JP2003050196A - Method for evaluating grain boundary corrosion sensitivity - Google Patents

Method for evaluating grain boundary corrosion sensitivity

Info

Publication number
JP2003050196A
JP2003050196A JP2001237375A JP2001237375A JP2003050196A JP 2003050196 A JP2003050196 A JP 2003050196A JP 2001237375 A JP2001237375 A JP 2001237375A JP 2001237375 A JP2001237375 A JP 2001237375A JP 2003050196 A JP2003050196 A JP 2003050196A
Authority
JP
Japan
Prior art keywords
potential
film thickness
grain boundary
stainless steel
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001237375A
Other languages
Japanese (ja)
Inventor
Yasumasa Koshiro
育昌 小城
Tetsuji Kawakami
哲治 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001237375A priority Critical patent/JP2003050196A/en
Publication of JP2003050196A publication Critical patent/JP2003050196A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for easily evaluating grain boundary corrosion sensitivity in stainless steel in its environment, without performing long-time dipping tests. SOLUTION: An evaluation method of grain boundary corrosion sensitivity includes a surface-polishing process for polishing the measurement surface of stainless steel, a potential stabilization process for installing the stainless steel in a liquid phase cell under nearly the same conditions as specific usage environment, providing an electrode in each cell, and then stabilizing potential within 10 minutes to 5 hours, a film thickness calculation process for measuring reflected light to incidence light by microscope ellipsometry, having a resolution of up to 20 μm using a CCD camera, and calculating the film thickness in a grain boundary film and a film in a grain formed on the surface of the stainless steel, and a sensitivity evaluation process for changing potential at least two times, then repeating the film thickness calculation process for a total of at least three times, and then plotting the film thickness in the grain boundary and inside the grain with respect to the potential change.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、粒界腐食感受性の
評価方法に関し、さらに詳しくは、例えば構造物中での
締結部材や板材などとして使用されるステンレス鋼につ
いて、その環境中での粒界腐食感受性評価を、実際の試
験を行わずに簡易に評価できる方法に関するものであ
る。 【0002】 【従来の技術】粒界腐食は、主にオーステナイト系ステ
ンレス鋼の鋭敏化により粒界近傍のCr濃度の低下が起こ
り、粒界部が粒内部より耐食性か悪くなる結果、選択的
に粒界が腐食される現象である。オーステナイト系ステ
ンレス鋼を500〜800℃に保持すれば結晶粒界に炭化物(C
r23C6)が析出し、隣接部のCr量は減少し、いわゆるCr欠
乏層(Cr-dep1eted area)が形成される。鋼にこのような
状態をもたらす処理を、一般に鋭敏化熱処理(Sensitiza
tion treatment)という。一方耐食性については、クロ
ム濃度が高いほど向上する。よって、鋭敏化により粒界
近傍でのクロム量が粒内に比べて減少することで、粒界
での耐食性が低下し、この部分で選択的に腐食が進行す
ることが起こる。 【0003】従来、このような材料間の粒界腐食感受性
を相対的に評価する代表的手法として、Huey試験法があ
る。Huey試験法は、試験片を沸騰65%硝酸溶液中に浸漬
後、重量変化を測定する方法であり、材料の粒界部分が
選択的に掘られ、感受性がある材料が劣化する領域で試
験を行うものである。しかしながら、該試験法では48時
間づつ5回繰り返さなければならず、長時間の試験が必
要とされる。また、鋭敏化してクロムが減少している箇
所だけをカウントしたい場合であっても、Cr欠乏層での
侵食のみならず、σ相(FeCr)、χ相(Mo5Cr5Fe18),
Laves相(Fe2Mo)、粒界析出アモルファスNiリン化物
(Ni3P2)、TiC、Cr23C6など全ての炭化物が溶解してし
まう点に問題があった。また特に、沸騰条件試験である
ために、試験容器の密閉性に問題があり、ASTEM G45-73
で厳重に規定(コンデンサー等)されている。 【0004】 【発明が解決しようとする課題】本発明者らは、上記従
来の試験法での問題点に鑑み、粒界腐食感受性を短時間
で簡易に評価でき、コスト低減及び評価時間の短縮化を
図ることを可能であるとともに、材料間の比較で優劣を
付けるのみではなく、材料を特定の環境で使用できるか
否かの感受性評価を可能とするような、粒界腐食感受性
の有無を評価する方法を開発すべく、鋭意検討した。例
えば、原子力プラントや再処理プラント等の長期にわた
る高い健全性を維持するためには、長時間経過後の金属
材料の腐食挙動に関する高度な評価が必要である。そし
て、実用合金であるステンレス鋼の耐食性は表面に生成
する酸化皮膜の性状に大きく依存している。そこで該皮
膜の性状を評価することによって、ステンレス鋼の腐食
感受性(長期健全性)を精度良く、短時間で評価できるこ
とに着目した。その結果、本発明者らは、皮膜の性状と
して、不働態皮膜の厚さ(数Å)の分布測定が可能な顕微
偏光解析法(顕微エリプソメトリー)を用いて、実用上問
題となる粒界腐食の発生挙動と皮膜厚さの関係を評価す
ることによって、上記問題点が解決されることを見い出
した。本発明は、かかる見地より完成されたものであ
る。 【0005】 【課題を解決するための手段】すなわち、本発明は、ス
テンレス鋼についての粒界腐食感受性の評価方法であっ
て、表面研磨工程と電位安定工程と皮膜厚み算出工程と
感受性評価工程とを含むことを特徴とする粒界腐食感受
性の評価方法を提供するものである。表面研磨工程で
は、ステンレス鋼の測定表面を研磨する。電位安定工程
では、所定の使用環境と略同条件の液相セル中に該ステ
ンレス鋼を設置し、該セル中に電極を備えた後、10分
〜5時間で電位を安定させる。皮膜厚み算出工程では、
20μmまでの分解能好ましくは10μmまでの分解能を有
する顕微エリプソメトリーによって、入射光に対する反
射光をCCDカメラによって計測し、該ステンレス鋼表
面に形成された粒界皮膜と粒内皮膜との皮膜厚みをそれ
ぞれ算出する。感受性評価工程では、前記電位を少なく
とも2回以上変化させて、前記皮膜厚み算出工程を合計
3回以上繰り返した後、電位変化に対する粒界と粒内の
皮膜厚さの比をプロットする。 【0006】顕微エリプソメトリーでは、電位付与して
電流安定状態にて3回以上測定を繰り返して、皮膜厚み
を測定する。CCD画像で評価では、上部が粒界であ
り、下部が粒内で表される。なお、セル内の液中では、
沸騰させると液面が乱れて光を入射反射させることが光
学的に困難なので、沸騰しない範囲で行うことが好まし
い。 【0007】一般に、耐食性の劣っているもの程、酸化
皮膜が厚くなる成長速度が速いので、弱い部分の皮膜は
厚くなり、強い部分はそのままであるという性質があ
る。ステンレス鋼の皮膜厚みは、耐食性のよい高Cr鋼は
薄く、耐食性の劣る低Cr鋼は相対的に厚く形成される。
耐食性は皮膜の厚さに依存する該性質を利用して、本発
明では感受性を評価する。本発明はこの特性を利用し
て、約10μmφの分解能を有する顕微エリプソメトリー
測定装置を用いて粒内部皮膜厚みに対する粒界部皮膜厚
みの比を検出することによって、粒界部のCr欠乏状況
(鋭敏化状況)を評価するものである。また、一般に電
位が高いほど皮膜厚みは厚くなるが、粒界腐食感受性が
ある条件では粒内部皮膜厚みの電位依存に対して、粒界
部皮膜厚みの電位依存のほうが大きくなる特性を有する
ことから、粒内部皮膜厚みに対する粒界部皮膜厚みの比
が電位依存性を示すか否かを評価することにより、当該
環境での粒界腐食感受性を評価することができる。 【0008】本発明の方法では、後述の鋭敏化を行った
材料についても評価することが可能であるが、鋭敏化の
段階で溶液を沸騰させず、65%硝酸よりも薄い硝酸を用
いる、等の従来の試験法と異なる有利な特徴を有する。
また、溶液に材料を浸漬させてから、電位をいくつか設
定するだけで足りるので短時間で試験でき、腐食させる
前の潜在的な腐食可能性を評価できる。鋭敏化する評価
手法として、EPR測定法(電気化学的再活性化法;el
ectrochemical potentiokinetic reactivationmethod)
などがある。また、非鋭敏化材については、粒界腐食が
発現する環境が、例えば950mV以上の領域である等、当
該条件環境下で粒界腐食が発生するか否か、を判断でき
る。つまり、当該環境におけるその材料について、粒界
腐食感受性の有無を短時間にて判定できる。通常、マイ
ルドな環境では、腐食が顕在化するまでに長時間を要し
てしまうが、本発明によれば、腐食が顕在化する前の皮
膜の状態を評価することによって、短時間で判断が可能
になる。本発明に係る方法を実施するための形態につい
て説明する。なお、本発明は以下の実施の形態に限定さ
れるものではない。 【0009】 【発明の実施の形態】構造物で使用されるボルト等の締
結部材や板材には、多くのステンレス鋼が使用されてい
る。このステンレス鋼に多く存在する粒界は結晶同士が
交わっている箇所なので、この粒界には種々の熱処理条
件によって、溜まりやすい元素と溜まりにくい元素の再
編成が起こる。ステンレス鋼(Fe-Cr-Niの3元系)の場合
には、例えば粒界でクロム元素の濃度が減少し、逆にニ
ッケル元素濃度が高くなる場合がある。つまり、材料の
粒界で組成変化することになり、その組成変化の程度に
応じて、特定の環境条件で粒界腐食や粒界腐食割れ(IG
-SCC)等の感受性が発現する原因になり得る。これまで
の構造物の材料研究においては、新規な材料の環境中で
の腐食感受性を判断する場合、長時間に亘る実際の環境
試験によって、取り出されたものを評価しなければなら
ず、多大な労力・費用・時間などが必要であった。 【0010】一方、実機の環境条件に限定しない材料間
の比較試験としては、Huey試験法、その他の試験法にお
いても過酷な条件で評価を行っていた。Huey試験法では
沸騰65%硝酸溶液を用いるので、粒界偏析物が溶解して
しまう問題があるので好ましくない。また、このような
加速条件でも48時間を5回繰り返して行わなければなら
ず、長時間を要する。このような従来の手法は、材料の
粒界腐食性の順番を付けることは可能であるが、環境条
件を含めた材料の粒界腐食感受性の評価にはならなかっ
た。本発明の方法によれば、実機試験を行わなくても、
当該環境中における材料の腐食感受性を的確に評価・判
断することが可能である。 【0011】本発明は、ステンレス鋼についての粒界腐
食感受性の評価方法であって、表面研磨工程と電位安定
工程と皮膜厚み算出工程と感受性評価工程とを含む粒界
腐食感受性の評価方法である。また必要に応じて、鋭敏
化処理工程を加えて、各ステンレス鋼について評価を行
うこともできる。以下、各工程について詳細に説明す
る。 【0012】(表面研磨工程)測定対象となるステンレ
ス鋼については、測定表面を研磨する。これは、後述の
皮膜厚み算出工程における顕微エリプソメトリーを実施
する前段階として、反射率の精度を保ち、反射し易いよ
うにするためである。これによって、表面の皮膜は取り
除かれるが、溶液に入れた瞬間に不働態皮膜は新たに形
成され、その皮膜を評価する。 【0013】(電位安定工程)次いで、所定の使用環境
と略同条件の液相セル中に該ステンレス鋼を設置し、該
セル中に電極を備えた後、通常10分〜5時間好ましく
は30分〜3時間で電位(自然電位)を安定させる。液
相セル中に供試体であるステンレス鋼を設置すること
で、その環境中で初期にできる皮膜特性を評価する。長
時間を経過すれば更にゆっくりと皮膜は厚くなってくる
が、本発明では研磨後に形成される初期皮膜を対象とす
る。 【0014】ここで一定の酸化イオンが存在する系で実
