ、下側の開弁用電磁コイル25に十分接近したところから該開弁用電磁コイル25を通電して可動子22を吸着することにより、弁体20をリフトさせて開弁させる。
【0024】
逆に、開弁から閉弁させる際は、可動子22を吸着している下側の開弁用電磁コイル25への通電を停止した後、スプリング24の付勢力で可動子22を上方へ移動させ、上側の閉弁用電磁コイル26に十分接近したところから該閉弁用電磁コイル26を通電して、可動子22を吸着することにより、弁体20をシート部に着座させて閉弁させる。
【0025】
図1に戻って、吸気通路7には、各気筒毎の吸気ポート部分に、電磁式の燃料噴射弁9が設けられている。
ここにおいて、吸気弁5、排気弁6、燃料噴射弁9及び点火栓4の作動は、コントロールユニット10により制御され、このコントロールユニット10には、エンジン回転に同期してクランク角信号を出力しこれによりエンジン回転速度を検出可能なクランク角センサ11、アクセル開度(アクセルペダルの踏込み量)を検出するアクセルペダルセンサ12等から、信号が入力されている。
【0026】
そして、アクセル開度,エンジン回転速度等のエンジンの運転条件に基づいて目標トルクを発生し、かつ、排気エミッション特にNOx排出量低減のため、運転条件に応じて適度な内部EGR量に制御されるように、吸気弁5と排気弁6の目標開閉時期が設定され、該目標開閉時期が得られるように吸気弁5,排気弁6の開閉時期が制御される。
【0027】
また、前記各種センサ類により検出された値に基づいて、吸入空気量が検出され、該吸入空気量に基づいて前記燃料噴射弁9からの燃料噴射量が制御される。以下に、本発明に係る吸・排気弁の開閉時期制御の第1の実施形態を、図3のフローチャートに従って詳細に説明する。
【0028】
ステップ1では、アクセルペダルセンサ12によって検出されたアクセル開度及びクランク角センサ11によって検出されたエンジン回転速度等を読み込んで、エンジン1の運転状態を検出する。
【0029】
ステップ2では、前記検出された運転状態に基づいて、要求トルクに見合った目標空気量QAを算出する。
ステップ3では、前記目標空気量QAを得るための吸気弁5の閉時期の基本値IVCoが設定される。該基本値IVCoは、内部EGR量(残留ガス量)を考慮しない値として設定される。
【0030】
ステップ4では、前記検出された運転状態に基づいて、内部EGR量を適量に制御するべくバルブオーバーラップ量を決定する排気弁6の閉時期EVCと吸気弁5の開時期IVOとを設定し、さらに、該排気弁6の閉時期EVCに合わせて必要な排気弁6の開期間が確保されるように排気弁6の開時期EVOが設定される。なお、排気弁6の開時期EVOも排気(掃気)効率に関連して内部EGR量に関与する。
【0031】
ステップ5では、前記IVO、EVC、EVOの前回設定値からの変化量ΔIVO、ΔEVC、ΔEVOが、上限値Δmaxを超えないように変化量を制限するリミット処理を行う。
【0032】
ステップ6では、前記運転状態に応じた内部EGR量を考慮して前記吸気弁5閉時期の基本値IVCoを補正した閉時期IVCを設定する。
ステップ7では、上記のようにして設定された吸気弁5の閉時期IVCと、リミット処理された排気弁6の開時期EVO及び閉時期EVCと吸気弁5の開時期IVO(最終的に設定される開閉時期の目標値)に応じた制御信号を出力して、吸・排気弁の開閉時期を制御する。
【0033】
このようにすれば、内部EGR量に関与する排気弁6の開時期EVO及び閉時期EVCと吸気弁5の開時期IVOについては、上限値Δmaxによるリミット処理により、吸気弁5の閉時期IVCに比較して変化速度が遅く制御されることになる。
【0034】
図4は、加減速時の制御例を示し、加速時に排気弁6の開時期EVO及び閉時期EVCを5°ずつ遅角し、吸気弁5の開時期IVOを5°進角させてバルブオーバーラップ量を10°増大すると共に、吸気弁5の閉時期IVCを20°遅角する制御を行い、その後各バルブタイミングを加速前の値に戻して減速を行ったものである。
【0035】
図示実線に示すように、吸気弁5の閉時期IVCの変化速度の方を、それ以外のバルブタイミングIVO、EVC、EVOの変化速度より大きくすることで、過渡状態でもIVO、EVC、EVOの変化にIVCが良好に追従しながら最終目標値に収束させることができる。また、仮に過渡時にトルク感度の大きい吸気弁5の閉時期IVCの変化が、それ以外のトルク感度の小さい各バルブタイミングの変化より早過ぎることがあったとしても、要求トルクの増減方向に一致する方向で大きめとなるだけなので違和感がない。逆に、過渡時に吸気弁5の閉時期IVCの変化が、それ以外の各バルブタイミングIVO、EVC、EVOの変化より遅いと、一旦要求トルクの増減方向と逆向きの方向に制御されることになるので、違和感が大きい(図示一点鎖線参照)。特に要求トルクが増大しているにもかかわらず、残留ガスの増大に吸気弁閉時期の制御が遅れて実際のトルクが減少してしまうことは、大きな問題であるが、本発明では、このような問題を回避できる。
【0036】
次に、本発明に係る吸・排気弁の開閉時期制御の、第2の実施形態のフローを図5に示す。ステップ1〜ステップ6は図3と同様であり、異なるのは、ステップ11において、ステップ6で設定された吸気弁5の閉時期の前回設定値に対する変化量ΔIVCに対しても上限値Δmax2を超えないように変化量を制限するリミット処理を行うが、該ΔIVCの上限値Δmax2は、ステップ5において変化量ΔIVO、ΔEVC、ΔEVOに対して設定される上限値Δmaxより大きい値に設定されている点である。
【0037】
このように、ΔIVCの上限値Δmax2>ΔIVO、ΔEVC、ΔEVOの上限値Δmaxとしても、吸気弁5の閉時期以外のバルブタイミングの変化速度を、吸気弁5の閉時期の変化速度より小さく制御できるため、過渡時においても高精度なトルク制御を行なうことができ、また、ΔIVCもリミット処理することで、急激なトルク変化を抑制して、滑らかな運転性能を確保できる。
【0038】
また、吸気弁5の閉時期IVCの目標値への収束と、それ以外のバルブタイミングIVO、EVC、EVOの目標値への収束が略同時に行われるように、各バルブタイミング毎に、目標値の変化量に対して上限値を比例的に設定する構成としてもよい。
【0039】
図6は、本発明に係る吸・排気弁の開閉時期制御の、第3の実施形態のフローを示す。
この実施形態では、リミット処理の代わりに、ステップ4'での吸気弁5の開時期IVO、排気弁6の閉時期EVC及び開時期EVOの算出時と、ステップ6での内部EGR量に応じた吸気弁5の閉時期IVCの補正後のステップ21において、ノイズ等による過渡的な変動を回避するため加重平均演算処理を行うが、吸気弁5の開時期IVO、排気弁6の閉時期EVC及び開時期EVOの算出における平均化度合い(なまし度合い)を、吸気弁5の閉時期IVCの算出における平均化度合いより大きくする(加重平均演算の場合過去の値に対する重みを、より大きくする)。
【0040】
このように平均化処理を行うと、目標値への収束に遅れを有し、吸気弁5の開時期IVO、排気弁6の開時期EVO及び閉時期EVCの算出の平均化度合いを、吸気弁5の閉時期IVC算出の平均化度合いより大きくすることにより、目標値への収束の遅れが大きくなり、吸気弁5の開時期IVO、排気弁6の開時期EVO及び閉時期EVCの変化速度を、吸気弁5閉時期IVCの変化速度より小さくすることができ、第1、第2の実施形態と同様の効果が得られる。
【図面の簡単な説明】
【図1】本発明の一実施形態を示す可変動弁の制御装置を備えたエンジンのシステム図。
【図2】吸・排気弁の電磁駆動装置の基本構造図。
【図3】吸・排気弁の開閉時期制御の第1の実施形態のフローチャート。
【図4】加減速制御時の各バルブタイミングの様子を示すタイムチャート。
【図5】吸・排気弁の開閉時期制御の第2の実施形態のフローチャート。
【図6】吸・排気弁の開閉時期制御の第3の実施形態のフローチャート。
【符号の説明】
1 エンジン
5 吸気弁
6 排気弁
8 排気通路
9 燃料噴射弁
10 コントロールユニット
11 クランク角センサ
12 アクセルペダルセンサ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a control device that adjusts the torque of a variable valve engine having an intake / exhaust valve that can variably control the opening / closing timing, such as an electromagnetic drive type.
[0002]
[Prior art]
Conventional general engines control the amount of intake air by the opening degree of a throttle valve.In recent years, however, an electromagnetically driven intake / exhaust valve has been provided, and the intake air amount is mainly controlled by controlling the closing timing of the intake valve. The following has been proposed (see Japanese Patent Application Laid-Open No. 10-37727).
[0003]
In this type of intake air amount control, when the throttle valve is not provided, the intake pressure is maintained at approximately the atmospheric pressure, and when the throttle valve is used together, the intake pressure corresponding to the opening degree of the throttle valve is closed. By controlling the volume of the cylinder intake air according to the effective intake stroke determined by the timing, it is possible to control so as to obtain the target air amount according to the required torque.
[0004]
[Problems to be solved by the invention]
