JP2003055773A - Apparatus and method for depositing film - Google Patents

Apparatus and method for depositing film

Info

Publication number
JP2003055773A
JP2003055773A JP2001243474A JP2001243474A JP2003055773A JP 2003055773 A JP2003055773 A JP 2003055773A JP 2001243474 A JP2001243474 A JP 2001243474A JP 2001243474 A JP2001243474 A JP 2001243474A JP 2003055773 A JP2003055773 A JP 2003055773A
Authority
JP
Japan
Prior art keywords
thin plate
dielectric window
deposited film
film
discharge space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001243474A
Other languages
Japanese (ja)
Inventor
Hiroshi Sukai
浩士 須貝
Masahiro Kanai
正博 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2001243474A priority Critical patent/JP2003055773A/en
Publication of JP2003055773A publication Critical patent/JP2003055773A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus and a method for depositing a film in which deposition of a film on a dielectric window is prevented, a homogeneous plasma is formed by transmitting relatively large microwave power into a discharge space of large area consistently for a long time, and a film of high quality and excellent uniformity can be deposited when depositing the film by the plasma CVD method by introducing a microwave via the dielectric window. SOLUTION: In the apparatus and the method for depositing the film on the base material by the microwave plasma CVD method by introducing the microwave into the discharge space via the dielectric window, a plurality of thin plate-like members are disposed on the discharge space side of the dielectric window so as to form a space partitioned across the direction of the electric field by the plurality of thin plate-like members.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、フラスマCVD法
によって基板上に堆積膜を形成する堆積膜形成装置およ
び堆積膜形成方法に関するものである。例えば、アモル
ファスシリコンやアモルファス合金、さらに微結晶シリ
コンを用いた太陽電池等の光起電力素子の半導体薄膜を
連続的に作成する半導体薄膜の成膜装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a deposited film forming apparatus and a deposited film forming method for forming a deposited film on a substrate by a plasma-enhanced CVD method. For example, the present invention relates to a semiconductor thin film forming apparatus for continuously forming a semiconductor thin film of a photovoltaic element such as a solar cell using amorphous silicon, an amorphous alloy, or microcrystalline silicon.

【0002】[0002]

【従来の技術】シリコン系非単結晶は、プラズマCVD
法によって大面積の半導体膜を形成する事、結晶シリコ
ンや多結晶シリコンと比較して大面積の半導体デバイス
を比較的容易に形成する事に利用出来る。そのため、ア
モルファスシリコン膜や微結晶シリコン膜は、大きな面
積を必要とする半導体デバイス、具体的には、太陽電
池、複写機の感光ドラム、ファクシミリのイメージセン
サー、液晶ディスプレー用の薄膜トランジスタ等に多く
用いられている。
2. Description of the Related Art Silicon-based non-single crystal is plasma CVD
It can be used for forming a large-area semiconductor film by the method and for forming a large-area semiconductor device relatively easily as compared with crystalline silicon or polycrystalline silicon. Therefore, amorphous silicon films and microcrystalline silicon films are often used in semiconductor devices that require a large area, specifically, solar cells, photosensitive drums of copying machines, image sensors of facsimiles, thin film transistors for liquid crystal displays, and the like. ing.

【0003】アモルファスシリコン膜の形成は、一般に
SiH4やSi26等のSiを含有する原料ガスを高周
波放電によって分解してプラズマ状態にし、該プラズマ
中に置かれた基板上に成膜するプラズマCVD法によっ
ている。
The amorphous silicon film is generally formed by decomposing a raw material gas containing Si such as SiH 4 and Si 2 H 6 into a plasma state by high frequency discharge, and forming a film on a substrate placed in the plasma. The plasma CVD method is used.

【0004】プラズマCVD法によってアモルファスシ
リコン膜を形成する場合、従来のRF周波数(13.5
6MHz近傍)の高周波が一般に用いられてきた。しか
し、近年、2.45GHzのマイクロ波周波数を用いる
ことにより高密度プラズマを効率的に生成することがで
き、プラズマCVD法において堆積膜形成速度向上が図
れる可能性がある事から、マイクロ波を用いたプラズマ
CVD法が注目されている。
When forming an amorphous silicon film by the plasma CVD method, a conventional RF frequency (13.5) is used.
High frequencies around 6 MHz) have been commonly used. However, in recent years, high-density plasma can be efficiently generated by using a microwave frequency of 2.45 GHz, and there is a possibility that the deposition film formation rate can be improved in the plasma CVD method. The plasma CVD method that has been used is drawing attention.

【0005】例えば、特許第2971478号公報(登
録日1999年8月27日)には放電周波数を13.5
6MHzのRFから2.45GHzのマイクロ波周波数
にすることによって、成膜速度を格段に高めることがで
き、高速で良好なアモルファスシリコン堆積膜が形成可
能になると報告されている。ここではマイクロ波透過窓
に適切な素材と寸法を採用し冷却構造を組み込むこと
で、高電力マイクロ波プラズマによる高温化の弊害およ
び高温化に伴い結晶化する堆積膜の弊害を除去できると
している。
For example, Japanese Patent No. 2971478 (registration date August 27, 1999) discloses a discharge frequency of 13.5.
It has been reported that by changing the RF of 6 MHz to the microwave frequency of 2.45 GHz, the film formation rate can be remarkably increased, and a good amorphous silicon deposited film can be formed at a high speed. Here, it is stated that by adopting an appropriate material and dimensions for the microwave transmission window and incorporating a cooling structure, it is possible to eliminate the adverse effects of the high temperature microwave plasma and the adverse effects of the deposited film that crystallizes with the increase in temperature.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、マイク
ロ波を用いたプラズマCVD法を、比較的高い6.65
Pa以上の放電圧力を要しかつ大電力を要するような微
結晶シリコン堆積膜を形成する装置に採用しようとする
と以下の様な問題が生じた。すなわち、プラズマ空間へ
のマイクロ波の投入口であるマイクロ波伝送構造体を通
してマイクロ波をプラズマ空間に投入して放電を生起し
たところ、マイクロ波プラズマが誘電体窓近傍に集中し
て、誘電体窓表面に微結晶堆積膜が堆積し、マイクロ波
投入電力が不安定になったり、誘電体窓の割れを生じる
という問題が出ていた。
However, the plasma CVD method using microwaves is relatively high at 6.65.
The following problems have occurred when it is adopted in an apparatus for forming a microcrystalline silicon deposited film which requires a discharge pressure of Pa or more and a large electric power. That is, when microwaves are injected into the plasma space through the microwave transmission structure, which is the inlet of the microwaves into the plasma space, to generate discharge, the microwave plasma is concentrated near the dielectric window and the dielectric window There have been problems that a microcrystalline deposition film is deposited on the surface, the microwave input power becomes unstable, and the dielectric window is cracked.