際の環境下での自然電位に近づけるには、溶液中の酸化
性イオン濃度をコントロールすることによって調整す
る。例えば650mV程度である溶液では、そこに酸化剤で
あるクロムや銀を加えることで、850mV以上の高電位環
境にすることができる。後述の感受性評価工程にて評価
するために、一定の酸化イオンが存在する系では、この
自然電位に対して、溶液中の電位に関係する酸化性イオ
ン濃度をコントロールするか、もしくは外部電源(定電
位発生装置:potentiostat)によって、幾らか電位を振
って異なる電位を2以上設定する。これによって、感受
性有無の範囲を想定すると共に、現在の自然電位での使
用が可能かを判定することができる。 【0015】(皮膜厚み算出工程)次いで本発明では、
10μmφまでの分解能を有する顕微エリプソメトリーに
よって、入射光に対する反射光をCCDカメラによって
計測し、該ステンレス鋼表面に形成された粒界皮膜と粒
内皮膜との皮膜厚みをそれぞれ算出する。この際、光を
照射して一回に入力される光情報を、CCDによって分
離して解析する。 【0016】本発明で評価するステンレス鋼では、耐食
性の良いものほど、皮膜厚さが薄い。通常は全面皮膜の
特性を測定するが、本発明で評価する感受性は粒内に対
して粒界の耐食性が劣るか否かという評価であり、マク
ロの評価では判断できず、粒界と粒内の差を評価しなけ
ればならない。そこで、本発明では顕微エリプソメトリ
ーによって、偏光解析法を用いて皮膜の厚さを測定する
ので、非常に薄いnm単位の皮膜も測定可能である。顕微
機能を付与することで、微少の部位まで皮膜厚みの分布
を測定できる。この方法によれば、粒界と粒内の皮膜厚
みの差をミクロの範囲で判定することができる。 【0017】エリプソメトリーは入射光と反射光の偏光
状態の変化から、試料表面の光学常数を求める手法であ
り、試料表面に皮膜の様な薄い膜を有する試料であれ
ば、光学定数と共にその皮膜の厚さを求めることが可能
である。しかし、本発明の目的である粒界腐食の感受性
を評価するためには少なくとも数10μm以下の分解能を
付与し、粒界近傍と粒内部の差(粒界特異性)を検出する
必要がある。エリプソメトリーでは通常検出器としてホ
トマルを用いるが、本発明で用いる顕微エリプソメトリ
ーでは、検出器にCCDカメラを用いることにより顕微機
能を付加している。CCDカメラは、通常512×512の素子
から構成され、一つの素子は20μm□であるものを用い
る。また、検出器の前に×10の拡大レンズを置くことに
より、2μm□の情報を得ることが可能である。 【0018】以下、後述の鋭敏化処理を施した材料(鋭
敏化材)、および、鋭敏化処理を施していない材料(溶
体化材)について、それぞれ分けて感受性評価を説明す
る。粒界腐食が大きい鋭敏化材については、付与する電
位が低いときにも粒界と粒内で皮膜厚の成長に差がある
場合が多いが、電位を高くして、より感受性が高い条件
にしてみると、粒界と粒内の皮膜厚さの差が顕著にな
る。このような鋭敏化材において、皮膜厚みの平均は電
位の上昇とともに厚くなる傾向を示す。感受性の高い高
電位においては、粒内皮膜厚みの電位に対する成長に比
べて、粒界皮膜厚みの電位に対する成長の方が、より大
きい。これは粒界部分の耐食性が悪いために、粒内部分
に比べて皮膜が厚くなるからである。本発明では定量的
な評価を行うために、例えば皮膜厚み比を、上1%平均
/下99%平均、上5%平均/下95%平均、上10%
平均/下90%平均について、それぞれ分離して、各電
位における厚み比として、電位依存性を評価する(図1
参照)。ここで、上は粒界皮膜厚み部分であり、下は粒
内皮膜厚み部分である。 【0019】一方、溶体化材においては、付与する電位
が低いときには粒界と粒内で皮膜厚の成長に差ができて
いない場合があり、このような場合、該環境下において
当該材料は粒界腐食感受性がないことになる。例えば、
図2に示すような場合には、900mVまでは粒内に対して
粒界の皮膜厚みの電位変化が認められず、950mVでは、
皮膜厚さの平均は電位の上昇とともに厚くなる傾向を示
した。図1に示す鋭敏化材では、電位の上昇に伴い粒界
部に相当する領域から皮膜が成長して、粒界部近傍の皮
膜厚みが粒内部に対して厚くなる場合が多いのに対し
て、図2に示す溶体化材では、粒界腐食の感受性のない
900mV以下では略均一に皮膜が厚く成長する傾向を示す
ことになる。 【0020】また別途、後述の長時間浸漬試験を行った
ものについては、鋭敏化材では、電位を負荷する領域で
は粒界腐食感受性を有する場合が多く、自然電位につい
ても徴候が見られることがある。このように硝酸試験環
境においては、電位負荷に拘わらず、粒界腐食感受性が
ある状態となり得る。そして、このような環境において
も電位に対して、感受性は上昇傾向にある。一方、溶体
化材については、自然電位および850,900mV等の電位負
荷を行った領域において、粒界腐食感受性がない場合が
ある。 【0021】(感受性評価工程)最後に本発明では、電
位を少なくとも2回以上変化させて、前記皮膜厚み算出
工程を合計3回以上繰り返した後、電位変化に対する粒
界と粒内の皮膜厚さの比をプロットする。この工程にお
ける感受性評価では、皮膜厚みの比率(粒界皮膜厚さ/
粒内皮膜厚さ)が変化しない領域では、粒界腐食感受性
が発現せず、他方、皮膜厚みの比率が変化する領域で
は、粒界腐食感受性が発現するとして評価できる。 【0022】電位変化については、溶液中の電位に関係
するイオン濃度をコントロールするか、もしくは外部電
源(定電位発生装置:potentiostat)によって行う。前
者の場合、例えば、3規定硝酸では自然電位が約650mV
程度であるが、そこに酸化剤であるクロムや銀を加える
ことで、850mV等の高電位にすることができる。それら
の酸化剤の濃度(或いは電位)と皮膜厚みの比率の変化
の有無によって、感受性を有する領域と有しない領域と
に区分することができる。感受性を有する領域では、使
用できないこととなり、感受性を有しない領域では使用
可能となる。通常はその自然電位に対して、前後あるい
は高電位側に電位を移動させて試験する。これによっ
て、感受性ナシの使用可能な領域を想定すると共に、自
然電位での使用が可能かを判定できる。また、鋭敏化材
についても同様に電位を変化させて評価することができ
るので、同じ材料であっても、熱処理の仕方によって粒
界腐食感受性が異なることを考慮できる。 【0023】ここで、図1に示した鋭敏化材について
は、腐食電位から950mVまで、粒界部に相当する皮膜厚
みの平均皮膜厚みに対する比が上昇する傾向を示し、一
方長期腐食試験の結果より、鋭敏化材では、850mV以上
で腐食感受性を示していることから、浸漬直後の粒界腐
食潜在期間で、粒界腐食感受性のある条件では、粒内部
皮膜厚みの成長に対して粒界部皮膜厚みの成長が速くな
る。 【0024】一方、図2に示した溶体化材については、
粒界腐食威受性のない腐食電位から900mVまで、粒界部
に相当する皮膜厚みの平均皮膜厚みに対する比は変化し
ていない(皮膜厚み均一に成長)のに対し、粒界腐食感受
性が発現する900mV以上において、粒界部皮膜厚みが粒
内部皮膜厚みに対して増加する傾向(皮膜分布の特異性)
を示す。これより顕微エリプソメトリーによって、浸漬
直後の粒界部皮膜厚みが粒内部皮膜厚みに対して速く成
長するか否か、皮膜が不均一に成長するか否か、を評価
することによって、当該条件で粒界腐食感受性があるか
を短時間で評価可能である。 【0025】(鋭敏化処理工程)本発明で評価するステ
ンレス鋼については、例えば以下のような熱処理を行っ
て鋭敏化度を確認することができる。650℃×30Hrの熱
処理を行ったサンプル(SUS304:鋭敏化処理材)は、熱処
理を行っていない比較サンプルに比べて、EPR 値が26〜
29C/cm2GBAと大きな値を示し、鋭敏化していることを確
認した。また、溶体化処理のサンプルについては、<0.
1C/cm2GBAであった。鋭敏化の度合い(粒界のクロム濃
度欠乏度合い)については、EPR法を用いて測定でき
る。実際の評価試験においては、予め熱処理によって鋭
敏化したSUS304鋼が粒界腐食する60℃,3N-HNO3溶液中
で、粒内部皮膜厚みに対する粒界部皮膜厚みの比は電位
の上昇に伴い増加することを確認できる。また、鋭敏化
していない溶体化SUS304鋼は60℃,3N-HNO3溶液中で、粒
界腐食感受性を示さない。この場合、粒内部皮膜厚みに
対する粒界部皮膜厚みの比は電位に依存せず、溶体化材
でも粒界腐食が発現する過不働態化遷移電位域以上の電
位(900mV vs.sat'd Ag/AgCl)で電位依存を示す。な
お、上記試験において3規定硝酸を用いるのは、酸側に
することで粒界腐食が起こりやすい厳しい環境にするこ
とで、その差を観察するためである。 【0026】(長時間浸漬試験)この試験は、浸漬直後
の皮膜厚み分布特性と粒界腐食感受性との相関性を解析
することを目的とする。ここでは、例えば3N-HN03溶液
で電位を一定に保持することにより、粒界腐食が発現す
る遷移領域の条件を再現して試験を行うことができる。
試験条件は、例えば以下の通りである。 供試体: SUS304(鋭敏化処理材および溶体化材) 供試体形状: 鏡面研磨 測定溶液: 3N-HN03 保持電位:850mV(O.1g/l Cr6+含有時の電位)、900mV、95
0mV(sat'dKC1 Ag/AgC1) 測定温度:60℃、大気パブリング 浸漬時間:120時間 各保持電位にて測定を行い、高電位での結果が不良な場
合であれば粒界腐食が発生する。 【0027】(皮膜厚み分布測定)粒界腐食初期段階で
の皮膜厚さの挙動を把握するには、長時間浸漬試験と同
条件において、鋭敏化材および溶体化材の粒界近傍の皮
膜厚さ分布を測定し、初期の粒界腐食潜在段階の皮膜厚
さ挙動を解析することができる。顕微エリプソメトリー
では正確に評価することが困難な測定位置について、あ
らかじめ目印としてミクロビッカースにて供試体に圧痕
を打っておき、その圧痕を目印として測定位置を決定す
る。測定条件は、例えば以下の通りである。 供試体:SUS304ハイカーボン(鋭敏化処理材および無処理
材) 供試体形状:鏡面研磨(ミクロビッカースにて圧痕をつけ
たもの) 金属素地の光学常数測定:測定溶液:0.5mol/l H2SO4脱気
条件 測定電流:-50μA/cm2 1時間還元後 皮膜厚さ分布測定:測定溶液:3N-HNO3 測定電位:腐食電位、850mV(O.1g/l Cr6+含有時の電
位)、900mV、950mV(sat'dKC1 Ag/AgC1) 保持電位維持時間:各電位とも1時間保持 測定内容:各電位1時間保持後の皮膜厚さ分布測定 ここでの測定装置は、三角のセルに光を照射して、供試
体から反射してくる光情報を解析して、皮膜厚み分布を
測定する皮膜特性評価装置である。 【0028】 【発明の効果】本発明の評価方法によれば、解析を含め
数時間で材料粒界部のCr欠乏状況を評価可能になる。ま
た、解析を含め数時間という、従来より極めて短時間で
供試材料が当該環境で粒界腐食感受性を示すか否かを評
価可能である。環境加速することなく、粒界腐食が発現
する前の皮膜厚みの差で粒界特異性を評価することか
ら、粒界偏析物等の影響をうけることなくCr欠乏状況の
評価が可能である。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for evaluating intergranular corrosion susceptibility, and more particularly, for example, to a stainless steel used as a fastening member or plate in a structure. The present invention relates to a method for easily evaluating the intergranular corrosion susceptibility of steel in its environment without performing an actual test. 2. Description of the Related Art Grain boundary corrosion is mainly caused by the sensitization of austenitic stainless steel, which causes a decrease in the Cr concentration in the vicinity of the grain boundaries. This is a phenomenon in which grain boundaries are corroded. If austenitic stainless steel is kept at 500-800 ° C, carbides (C
r 23 C 6 ) precipitates, the amount of Cr in the adjacent portion decreases, and a so-called Cr-depleted layer (Cr-dep1eted area) is formed. The treatment that brings this state to the steel is generally a sensitization heat treatment (Sensitiza