However, to be precise, the intake valve closing timing for obtaining the target air amount changes according to the residual gas amount in the combustion chamber, and as the residual gas amount increases, the closing timing approaches the intake bottom dead center to increase the effective intake stroke. There is a need to. Therefore, it is possible to calculate the closing timing of the intake valve in consideration of the closing timing of the exhaust valve and the opening timing of the intake valve which determine the residual gas amount (more precisely, also considering the opening timing of the exhaust valve). Required.
[0005]
In this case, if the control of each valve timing of the intake and exhaust valves is performed equally, for example, in response to a change in the residual gas amount, the exhaust valve closing timing and the intake valve opening timing other than the intake valve closing timing, and further, the exhaust valve If the control other than the intake valve closing timing, including the opening timing of the intake valve, is performed with higher responsiveness than the control of the intake valve closing timing, the transient operation until the intake valve closing timing is controlled to the target value is performed. , The deviation of the torque became large, and good operability could not be secured.
[0006]
For example, when performing control to increase the intake air amount while maintaining the internal EGR rate constant, the intake air amount is changed while changing the opening timing of the intake valve, the closing timing of the exhaust valve, and the opening timing of the exhaust valve. In consideration of the increase in the internal EGR amount (residual gas amount), control is performed to delay the closing timing of the intake valve. However, the opening timing of the intake valve, the closing timing of the exhaust valve, and the opening of the exhaust valve are controlled. If the change of the closing timing of the intake valve is delayed with respect to the change of the timing, the intake air amount becomes insufficient with respect to the increase of the residual gas amount, and the torque becomes insufficient, so that the operability is greatly reduced.
[0007]
That is, the opening timing and exhaust of the intake valve for determining the internal EGR amount (residual gas amount) so that the optimum air amount (fresh air amount) can always be ensured by following the change in the internal EGR amount (residual gas amount). It is necessary to make the responsiveness of the control of the closing timing of the valve, and further, the opening timing of the exhaust valve, lower than the responsiveness of the control of the closing timing of the intake valve.
[0008]
SUMMARY OF THE INVENTION The present invention has been made in view of such conventional problems, and has a variable dynamic range in which good transient performance can be obtained by appropriately setting the response of each valve timing of the intake and exhaust valves. An object of the present invention is to provide an air volume control device for a valve.
[0009]
[Means for Solving the Problems]
Therefore, the invention according to claim 1 is
In a variable valve control device that variably controls the opening / closing timing of an intake / exhaust valve of an engine to be a set target value, the target value of each target value at the opening timing of the intake valve, the opening timing and the closing timing of the exhaust valve is determined. The change speed is set to a value smaller than the change speed of the target value when the intake valve is closed.
[0010]
According to the first aspect of the invention,
When the target values of the opening timing of the intake valve, the opening timing and the closing timing of the exhaust valve are changed, the target value of the closing timing of the intake valve is also changed according to the change in the residual gas amount according to the change. The rate of change of the target value of the opening timing of the intake valve, the timing of the opening timing of the exhaust valve, and the target value of the closing timing related to the change of the residual gas amount other than the closing timing are controlled to be smaller than the rate of change of the target value of the closing timing of the intake valve. .
[0011]
As a result, control can be performed to maintain the target air amount at an optimum value following changes in the amount of residual gas, and high-precision intake air amount control and, consequently, torque control can be performed even during a transient, and a sudden torque Changes can be avoided and good driving performance can be maintained.
[0012]
The invention according to claim 2 is
An upper limit value is set for the change speed of the target value at the opening timing of the intake valve and the opening timing and the closing timing of the exhaust valve.
[0013]
According to the invention according to claim 2,
