JP2003048746A - Optical glass - Google Patents

Optical glass

Info

Publication number
JP2003048746A
JP2003048746A JP2002140080A JP2002140080A JP2003048746A JP 2003048746 A JP2003048746 A JP 2003048746A JP 2002140080 A JP2002140080 A JP 2002140080A JP 2002140080 A JP2002140080 A JP 2002140080A JP 2003048746 A JP2003048746 A JP 2003048746A
Authority
JP
Japan
Prior art keywords
glass
light
optical
transmittance
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002140080A
Other languages
Japanese (ja)
Other versions
JP4138366B2 (en
Inventor
Michiko Ogino
道子 荻野
Katsuo Mori
克夫 森
Masahiro Onozawa
雅浩 小野沢
Junko Ishioka
順子 石岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohara Inc
Original Assignee
Ohara Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohara Inc filed Critical Ohara Inc
Priority to JP2002140080A priority Critical patent/JP4138366B2/en
Publication of JP2003048746A publication Critical patent/JP2003048746A/en
Application granted granted Critical
Publication of JP4138366B2 publication Critical patent/JP4138366B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an optical glass having a high refractive index suitable to be used for an optical element of a lens, prism or the like or for a substrate, in particular, suitable to be used for an optical element in a polarizing optical system or for a polarization controlling element of a PBS(polarizing beam splitter), SLM(spatial light modulator) or the like. SOLUTION: The optical glass contains SiO2 , PbO and B2 O3 and further contains >=0.1 mass% TeO2 and >=0.4 mass% Li2 O. Preferably, when the glass is 10±0.1 mm thick, the glass has 80% transmittance for light at <=420 nm wavelength, and the glass shows <=3.0% deterioration rate in the transmittance by the irradiation of rays in a UV region and/or visible region at 2.2 W.cm<-2> radiation illuminance for 10 minutes.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、レンズ、プリズム
等の光学素子や基板に用いるのに適し、特に偏光光学系
中の光学素子や、偏光ビームスプリッター(以下PBS
という)、空間光変調素子(以下SLMという)、偏光
変換素子等の光偏光制御素子に用いるのに適した高屈折
率の光学ガラスに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is suitable for use in optical elements such as lenses and prisms and substrates, and in particular, optical elements in a polarization optical system and a polarization beam splitter (hereinafter referred to as PBS).
), A spatial light modulator (hereinafter referred to as SLM), and a high refractive index optical glass suitable for use as a light polarization control element such as a polarization conversion element.

【0002】[0002]

【従来の技術】偏光を利用した光学系、すなわち偏光光
学系は、液晶プロジェクター等様々な光学機器において
利用されている。たとえば、液晶プロジェクター等の投
射装置では、近年、高輝度化が進んでいるが、それにと
もない、投射装置の光学系中の各部に使用されている光
学ガラスの透過率が経時劣化するという問題が生じてい
る。光学ガラスへ高輝度の放射照度が大きい光を照射す
ると、例えばソーラリゼーションのような望ましくない
着色現象がしばしば生じ、ガラスの透過率の低下をもた
らす。ソーラリゼーションは、一般的に紫外線領域波長
の光をガラスに照射することにより生じるガラスの着色
現象を指すが、光照射による着色現象はソーラリゼーシ
ョンに限らず、可視域の波長の光をガラスに照射した場
合に生じる可視光二光子吸収過程によるガラスの着色現
象などをはじめ、様々な着色現象が報告されている。特
に、鉛を含有するホウケイ酸ガラスに、可視域の波長の
光を照射した場合、二光子吸収によりガラスの着色が生
じ易いことが知られている。以上のように着色現象を誘
引する照射光の波長や着色現象を生じるメカニズムは様
々であっても、光照射によるガラスの着色現象はその結
果としてガラスの透過率の劣化を招く。
2. Description of the Related Art Optical systems using polarized light, that is, polarizing optical systems are used in various optical devices such as liquid crystal projectors. For example, in a projection device such as a liquid crystal projector, the brightness has been increased in recent years, but with this, there arises a problem that the transmittance of the optical glass used in each part of the optical system of the projection device deteriorates with time. ing. Irradiation of optical glass with high intensity, high irradiance light often results in undesirable coloring phenomena, such as solarization, resulting in a reduction in glass transmission. Solarization generally refers to the coloring phenomenon of glass caused by irradiating glass with light in the ultraviolet region wavelength, but the coloring phenomenon due to light irradiation is not limited to solarization, and glass with light in the visible wavelength range is used. Various coloring phenomena have been reported, including the coloring phenomenon of glass due to the visible light two-photon absorption process that occurs when irradiated to the surface. In particular, when borosilicate glass containing lead is irradiated with light having a wavelength in the visible range, it is known that the glass is likely to be colored due to two-photon absorption. As described above, although the wavelength of the irradiation light that induces the coloring phenomenon and the mechanism of causing the coloring phenomenon are various, the coloring phenomenon of the glass by the light irradiation results in deterioration of the transmittance of the glass.