【0007】そこで、本発明は、上記課題を解決し、誘
電体窓を介しマイクロ波を導入してプラズマCVD法に
より堆積膜を形成するに際し、誘電体窓に堆積膜が付着
することを防止し、比較的大きなマイクロ波投入電力
を、大面積において、長時間、安定的に放電空間に伝送
して均質なプラズマを形成し、高品質で優れた均一性を
有する堆積膜を形成することが可能となる堆積膜形成装
置および堆積膜形成方法を提供することを目的とするも
のである。
Therefore, the present invention solves the above problem and prevents the deposition film from adhering to the dielectric window when the deposition film is formed by the plasma CVD method by introducing microwaves through the dielectric window. , A relatively large microwave input power can be stably transmitted to the discharge space for a long time in a large area to form a homogeneous plasma and form a deposited film with high quality and excellent uniformity. It is an object of the present invention to provide a deposited film forming apparatus and a deposited film forming method.

【0008】[0008]

【課題を解決するための手段】本発明は、上記課題を達
成するため、つぎの(1)〜(8)のように構成した堆
積膜形成装置および堆積膜形成方法を提供するものであ
る。 (1)誘電体窓を介して放電空間内にマイクロ波を導入
し、マイクロ波プラズマCVD法によって基体上に堆積
膜を形成する堆積膜形成装置において、前記誘電体窓の
前記放電空間側に複数の薄板状部材を有し、該複数の薄
板状部材によって電界方向を横切る向きに仕切られた空
間が形成されていることを特徴とする堆積膜形成装置。 (2)前記複数の薄板状部材は、前記誘電体窓の前記放
電空間側の面に形成された複数の溝構造に、その一端を
前記放電空間側に突出するように配置されていることを
特徴とする上記(1)に記載の堆積膜形成装置。 (3)前記複数の薄板状部材の前記放電空間側に突出す
る長さが、材料ガスの着膜成分の平均自由行程と同等以
上の長さであることを特徴とする上記(2)に記載の堆
積膜形成装置。 (4)前記複数の薄板状部材の間隔が、材料ガスの電子
の平均自由行程と同等以下の間隔であることを特徴とす
る上記(1)〜(3)のいずれかに記載の堆積膜形成装
置。 (5)誘電体窓を介して放電空間内にマイクロ波を導入
し、マイクロ波プラズマCVD法によって基体上に堆積
膜を形成する堆積膜形成方法において、前記誘電体窓の
前記放電空間側に配置された複数の薄板状部材によって
電界方向を横切る向きに仕切られた空間を形成し、該薄
板状部材の側面部分にプラズマ空間の着膜成分を着膜さ
せることにより、前記誘電体窓への堆積膜の付着を防止
しながら堆積膜を形成することを特徴とする堆積膜形成
方法。 (6)前記複数の薄板状部材を、前記誘電体窓の前記放
電空間側の面に形成された複数の溝構造に、その一端が
前記放電空間側に突出するように配置して堆積膜を形成
することを特徴とする上記(5)に記載の堆積膜形成方
法。 (7)前記複数の薄板状部材の前記放電空間側に突出す
る長さが、材料ガスの着膜成分の平均自由行程と同等以
上の長さであることを特徴とする上記(6)に記載の堆
積膜形成方法。 (8)前記複数の薄板状部材の間隔が、材料ガスの電子
の平均自由行程と同等以下の間隔であることを特徴とす
る上記(5)〜(7)のいずれかに記載の堆積膜形成方
法。
In order to achieve the above object, the present invention provides a deposited film forming apparatus and a deposited film forming method configured as in the following (1) to (8). (1) In a deposited film forming apparatus for introducing a microwave into a discharge space through a dielectric window to form a deposited film on a substrate by a microwave plasma CVD method, a plurality of dielectric windows are provided on the discharge space side. A thin film-shaped member, wherein a space partitioned by the plurality of thin plate-shaped members in a direction crossing the electric field direction is formed. (2) The plurality of thin plate-shaped members are arranged in a plurality of groove structures formed on the surface of the dielectric window on the discharge space side so that one ends thereof project toward the discharge space side. The deposited film forming apparatus as described in (1) above. (3) The above-mentioned (2), wherein the length of the plurality of thin plate-shaped members protruding toward the discharge space is equal to or longer than the mean free path of the film deposition component of the material gas. Deposited film forming apparatus. (4) The deposition film formation according to any one of the above (1) to (3), characterized in that the distance between the plurality of thin plate members is equal to or less than the mean free path of electrons of the material gas. apparatus. (5) In a deposited film forming method in which a microwave is introduced into a discharge space through a dielectric window and a deposited film is formed on a substrate by a microwave plasma CVD method, the deposition window is disposed on the discharge space side of the dielectric window. A plurality of thin plate-shaped members form a space partitioned in a direction crossing the direction of the electric field, and a film forming component of the plasma space is formed on the side surface of the thin plate-like member to deposit on the dielectric window. A deposited film forming method, characterized in that a deposited film is formed while preventing the deposition of the film. (6) The plurality of thin plate-shaped members are arranged in a plurality of groove structures formed on the surface of the dielectric window on the discharge space side so that one end thereof projects toward the discharge space side to form a deposited film. The method for forming a deposited film according to the above (5), characterized in that the deposited film is formed. (7) The above-mentioned (6), wherein the length of the plurality of thin plate-shaped members protruding toward the discharge space is equal to or longer than the mean free path of the film deposition component of the material gas. Method for forming deposited film of. (8) The deposition film formation according to any one of the above (5) to (7), wherein the interval between the plurality of thin plate-shaped members is equal to or less than the mean free path of electrons of the material gas. Method.