Opening timing of the intake valve, the change rate of the target value of the opening timing and closing timing of the exhaust valve, by being restricted by the upper limit value is controlled to be smaller than the change rate of the target value of the closing timing of the intake valve.
[0014]
The invention according to claim 3 is:
The upper limit provided for the target value changing speed at the intake valve opening timing, the exhaust valve opening timing and the closing timing is smaller than the upper limit provided at the target value changing speed at the intake valve closing timing. I do.
[0015]
According to the invention according to claim 3,
Opening timing of the intake valve, the change rate of the target value of the opening timing and closing timing of the exhaust valve, the upper limit value provided for the rate of change in these target values to the change rate of the target value of the closing timing of the intake valve By setting it smaller than the upper limit provided, it is controlled to be smaller than the change speed of the target value of the closing timing of the intake valve.
[0016]
The invention according to claim 4 is
The weight for the past value when calculating the target value of the opening timing of the intake valve, the opening timing and the closing timing of the exhaust valve by the weighted average calculation, when calculating the target value of the intake valve closing timing by the weighted average calculation. It is characterized in that it is made larger than the weight for past values .
[0017]
According to the invention of claim 4,
When weighted averaging is performed on the control target value to avoid transient fluctuations due to noise and the like, there is a delay in convergence to the target value, and the opening timing of the intake valve, the opening timing and the closing timing of the exhaust valve , By making the past weight of the weighted average calculation in the calculation of the target value larger than the past weight of the weighted average calculation in the calculation of the target value of the intake valve closing timing, the delay of the convergence to the target value is increased.
[0018]
Thus, the changing speed of the opening timing of the intake valve, the opening timing and the closing timing of the exhaust valve can be made smaller than the changing speed of the intake valve closing timing.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
FIG. 1 is a system diagram of an engine including a variable valve control device according to an embodiment of the present invention.
[0020]
A combustion chamber 3 defined by a piston 2 of each cylinder of the engine 1 is provided with an electromagnetically driven intake valve 5 and an exhaust valve 6 so as to surround an ignition plug 4. 7, an intake passage; and 8, an exhaust passage.
[0021]
FIG. 2 shows a basic structure of an electromagnetic drive device for the intake valve 5 and the exhaust valve 6 (which constitutes a variable valve together with the intake and exhaust valves). A plate-shaped mover 22 is attached to a valve shaft 21 of the valve body 20, and the mover 22 is urged to a neutral position by springs 23 and 24. A valve opening electromagnetic coil 25 is disposed below the movable element 22, and a valve closing electromagnetic coil 26 is disposed above the movable element 22.
[0022]
Before the start of the engine 1, the valve-opening electromagnetic coil 25 and the valve-closing electromagnetic coil 26 are alternately energized to resonate the mover 22, and when the amplitude becomes sufficiently large, the movable member 22 is moved to one of the electromagnetic coils. The child 22 is held by suction.
[0023]
Thereafter, when the valve is opened from the closed state, the energization of the upper valve closing electromagnetic coil 26 that is attracting the mover 22 is stopped, and then the mover 22 is moved downward by the urging force of the spring 23. By energizing the valve opening electromagnetic coil 25 from a position sufficiently close to the lower valve opening electromagnetic coil 25 to attract the mover 22, the valve body 20 is lifted to open the valve.
[0024]
Conversely, when the valve is to be closed from the open state, after the energization of the lower valve-opening electromagnetic coil 25 that is attracting the mover 22 is stopped, the mover 22 is moved upward by the urging force of the spring 24. The valve closing electromagnetic coil 26 is energized from a position sufficiently close to the upper valve closing electromagnetic coil 26 to attract the movable element 22, thereby seating the valve body 20 on the seat portion and closing the valve. .
[0025]
Returning to FIG. 1, an electromagnetic fuel injection valve 9 is provided in the intake passage 7 at an intake port portion for each cylinder.