tion treatment). On the other hand, the corrosion resistance improves as the chromium concentration increases. Therefore, the amount of chromium in the vicinity of the grain boundary is reduced as compared with that in the grain due to the sensitization, so that the corrosion resistance at the grain boundary is reduced, and corrosion proceeds selectively in this portion. Conventionally, there is a Huey test method as a typical method for relatively evaluating the intergranular corrosion susceptibility between such materials. The Huey test method is a method of measuring the change in weight after immersing a test piece in a boiling 65% nitric acid solution.The test is performed in an area where the grain boundary part of the material is selectively dug and the sensitive material deteriorates. Is what you do. However, this test method has to be repeated 5 times every 48 hours, which requires a long test. Even when it is desired to count only the portion where chromium is reduced due to sensitization, not only erosion in the Cr-deficient layer, but also σ phase (FeCr), χ phase (Mo 5 Cr 5 Fe 18 ),
There was a problem in that all carbides such as Laves phase (Fe 2 Mo), amorphous Ni phosphide at grain boundary (Ni 3 P 2 ), TiC and Cr 23 C 6 were dissolved. In particular, there is a problem in the tightness of the test container due to the boiling condition test, and ASTEM G45-73
Is strictly regulated (condenser, etc.). [0004] In view of the above-mentioned problems in the conventional test method, the present inventors can easily evaluate the intergranular corrosion susceptibility in a short time, and reduce the cost and the evaluation time. In addition to determining whether materials can be used in a specific environment, it is necessary to determine whether or not there is intergranular corrosion susceptibility, which not only makes it possible to make comparisons between materials, but also makes it possible to evaluate whether materials can be used in a specific environment. We worked diligently to develop an evaluation method. For example, in order to maintain long-term high soundness of a nuclear power plant, a reprocessing plant, or the like, a high-level evaluation of the corrosion behavior of a metal material after a long time has elapsed is required. The corrosion resistance of stainless steel, which is a practical alloy, largely depends on the properties of the oxide film formed on the surface. Therefore, the inventors focused on the fact that the corrosion susceptibility (long-term soundness) of stainless steel can be accurately and quickly evaluated by evaluating the properties of the coating. As a result, the present inventors used a microscopic ellipsometry (microscopic ellipsometry) capable of measuring the distribution of the thickness (several Å) of the passive film as a property of the film, and found that the grain boundary becomes a practical problem. It has been found that the above problems can be solved by evaluating the relationship between the corrosion occurrence behavior and the film thickness. The present invention has been completed from such a viewpoint. [0005] That is, the present invention is a method for evaluating intergranular corrosion susceptibility of stainless steel, comprising a surface polishing step, a potential stabilizing step, a film thickness calculating step, and a susceptibility evaluating step. It is intended to provide a method for evaluating intergranular corrosion susceptibility characterized by including: In the surface polishing step, the measurement surface of the stainless steel is polished. In the potential stabilization step, the stainless steel is placed in a liquid phase cell under substantially the same conditions as a predetermined use environment, and after the electrodes are provided in the cell, the potential is stabilized in 10 minutes to 5 hours. In the film thickness calculation process,
By microscopic ellipsometry having a resolution of up to 20 μm, preferably up to 10 μm, the reflected light with respect to the incident light is measured by a CCD camera, and the film thickness of the grain boundary film and the intragranular film formed on the stainless steel surface is measured. calculate. In the sensitivity evaluation step, the potential is changed at least twice or more, and the film thickness calculation step is repeated at least three times in total. Then, the ratio of the grain boundary to the intragranular film thickness with respect to the potential change is plotted. In microscopic ellipsometry, the potential is applied and the measurement is repeated at least three times in a stable current state to measure the film thickness. In the evaluation with the CCD image, the upper part is a grain boundary, and the lower part is represented in a grain. In the liquid in the cell,
When the liquid is boiled, the liquid level is disturbed, and it is optically difficult to make the light incident and reflected. In general, the lower the corrosion resistance, the faster the growth rate at which the oxide film becomes thicker, so that the film in the weaker portion becomes thicker and the stronger portion remains intact. The coating thickness of stainless steel is such that high-Cr steel with good corrosion resistance is thin and low-Cr steel with low corrosion resistance is relatively thick.
In the present invention, the susceptibility is evaluated by utilizing the property that the corrosion resistance depends on the thickness of the film. The present invention utilizes this characteristic to detect the ratio of the grain boundary film thickness to the grain internal film thickness using a microscopic ellipsometry measuring device having a resolution of about 10 μmφ, thereby obtaining the Cr deficiency at the grain boundary ( Sensitization). In general, the higher the potential, the thicker the film thickness.However, under the condition of intergranular corrosion susceptibility, the potential dependency of the grain boundary portion film thickness is larger than the potential dependency of the inner grain film thickness. By evaluating whether or not the ratio of the thickness of the grain boundary portion coating to the thickness of the inner grain coating shows potential dependence, it is possible to evaluate the intergranular corrosion susceptibility in the environment. In the method of the present invention, it is possible to evaluate a material which has been sensitized as described below. However, the solution is not boiled at the sensitization stage, and a nitric acid thinner than 65% nitric acid is used. It has advantageous features that are different from the conventional test method.