【0003】これら様々な着色現象を防止するために
は、光源の輝度(出力)低下や着色現象の原因となる有
害波長の光をカットするフィルターを光学系中に組み込
む等の手段が考えられるが、高輝度を保つことが必要と
される光学系(例えば、高輝度液晶プロジェクターの光
学系など)では、これらの手段は、出力光量の低下へ直
接つながるため望ましくない。また、液晶プロジェクタ
ー等の投射装置においては、演色性を損なうことなく高
輝度の光を投射するため、光学系に使用する光学ガラス
は、長波長側から可視域の紫色領域に至るまでの波長の
光線に対して優れた透過性を有することが求められる。
さらに液晶プロジェクター等の投射装置の光学系は、通
常、偏光光学系であり、偏光特性をより高精度に制御す
ることが望まれている。偏光光学系中の光学部品のう
ち、PBSやSLM等の偏光特性の保持が要求される光
偏光制御素子のプリズムや基板等の部材に光学的に異方
性を有する材料を用いると、透過した主光線とこれに直
交する異常光線との間の位相差(光路差)が材料を透過
する前と比較して変化し、偏光特性が保持できなくなる
ので、それらの素子には光学的に等方性を有する材料を
使用する必要がある。
In order to prevent these various coloring phenomena, it is conceivable to incorporate a filter for cutting light of a harmful wavelength, which causes a decrease in the brightness (output) of the light source and a coloring phenomenon, into the optical system. In an optical system that needs to maintain high brightness (for example, an optical system of a high brightness liquid crystal projector), these means are not desirable because they directly lead to a decrease in the output light amount. Further, in a projection device such as a liquid crystal projector, since high-luminance light is projected without impairing the color rendering property, the optical glass used in the optical system has a wavelength range from the long wavelength side to the violet region of the visible range. It is required to have excellent transparency to light rays.
Further, the optical system of a projection device such as a liquid crystal projector is usually a polarization optical system, and it is desired to control the polarization characteristics with higher accuracy. Among the optical components in the polarization optical system, when a material having optical anisotropy is used for a member such as a prism or a substrate of a light polarization control element which needs to maintain polarization characteristics such as PBS and SLM, it is transmitted. The phase difference (optical path difference) between the chief ray and the extraordinary ray orthogonal to it changes compared to before transmission through the material, and the polarization characteristics cannot be maintained, so these elements are optically isotropic. It is necessary to use a material having properties.