Here, the operations of the intake valve 5, the exhaust valve 6, the fuel injection valve 9 and the ignition plug 4 are controlled by a control unit 10, which outputs a crank angle signal in synchronization with the engine rotation. Signals are input from a crank angle sensor 11 that can detect an engine rotation speed, an accelerator pedal sensor 12 that detects an accelerator opening (depression amount of an accelerator pedal), and the like.
[0026]
Then, a target torque is generated based on operating conditions of the engine such as an accelerator opening and an engine rotation speed, and the internal EGR amount is controlled to an appropriate amount according to the operating conditions in order to reduce exhaust emissions, particularly NOx emissions. Thus, the target opening / closing timing of the intake valve 5 and the exhaust valve 6 is set, and the opening / closing timing of the intake valve 5 and the exhaust valve 6 is controlled so as to obtain the target opening / closing timing.
[0027]
The intake air amount is detected based on the values detected by the various sensors, and the fuel injection amount from the fuel injection valve 9 is controlled based on the intake air amount. Hereinafter, a first embodiment of the intake / exhaust valve opening / closing timing control according to the present invention will be described in detail with reference to the flowchart of FIG.
[0028]
In step 1, the operation state of the engine 1 is detected by reading the accelerator opening detected by the accelerator pedal sensor 12, the engine rotation speed detected by the crank angle sensor 11, and the like.
[0029]
In step 2, a target air amount QA corresponding to the required torque is calculated based on the detected operating state.
In step 3, a basic value IVCo of the closing timing of the intake valve 5 for obtaining the target air amount QA is set. The basic value IVCo is set as a value that does not consider the internal EGR amount (residual gas amount).
[0030]
In step 4, the closing timing EVC of the exhaust valve 6 and the opening timing IVO of the intake valve 5, which determine the valve overlap amount to control the internal EGR amount to an appropriate amount, are set based on the detected operating state, Further, the opening timing EVO of the exhaust valve 6 is set such that a necessary opening period of the exhaust valve 6 is secured in accordance with the closing timing EVC of the exhaust valve 6. The opening timing EVO of the exhaust valve 6 also affects the internal EGR amount in relation to the exhaust (scavenging) efficiency.
[0031]
In step 5, limit processing is performed to limit the amounts of change of the IVO, EVC, and EVO from the previously set values so that the amounts of change ΔIVO, ΔEVC, and ΔEVO do not exceed the upper limit value Δmax.
[0032]
In step 6, a closing timing IVC is set by correcting the basic value IVCo of the closing timing of the intake valve 5 in consideration of the internal EGR amount according to the operating state.
In step 7, the closing timing IVC of the intake valve 5 set as described above, the opening timing EVO and the closing timing EVC of the exhaust valve 6 subjected to the limit processing, and the opening timing IVO of the intake valve 5 (finally set) A control signal corresponding to the target value of the opening / closing timing is output to control the opening / closing timing of the intake and exhaust valves.
[0033]
In this manner, the opening timing EVO and the closing timing EVC of the exhaust valve 6 and the opening timing IVO of the intake valve 5 related to the internal EGR amount are changed to the closing timing IVC of the intake valve 5 by the limit processing using the upper limit value Δmax. The change speed is controlled to be slower than that.
[0034]
FIG. 4 shows a control example at the time of acceleration / deceleration. During acceleration, the opening timing EVO and the closing timing EVC of the exhaust valve 6 are retarded by 5 °, and the opening timing IVO of the intake valve 5 is advanced by 5 °, and valve over is performed. The control is performed to increase the lap amount by 10 ° and to retard the closing timing IVC of the intake valve 5 by 20 °, and thereafter, the valve timing is returned to the value before acceleration and deceleration is performed.
[0035]