【0009】[0009]

【発明の実施の形態】上記の構成によると、誘電体窓が
放電空間側の部分に複数の薄板状部材を配置すること
で、高密度プラズマによる誘電体窓への着膜が薄板状部
材の先端部分で最低限に抑えることが可能となり、長時
間におけるプラズマ放電安定性が飛躍的に高まる。さら
に前記薄板状部材が前記誘電体窓の溝構造にはめ込むよ
う配置されることから、前記薄板状部材と前記誘電体窓
の隙間で問題となる異常放電や、着膜の影響によるマイ
クロ波電力の反射または吸収による損失が激減され、プ
ラズマの放電安定性が得られるだけでなく、生起するプ
ラズマの均一性、指向性にも大きく寄与することが可能
となる。
According to the above structure, a plurality of thin plate-shaped members are arranged in the portion of the dielectric window on the discharge space side, so that the film deposition on the dielectric window by the high-density plasma is a thin plate-shaped member. It becomes possible to minimize it at the tip part, and the plasma discharge stability over a long period of time is dramatically improved. Further, since the thin plate member is arranged so as to be fitted into the groove structure of the dielectric window, an abnormal discharge which becomes a problem in the gap between the thin plate member and the dielectric window, or microwave power due to the influence of film deposition is generated. The loss due to reflection or absorption is drastically reduced, and not only the discharge stability of the plasma is obtained, but also the uniformity and directivity of the generated plasma can be greatly contributed.

【0010】また前記誘電体窓は放電空間側に、ヒート
シンク状に溝構造を有することでプラズマから受ける熱
の影響を緩和し、誘電体窓の耐久性を向上し、大気真空
気密にも何ら問題を与えない。しかも、前記薄板状部材
が個々に取外せる構造になっていることから、前記薄板
状部材への着膜に対するメンテナンス性も向上する。
Further, since the dielectric window has a groove structure in the shape of a heat sink on the discharge space side, the influence of heat from plasma is mitigated, the durability of the dielectric window is improved, and there is no problem in airtightness. Don't give. Moreover, since the thin plate members can be individually removed, the maintainability for film deposition on the thin plate members is also improved.

【0011】つぎに、図を用いて本発明の実施の形態を
更に詳細に説明する。図1は、本発実施の形態に係る誘
電体窓周りの模式的な電界方向断面図である。図1にお
いて、101は導波管、102は真空容器隔壁、103
はマイクロ波伝送構造体、104は誘電体窓、105は
薄板状部材である。
Next, an embodiment of the present invention will be described in more detail with reference to the drawings. FIG. 1 is a schematic electric field direction sectional view around a dielectric window according to the present embodiment. In FIG. 1, 101 is a waveguide, 102 is a vacuum container partition, 103
Is a microwave transmission structure, 104 is a dielectric window, and 105 is a thin plate member.

【0012】図2は、このような構成の装置を組込んだ
プラズマCVD装置の模式図である。つぎに、図2に示
すプラズマCVD装置を用いて微結晶シリコン半導体を
成膜した一例について説明する。図2において、201
はマイクロ波電源、202は放電室、203は成膜基
板、204はヒータ、205は原料ガス導入管、206
は排気配管である。真空容器102内部は真空ポンプ
(不図示)によって排気配管206から真空排気され
る。真空は、マイクロ波伝送構造体103と真空容器隔
壁102および誘電体窓104それぞれの間でOリング
により封止される。
FIG. 2 is a schematic view of a plasma CVD apparatus incorporating the apparatus having such a configuration. Next, an example in which a microcrystalline silicon semiconductor is formed using the plasma CVD apparatus shown in FIG. 2 is described. In FIG. 2, 201
Is a microwave power source, 202 is a discharge chamber, 203 is a film formation substrate, 204 is a heater, 205 is a source gas introduction pipe, 206
Is the exhaust pipe. The inside of the vacuum container 102 is evacuated from the exhaust pipe 206 by a vacuum pump (not shown). The vacuum is sealed between the microwave transmission structure 103, the vacuum container partition 102, and the dielectric window 104 by an O-ring.

【0013】マイクロ波電力は、マイクロ波電源201
から導波管101を通過してマイクロ波伝送構造体10
3の端面に設置された誘電体窓104を透過して放電室
202へ放射される。そこでガス導入管205から供給
された原料ガスがマイクロ波電力により分解しプラズマ
化されて、ヒータ204にて所定温度に加熱された基板
203に堆積膜が形成される。
The microwave power is generated by the microwave power source 201.
Through the waveguide 101 from the microwave transmission structure 10
The light is transmitted through the dielectric window 104 installed at the end face of the No. 3 and radiated to the discharge chamber 202. Then, the source gas supplied from the gas introduction pipe 205 is decomposed into plasma by microwave power, and a deposited film is formed on the substrate 203 heated to a predetermined temperature by the heater 204.

【0014】ここで、上記構成における主要部分は
(1)誘電体窓(2)薄板状部材で構成される。つぎに
上記主要部分(1)〜(2)の詳細について説明する。 (1)誘電体窓 誘電体窓は、導波管から伝送されたマイクロ波を放電空
間に透過する機能と、放電空間と大気を真空封止する機
能を併せ持つ。真空容器が大気から真空へと排気される
に連れ、誘電体窓面には大気方向から圧力がかかり、マ
イクロ波が透過し放電が生起されるとマイクロ波による
誘電加熱やプラズマからの熱衝撃により過酷な環境に曝
される。従来はこれらの問題点に対処する方法として、
誘電体を複数重ね合せること、大気圧が直接誘電体面に
作用しないよう複数の誘電体で仕切った中間圧力領域を
持つことなどで対処されてきた。しかし複数の誘電体を
装備することにより誘電体損失係数を増やし比較的大き
な電力が投入できないことや装置構造が過大になること
が問題となっていた。
Here, the main part of the above structure is composed of (1) a dielectric window (2) and a thin plate member. Next, details of the main parts (1) and (2) will be described. (1) Dielectric window The dielectric window has both the function of transmitting the microwave transmitted from the waveguide to the discharge space and the function of vacuum-sealing the discharge space and the atmosphere. As the vacuum container is evacuated from the atmosphere to a vacuum, pressure is applied to the dielectric window surface from the direction of the atmosphere, and when microwaves penetrate and discharge occurs, dielectric heating by microwaves and thermal shock from plasma occur. Exposed to harsh environment. Conventionally, as a method to deal with these problems,
It has been dealt with by overlapping a plurality of dielectrics and by having an intermediate pressure region partitioned by a plurality of dielectrics so that atmospheric pressure does not directly act on the dielectric surface. However, there have been problems that the dielectric loss coefficient is increased by equipping a plurality of dielectrics and relatively large electric power cannot be applied and the device structure becomes excessively large.