【0004】十分にアニールされ、除歪された光学的等
方性を有する従来の光学ガラスを、偏光光学系中の偏光
特性の保持が要求される光学部品に用いた場合でも、機
械的応力や熱的応力がそれらのガラスに加わったとき
に、ガラスの光弾性定数の絶対値が大きいと光弾性効果
による光学的異方性、すなわち複屈折性を示すようにな
り、その結果、所望の偏光特性が得難くなるという問題
がある。上記機械的応力は、たとえば、ガラスとは異な
る熱膨張率を有する材料をガラスと接合したりすること
により生じ、また、上記熱的応力は、たとえば、周辺機
器の発熱や、透過光のエネルギーを吸収することによる
ガラス自体の発熱により生じる。
Even when a conventional optical glass having sufficient optical anisotropy that has been sufficiently annealed and de-strained is used for an optical component which is required to maintain polarization characteristics in a polarization optical system, mechanical stress and When thermal stress is applied to these glasses, if the absolute value of the photoelastic constant of the glass is large, the glass will exhibit optical anisotropy due to the photoelastic effect, that is, birefringence, and as a result, the desired polarization There is a problem that it is difficult to obtain the characteristics. The mechanical stress is generated, for example, by bonding a material having a coefficient of thermal expansion different from that of glass to glass, and the thermal stress is generated by, for example, heat generation of peripheral devices or energy of transmitted light. It is caused by heat generation of the glass itself due to absorption.

【0005】これらの応力がガラスに加わることにより
ガラスが示す複屈折性の大きさは光路差で示すことがで
きる。光路差をδ(nm)、ガラスの厚さをd(c
m)、応力をF(Pa)とすると下記の式(1)が成り
立ち、光路差が大きいほど複屈折性が大きい。 δ=β・d・F (1) 上記式(1)における比例定数(β)は光弾性定数と呼
ばれており、その値はガラスの種類によって異なる。上
記式(1)に示すとおり、ガラスに加わる応力(F)お
よびガラスの厚さ(d)が同じ場合、光弾性定数(β)
の絶対値が小さいガラスほど光路差(δ)、すなわち複
屈折性が小さい。
When these stresses are applied to the glass, the magnitude of birefringence exhibited by the glass can be indicated by the optical path difference. The optical path difference is δ (nm) and the glass thickness is d (c
m) and the stress is F (Pa), the following formula (1) is established, and the larger the optical path difference, the larger the birefringence. δ = β · d · F (1) The proportional constant (β) in the above formula (1) is called a photoelastic constant, and its value varies depending on the type of glass. As shown in the above formula (1), when the stress (F) applied to the glass and the thickness (d) of the glass are the same, the photoelastic constant (β)
The glass having a smaller absolute value of has a smaller optical path difference (δ), that is, birefringence.

【0006】[0006]

【発明が解決しようとする課題】従来、偏光光学系中の
光学部品の材料としては、主に、S−BSL7((株)
オハラ商品名)や、他社の同等品、例えばBK7(ショ
ット グラス社商標名)等のホウケイ酸ガラスが、長波
長側から可視域の紫色領域に至るまでの波長の光線に対
して優れた透過性を有し、かつ、安価で入手しやすいこ
とから使用されている。しかし、これらの光学ガラス
は、光弾性定数(β)の絶対値が大きく、例えば、S−
BSL7では、屈折率(nd)が1.52、e線(波長
546.07nm)におけるβの値が2.79×10-5
nm/cm/Paであり、上述のように偏光光学系にお
いて偏光特性をより高精度に制御するために、光弾性定
数(β)の絶対値がより小さい光学ガラスが強く求めら
れており、また、光学設計上、より高屈折率の光学ガラ
スも必要とされている。
Conventionally, as a material for optical parts in a polarization optical system, S-BSL7 (manufactured by Co., Ltd.) has been mainly used.
OHARA brand name) and the equivalent products of other companies, for example, borosilicate glass such as BK7 (trade name of Shot Glass Co., Ltd.), has excellent transparency to light rays of wavelengths from the long wavelength side to the purple region of the visible range. It is used because it has low cost and is easily available. However, these optical glasses have a large absolute value of the photoelastic constant (β), for example, S-
BSL7 has a refractive index (nd) of 1.52 and a β value of 2.79 × 10 −5 at e-line (wavelength 546.07 nm).
nm / cm / Pa, and as described above, there is a strong demand for an optical glass having a smaller absolute value of photoelastic constant (β) in order to control the polarization characteristics in the polarization optical system with higher accuracy. In view of optical design, there is also a need for optical glass having a higher refractive index.