As shown by the solid line in the drawing, the change speed of the closing timing IVC of the intake valve 5 is made larger than the change speed of the other valve timings IVO, EVC, and EVO, so that the change of IVO, EVC, and EVO even in the transient state. The IVC can converge to the final target value while satisfactorily following. Also, even if the change in the closing timing IVC of the intake valve 5 having a large torque sensitivity during the transition may be earlier than the change in each valve timing having the other small torque sensitivity, the change coincides with the increasing / decreasing direction of the required torque. There is no sense of incompatibility because it is only slightly larger in the direction. Conversely, if the change in the closing timing IVC of the intake valve 5 during the transition is later than the other changes in the valve timings IVO, EVC, and EVO, the control is once performed in the direction opposite to the increasing / decreasing direction of the required torque. Therefore, a sense of discomfort is large (see the dashed line in the figure). In particular, it is a serious problem that the control of the intake valve closing timing is delayed due to the increase in the residual gas and the actual torque is reduced despite the increase in the required torque. Problems can be avoided.
[0036]
Next, FIG. 5 shows a flow of the second embodiment of the opening / closing timing control of the intake / exhaust valve according to the present invention. Steps 1 to 6 are the same as those in FIG. 3 except that in step 11, the change amount ΔIVC of the closing timing of the intake valve 5 set in step 6 with respect to the previous setting value also exceeds the upper limit value Δmax2. A limit process is performed to limit the amount of change so that there is no change, but the upper limit value Δmax2 of ΔIVC is set to a value larger than the upper limit value Δmax set for the change amounts ΔIVO, ΔEVC, and ΔEVO in step 5. It is.
[0037]
As described above, even when the upper limit value Δmax2 of ΔIVC> ΔIVO, ΔEVC, and the upper limit value Δmax of ΔEVO, the changing speed of the valve timing other than the closing timing of the intake valve 5 can be controlled to be smaller than the changing speed of the closing timing of the intake valve 5. Therefore, high-accuracy torque control can be performed even during a transient period, and by limiting the ΔIVC, it is possible to suppress a sudden change in torque and ensure smooth driving performance.
[0038]
Also, the target value of the valve timing is set at each valve timing so that the convergence of the closing timing IVC of the intake valve 5 to the target value and the convergence of the other valve timings IVO, EVC, and EVO to the target value are performed substantially simultaneously. A configuration may be adopted in which the upper limit value is set proportionally to the amount of change.
[0039]
FIG. 6 shows a flow of the third embodiment of the opening / closing timing control of the intake / exhaust valve according to the present invention.
In this embodiment, instead of the limit process, the opening timing IVO of the intake valve 5 and the closing timing EVC and the opening timing EVO of the exhaust valve 6 are calculated in step 4 ′, and the internal EGR amount in step 6 is calculated. In step 21 after the correction of the closing timing IVC of the intake valve 5, a weighted average calculation process is performed in order to avoid a transient fluctuation due to noise or the like, but the opening timing IVO of the intake valve 5, the closing timing EVC of the exhaust valve 6, and The degree of averaging (the degree of smoothing) in the calculation of the opening timing EVO is made larger than the degree of averaging in the calculation of the closing timing IVC of the intake valve 5 (in the case of the weighted average calculation, the weight for the past value is made larger).
[0040]
When the averaging process is performed in this manner, there is a delay in convergence to the target value, and the averaging degree of the calculation of the opening timing IVO of the intake valve 5, the opening timing EVO of the exhaust valve 6, and the closing timing EVC is determined by the intake valve. 5, the delay in the convergence to the target value is increased, and the changing speed of the opening timing IVO of the intake valve 5, the opening timing EVO of the exhaust valve 6, and the closing timing EVC is increased. , Can be made smaller than the change speed of the intake valve 5 closing timing IVC, and the same effects as those of the first and second embodiments can be obtained.
[Brief description of the drawings]
FIG. 1 is a system diagram of an engine including a variable valve control device according to an embodiment of the present invention.
FIG. 2 is a basic structural diagram of an electromagnetic drive device for intake and exhaust valves.
FIG. 3 is a flowchart of a first embodiment of opening / closing timing control of intake and exhaust valves.
FIG. 4 is a time chart showing the state of each valve timing during acceleration / deceleration control.
FIG. 5 is a flowchart of a second embodiment of opening / closing timing control of intake and exhaust valves.
FIG. 6 is a flowchart of a third embodiment of opening / closing timing control of intake and exhaust valves.
[Explanation of symbols]
Reference Signs List 1 engine 5 intake valve 6 exhaust valve 8 exhaust passage 9 fuel injection valve 10 control unit 11 crank angle sensor 12 accelerator pedal sensor