In addition, since it is sufficient to set some potentials after immersing the material in the solution, the test can be performed in a short time, and the potential corrosion potential before corrosion can be evaluated. As an evaluation method for increasing sensitivity, an EPR measurement method (electrochemical reactivation method; el
ectrochemical potentiokinetic reactivationmethod)
and so on. Further, for the non-sensitized material, it can be determined whether or not intergranular corrosion occurs under the condition environment, for example, an environment in which intergranular corrosion occurs is, for example, a region of 950 mV or more. That is, the presence or absence of intergranular corrosion susceptibility of the material in the environment can be determined in a short time. Normally, in a mild environment, it takes a long time for corrosion to become apparent. However, according to the present invention, it is possible to make a judgment in a short time by evaluating the state of the film before the corrosion becomes apparent. Will be possible. An embodiment for carrying out the method according to the present invention will be described. Note that the present invention is not limited to the following embodiments. DESCRIPTION OF THE PREFERRED EMBODIMENTS Many stainless steels are used for fastening members such as bolts and plates used in structures. Since many grain boundaries in the stainless steel are where crystals intersect, reorganization of elements that easily accumulate and elements that do not easily accumulate occurs at these grain boundaries under various heat treatment conditions. In the case of stainless steel (a ternary system of Fe-Cr-Ni), for example, the concentration of the chromium element may decrease at the grain boundaries, and conversely, the concentration of the nickel element may increase. In other words, the composition changes at the grain boundaries of the material, and depending on the degree of the composition change, intergranular corrosion or intergranular corrosion cracking (IG
-SCC) and the like. In the material research of structures up to now, when judging the corrosion susceptibility of a new material in the environment, it is necessary to evaluate the extracted material through a long-term actual environmental test, which is a great deal of work. Effort, cost, time, etc. were required. On the other hand, as a comparative test between materials not limited to the environmental conditions of an actual machine, the Huey test method and other test methods were also evaluated under severe conditions. In the Huey test method, a boiling 65% nitric acid solution is used, which is not preferable because there is a problem that a grain boundary segregated substance is dissolved. In addition, even under such acceleration conditions, 48 hours must be repeated five times, which requires a long time. Although such a conventional method can assign the order of intergranular corrosion of the material, it does not evaluate the intergranular corrosion susceptibility of the material including environmental conditions. According to the method of the present invention, even without performing an actual machine test,
It is possible to accurately evaluate and judge the corrosion susceptibility of the material in the environment. The present invention relates to a method for evaluating intergranular corrosion susceptibility of stainless steel, which comprises a surface polishing step, a potential stabilizing step, a film thickness calculating step, and a susceptibility evaluating step. . Further, if necessary, a sensitization treatment step can be added to evaluate each stainless steel. Hereinafter, each step will be described in detail. (Surface polishing step) The surface of the stainless steel to be measured is polished. This is because the precision of the reflectance is maintained and the light is easily reflected as a pre-stage of performing the micro-ellipsometry in the film thickness calculation step described later. As a result, the film on the surface is removed, but a passivation film is newly formed as soon as the film is put into the solution, and the film is evaluated. (Potential stabilization step) Then, the stainless steel is placed in a liquid phase cell under substantially the same conditions as a predetermined use environment, and after the electrode is provided in the cell, it is usually 10 minutes to 5 hours, preferably 30 minutes. The potential (natural potential) is stabilized in minutes to 3 hours. By placing the specimen, stainless steel, in the liquid phase cell, the initial film properties in the environment are evaluated. The coating becomes thicker more slowly after a long time, but the present invention is directed to an initial coating formed after polishing. Here, in a system where a certain amount of oxidizing ions are present, in order to approach the natural potential under an actual environment, the potential is adjusted by controlling the oxidizing ion concentration in the solution. For example, in a solution of about 650 mV, a high potential environment of 850 mV or more can be obtained by adding chromium or silver as an oxidant thereto. In the system where a certain amount of oxidized ions are present, the concentration of oxidizable ions related to the potential in the solution is controlled with respect to this spontaneous potential, or an external power source (constant) is used for evaluation in the sensitivity evaluation step described below. Depending on the potential generator (potentiostat), two or more different potentials are set by shaking the potential somewhat. Thus, it is possible to assume the range of the presence or absence of sensitivity and determine whether or not use at the current natural potential is possible. (Step of calculating film thickness) Next, in the present invention,