【0015】溝形状を有し複数の板状部材を設置した誘
電体を適用することで機械的強度、熱伝導率、誘電体損
失係数において要求される特性が緩和し、誘電体窓を1
枚設置するだけでもこれらの問題は回避され、放電の安
定性が確保されることがわかった。誘電体窓材質として
は、前記機械的強度、熱伝導率、誘電体損失係数におい
て優れたセラミックスがよく、たとえばAlN,Al2
3,SiO2,Si34,TiOやその複合焼結体が好
ましいが、必要な物性をバランスよく満足している限り
においては何ら限定を加えない。
By applying a dielectric material having a groove shape and provided with a plurality of plate-shaped members, the characteristics required for mechanical strength, thermal conductivity and dielectric loss coefficient are alleviated, and the dielectric window is
It was found that these problems could be avoided and the stability of the discharge could be secured even by installing only one sheet. As the material of the dielectric window, ceramics having excellent mechanical strength, thermal conductivity, and dielectric loss coefficient are preferable. For example, AlN, Al 2
O 3 , SiO 2 , Si 3 N 4 , TiO and a composite sintered body thereof are preferable, but no limitation is made as long as the required physical properties are well balanced.

【0016】さらに、誘電体窓の真空封止部分について
は、マイクロ波による誘電過熱の影響とプラズマからの
加熱の影響を受けやすいので、Oリング材質としては一
般的なバイトン製かまたはシリコーン製が望ましく、誘
電体窓のOリングシール部分に導電性金属蒸着によるシ
ールドを施し直接マイクロ波がOリングに暴露しない構
造をとることが望ましい。
Further, since the vacuum-sealed portion of the dielectric window is easily affected by the dielectric overheating caused by microwaves and the heating from the plasma, the O-ring material is generally made of Viton or silicone. Desirably, the O-ring seal portion of the dielectric window is shielded by conductive metal vapor deposition so that the microwave is not directly exposed to the O-ring.

【0017】マイクロ波の電界方向は導波管断面形状に
より決まることから、誘電体窓の溝方向は、たとえば矩
形導波管TE10モードでは導波管断面の長径方向に平行
な向きに溝が並ぶ構造をとり、円形導波管TM01モード
では導波管断面中心から同心円状に、円形導波管TE01
モードでは導波管断面中心から放射状に溝が並ぶ構造を
とることが望ましい。
Since the electric field direction of the microwave is determined by the waveguide cross-sectional shape, the groove direction of the dielectric window is parallel to the major axis direction of the waveguide cross section in the rectangular waveguide TE 10 mode, for example. In the circular waveguide TM 01 mode, the circular waveguide TE 01 is arranged concentrically from the center of the waveguide cross section.
In the mode, it is desirable to have a structure in which grooves are arranged radially from the center of the waveguide cross section.

【0018】誘電体窓の厚さは一般に誘電体内を通過す
るマイクロ波の波長の1/4の奇数倍にとることがマイ
クロ波の反射損失を低減する上で望ましいが、プラズマ
生成に必要な電力が供給できる限りにおいては何ら限定
を加えない。誘電体窓の溝深さは1mm以上あれば問題
ない。また誘電体窓の溝幅は薄板状部材の厚さより若干
大きく薄板状部材の熱膨張を包含する寸法であることが
好ましく、溝間隔は薄板状部材間隔が1mm以下である
ことが、マイクロ波透過に際するエネルギーロスと誘電
体窓表面の堆積膜着膜の影響を低減する上で望ましい。
The thickness of the dielectric window is generally set to an odd multiple of 1/4 of the wavelength of the microwave passing through the dielectric in order to reduce the reflection loss of the microwave, but the power required for plasma generation is required. As long as it can be supplied, no limitation is made. There is no problem if the groove depth of the dielectric window is 1 mm or more. Further, it is preferable that the groove width of the dielectric window is slightly larger than the thickness of the thin plate member and includes the thermal expansion of the thin plate member, and the groove interval is 1 mm or less. It is desirable to reduce the energy loss and the influence of the deposited film deposited on the surface of the dielectric window.

【0019】これにより、プラズマに直接曝される過酷
な熱衝撃を緩和し、着膜成分によるマイクロ波透過にお
ける誘電体損失係数および反射損失を低減し、生起する
プラズマを均一化し、長時間において安定した均質な堆
積膜形成が可能となる。
As a result, the severe thermal shock directly exposed to the plasma is mitigated, the dielectric loss coefficient and the reflection loss in the microwave transmission due to the film deposition component are reduced, and the generated plasma is made uniform and stable for a long time. It is possible to form a uniform deposited film.

【0020】誘電体窓の寸法、形状は、マイクロ波電源
周波数および堆積膜形成面積の関係のもとで任意に設定
できるが、接続する導波管の形状を変えないことが伝送
されるマイクロ波の損失を最小に抑える上で好ましい。
マイクロ波周波数によって規定される遮断周波数λcに
対し導波管長径aはa>λc/2であることが必要であ
り、a=0.8λc付近の値に設定される事が多い。こ
の関係を満たす限りにおいて、必要な成膜面積を網羅す
るべく任意の寸法、形状を有する導波管を用いることが
可能であり、一般には規格で分類された矩形または円形
導波管の中から任意の寸法を選択できる。
The size and shape of the dielectric window can be arbitrarily set according to the relationship between the microwave power supply frequency and the deposited film formation area, but it is transmitted that the shape of the waveguide to be connected is not changed. It is preferable for minimizing the loss of.
The major axis a of the waveguide needs to be a> λc / 2 with respect to the cutoff frequency λc defined by the microwave frequency, and is often set to a value near a = 0.8λc. As long as this relationship is satisfied, it is possible to use a waveguide having any size and shape so as to cover the required film formation area. Generally, from among rectangular or circular waveguides classified by the standard. Any size can be selected.