【0007】光弾性定数(β)の絶対値が小さい高屈折
率光学ガラスとして、鉛高含有ガラスが20世紀初頭か
ら知られている。鉛高含有ガラスとして現在も製造、販
売されている代表的なSiO2−PbO系のガラス、例
えば、PBH53((株)オハラ商品名)や、屈折率
(nd)がPBH53と同じであるSF57(ショット
グラス社商品名)などが上述の理由から、偏光光学系に
おいて、偏光特性をより高精度に制御するための材料と
して使用されるようになりつつある。例えば、PBH5
3は、屈折率(nd)が1.85、e線(波長546.
07nm)における光弾性定数(β)が0.1×10-5
nm/cm/Pa未満であり、高い屈折率と、偏光特性
をより高精度に制御するのに十分に絶対値が小さい光弾
性定数(β)、すなわち低光弾性定数を有している。
As a high-refractive-index optical glass having a small absolute value of photoelastic constant (β), high lead content glass has been known since the early 20th century. Representative SiO 2 -PbO-based glasses that are still manufactured and sold as lead-rich glass, such as PBH53 (trade name of OHARA CORPORATION), and SF57 (having the same refractive index (nd) as PBH53). Due to the above-mentioned reasons, Shot Glass Co., Ltd.) is being used as a material for controlling the polarization characteristics with higher accuracy in the polarization optical system. For example, PBH5
3 has a refractive index (nd) of 1.85 and e-line (wavelength 546.
Photoelastic constant (β) at 0. 7 nm is 0.1 × 10 -5
It has a refractive index of less than nm / cm / Pa, a high refractive index, and a photoelastic constant (β) whose absolute value is small enough to control the polarization characteristics with higher accuracy, that is, a low photoelastic constant.

【0008】ところが、これらの従来の鉛高含有ガラス
は、可視域の青色領域の短波長側から紫色領域にかけて
の光線透過性が悪い。例えばPBH53およびSF57
は、共に、厚さ10±0.1mmのこれらのガラスを、
反射損失を含み透過率80%で透過する光線の波長の限
界値が440nmであり、これより短波長域では透過率
が80%を下回る。これらのガラスを偏光光学系に使用
すると、例えば、液晶プロジェクター等の偏光光学系の
中で青色光(B光)、緑色光(G光)および赤色光(R
光)の3原色に分解された光の強度に差が生じ、投射光
の演色性を保つためには、強度が低くなった青色光(B
光)に合わせて、他の2色光の強度を減じる必要があ
り、その結果、液晶プロジェクター等の投射装置から投
写される光の光量が十分でなくなるという問題がある。
However, these conventional high lead content glasses have poor light transmittance from the short wavelength side of the blue region of the visible region to the violet region. For example PBH53 and SF57
Together, these glass with a thickness of 10 ± 0.1 mm,
The limit value of the wavelength of the light ray including the reflection loss and transmitting at the transmittance of 80% is 440 nm, and the transmittance is below 80% in the shorter wavelength region. When these glasses are used in a polarization optical system, for example, in a polarization optical system such as a liquid crystal projector, blue light (B light), green light (G light) and red light (R light) are used.
The intensity of the light decomposed into the three primary colors of light is different, and in order to maintain the color rendering of the projected light, the intensity of the blue light (B
It is necessary to reduce the intensity of the other two color lights in accordance with the light), and as a result, there is a problem that the amount of light projected from the projection device such as a liquid crystal projector becomes insufficient.