The reflected light with respect to the incident light is measured with a CCD camera by micro-ellipsometry having a resolution of up to 10 μmφ, and the thickness of the grain boundary film and the intragranular film formed on the surface of the stainless steel is calculated. At this time, light information that is input once by irradiating light is separated and analyzed by the CCD. In the stainless steel evaluated in the present invention, the better the corrosion resistance, the thinner the film thickness. Normally, the properties of the entire surface film are measured, but the sensitivity evaluated in the present invention is an evaluation as to whether or not the corrosion resistance of the grain boundaries is inferior to the inside of the grains, and cannot be determined by macro evaluation. Must be evaluated. Therefore, in the present invention, the thickness of the film is measured by ellipsometry using microscopic ellipsometry, so that a very thin film in nm units can be measured. By imparting the microscopic function, the distribution of the film thickness can be measured up to a minute portion. According to this method, the difference between the thickness of the coating at the grain boundary and the thickness of the coating within the grain can be determined in a micro range. Ellipsometry is a technique for determining the optical constant of the sample surface from changes in the polarization state of incident light and reflected light. If the sample has a thin film such as a film on the surface of the sample, the optical constant is determined along with the optical constant. Can be determined. However, in order to evaluate the susceptibility to intergranular corrosion, which is the object of the present invention, it is necessary to provide at least a resolution of several tens of μm or less and detect the difference between the vicinity of the grain boundary and the inside of the grain (grain boundary specificity). In ellipsometry, photomar is usually used as a detector, but in the microscopic ellipsometry used in the present invention, a microscopic function is added by using a CCD camera for the detector. A CCD camera is usually composed of 512 × 512 elements, and one element having a size of 20 μm □ is used. By placing a × 10 magnifying lens in front of the detector, information of 2 μm square can be obtained. In the following, the sensitivity evaluation will be described separately for a material subjected to a sensitization treatment (sensitized material) and a material not subjected to the sensitization treatment (solution-treated material), which will be described later. For sensitizers with large intergranular corrosion, there is often a difference in the growth of the coating thickness between the grain boundaries and the grains even when the applied potential is low. In this case, the difference between the thickness of the coating at the grain boundary and the thickness of the coating within the grain becomes remarkable. In such a sensitizing material, the average of the film thickness tends to increase as the potential increases. At high potentials with high sensitivity, the growth of the intergranular coating thickness relative to the potential is greater than the growth of the intragranular coating thickness relative to the potential. This is because the corrosion resistance of the grain boundary portion is poor, and the film becomes thicker than the intragranular portion. In the present invention, in order to perform a quantitative evaluation, for example, the film thickness ratio is set to 1% average / lower 99% average, 5% average / 95% lower average, 10% upper
The average / lower 90% average is separated, and the potential dependence is evaluated as the thickness ratio at each potential (FIG. 1).
reference). Here, the upper part is the grain boundary film thickness part, and the lower part is the intragranular film thickness part. On the other hand, in the case of the solution-treated material, when the applied potential is low, there is a case where there is no difference in the growth of the film thickness between the grain boundary and the inside of the grain. There is no interfacial susceptibility. For example,
In the case as shown in FIG. 2, there is no change in the potential of the coating thickness at the grain boundary with respect to the inside of the grains up to 900 mV.
The average of the film thickness showed a tendency to increase as the potential increased. In the sensitized material shown in FIG. 1, a film grows from a region corresponding to a grain boundary portion with an increase in potential, and the film thickness near the grain boundary portion often becomes larger than the inside of the grain. The solution-hardened material shown in FIG. 2 is not susceptible to intergranular corrosion.
At 900 mV or less, the film tends to grow almost uniformly and thickly. Separately, when a long-term immersion test described later was performed, the sensitized material often had intergranular corrosion susceptibility in a region to which an electric potential was applied, and there were signs that spontaneous electric potential was observed. is there. As described above, in the nitric acid test environment, there is a possibility of intergranular corrosion susceptibility regardless of the potential load. And even in such an environment, the sensitivity to the potential tends to increase. On the other hand, the solution-treated material may not be susceptible to intergranular corrosion in a region subjected to a natural potential and a potential load such as 850,900 mV. (Sensitivity Evaluation Step) Finally, in the present invention, the potential is changed at least twice or more, and the film thickness calculating step is repeated at least three times in total. Plot the ratio of. In the sensitivity evaluation in this step, the ratio of the film thickness (grain boundary film thickness /
It can be evaluated that in the region where the thickness of the grain endothelium does not change, the intergranular corrosion susceptibility does not appear, while in the region where the ratio of the film thickness changes, the intergranular corrosion susceptibility appears. The electric potential is changed by controlling the ion concentration related to the electric potential in the solution or by using an external power supply (potentialiostat). In the former case, for example, in 3N nitric acid, the natural potential is about 650 mV
By adding oxidizing agents such as chromium and silver, a high potential such as 850 mV can be achieved. Depending on the presence or absence of a change in the ratio between the concentration (or potential) of the oxidizing agent and the film thickness, it can be classified into a sensitive region and a non-sensitive region. In a sensitive area, it cannot be used, and in a non-sensitive area, it can be used. Usually, the test is performed by moving the potential to the front or rear or higher potential side with respect to the natural potential. In this way, it is possible to assume an area where the sensitive pear can be used and determine whether the sensitive pear can be used at the natural potential. In addition, the sensitizing material can be evaluated by changing the potential in the same manner, so that even if the same material is used, it can be considered that the intergranular corrosion susceptibility differs depending on the heat treatment method. Here, for the sensitized material shown in FIG. 1, the ratio of the film thickness corresponding to the grain boundary to the average film thickness tends to increase from the corrosion potential to 950 mV. Furthermore, the sensitized material shows corrosion sensitivity at 850 mV or more. The film thickness grows faster. On the other hand, for the solution-treated material shown in FIG.
From the corrosion potential, which is unsusceptible to intergranular corrosion, to 900 mV, the ratio of the film thickness corresponding to the grain boundary to the average film thickness has not changed (the film thickness grows uniformly), but the intergranular corrosion susceptibility appears Above 900mV, the grain boundary film thickness tends to increase with respect to the grain internal film thickness (specificity of film distribution)
Is shown. From this, by microscopic ellipsometry, whether or not the grain boundary portion film thickness immediately after immersion grows faster than the grain internal film thickness, whether or not the film grows non-uniformly, is evaluated under these conditions. It is possible to evaluate whether there is susceptibility to intergranular corrosion in a short time. (Sensitizing treatment step) The stainless steel to be evaluated in the present invention can be subjected to the following heat treatment to confirm the degree of sensitization. The sample that has been heat-treated at 650 ° C x 30Hr (SUS304: sensitized material) has an EPR value of 26 to
It showed a large value of 29 C / cm 2 GBA, confirming that the sensitivity was increased. For the solution-treated sample, <0.
It was 1 C / cm 2 GBA. The degree of sensitization (the degree of chromium concentration deficiency at the grain boundaries) can be measured using the EPR method. In the actual evaluation test, 60 ° C. of SUS304 steel was sensitized beforehand by heat treatment is corroded grain boundaries, with 3N-HNO 3 solution, the ratio of the grain boundary portions film thickness to particle interior coating thickness with increasing potential increase You can confirm that. The solution steel SUS304 which is not sensitized does not show the susceptibility to intergranular corrosion in a 3N-HNO 3 solution at 60 ° C. In this case, the ratio of the thickness of the grain boundary part film to the thickness of the inner grain coating does not depend on the potential. / AgCl) indicates potential dependence. The reason why 3N nitric acid is used in the above test is to observe the difference in a severe environment where intergranular corrosion is likely to occur by setting the acid side. (Long time immersion test) The purpose of this test is to analyze the correlation between the film thickness distribution characteristics immediately after immersion and the intergranular corrosion susceptibility. Here, for example, by holding the potential constant at 3N-HN0 3 solution, the test can be carried out to reproduce the conditions of the transition region intergranular corrosion is expressed.
The test conditions are, for example, as follows. Specimen: SUS304 (sensitization process material and solution material) Specimen shape: polished sample solution: 3N-HN0 3 holding potential: 850mV (O.1g / l Cr 6+ potential during content), 900 mV, 95
0 mV (sat'dKC1 Ag / AgC1) Measurement temperature: 60 ° C., immersion time in air publishing: 120 hours. Measurement was performed at each holding potential. If the result at high potential was poor, intergranular corrosion occurred. (Measurement of Film Thickness Distribution) In order to grasp the behavior of the film thickness at the initial stage of intergranular corrosion, under the same conditions as in the long-term immersion test, the film thickness in the vicinity of the grain boundary of the sensitized material and the solution-treated material was measured. By measuring the thickness distribution, it is possible to analyze the film thickness behavior at the initial stage of the intergranular corrosion potential. At a measurement position where it is difficult to evaluate accurately by micro-ellipsometry, an indentation is made on the specimen in advance with a micro Vickers as a mark, and the measurement position is determined using the indentation as a mark. The measurement conditions are, for example, as follows. Specimen: SUS304 high carbon (sensitized material and untreated material) Specimen shape: mirror-polished (indented with micro Vickers) Optical constant measurement of metal substrate: Measurement solution: 0.5 mol / l H 2 SO 4 Degassing conditions Measurement current: -50 μA / cm 2 1 hour after reduction Film thickness distribution measurement: Measurement solution: 3N-HNO 3 Measurement potential: Corrosion potential, 850 mV (potential when 0.1 g / l Cr 6+ is contained) , 900mV, 950mV (sat'dKC1 Ag / AgC1) Holding potential holding time: Hold each potential for 1 hourMeasurement: Measurement of film thickness distribution after holding each potential for 1 hour Measurement equipment here is a triangular cell This is a film characteristic evaluation device that measures light thickness reflected by the specimen and analyzes the light information reflected from the specimen to measure the film thickness distribution. According to the evaluation method of the present invention, it becomes possible to evaluate the Cr deficiency at the grain boundaries in several hours including analysis. In addition, it is possible to evaluate whether or not the test material exhibits intergranular corrosion susceptibility in the environment in an extremely short time of several hours including analysis. Since the grain boundary specificity is evaluated based on the difference in the film thickness before the onset of intergranular corrosion without accelerating the environment, it is possible to evaluate the Cr deficiency without being affected by segregates at the grain boundaries.

【図面の簡単な説明】 【図1】鋭敏化材についての粒界/粒内皮膜厚みの電位
依存性をプロットしたグラフである。 【図2】溶体化材についての粒界/粒内皮膜厚みの電位
依存性をプロットしたグラフである。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a graph plotting the potential dependence of the grain boundary / intragranular coating thickness for a sensitizer. FIG. 2 is a graph plotting the potential dependence of the grain boundary / intragranular coating thickness for the solution-treated material.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2F065 AA30 AA55 AA63 BB01 CC06 DD06 FF04 FF50 JJ03 JJ17 JJ26 PP24 TT07 2G050 AA01 BA01 CA04 DA01 EA10 EB07 EC06    ────────────────────────────────────────────────── ─── Continuation of front page    F term (reference) 2F065 AA30 AA55 AA63 BB01 CC06                       DD06 FF04 FF50 JJ03 JJ17                       JJ26 PP24 TT07                 2G050 AA01 BA01 CA04 DA01 EA10                       EB07 EC06

Claims (1)

【特許請求の範囲】 【請求項1】 ステンレス鋼についての粒界腐食感受性
の評価方法であって、 該ステンレス鋼の測定表面を研磨する、表面研磨工程
と、 所定の使用環境と略同条件の液相セル中に該ステンレス
鋼を設置し、該セル中に電極を備えた後、10分〜5時
間で電位を安定させる、電位安定工程と、 20μmまでの分解能を有する顕微エリプソメトリーによ
って、入射光に対する反射光をCCDカメラによって計
測し、該ステンレス鋼表面に形成された粒界皮膜と粒内
皮膜との皮膜厚みをそれぞれ算出する、皮膜厚み算出工
程と、 前記電位を少なくとも2回以上変化させて、前記皮膜厚
み算出工程を合計3回以上繰り返した後、電位変化に対
する粒界と粒内の皮膜厚さの比をプロットする、感受性
評価工程と、を含むことを特徴とする粒界腐食感受性の
評価方法。
Claims 1. A method for evaluating intergranular corrosion susceptibility of stainless steel, comprising: a surface polishing step of polishing a measured surface of the stainless steel; After installing the stainless steel in a liquid phase cell and providing electrodes in the cell, a potential stabilization step of stabilizing the potential for 10 minutes to 5 hours and a microscopic ellipsometry having a resolution of up to 20 μm are performed. Measuring the reflected light with respect to the light with a CCD camera, and calculating the film thicknesses of the grain boundary film and the intragranular film formed on the stainless steel surface, respectively, a film thickness calculating step, and changing the potential at least twice. And a sensitivity evaluation step of plotting the ratio of the grain boundary and the intragranular film thickness with respect to the potential change after repeating the film thickness calculation step three times or more in total. Method for evaluating intergranular corrosion susceptibility.
JP2001237375A 2001-08-06 2001-08-06 Method for evaluating grain boundary corrosion sensitivity Withdrawn JP2003050196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001237375A JP2003050196A (en) 2001-08-06 2001-08-06 Method for evaluating grain boundary corrosion sensitivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001237375A JP2003050196A (en) 2001-08-06 2001-08-06 Method for evaluating grain boundary corrosion sensitivity