Claims (4)

エンジンの吸・排気弁の開閉時期を、設定した目標値とするように可変制御する可変動弁の制御装置において、吸気弁の開時期、排気弁の開時期及び閉時期におけるそれぞれの目標値の変化速度を、吸気弁の閉時期における目標値の変化速度より小さい値に設定したことを特徴とする可変動弁の制御装置。In a variable valve control device that variably controls the opening / closing timing of an intake / exhaust valve of an engine to be a set target value, the target value of each target value at the opening timing of the intake valve, the opening timing and the closing timing of the exhaust valve is determined. the change speed control device of the variable valve, characterized in that set in the change rate value smaller than the target value in the closing timing of the intake valve. 吸気弁の開時期、排気弁の開時期及び閉時期における目標値の変化速度に上限値を設けたことを特徴とする請求項1に記載の可変動弁の制御装置。2. The variable valve control device according to claim 1, wherein an upper limit value is provided for a change speed of a target value at the opening timing of the intake valve and the opening timing and the closing timing of the exhaust valve. 吸気弁の開時期、排気弁の開時期及び閉時期における目標値の変化速度に設けた上限値を、吸気弁の閉時期における目標値の変化速度に設けた上限値より小さくしたことを特徴とする請求項1に記載の可変動弁の制御装置。The upper limit provided for the target value changing speed at the intake valve opening timing, the exhaust valve opening timing and the closing timing is smaller than the upper limit provided at the target value changing speed at the intake valve closing timing. The variable valve control device according to claim 1. 前記吸気弁の開時期、排気弁の開時期及び閉時期の目標値を加重平均演算により演算するときの過去の値に対する重みを、吸気弁閉時期の目標値を加重平均演算により演算するときの過去の値に対する重みより大きくしたことを特徴とする請求項1に記載の可変動弁の制御装置。 The weight for the past value when calculating the target value of the opening timing of the intake valve, the opening timing and the closing timing of the exhaust valve by the weighted average calculation, when calculating the target value of the intake valve closing timing by the weighted average calculation. The variable valve control device according to claim 1, wherein the weight is set to be larger than a weight for a past value .
JP34421499A 1999-12-03 1999-12-03 Variable valve control device Expired - Fee Related JP3565119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34421499A JP3565119B2 (en) 1999-12-03 1999-12-03 Variable valve control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34421499A JP3565119B2 (en) 1999-12-03 1999-12-03 Variable valve control device