【0009】以上のガラスの他に光弾性定数(β)の絶
対値が小さいガラスとして、例えば、特開平7−215
732号公報には、SiO2−アルカリ金属酸化物−P
bO系の偏光光学系用光学ガラスが開示されている。し
かし、このガラスは、透過率の劣化率(光線を透過させ
た前後における透過率の減少の程度、以下では劣化量と
いうこともある)が大きく、また、透過率劣化が生じる
前においても、青色領域の短波長側から紫色領域にかけ
ての光線透過性が十分ではなく、さらに溶融、清澄時に
おける溶融ガラスの泡切れが悪く、溶融ガラスを十分に
攪拌することにより脈理を消失させてガラスを均質化す
ることはできるが、得られたガラス中に泡が残るため光
学部品には適さない。
In addition to the above glasses, glass having a small absolute value of photoelastic constant (β) is disclosed in, for example, JP-A-7-215.
No. 732, SiO 2 -alkali metal oxide-P.
An optical glass for a polarization optical system of bO type is disclosed. However, this glass has a large transmittance deterioration rate (the degree of decrease in the transmittance before and after transmitting light rays, which may be hereinafter referred to as a deterioration amount), and even before the deterioration of the transmittance occurs, The light transmittance from the short wavelength side of the region to the violet region is not sufficient, and the bubbles in the molten glass during melting and refining are poor, and the striae disappears by sufficiently stirring the molten glass to homogenize the glass. Although it can be made into a polymer, it is not suitable for optical parts because bubbles remain in the obtained glass.

【0010】特開平9−48361号公報には、PbO
−B23および/またはA123系の偏光光学系用光学
ガラスが開示されている。このガラスは、透過率の劣化
量は小さく、前記公報のガラスよりもやや光線透過性が
よいものの、やはり、透過率劣化が生じる前の青色領域
の短波長側から紫色領域にかけての光線透過性が十分に
改善されておらず、また溶融、清澄時において溶融ガラ
スの泡切れが悪く、前記公報のガラスと同様に脈理を消
失させてガラスを均質化することはできるが、得られた
ガラス中に泡が残るため光学部品とするのが困難であ
る。また、特開平8−259259号公報には、SiO
2−R2O−PbO−フッ素系の偏光光学系用光学ガラス
が開示されている。このガラスは、前記二つの公報のガ
ラスよりも泡切れが良いが、透過率の劣化量が前記二つ
の公報のガラスと比べて格段大きく、その原因は、フッ
素成分であると思われる。
Japanese Patent Laid-Open No. 9-48361 discloses PbO.
-B 2 O 3 and / or A1 2 O 3 based polarizing optical glass for optical systems have been disclosed. This glass has a small amount of deterioration in transmittance, and although slightly better in light transmittance than the glass of the above-mentioned publication, again, the light transmittance from the short wavelength side of the blue region to the violet region before the deterioration of transmittance occurs. It is not sufficiently improved, and the melting and melting of the molten glass at the time of refining is poor, and it is possible to homogenize the glass by eliminating striae like the glass of the above publication, but in the obtained glass It is difficult to make an optical component because bubbles remain on the surface. Further, in Japanese Patent Laid-Open No. 8-259259, SiO
2 -R 2 O-PbO- fluorine-based polarizing optics for optical glass is disclosed. Although this glass has better defoaming than the glasses of the two publications, the deterioration amount of the transmittance is significantly larger than that of the glasses of the two publications, and it is considered that the cause is the fluorine component.

【0011】ところで、光学ガラスは、ガラス溶融、清
澄時の作業効率と、製造するガラスの歩留りを良くする
ために、少なくとも溶融ガラスと接する部分が白金で形
成されている容器(白金坩堝や白金製の槽)中で溶融、
清澄されるのが一般的であり、特に、高温で溶融する必
要があるガラスを清澄する容器は白金で形成するのが通
常である。ところが、前記PBH53、SF57および
前記3つの公報のガラスのようにPbOを多量に含むガ
ラスでは、特に、溶融、清澄時に容器の白金がガラス中
に溶け込みやすいため、光線透過性が悪くなりやすい。
By the way, the optical glass is a container (platinum crucible or platinum-made container) in which at least a portion in contact with the molten glass is formed of platinum in order to improve the work efficiency during melting and refining of the glass and the yield of the glass to be produced. In a tank),
It is generally clarified, and in particular, the vessel for fining glass that needs to be melted at high temperatures is usually made of platinum. However, in a glass containing a large amount of PbO, such as the above-mentioned PBH53, SF57 and the glasses of the above three publications, the light transmittance is apt to be deteriorated because platinum in the container is easily dissolved in the glass during melting and refining.

【0012】そのため、特開平9−48361号公報お
よび特開平8−259259号公報のガラスのように泡
切れが悪いガラスの場合、清澄時の温度を高くすれば、
泡切れが良くなり、泡が少ないまたは泡のないガラスを
得ることができる場合もある。しかし、温度を高くする
と、容器からガラス中に溶け込む白金の量が多くなって
得られるガラスの光線透過性が益々悪くなる。逆に清澄
時の温度を低くするとガラス中に溶け込む白金の量は少
なくなり、光線透過性はかなり良くなるが、泡切れがさ
らに悪くなる。
Therefore, in the case of glass having poor bubble breakage, such as the glass disclosed in JP-A-9-48361 and JP-A-8-259259, if the temperature during fining is increased,
In some cases it may be possible to obtain a glass with better defoaming and less or no bubbles. However, when the temperature is increased, the amount of platinum dissolved in the glass from the container is increased, and the light transmittance of the obtained glass is further deteriorated. On the contrary, when the temperature during refining is lowered, the amount of platinum dissolved in the glass is reduced, and the light transmittance is considerably improved, but the bubble breakage is further deteriorated.

【0013】また、特開平8−259259号公報のガ
ラスは、清澄時の温度が低い場合、光線透過率の良いガ
ラスを得ることができるが、泡切れが悪く、清澄時にガ
ラスから揮発するフッ素の量が少ないため、透過率の劣
化量が格段に大きくなる。また、清澄時の温度を高くす
ると、泡切れが良くなるとともに、溶融ガラスから揮発
するフッ素の量が多くなるため、透過率の劣化量は多少
小さくなるが、このガラスは、同号公報に記載されてい
るようにフッ素を導入することで短波長域の透過率を向
上させているため、容器からガラス中に溶け込む白金の
量が多くなることとあいまって、得られるガラスの光線
透過率が非常に悪くなる。
In the glass disclosed in Japanese Patent Laid-Open No. 8-259259, when the temperature at the time of refining is low, a glass having a good light transmittance can be obtained. Since the amount is small, the amount of deterioration in transmittance is significantly large. Further, when the temperature during refining is increased, defoaming is improved, and the amount of fluorine volatilized from the molten glass is increased, so that the deterioration amount of the transmittance is slightly reduced, but this glass is described in the same publication. As described above, since the transmittance of the short wavelength region is improved by introducing fluorine, the amount of platinum dissolved in the glass from the container increases, and the light transmittance of the obtained glass is extremely high. Get worse.

【0014】本発明の目的は、前記従来の諸問題を総合
的に解決し、紫外域および/または可視域の光線が照射
されたことによる透過率劣化量が少なく、長波長側から
可視域の紫色領域に至るまでの波長の光線に対して優れ
た透過性を有し、かつ、溶融、清澄時において溶融ガラ
スの泡切れがよく清澄性に優れたガラスであって、さら
に上記諸特性に加えて、絶対値が小さい光弾性定数
(β)を有し、レンズ、プリズム等の光学素子や基板に
用いるのに適し、特に偏光光学系中の光学素子やPB
S、SLM等の光偏光制御素子に用いるのに適した高屈
折率の光学ガラスを提供することにある。
An object of the present invention is to solve the above-mentioned conventional problems in a comprehensive manner, to reduce the amount of transmittance deterioration due to irradiation with light rays in the ultraviolet range and / or the visible range, and to reduce the transmittance from the long wavelength side to the visible range. It has excellent transparency to light of wavelengths up to the violet region, and is a glass that has excellent clarity because of melting of bubbles in the molten glass during melting and refining. Therefore, it has a small photoelastic constant (β) and is suitable for use as an optical element such as a lens and a prism or a substrate, and particularly in an optical element in a polarization optical system or a PB.
An object of the present invention is to provide an optical glass having a high refractive index suitable for use in a light polarization control element such as S or SLM.