Publications (1)

Publication Number Publication Date
JP2003050196A true JP2003050196A (en) 2003-02-21

Family

ID=19068467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001237375A Withdrawn JP2003050196A (en) 2001-08-06 2001-08-06 Method for evaluating grain boundary corrosion sensitivity

Country Status (1)

Country Link
JP (1) JP2003050196A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005085804A1 (en) * 2004-03-03 2005-09-15 Baker Hughes Incorporated High resolution statistical analysis of localized corrosion by direct measurement
WO2006015066A1 (en) * 2004-07-27 2006-02-09 E.I. Dupont De Nemours And Company Apparatus for monitoring corrosion of extruder components during operation, and processes incorporating such apparatus
JP2016217752A (en) * 2015-05-15 2016-12-22 日新製鋼株式会社 Method for evaluating anti-corrosion of stainless steel non-destructively using spectroscopic ellipsometry
CN106290140A (en) * 2016-09-29 2017-01-04 珠海格力电器股份有限公司 A kind of method checking Intergranular Corrosion of Austenitic Stainless Steel sensitivity
JP2018054384A (en) * 2016-09-27 2018-04-05 Jfeスチール株式会社 Method for estimating corrosion of metal, method for designing steel structure, and corrosion estimation program
CN112747992A (en) * 2020-12-31 2021-05-04 东北大学 Metallographic structure display method of Mg-containing 440C corrosion-resistant stainless bearing steel based on three-step method
CN112986118A (en) * 2021-02-09 2021-06-18 鞍钢股份有限公司 Method for evaluating intergranular corrosion sensitivity of stainless steel composite board

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005085804A1 (en) * 2004-03-03 2005-09-15 Baker Hughes Incorporated High resolution statistical analysis of localized corrosion by direct measurement
WO2006015066A1 (en) * 2004-07-27 2006-02-09 E.I. Dupont De Nemours And Company Apparatus for monitoring corrosion of extruder components during operation, and processes incorporating such apparatus
JP2016217752A (en) * 2015-05-15 2016-12-22 日新製鋼株式会社 Method for evaluating anti-corrosion of stainless steel non-destructively using spectroscopic ellipsometry
JP2018054384A (en) * 2016-09-27 2018-04-05 Jfeスチール株式会社 Method for estimating corrosion of metal, method for designing steel structure, and corrosion estimation program
CN106290140A (en) * 2016-09-29 2017-01-04 珠海格力电器股份有限公司 A kind of method checking Intergranular Corrosion of Austenitic Stainless Steel sensitivity
CN106290140B (en) * 2016-09-29 2019-10-08 珠海格力电器股份有限公司 A method of examining Intergranular Corrosion of Austenitic Stainless Steel sensibility
CN112747992A (en) * 2020-12-31 2021-05-04 东北大学 Metallographic structure display method of Mg-containing 440C corrosion-resistant stainless bearing steel based on three-step method
CN112747992B (en) * 2020-12-31 2024-03-15 东北大学 Metallographic structure display method of Mg-containing 440C corrosion-resistant stainless bearing steel based on three-step method
CN112986118A (en) * 2021-02-09 2021-06-18 鞍钢股份有限公司 Method for evaluating intergranular corrosion sensitivity of stainless steel composite board

Similar Documents

Publication Publication Date Title
Isaacs et al. Scanning reference electrode techniques in localized corrosion
JP2938758B2 (en) Method for evaluating corrosion resistance of metal material, method for designing highly corrosion-resistant alloy, method for diagnosing corrosion state of metal material, and method for operating plant
Sidhom et al. Quantitative evaluation of aged AISI 316L stainless steel sensitization to intergranular corrosion: comparison between microstructural electrochemical and analytical methods
JP2003050196A (en) Method for evaluating grain boundary corrosion sensitivity
Gonzalez et al. Optimization of the double loop electrochemical potentiokinetic reactivation method for detecting sensitization of nickel alloy 690
Pan Studying the passivity and breakdown of duplex stainless steels at micrometer and nanometer scales–the influence of microstructure
Huang et al. Potential dependent mechanism of the composition and electrochemical property of oxide films of Ti-6Al-3Nb-2Zr-1Mo
Majidi et al. Four Nondestructive Electrochemical tests for detecting sensitization in type 304 and 304L Stainless Steels
Kovačina et al. Influence of microstructure and roughness level on corrosion resistance of the austenitic stainless steel welded joint
US4217180A (en) Method of determining susceptibility of alloys to stress corrosion cracking
US20210041786A1 (en) Photolithography for Making Electrochemical Measurements
Murkute et al. Effect of thermal aging on corrosion behavior of duplex stainless steels
Valen et al. Crevice corrosion repassivation temperatures of highly alloyed stainless steels
Ulaganathan et al. Investigation on the effect of lead (Pb) on the degradation behavior of passive films on alloy 800
JPH10111286A (en) Evaluation of water quality of reactor water of nuclear reactor
JP3424477B2 (en) Method and apparatus for measuring chromium concentration in chromium-containing alloys
Lima et al. Corrosion Resistance of Cu-Alloyed Precipitation Hardenable Duplex Stainless Steel ASTM A890 Grade 1B
Wyrwas Annual Report, Fall 2016: Alternative Chemical Cleaning of Radioactive High Level Waste Tanks-Corrosion Test Results
Altamirano et al. In-Situ Determination of the Degree of Sensitization in Austenitic Stainless Steels by DL-EPR
Khan et al. Measurement and Prediction of corrosion damage in stainless steels in nitric acid containing oxidizing ions
JPS6237340B2 (en)
Policastro et al. Isolating the electrochemical behavior of the austenite and ferrite phases in a duplex stainless steel
Kelly et al. Techniques in Corrosion Science and Engineering
Windisch et al. Analyzing localized corrosion in lon-implanted metals via XPS/AES
Chandra et al. Sub-surface corrosion research on rock bolt system, perforated SS sheets and steel sets for the Yucca Mountain Repository

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081007