【0021】本発明において基準として採用したマイク
ロ波周波数は2.45GHz、導波管は長径109m
m、短径54.5mmのWRJ−2型JIS導波管であ
るが、そもそも導波管はハイパスフィルターであるの
で、成膜面積をさらに大きく取りたければ低い周波数帯
のマイクロ波を、成膜面積を小さく集中的に取りたい場
合は高い周波数帯のマイクロ波を選択することが望まし
い。 (2)薄板状部材 薄板状部材は、誘電体窓を透過したマイクロ波電力を電
界方向を横切る向きに分割する役割と、プラズマ空間の
着膜成分を薄板状部材の側面部分に着膜させることによ
って誘電体窓表面への膜の堆積を防止する役割を併せ持
つ。薄板状部材で電界方向を横切る向きに仕切られた各
空間は導波管に相当するので、マイクロ波の透過につい
ては何ら影響を与えない。材料ガスのプラズマ化は、各
薄板状部材間隔が、導入された材料ガスの電子の平均自
由行程と同等以下の距離になると、電子の加速エネルギ
ーが十分得られず放電は開始しないが、マイクロ波が薄
板状部材の放電空間側の端面に達したところで、材料ガ
スのプラズマ化が開始される。したがって、薄板状部材
間隔は材料ガスの電子の平均自由行程と同等以下の距離
であることが望ましく、たとえば1mm以下であること
が望ましい。
The microwave frequency adopted as a reference in the present invention is 2.45 GHz, and the waveguide has a major axis of 109 m.
m is a WRJ-2 type JIS waveguide with a short diameter of 54.5 mm, but since the waveguide is a high-pass filter in the first place, if a larger film formation area is required, microwaves of a lower frequency band are formed. It is desirable to select microwaves in a high frequency band when the area is to be small and concentrated. (2) Thin plate member The thin plate member divides the microwave power transmitted through the dielectric window in the direction crossing the electric field direction, and forms the film deposition component of the plasma space on the side surface of the thin plate member. Also has a role of preventing the deposition of a film on the surface of the dielectric window. Since each space partitioned by the thin plate member in the direction crossing the electric field direction corresponds to a waveguide, it does not affect microwave transmission at all. When the distance between each thin plate member becomes a distance equal to or less than the mean free path of electrons of the introduced material gas, sufficient acceleration energy of electrons cannot be obtained and discharge does not start, but the microwave does not start. When the gas reaches the end surface of the thin plate member on the discharge space side, the material gas is turned into plasma. Therefore, the distance between the thin plate-shaped members is preferably equal to or less than the mean free path of electrons of the material gas, for example, 1 mm or less.

【0022】プラズマ化された着膜粒子の一部は、透過
窓側へも移動するが、その大半は薄板状部材の側面部分
に着膜されて誘電体窓表面への膜の堆積が防止される。
したがって、薄板状部材の放電空間部分に突出する長さ
は長いほどよいが、実際には導入された材料ガスの着膜
成分の平均自由行程と同等以上あれば問題はない。ま
た、薄板状部材の並び方向および並び間隔は、誘電体窓
の溝構造にならう寸法を取る。たとえば矩形導波管TE
10モードでは導波管断面の長径方向に平行な向きに並ぶ
構造をとり、円形導波管TM01モードでは導波管断面中
心から同心円状に、円形導波管TE01モードでは導波管
断面中心から放射状に並ぶ構造をとることが望ましい。
A part of the film-forming particles that have been turned into plasma also move to the transmission window side, but most of them are deposited on the side surface of the thin plate member to prevent the deposition of the film on the surface of the dielectric window. .
Therefore, the longer the protruding length of the thin plate member into the discharge space is, the better, but in reality, there is no problem as long as it is equal to or more than the mean free path of the film forming component of the introduced material gas. Further, the arrangement direction and the arrangement interval of the thin plate-shaped members are determined according to the groove structure of the dielectric window. For example, a rectangular waveguide TE
In the 10 mode, the waveguides are arranged in a direction parallel to the major axis direction of the waveguide. The circular waveguide TM 01 mode is concentric with the waveguide cross section center, and the circular waveguide TE 01 mode is a waveguide cross section. It is desirable to have a structure that is arranged radially from the center.

【0023】[0023]

【実施例】以下に、本発明の実施例について説明する
が、本発明はこれらの実施例によって何ら限定されるも
のではない。 [実施例1]本実施例では、図1に示した構成の本発明
の装置を組込んだ図2に示す構成の装置を用いて、所定
の成膜条件における誘電体窓の構造の違いによる放電の
安定度の比較を行った。表1に本誘電体窓構成の仕様と
得られた結果を表した。
EXAMPLES Examples of the present invention will be described below, but the present invention is not limited to these examples. [Embodiment 1] In this embodiment, a device having the structure shown in FIG. 2 incorporating the device of the present invention having the structure shown in FIG. The discharge stability was compared. Table 1 shows the specifications of the present dielectric window structure and the obtained results.

【0024】図1の誘電体窓として薄板状部材の間隔と
溝の深さを変化した石英窓を用いて、以下の手順で実験
を行った。まず、真空容器102を排気手段により0.
133Pa以下に一旦排気した。そして、ガス供給手段
からガス導入管205を通じて一定流量のArガスを流
通しながら、基板ヒータ204で基板を所定温度になる
よう加熱制御した。基板203が一定温度になってか
ら、Arに代えて原料ガスであるSiF4,H2をそれぞ
れ240、720sccm導入した。
Experiments were carried out in the following procedure using a quartz window in which the distance between the thin plate members and the depth of the groove were changed as the dielectric window in FIG. First, the vacuum container 102 is moved to 0.
It was once evacuated to 133 Pa or less. Then, while the Ar gas at a constant flow rate was circulated from the gas supply means through the gas introduction pipe 205, the substrate heater 204 controlled the heating of the substrate to a predetermined temperature. After the temperature of the substrate 203 reached a constant temperature, SiF 4 and H 2 as source gases were introduced instead of Ar at 240 and 720 sccm, respectively.

【0025】その上で、マイクロ波電源201から2.
45GHzマイクロ波電力を供給し、放電圧力を6.6
5Paから66.5Paにマイクロ波電力を500Wか
ら1500Wに変化しながら放電室202の中にグロー
放電が生起して放電状況を確認した。このとき、すべて
の圧力範囲、電力範囲において安定放電であった条件を
○、一部異常放電をきたした条件を△、全く安定しなか
った条件を×で評価した。この実験によると、薄板状部
材の間隔は1mmあれば問題なく、溝の深さは1mm以
上あれば問題ないことがわかった。
Then, the microwave power sources 201 to 2.
45 GHz microwave power is supplied and the discharge pressure is 6.6.
While changing the microwave power from 5 Pa to 66.5 Pa from 500 W to 1500 W, glow discharge occurred in the discharge chamber 202 and the discharge state was confirmed. At this time, the condition of stable discharge in all pressure ranges and power ranges was evaluated as ◯, the condition of causing some abnormal discharge was evaluated as Δ, and the condition of not being stable at all was evaluated as x. According to this experiment, it was found that there is no problem if the distance between the thin plate-shaped members is 1 mm and there is no problem if the groove depth is 1 mm or more.

【0026】[0026]

【表1】 [実施例2]本実施例では、図1に示した構成の本発明
の装置を組込んだ図2に示す構成の装置を用いて、所定
の成膜条件における成膜圧力の違いによる薄板状部材内
に進入した着膜部分の長さの比較を行った。表2に本誘
電体窓構成の仕様と得られた結果を表した。
[Table 1] [Embodiment 2] In the present embodiment, a thin plate-like material having a different film forming pressure under a predetermined film forming condition is used by using the apparatus having the structure shown in FIG. The lengths of the film-coating portions that entered the member were compared. Table 2 shows the specifications of the present dielectric window structure and the obtained results.

【0027】図1の誘電体窓として薄板状部材の高さを
変化した石英窓を用いて、以下の手順で実験を行った。
まず、真空容器102を排気手段により0.133Pa
以下に一旦排気した。そして、ガス供給手段からガス導
入管205を通じて一定流量のArガスを流通しなが
ら、基板ヒータ204で基板を所定温度になるよう加熱
制御した。基板203が一定温度になってから、Arに
代えて原料ガスであるSiF4,H2をそれぞれ240、
720sccm導入した。
An experiment was conducted in the following procedure using a quartz window in which the height of the thin plate member was changed as the dielectric window of FIG.
First, the vacuum vessel 102 is evacuated to 0.133 Pa.
Exhausted below. Then, while the Ar gas at a constant flow rate was circulated from the gas supply means through the gas introduction pipe 205, the substrate heater 204 controlled the heating of the substrate to a predetermined temperature. After the temperature of the substrate 203 reaches a constant temperature, SiF 4 and H 2 which are raw material gases are replaced with 240 instead of Ar, respectively.
720 sccm was introduced.

【0028】その上で、マイクロ波電源201から2.
45GHzマイクロ波電力を供給し、放電圧力を1.3
3Paから133Paに変化しながら放電室202の中
に一定時間グロー放電を生起し、それぞれの圧力におけ
る薄板状部材の上端から着膜部分の長さを求めた。この
実験によると、薄板状部材の高さは平均自由行程と同等
以上の長さがあれば、堆積膜が透過窓に達せず、問題な
く安定放電を維持できることがわかった。
Then, the microwave power sources 201 to 2.
45 GHz microwave power is supplied and the discharge pressure is 1.3
While changing from 3 Pa to 133 Pa, glow discharge was generated in the discharge chamber 202 for a certain period of time, and the length of the film deposition portion was determined from the upper end of the thin plate member at each pressure. According to this experiment, it was found that if the height of the thin plate member is equal to or longer than the mean free path, the deposited film does not reach the transmission window, and stable discharge can be maintained without any problem.

【0029】[0029]

【表2】 [実施例3]本実施例では、図1に示した構成の本発明
の装置を組込んだ図2に示す構成の装置を用いて、所定
の成膜条件における誘電体窓の構造の違いによる連続放
電維持時間の比較を行った。図1の誘電体窓として溝付
き石英窓と薄板状部材を用いて、以下の手順で実験を行
った。表3に本誘電体窓構成の仕様と得られた結果を表
した。まず、真空容器102を排気手段により0.13
3Pa以下に一旦排気した。そして、ガス供給手段から
ガス導入管205を通じて一定流量のArガスを流通し
ながら、基板ヒータ204で基板を所定温度になるよう
加熱制御した。基板203が一定温度になってから、A
rに代えて原料ガスであるSiF4,H2をそれぞれ24
0、720sccm導入した。
[Table 2] [Embodiment 3] In this embodiment, a device having the structure shown in FIG. 2 incorporating the device of the present invention having the structure shown in FIG. The continuous discharge sustaining time was compared. An experiment was conducted in the following procedure using a grooved quartz window and a thin plate member as the dielectric window in FIG. Table 3 shows the specifications of this dielectric window structure and the obtained results. First, the vacuum container 102 is evacuated to 0.13
It was once evacuated to 3 Pa or less. Then, while the Ar gas at a constant flow rate was circulated from the gas supply means through the gas introduction pipe 205, the substrate heater 204 controlled the heating of the substrate to a predetermined temperature. After the substrate 203 reaches a constant temperature, A
In place of r, the source gases SiF 4 and H 2 are each added to 24
0,720 sccm was introduced.

【0030】その上で、マイクロ波電源201から2.
45GHzマイクロ波電力を供給し、放電圧力を13.
3Paに維持しながら放電室202の中にグロー放電が
生起し安定化する投入電力を求めた。その結果、連続1
0時間以上にわたって、入射電力の表示値は±5%以
内、入射電力に対する反射電力の表示値は5%以下の安
定放電が確認できた。(表3) (比較例)比較例として、平滑な溝なし石英窓と薄板状
部材を採用した構成の装置を用いた。この比較例で用い
た構成の装置によると、表3に示すように約3時間で放
電が維持できなくなった。
Then, the microwave power sources 201 to 2.
45 GHz microwave power is supplied and the discharge pressure is set to 13.
The input power at which glow discharge occurred and was stabilized in the discharge chamber 202 while maintaining the pressure at 3 Pa was obtained. As a result, consecutive 1
Over 0 hours or more, it was confirmed that the displayed value of the incident power was within ± 5%, and the stable discharge of the reflected power against the incident power was 5% or less. (Table 3) (Comparative Example) As a comparative example, an apparatus having a configuration in which a smooth quartz window without grooves and a thin plate member were used was used. According to the device having the configuration used in this comparative example, as shown in Table 3, the discharge could not be maintained in about 3 hours.

【0031】[0031]

【表3】 [実施例4]実施例4においては、実施例3にて行った
長時間放電実験を、石英窓に代えて石英材と同様の溝構
造を有するAlN材を用いた。この実施例4の構成によ
るときにも、表3に示すように連続10時間以上にわた
って、入射電力の表示値は±5%以内、入射電力に対す
る反射電力の表示値は5%以下の安定放電が確認でき
た。
[Table 3] [Example 4] In Example 4, in the long-time discharge experiment performed in Example 3, an AlN material having the same groove structure as the quartz material was used instead of the quartz window. Even when the structure of Example 4 is used, as shown in Table 3, stable discharge with a display value of incident power within ± 5% and a display value of reflected power with respect to the incident power of 5% or less was observed for 10 hours or more continuously. It could be confirmed.

【0032】[実施例5]実施例5では、実施例3にて
長時間放電実験を行ったときの異常放電の回数を比較し
た。表4に本誘電体窓構成の仕様と得られた結果を表し
た。その結果、溝付石英窓を誘電体窓に採用したとき連
続10時間以上において異常放電の回数は5回以下であ
ることが確認できた。 (比較例)比較例として、溝なし石英窓と薄板状部材を
採用した構成の装置を用いた。この比較例で用いた構成
の装置によると、表4に示すように約3時間で30回の
異常放電が確認され、3時間以降放電が維持できなくな
った。
[Embodiment 5] In Embodiment 5, the number of abnormal discharges during the long-time discharge experiment in Embodiment 3 was compared. Table 4 shows the specifications of this dielectric window structure and the obtained results. As a result, it was confirmed that when the grooved quartz window was adopted as the dielectric window, the number of abnormal discharges was 5 or less in 10 consecutive hours or more. (Comparative Example) As a comparative example, an apparatus having a structure using a quartz window without grooves and a thin plate member was used. According to the apparatus having the configuration used in this comparative example, as shown in Table 4, abnormal discharge was confirmed 30 times in about 3 hours, and discharge could not be maintained after 3 hours.

【0033】[0033]

【表4】 [実施例6]実施例6においては、実施例3にて行った
長時間放電実験を、石英に代えて石英と同様の構成を有
するAlNを用いた。この実施例6の構成によるときに
も、表4に示すように、連続10時間以上において異常
放電の回数は5回以下であることが確認できた。
[Table 4] [Example 6] In Example 6, AlN having the same structure as quartz was used in place of quartz in the long-time discharge experiment performed in Example 3. Even with the configuration of Example 6, as shown in Table 4, it was confirmed that the number of abnormal discharges was 5 or less in 10 consecutive hours or more.

【0034】[実施例7]実施例7では、実施例3にて
行った長時間放電実験を、原料ガスの処方を代えて行っ
た。ここでは、SiF4とH2の流量をそれぞれ240,
960sccmおよび240,1200sccm導入し
た。その結果、材料ガスの流量を代えたいずれの場合に
も、表5に示すように連続10時間以上にわたって、入
射電力の表示値は±5%以内、入射電力に対する反射電
力の表示値は5%以下の安定放電が確認できた。
[Embodiment 7] In Embodiment 7, the long-time discharge experiment conducted in Embodiment 3 was conducted by changing the recipe of the raw material gas. Here, the flow rates of SiF 4 and H 2 are 240,
960 sccm and 240,1200 sccm were introduced. As a result, in any case of changing the flow rate of the material gas, as shown in Table 5, the display value of the incident power is within ± 5% and the display value of the reflected power with respect to the incident power is 5% for 10 hours or more continuously. The following stable discharges were confirmed.

【0035】[0035]

【表5】 [Table 5]

【0036】[0036]

【発明の効果】以上に説明したように、本発明によれ
ば、誘電体窓を介してマイクロ波を導入してプラズマC
VD法により堆積膜を形成するに際して、誘電体窓に堆
積膜が付着することを防止し、比較的大きなマイクロ波
投入電力を、大面積において、長時間、安定的に放電空
間に伝送して均質なプラズマを形成し、高品質で優れた
均一性を有する堆積膜を形成することが可能となる堆積
膜形成装置および堆積膜形成方法を実現することができ
る。
As described above, according to the present invention, the plasma C is generated by introducing the microwave through the dielectric window.
When the deposited film is formed by the VD method, the deposited film is prevented from adhering to the dielectric window, and relatively large microwave input power is stably transmitted to the discharge space in a large area for a long time and is uniform. It is possible to realize a deposited film forming apparatus and a deposited film forming method capable of forming a high quality plasma and forming a deposited film having high quality and excellent uniformity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態及び実施に係るマイクロ波
導入経路の1例を示す模式的断面図である。
FIG. 1 is a schematic cross-sectional view showing an example of a microwave introduction path according to an embodiment and an embodiment of the present invention.

【図2】本発明の実施の形態及び実施例に係るマイクロ
波導入経路を備えた真性半導体膜成膜用の真空装置を示
す模式的断面図である。
FIG. 2 is a schematic cross-sectional view showing a vacuum device for forming an intrinsic semiconductor film, which is provided with a microwave introduction path according to an embodiment and an example of the present invention.

【符号の説明】[Explanation of symbols]

101:導波管 102:真空容器 103:マイクロ波伝送構造体 104:誘電体窓 105:薄板状部材 201:マイクロ波電源 202:放電室 203:成膜基板 204:ヒータ 205:ガス導入管 206:排気配管 101: Waveguide 102: Vacuum container 103: Microwave transmission structure 104: Dielectric window 105: Thin plate member 201: Microwave power source 202: Discharge chamber 203: Film forming substrate 204: heater 205: Gas introduction pipe 206: Exhaust pipe

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2H068 DA00 EA25 4K030 BA30 FA01 KA37 LA16 5F045 AA09 AB04 AC01 AC02 AC16 AE17 AE19 BB02 BB15 DP05 EB02 EE17 EF13 EH03    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 2H068 DA00 EA25                 4K030 BA30 FA01 KA37 LA16                 5F045 AA09 AB04 AC01 AC02 AC16                       AE17 AE19 BB02 BB15 DP05                       EB02 EE17 EF13 EH03

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】誘電体窓を介して放電空間内にマイクロ波
を導入し、マイクロ波プラズマCVD法によって基体上
に堆積膜を形成する堆積膜形成装置において、 前記誘電体窓の前記放電空間側に複数の薄板状部材を有
し、該複数の薄板状部材によって電界方向を横切る向き
に仕切られた空間が形成されていることを特徴とする堆
積膜形成装置。
1. A deposition film forming apparatus for introducing a microwave into a discharge space through a dielectric window to form a deposited film on a substrate by a microwave plasma CVD method, comprising: 2. A deposition film forming apparatus, comprising: a plurality of thin plate-shaped members, and a space partitioned by the plurality of thin plate-shaped members in a direction crossing an electric field direction.
【請求項2】前記複数の薄板状部材は、前記誘電体窓の
前記放電空間側の面に形成された複数の溝構造に、その
一端を前記放電空間側に突出するように配置されている
ことを特徴とする請求項1に記載の堆積膜形成装置。
2. The plurality of thin plate members are arranged in a plurality of groove structures formed on the surface of the dielectric window on the discharge space side so that one ends thereof project toward the discharge space side. The deposited film forming apparatus according to claim 1, wherein:
【請求項3】前記複数の薄板状部材の前記放電空間側に
突出する長さが、材料ガスの着膜成分の平均自由行程と
同等以上の長さであることを特徴とする請求項2に記載
の堆積膜形成装置。
3. The length of the plurality of thin plate-shaped members protruding toward the discharge space is equal to or longer than the mean free path of the film deposition component of the material gas. The deposited film forming apparatus described.
【請求項4】前記複数の薄板状部材の間隔が、材料ガス
の電子の平均自由行程と同等以下の間隔であることを特
徴とする請求項1〜3のいずれか1項に記載の堆積膜形
成装置。
4. The deposited film according to claim 1, wherein the plurality of thin plate-shaped members have an interval equal to or less than an average free path of electrons of the material gas. Forming equipment.
【請求項5】誘電体窓を介して放電空間内にマイクロ波
を導入し、マイクロ波プラズマCVD法によって基体上
に堆積膜を形成する堆積膜形成方法において、 前記誘電体窓の前記放電空間側に配置された複数の薄板
状部材によって電界方向を横切る向きに仕切られた空間
を形成し、該薄板状部材の側面部分にプラズマ空間の着
膜成分を着膜させることにより、前記誘電体窓への堆積
膜の付着を防止しながら堆積膜を形成することを特徴と
する堆積膜形成方法。
5. A deposited film forming method for forming a deposited film on a substrate by a microwave plasma CVD method by introducing microwaves into a discharge space through a dielectric window, the dielectric window being closer to the discharge space. A plurality of thin plate-shaped members arranged in a space to form a space partitioned in a direction crossing the electric field direction, and by depositing a film deposition component of the plasma space on the side surface of the thin plate-shaped member, the dielectric window is formed. The method for forming a deposited film, wherein the deposited film is formed while preventing the deposition of the deposited film.
【請求項6】前記複数の薄板状部材を、前記誘電体窓の
前記放電空間側の面に形成された複数の溝構造に、その
一端が前記放電空間側に突出するように配置して堆積膜
を形成することを特徴とする請求項5に記載の堆積膜形
成方法。
6. The plurality of thin plate-shaped members are deposited in a plurality of groove structures formed on a surface of the dielectric window on the discharge space side so that one end thereof projects toward the discharge space side. The deposited film forming method according to claim 5, wherein a film is formed.
【請求項7】前記複数の薄板状部材の前記放電空間側に
突出する長さが、材料ガスの着膜成分の平均自由行程と
同等以上の長さであることを特徴とする請求項6に記載
の堆積膜形成方法。
7. The length of the plurality of thin plate members protruding toward the discharge space is equal to or longer than the mean free path of the film deposition component of the material gas. The method for forming a deposited film as described above.
【請求項8】前記複数の薄板状部材の間隔が、材料ガス
の電子の平均自由行程と同等以下の間隔であることを特
徴とする請求項5〜7のいずれか1項に記載の堆積膜形
成方法。
8. The deposited film according to claim 5, wherein an interval between the plurality of thin plate members is equal to or less than an average free path of electrons of the material gas. Forming method.
JP2001243474A 2001-08-10 2001-08-10 Apparatus and method for depositing film Pending JP2003055773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001243474A JP2003055773A (en) 2001-08-10 2001-08-10 Apparatus and method for depositing film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001243474A JP2003055773A (en) 2001-08-10 2001-08-10 Apparatus and method for depositing film

Publications (1)

Publication Number Publication Date
JP2003055773A true JP2003055773A (en) 2003-02-26

Family

ID=19073564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001243474A Pending JP2003055773A (en) 2001-08-10 2001-08-10 Apparatus and method for depositing film

Country Status (1)

Country Link
JP (1) JP2003055773A (en)

Similar Documents

Publication Publication Date Title
US6238527B1 (en) Thin film forming apparatus and method of forming thin film of compound by using the same
US20100078320A1 (en) Microwave plasma containment shield shaping
US20110097517A1 (en) Dynamic vertical microwave deposition of dielectric layers
US6677549B2 (en) Plasma processing apparatus having permeable window covered with light shielding film
US7478609B2 (en) Plasma process apparatus and its processor
JPH0510428B2 (en)
US5487786A (en) Plasma chemical vapor deposition device capable of suppressing generation of polysilane powder
JPH04183871A (en) Device for forming built-up film due to microwave plasma cvd method
US20040168631A1 (en) Plasma processing apparatus having protection members
JP2003055773A (en) Apparatus and method for depositing film
JP2003082467A (en) System and method for forming deposition film
JP4355490B2 (en) Deposited film forming equipment
JP2009117569A (en) Reflection preventive film forming method, and reflection preventive film forming device
JP2003017479A (en) Precoating method, treatment method, and plasma apparatus
JPH11172430A (en) Thin film forming device and formation of compound thin film using the device
JPH0790591A (en) Microwave plasma cvd system and formation of deposited film
JP2002164330A (en) Plasma treatment apparatus having transmission window covered with light shielding film
JPH10233295A (en) Microwave introducing device and surface treatment
JP2001073150A (en) Microwave supply device and plasma treatment device as well treatment therefor
JP2002146542A (en) Deposited film forming equipment
JP3202083B2 (en) Method and apparatus for forming deposited film
WO2022264829A1 (en) Cleaning method and plasma processing device
JP2009164515A (en) Antireflection film forming method and solar cell
JPH11193466A (en) Plasma treating device and plasma treating method
JPS6347366A (en) Device for forming functional deposited film by microwave plasma cvd method