Publications (2)

Publication Number Publication Date
JP2001159325A JP2001159325A (en) 2001-06-12
JP3565119B2 true JP3565119B2 (en) 2004-09-15

Family

ID=18367523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34421499A Expired - Fee Related JP3565119B2 (en) 1999-12-03 1999-12-03 Variable valve control device

Country Status (1)

Country Link
JP (1) JP3565119B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6678608B2 (en) * 2001-11-09 2004-01-13 Ford Global Technologies, Llc Robust interpolation method for improved automative engine control during transient engine operation
JP4120344B2 (en) 2002-10-04 2008-07-16 トヨタ自動車株式会社 Control device for internal combustion engine
JP5206565B2 (en) * 2009-04-15 2013-06-12 トヨタ自動車株式会社 Internal combustion engine control system

Also Published As

Publication number Publication date
JP2001159325A (en) 2001-06-12

Similar Documents

Publication Publication Date Title
US6827051B2 (en) Internal EGR quantity estimation, cylinder intake air quantity calculation, valve timing control, and ignition timing control
JP3747700B2 (en) Intake air amount calculation device for variable valve engine
JP3867461B2 (en) Fail-safe control device for electromagnetically driven valve
JP2001050091A (en) Cylinder intake air volume calculation unit in engine with variable valve timing
JP3959957B2 (en) Engine internal EGR amount estimation method, variable valve control method using the internal EGR amount estimation value, cylinder intake air amount calculation method, and ignition timing control method
JP2000080937A (en) Intake air quantity estimating device for variable valve system engine
JP3627601B2 (en) Engine intake air amount control device
EP1104843B1 (en) System and method for controlling intake air by variable valve timing
JP3601386B2 (en) Engine intake air control system
JP3614060B2 (en) Ignition timing control device for variable valve engine
JP4036057B2 (en) Intake valve drive control device for internal combustion engine
JP4000747B2 (en) Ignition timing control device for variable valve engine
JP3565119B2 (en) Variable valve control device
EP1211402A2 (en) Internal EGR quantity estimation for controlling intake/exhaust valves and ignition timing
JP3799833B2 (en) Cylinder intake air amount detection device for variable valve engine
JP3807173B2 (en) Intake air amount detection device and fuel injection control device for variable valve engine
JP4144985B2 (en) Control device for variable valve engine
JP3915367B2 (en) Control device for variable valve engine
JP3885456B2 (en) Variable valve control device
JP3598919B2 (en) Engine fuel pressure control device
JP4056633B2 (en) Torque control device for internal combustion engine
JP3620381B2 (en) Control device for variable valve engine
JP3758448B2 (en) Control device for variable valve engine
JP3755359B2 (en) Engine torque control device
JP3705051B2 (en) Engine intake air amount control device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040531

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees