JP2003051222A - Optical fiber built-in insulator - Google Patents

Optical fiber built-in insulator

Info

Publication number
JP2003051222A
JP2003051222A JP2001238397A JP2001238397A JP2003051222A JP 2003051222 A JP2003051222 A JP 2003051222A JP 2001238397 A JP2001238397 A JP 2001238397A JP 2001238397 A JP2001238397 A JP 2001238397A JP 2003051222 A JP2003051222 A JP 2003051222A
Authority
JP
Japan
Prior art keywords
optical fiber
insulator
cylindrical
frp
built
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001238397A
Other languages
Japanese (ja)
Inventor
Yutaka Matsuzaki
豊 松崎
Satoru Kobayashi
哲 小林
Takeshi Yanagisawa
健史 柳沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2001238397A priority Critical patent/JP2003051222A/en
Publication of JP2003051222A publication Critical patent/JP2003051222A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Guides In General And Applications Therefor (AREA)
  • Insulators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical fiber built-in insulator which is easy to form, whose structure is simple, and whose manufacturing cost can be reduced, even if the inner core made by FRP where an optical fiber is built in becomes elongated. SOLUTION: In the optical fiber built-in insulator, in which the optical fiber 1 is built, the inner core 3 made by FRP is composed of the divided-type cylindrical body 5, where plural segments 7, 7 having an arch-shaped cross-sectional face whose inner and outer faces are curved outward in the width direction are combined into cylindrical form, and in a cylindrical hole 6 of the divided- type cylindrical body 5, an organic insulating material 11 is filled, and the optical fiber 1 incorporated into the cylindrical hole 6 is fixed.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は光ファイバ内蔵碍子
の改良に関するものである。 【0002】 【従来の技術】送配電線や高電圧の発変電設備等におけ
る地絡、短絡等の事故情報を迅速に伝達して処置するた
めに、架空送電線等から地上設備への信号伝送手段とし
て、光ファイバを内蔵した碍子が使用される。 【0003】この光ファイバは、碍子が曲げ変形を受け
たときに、局部的に引張りや圧縮を受けて光伝送ロスや
断線が生じるのを防止するために、光ファイバがFRP
製の中芯に組み込まれた光ファイバ内蔵碍子が提案され
ている。従来、この種の碍子の主要部であるFRP製の
中芯としては、外周面にらせん溝が形成されたFRP製
ロッドの前記らせん溝に光ファイバが収納されたもの
(特開平6−162845号)、両端に円筒が形成され
中間に中心付近へ達する深さのスリットが形成されたF
RP製ロッドの前記円筒及びスリット底部に光ファイバ
が挿通され配置されたもの(特開2000−27695
8号)、FRP製の継目無しの絶縁筒体内に光ファイバ
が挿通され、有機絶縁物を充填して光ファイバが埋設さ
れたもの(特開平9−259669号)がある。 【0004】 【発明が解決しようとする課題】しかしながら、前記F
RP製ロッドの外周面にらせん溝を形成したり、FRP
製ロッドの中間に中心付近までスリットを設けたりする
ことは、FRP製ロッド形成後の後加工となって費用が
かかり、光ファイバ内蔵碍子のコストが増大するという
問題がある。また、FRP製の継目無しの絶縁筒を形成
する場合には、ガラス繊維をマンドレル(絶縁筒の中心
の筒孔を形成するための中子)の外周に織成等して巻き
付け、ガラス繊維を樹脂で固めて形成するため、マンド
レル長の制限から形成可能な絶縁筒の最大長は2〜3m
程度までであり、超高圧送電線用光ファイバ内蔵碍子で
必要となる長尺なFRP製の絶縁筒を形成することが容
易でない。そこで、複数の短尺な絶縁筒を多段に連結し
て長尺化することも考えられるが、絶縁筒を芯合わせし
て堅固に連結する必要があるため、構造が複雑になる。
また、加工の容易な引抜き方法で成形加工されたFRP
製の長尺な棒状体に中心孔を設けて長尺な絶縁筒を形成
することも考えられるが、中心孔を設けることは後加工
となるため、費用がかかる。このため、いずれの方法で
長尺な絶縁筒を形成しても、光ファイバ内蔵碍子のコス
トが増大するので好ましくない。 【0005】本発明の目的は、光ファイバが組み込まれ
るFRP製の中芯が長尺化しても、これを形成すること
が容易なほか、構造も簡単で、碍子の製造コストを低減
することができる光ファイバ内蔵碍子を提供することに
ある。 【0006】 【課題を解決するための手段】上記の課題を解決するた
めに、本発明は、光ファイバがFRP製の中芯に組み込
まれた光ファイバ内蔵碍子において、前記FRP製の中
芯が、幅方向に内外面が外方へわん曲した弧形状の横断
面を有する複数本のFRP製の筒体用セグメントを筒状
に組み合わせた分割型筒体からなり、その分割型筒体の
筒孔内に有機絶縁物が充填され、前記筒孔内に組み込ま
れた光ファイバが固定される構成になっている。 【0007】このように、前記FRP製の中芯が前記構
成の分割型筒体からなるので、構造が簡単になる。ま
た、この分割型筒体を構成する複数本のFRP製の筒体
用セグメントの形状が筒状ではなく、棒状になるので、
これら筒体用セグメントが長尺化しても、成形加工の容
易な引抜き方法により形成することが可能になる。従っ
て、これら筒体用セグメントを筒状に組み合わせた分割
型筒体からなる中芯が長尺化しても容易、且つ、安価に
得ることができ、光ファイバ内蔵碍子の製造コストを低
減することができる。 【0008】 【発明の実施の形態】次に本発明の1実施形態を図面に
より詳細に説明する。図1は本発明に係る光ファイバ内
蔵碍子の縦断面図、図2は図1の光ファイバ内蔵碍子の
主要部であるFRP製の中芯を構成する分割型筒体の一
部省略斜視図、図3は図2の分割型筒体を構成する複数
本のFRP製の筒体用セグメントを示す一部省略分解斜
視図である。 【0009】この実施形態の光ファイバ内蔵碍子は光フ
ァイバ1が組み込まれるFRP製の中芯3を備える。こ
の中芯3は、図3に詳細に示すような、幅方向に内外面
が外方へわん曲した半円弧形状の横断面を有する2本の
FRP製の中実棒状体である筒体用セグメント7、7
を、図2に示すように、円筒状に組み合わせた分割型筒
体5からなる。 【0010】この分割型筒体5は、図2に示すように、
2本の筒体用セグメント7、7を対向させ、各筒体用セ
グメント7、7の幅方向の側端面同士を突き合わせて円
筒状に組み合わせ、各筒体用セグメント7、7がばらば
らに分解することがないように、これら筒体用セグメン
ト7、7の外周に線材、紐、バンド等の締付け部材9を
らせん状に巻き付けて締め付け固定することにより形成
される。上記のように、2本の筒体用セグメント7、7
を組み合わせて分割型筒体5を形成すると、構成部品が
少ないので、筒体用セグメント7、7を位置合わせて組
み立てる作業が楽になり、手数がかからないので好まし
い。 【0011】中芯3を構成する分割型筒体5の筒孔6内
には、例えば、図2に示すように、2本の光ファイバ
1、1が挿通されて組み込まれ、所定長さの余長分だけ
中芯3の両端から外方へ引き出される。そして、分割型
筒体5の筒孔6内に、図1に示すように、シリコーンゴ
ム、ウレタンゴム、エポキシ樹脂等の有機絶縁物11が
空隙を生じないように充填され、分割型筒体5に組み込
まれた光ファイバ1、1が移動しないように固定され
る。これにより、碍子が曲げ変形を受けても、光ファイ
バ1、1が局部的に引張りや圧縮を受けることがなく、
光伝送ロスや断線が生じるのを防止することができる。
また、前記筒孔6内に水分その他の異物が侵入し難くな
り、電気的な絶縁を更に強化することができる。 【0012】前記中芯3を構成する分割型筒体5の両端
外周には、図1に示すように、碍子支持用孔14及び光
ファイバ引出し用孔15を有する端末金具13が嵌挿さ
れて金具外側からの圧縮によるかしめ、接着等により取
り付けられる。そして、前記分割型筒体5から引き出さ
れた光ファイバ1、1の余長分が端末金具13の光ファ
イバ引出し用孔15を通して引き出される。なお、端末
金具13の光ファイバ引出し用孔15内にも、前記シリ
コーンゴムやウレタンゴム等の有機絶縁物11を充填し
ておくと、水分の端末金具13内への侵入を確実に防止
することができ、中芯3の絶縁性が向上するので望まし
い。 【0013】このような中芯3を構成する分割型筒体5
の両端に端末金具13が取り付けられた状態で、分割型
筒体5の外周に、端末金具13の筒体取付部に跨るよう
にして、シリコーンゴム、エチレンプロピレンゴム等の
弾性絶縁材料からなるひだ付き絶縁被覆体17がモール
ド成形等により設けられる。ひだ付き絶縁被覆体17の
外周面には該被覆体17の長手方向に所定間隔をおいて
環状のひだ(笠)18が該被覆体17から突出するよう
に一体成形により形成されている。上記実施形態の光フ
ァイバ内蔵碍子は以上のような構成になっている。 【0014】なお、前記実施形態の光ファイバ内蔵碍子
では、中芯3である分割型筒体5を、2本の筒体用セグ
メント7、7を円筒状に組み合わせ、これら筒体用セグ
メント7、7の外周に締付け部材9をらせん状に巻き付
けて形成したが、これ以外の方法で形成することも可能
である。例えば、図4(イ)に示す分割型筒体19は、
2本の筒体用セグメント7、7を円筒状に組み合わせ、
これら筒体用セグメント7、7の外周に、筒体用セグメ
ント7、7の長手方向に沿って所定間隔をおいて、円形
リング21、例えば、市販品であるC型止め輪を外嵌し
て装着することにより形成した例である。また、図4
(ロ)に示す分割型筒体23は、2本の筒体用セグメン
ト7、7を円筒状に組み合わせた後、両筒体用セグメン
ト7、7の突き合わせ面を接着剤25で接着することに
より形成した例である。なお、前記分割型筒体5、1
9、23を形成する場合、2本の筒体用セグメント7、
7の突き合わせ面を凹凸嵌合面(図示せず)に形成して
おくと、筒体用セグメント7、7を円筒状に組み合わせ
ることが更に容易になるので好ましい。 【0015】前記したように、FRP製の中芯3が前記
構成の分割型筒体5、19、23からなるので、構造が
簡単になる。また、これら分割型筒体5、19、23を
構成する2本のFRP製の筒体用セグメント7、7の形
状が筒状ではなく、棒状になるので、これら筒体用セグ
メント7、7を成形加工の容易な引抜き方法により形成
することが可能になる。従って、これら筒体用セグメン
ト7、7を筒状に組み合わせた分割型筒体5、19、2
3からなるFRP製の中芯3が長尺化しても容易、且
つ、安価に得ることができ、光ファイバ内蔵碍子の製造
コストを低減することができる。 【0016】前記中芯3を構成する分割型筒体5、1
9、23はいずれも半円弧形状の横断面を有する2本の
FRP製の筒体用セグメント7、7を円筒状に組み合わ
せて形成したが、これのみに限定されない。例えば、図
5(イ)に示すように、分割型筒体27を、扇形開き角
度120度の扇形弧形状の横断面を有する3本のFRP
製の筒体用セグメント29、29を円筒状に組み合わせ
て形成したり、また、図5(ロ)に示すように、分割型
筒体31を、扇形開き角度90度の扇形弧形状の横断面
を有する4本のFRP製の筒体用セグメント33、33
を円筒状に組み合わせて形成したり、更に、多分割した
筒体用セグメントを円筒状に組み合わせて形成したりし
てもよい。このように、筒体用セグメントの数が3本以
上に増えると、筒体用セグメントの横断面積が小さくな
るほか、横断面形状が矩形状に近い扇形弧形状になるの
で、筒体用セグメントの引抜き加工がより容易になる。
従って、製造歩留まりが向上し、長尺な中芯3をより安
価に得ることができるので好ましい。 【0017】 【発明の効果】以上説明したように、本発明によると、
FRP製の中芯が、幅方向に内外面が外方へわん曲した
弧形状の横断面を有する複数本のFRP製の筒体用セグ
メントを筒状に組み合わせた分割型筒体からなるので、
構造が簡単になる。また、この分割型筒体を構成する複
数本のFRP製の筒体用セグメントの形状が筒状ではな
く、棒状になるので、これら筒体用セグメントが長尺化
しても形成することが容易になる。従って、これら筒体
用セグメントを筒状に組み合わせた分割型筒体からなる
中芯が長尺化しても容易、且つ、安価に得ることがで
き、光ファイバ内蔵碍子の製造コストを低減することが
できる。
Description: BACKGROUND OF THE INVENTION [0001] 1. Field of the Invention [0002] The present invention relates to an improvement in an optical fiber built-in insulator. 2. Description of the Related Art Signals are transmitted from overhead transmission lines and the like to ground facilities in order to promptly transmit and handle information on accidents such as ground faults and short circuits in transmission and distribution lines and high-voltage substation facilities. As a means, an insulator incorporating an optical fiber is used. [0003] This optical fiber is made of an FRP to prevent optical transmission loss or disconnection due to local tension or compression when the insulator undergoes bending deformation.
There has been proposed an optical fiber built-in insulator incorporated in a core made of steel. Conventionally, as an FRP core, which is a main part of this kind of insulator, an FRP rod having a spiral groove formed on the outer peripheral surface, in which an optical fiber is accommodated in the spiral groove (Japanese Patent Laid-Open No. 6-162845). ), F having a cylinder formed at both ends and a slit having a depth reaching the center near the center
An RP rod in which an optical fiber is inserted and arranged in the cylinder and the bottom of the slit (JP-A-2000-27695)
No. 8), an optical fiber is inserted into a seamless insulating cylinder made of FRP, filled with an organic insulator, and embedded therein (Japanese Patent Laid-Open No. 9-259669). [0004] However, the above F
A spiral groove is formed on the outer peripheral surface of the RP rod,
Providing a slit near the center in the middle of the rod made is expensive as post-processing after the FRP rod is formed, and the cost of the optical fiber built-in insulator increases. In the case of forming a seamless insulating tube made of FRP, glass fiber is woven or wound around the outer periphery of a mandrel (core for forming the center tube hole of the insulating tube), and the glass fiber is wound. The maximum length of the insulating cylinder that can be formed due to the limitation of the mandrel length is 2-3 m because it is formed by solidifying with resin.
It is not easy to form a long insulating cylinder made of FRP, which is required for an optical fiber built-in insulator for an ultra-high voltage transmission line. Therefore, it is conceivable to increase the length by connecting a plurality of short insulating cylinders in multiple stages. However, since the insulating cylinders need to be aligned and firmly connected, the structure becomes complicated.
In addition, FRP molded by a drawing method that is easy to process
It is conceivable to form a long insulating cylinder by providing a center hole in a long rod-shaped body made of a material. However, providing the center hole is a post-processing step, and is therefore expensive. For this reason, it is not preferable to form a long insulating cylinder by any method, because the cost of the insulator with a built-in optical fiber increases. SUMMARY OF THE INVENTION An object of the present invention is to make it easy to form an FRP core into which an optical fiber is incorporated, even if the core becomes long, to have a simple structure, and to reduce the manufacturing cost of the insulator. It is an object of the present invention to provide an optical fiber built-in insulator. [0006] In order to solve the above-mentioned problems, the present invention relates to an optical fiber built-in insulator in which an optical fiber is incorporated in an FRP core. A plurality of FRP tubular segments each having an arc-shaped cross section whose inner and outer surfaces are curved outward in the width direction, and each of which is formed of a divided tubular body. The hole is filled with an organic insulator, and the optical fiber incorporated in the cylindrical hole is fixed. As described above, since the FRP core is formed of the split-type cylindrical body having the above-described structure, the structure is simplified. In addition, since the shape of the plurality of FRP cylindrical segments constituting the split-type cylindrical body is not cylindrical but rod-shaped,
Even if these cylindrical segments are elongated, they can be formed by a drawing method that is easy to form. Therefore, even if the length of the core made of a divided cylindrical body obtained by combining these cylindrical segments into a cylindrical shape becomes long, it can be obtained easily and inexpensively, and the manufacturing cost of the optical fiber built-in insulator can be reduced. it can. Next, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a longitudinal sectional view of an optical fiber built-in insulator according to the present invention, FIG. 2 is a partially omitted perspective view of a split-type cylindrical body constituting an FRP core which is a main part of the optical fiber built-in insulator of FIG. FIG. 3 is a partially omitted exploded perspective view showing a plurality of FRP cylinder segments constituting the split-type cylinder body of FIG. The optical fiber built-in insulator of this embodiment has an FRP core 3 into which the optical fiber 1 is incorporated. As shown in detail in FIG. 3, the core 3 is a solid rod-shaped body made of two FRPs having a semicircular cross section whose inner and outer surfaces are curved outward in the width direction. Segments 7, 7
, As shown in FIG. [0010] As shown in FIG.
The two cylindrical segments 7, 7 are opposed to each other, and the widthwise side end surfaces of the cylindrical segments 7, 7 are abutted against each other and assembled into a cylindrical shape, so that the cylindrical segments 7, 7 are disassembled separately. In order to prevent such a problem, a fastening member 9 such as a wire, a string, a band, or the like is spirally wound around the outer periphery of the cylindrical body segments 7, 7 and fastened and fixed. As described above, the two cylindrical segments 7, 7
Is preferable because the number of constituent parts is small, the work of aligning and assembling the cylindrical segments 7, 7 is easy, and the number of steps is reduced. For example, as shown in FIG. 2, two optical fibers 1 and 1 are inserted and incorporated into a cylindrical hole 6 of a split-type cylindrical body 5 constituting the core 3, and have a predetermined length. It is pulled outward from both ends of the core 3 by an extra length. As shown in FIG. 1, an organic insulator 11 such as silicone rubber, urethane rubber, or epoxy resin is filled in the cylindrical hole 6 of the split-type cylindrical body 5 so as not to form a void. Are fixed so that the optical fibers 1 and 1 incorporated in the optical fiber do not move. Thus, even if the insulator undergoes bending deformation, the optical fibers 1 and 1 are not locally subjected to tension or compression, and
Optical transmission loss and disconnection can be prevented.
In addition, moisture and other foreign substances are less likely to enter the cylindrical hole 6, and electrical insulation can be further enhanced. As shown in FIG. 1, terminal fittings 13 having insulator support holes 14 and optical fiber lead-out holes 15 are fitted around outer circumferences of both ends of the divided cylindrical body 5 constituting the core 3. It is attached by caulking by compression from the outside of the bracket, bonding, or the like. Then, the extra length of the optical fibers 1 and 1 pulled out from the split type cylindrical body 5 is pulled out through the optical fiber drawing hole 15 of the terminal fitting 13. It is to be noted that, if the organic insulating material 11 such as the silicone rubber or urethane rubber is also filled in the optical fiber lead-out hole 15 of the terminal fitting 13, it is possible to reliably prevent moisture from entering the terminal fitting 13. This is desirable because the insulating property of the core 3 is improved. [0013] The divided cylinder 5 constituting such a core 3
In a state where the terminal fittings 13 are attached to both ends of the terminal, the folds made of an elastic insulating material such as silicone rubber, ethylene propylene rubber, etc. The attached insulating cover 17 is provided by molding or the like. An annular fold (shade) 18 is integrally formed on the outer peripheral surface of the fluted insulating cover 17 so as to protrude from the cover 17 at a predetermined interval in the longitudinal direction of the cover 17. The optical fiber built-in insulator of the above embodiment has the above-described configuration. In the optical fiber built-in insulator of the above embodiment, the divided cylindrical body 5 as the core 3 is combined with the two cylindrical segments 7, 7 in a cylindrical shape, and these cylindrical segments 7, Although the fastening member 9 is formed by spirally winding it around the outer periphery of 7, it can be formed by other methods. For example, the split cylinder 19 shown in FIG.
Combine the two cylindrical segments 7, 7 into a cylindrical shape,
A circular ring 21, for example, a commercially available C-type retaining ring, is fitted around the outer circumference of the cylindrical segments 7, 7 at predetermined intervals along the longitudinal direction of the cylindrical segments 7, 7. This is an example formed by mounting. FIG.
The split-type cylindrical body 23 shown in (b) is obtained by combining the two cylindrical body segments 7, 7 into a cylindrical shape, and then bonding the butted surfaces of the two cylindrical body segments 7, 7 with an adhesive 25. This is an example of forming. The split-type cylinders 5, 1
When forming 9 and 23, two cylindrical segments 7,
It is preferable to form the butting surface 7 on the concave / convex fitting surface (not shown) because it becomes easier to combine the cylindrical segments 7 and 7 into a cylindrical shape. As described above, since the FRP core 3 is composed of the divided cylindrical bodies 5, 19, and 23 having the above-described structure, the structure is simplified. In addition, the shape of the two FRP cylinder segments 7, 7 constituting the split-type cylinders 5, 19, 23 is not cylindrical but rod-shaped. It can be formed by a drawing method that can be easily formed. Therefore, the divided cylinders 5, 19, 2 in which these cylinder segments 7, 7 are combined in a tubular shape.
Even if the core 3 made of FRP made of FRP 3 becomes long, it can be obtained easily and inexpensively, and the manufacturing cost of the insulator with a built-in optical fiber can be reduced. The split cylinders 5 and 1 constituting the core 3
Each of 9, 23 is formed by combining two cylindrical segments 7, 7 made of FRP having a semicircular cross section in a cylindrical shape, but the invention is not limited thereto. For example, as shown in FIG. 5 (a), the split-type cylindrical body 27 is formed by three FRPs having a sectoral arc-shaped cross section with a sectoral opening angle of 120 degrees.
The cylindrical segments 29, 29 are formed by combining them into a cylindrical shape, and as shown in FIG. 5 (b), the split-type cylindrical body 31 is divided into a sector-shaped cross section having a sector opening angle of 90 degrees. FRP cylinder segments 33, 33 having
May be formed by combining them into a cylindrical shape, or may be formed by combining multi-part cylinder segments into a cylindrical shape. As described above, when the number of the segments for the cylinder increases to three or more, the cross-sectional area of the segments for the cylinder decreases, and the cross-sectional shape becomes a fan-shaped arc shape close to a rectangular shape. The drawing process becomes easier.
Therefore, the manufacturing yield is improved, and the long core 3 can be obtained at lower cost, which is preferable. As described above, according to the present invention,
Since the FRP core is composed of a plurality of FRP cylinder segments each having an arc-shaped cross section in which the inner and outer surfaces are curved outward in the width direction, the FRP is formed of a split-type cylindrical body,
The structure becomes simple. In addition, the shape of the plurality of FRP cylindrical segments constituting the split-type cylindrical body is not cylindrical but rod-shaped, so that even if these cylindrical segments are elongated, they can be easily formed. Become. Therefore, even if the length of the core made of a divided cylindrical body obtained by combining these cylindrical segments into a cylindrical shape becomes long, it can be obtained easily and inexpensively, and the manufacturing cost of the optical fiber built-in insulator can be reduced. it can.

【図面の簡単な説明】 【図1】本発明に係る光ファイバ内蔵碍子の1実施形態
の縦断面図である。 【図2】図1の光ファイバ内蔵碍子の主要部であるFR
P製の中芯を構成する分割型筒体を示す一部省略斜視図
である。 【図3】図2の分割型筒体を構成する複数本のFRP製
の筒体用セグメントを示す一部省略分解斜視図である。 【図4】(イ)(ロ)は図2に記載された分割型筒体と
は異なる分割型筒体の2例を示す一部省略斜視図であ
る。 【図5】(イ)(ロ)は図2、4に記載された分割型筒
体とは更に異なる分割型筒体の2例を示す平面略図であ
る。 【符号の説明】 1 光ファイバ 3 中芯 5、19、23、27、31 分割型筒体 6 筒孔 7,29、33 筒体用セグメント 9 締付け部材 11 有機絶縁物 13 端末金具 14 碍子支持用孔 15 光ファイバ引出し用孔 17 ひだ付き絶縁被覆体 18 ひだ 21 円形リング 25 接着剤
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a longitudinal sectional view of an embodiment of an optical fiber built-in insulator according to the present invention. FIG. 2 is a view showing a main part of the optical fiber built-in insulator of FIG.
It is a partially omitted perspective view which shows the division | segmentation type cylindrical body which comprises the core made of P. 3 is a partially omitted exploded perspective view showing a plurality of FRP tubular body segments constituting the split-type tubular body of FIG. 2; FIGS. 4A and 4B are partially omitted perspective views showing two examples of a divided cylinder different from the divided cylinder shown in FIG. FIGS. 5A and 5B are schematic plan views showing two examples of a divided cylinder different from the divided cylinder shown in FIGS. [Description of Signs] 1 Optical fiber 3 Core 5, 19, 23, 27, 31 Split-type cylinder 6 Cylindrical hole 7, 29, 33 Segment for cylinder 9 Tightening member 11 Organic insulator 13 Terminal fitting 14 Insulator support Hole 15 Hole 17 for drawing out optical fiber 17 Insulated covering 18 with folds 18 Fold 21 Circular ring 25 Adhesive

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2H038 CA66 5G331 AA02 BB31 BC18 CA03 CA05 CA06 DA02 EA11 EB19    ────────────────────────────────────────────────── ─── Continuation of front page    F-term (reference) 2H038 CA66                 5G331 AA02 BB31 BC18 CA03 CA05                       CA06 DA02 EA11 EB19

Claims (1)

【特許請求の範囲】 【請求項1】 光ファイバがFRP製の中芯に組み込ま
れた光ファイバ内蔵碍子において、前記FRP製の中芯
が、幅方向に内外面が外方へわん曲した弧形状の横断面
を有する複数本のFRP製の筒体用セグメントを筒状に
組み合わせた分割型筒体からなり、その分割型筒体の筒
孔内に有機絶縁物が充填され、前記筒孔内に組み込まれ
た光ファイバが固定されることを特徴とする光ファイバ
内蔵碍子。
Claims: 1. An optical fiber built-in insulator in which an optical fiber is incorporated in an FRP core, wherein the FRP core has an arc whose inner and outer surfaces are curved outward in the width direction. It is composed of a divided cylindrical body in which a plurality of FRP cylindrical segments having a cross section of a shape are combined in a cylindrical shape, and an organic insulator is filled in a cylindrical hole of the divided cylindrical body, and the inside of the cylindrical hole is filled. An optical fiber built-in insulator, wherein an optical fiber incorporated in the insulator is fixed.
JP2001238397A 2001-08-06 2001-08-06 Optical fiber built-in insulator Pending JP2003051222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001238397A JP2003051222A (en) 2001-08-06 2001-08-06 Optical fiber built-in insulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001238397A JP2003051222A (en) 2001-08-06 2001-08-06 Optical fiber built-in insulator

Publications (1)

Publication Number Publication Date
JP2003051222A true JP2003051222A (en) 2003-02-21

Family

ID=19069316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001238397A Pending JP2003051222A (en) 2001-08-06 2001-08-06 Optical fiber built-in insulator

Country Status (1)

Country Link
JP (1) JP2003051222A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02250008A (en) * 1989-03-23 1990-10-05 Ngk Insulators Ltd Insulator containing multi-stage stacked optical fiber
JPH05249322A (en) * 1992-03-10 1993-09-28 Ngk Insulators Ltd Non-ceramic insulator
JPH06162845A (en) * 1992-11-19 1994-06-10 Furukawa Electric Co Ltd:The Insulator with built-in optical fiber
JPH0729437A (en) * 1993-07-08 1995-01-31 Showa Electric Wire & Cable Co Ltd T-shaped bushing
JPH0757575A (en) * 1993-08-18 1995-03-03 Okasan Kogyo Kk Insulator protective structure
JPH09259669A (en) * 1996-03-25 1997-10-03 Ngk Insulators Ltd Insulator with built-in optical fiber and manufacture thereof
JP2000276958A (en) * 1999-03-24 2000-10-06 Ngk Insulators Ltd Insulator with optical fiber incorporated therein and its manufacture

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02250008A (en) * 1989-03-23 1990-10-05 Ngk Insulators Ltd Insulator containing multi-stage stacked optical fiber
JPH05249322A (en) * 1992-03-10 1993-09-28 Ngk Insulators Ltd Non-ceramic insulator
JPH06162845A (en) * 1992-11-19 1994-06-10 Furukawa Electric Co Ltd:The Insulator with built-in optical fiber
JPH0729437A (en) * 1993-07-08 1995-01-31 Showa Electric Wire & Cable Co Ltd T-shaped bushing
JPH0757575A (en) * 1993-08-18 1995-03-03 Okasan Kogyo Kk Insulator protective structure
JPH09259669A (en) * 1996-03-25 1997-10-03 Ngk Insulators Ltd Insulator with built-in optical fiber and manufacture thereof
JP2000276958A (en) * 1999-03-24 2000-10-06 Ngk Insulators Ltd Insulator with optical fiber incorporated therein and its manufacture

Similar Documents

Publication Publication Date Title
JP2002519984A (en) Pre-assembled electric splice components
JPH10186192A (en) Single pipe structure reinforced optical fiber cable
KR960012043A (en) Electrical insulation having an optical fiber and method of manufacturing the same
JP4158904B2 (en) Normal temperature shrinkable rubber unit
US4701577A (en) Cable support for an electric power-line pole
JP2006196393A (en) Electric wire
JP2003051222A (en) Optical fiber built-in insulator
JP2002539703A (en) Whip-type decomposable antenna with capacitive load and method of manufacturing a radiating segment of the antenna
JP2023504198A (en) Cable assembly with bundling arrangement
CA2314255A1 (en) Conduit supported swivel tube
JP3541032B2 (en) Composite insulator with optical fiber guided between metal end fitting and support rod
US3725944A (en) Free standing fiberglass antenna
EP3380881B1 (en) Insulator and method of manufacturing the same
FR2721137A1 (en) Toroidal electric transformer or toroidal inductive winding, e.g. self-inductance
JPH0260005A (en) Frame conductor having optical communication transmission line
JP2001510012A (en) Cable joint mechanism and rotary electric machine including such mechanism
JP2010119291A (en) Normal temperature-shrinkable rubber unit
JP2774455B2 (en) Composite tapered insulator tube and method and apparatus for manufacturing the same
JP3568093B2 (en) Polymer support insulator
CN214153184U (en) Integrated vehicle-mounted antenna device
EP1234313A1 (en) High-voltage composite insulator
CN216215837U (en) Intermediate joint of prefabricated cable and mounting structure thereof
JP4667303B2 (en) Normal temperature shrinkable rubber unit
JP2771380B2 (en) Non-ceramic insulator
JP2592626Y2 (en) Prefabricated insulated connection of cable

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071005

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080215