【0015】[0015]

【課題を解決するための手段】上記目的を達成するため
に、本発明者らは、鋭意試験研究を重ねた結果、長年に
わたり、可視域の短波長側での光線透過率が悪いガラス
であると認識され、しかも、光照射による着色、すなわ
ち、透過率劣化が生じやすいとされていたSiO2、P
bOおよびB23を含有するガラスに、TeO2および
Li2Oを添加することにより、意外にも、優れた光線
透過性を有し、透過率劣化量が少なく、かつ、溶融、清
澄時において泡切れが良く、さらにこれらの特性に加え
て低光弾性定数を有するガラスが得られることを見出し
本発明をなすに至った。
In order to achieve the above-mentioned object, the inventors of the present invention have conducted extensive studies as a result, and as a result, have been a glass having a poor light transmittance on the short wavelength side of the visible region for many years. It is recognized as, moreover, coloring due to light irradiation, i.e., SiO 2, P transmittance degradation has been the prone
By adding TeO 2 and Li 2 O to a glass containing bO and B 2 O 3 , surprisingly, it has excellent light transmittance, little deterioration of transmittance, and melting and clarification. In the present invention, the inventors have found that a glass having good defoaming and having a low photoelastic constant in addition to these properties can be obtained, and thus completed the present invention.

【0016】すなわち、本発明の請求項1の光学ガラス
は、SiO2、PbO、B23を含有し、さらに質量%
で、0.1%以上のTeO2および0.4%以上のLi2
Oを含有することを特徴とする。
That is, the optical glass according to claim 1 of the present invention contains SiO 2 , PbO and B 2 O 3 , and further comprises by mass%.
With 0.1% or more of TeO 2 and 0.4% or more of Li 2
It is characterized by containing O.

【0017】請求項2に記載の発明は、請求項1に記載
の光学ガラスにおいて、厚さ10±0.1mmである場
合に、透過率80%で透過する光の波長が420nm以
下であることを特徴とする。ここで、透過率80%と
は、反射損失を含んだ値である。
According to a second aspect of the present invention, in the optical glass according to the first aspect, when the thickness is 10 ± 0.1 mm, the wavelength of light transmitted with a transmittance of 80% is 420 nm or less. Is characterized by. Here, the transmittance of 80% is a value including reflection loss.

【0018】請求項3に記載の発明は、請求項1または
2に記載の光学ガラスにおいて、紫外域および/または
可視域の光線を2.2W・cm-2の放射照度で10分間
照射することによる波長450nmの光線の透過率の劣
化率(劣化量)が3.0%以下であることを特徴とす
る。ここで、透過率の劣化率とは、光を10分間照射前
の波長450nmの光線の透過率をT(b)、照射後の
波長450nmの光線の透過率をT(a)とした場合
に、(T(b)−T(a))/T(b)×100であ
る。
According to a third aspect of the invention, in the optical glass according to the first or second aspect, the ultraviolet ray and / or the visible ray is irradiated for 10 minutes at an irradiance of 2.2 W · cm −2. The deterioration rate (deterioration amount) of the transmittance of light having a wavelength of 450 nm is 3.0% or less. Here, the deterioration rate of the transmittance means that the transmittance of a light beam having a wavelength of 450 nm before irradiation with light for 10 minutes is T (b) and the transmittance of a light beam having a wavelength of 450 nm after irradiation is T (a). , (T (b) −T (a)) / T (b) × 100.

【0019】請求項4に記載の発明は、請求項1または
2に記載の光学ガラスにおいて、紫外域および/または
可視域の光線を2.2W・cm-2の放射照度で10分間
照射することによる波長450nmの光線の透過率の劣
化率が1.0%以下であることを特徴とする。ここで、
透過率の劣化率は請求項3と同じである。
According to a fourth aspect of the invention, in the optical glass according to the first or second aspect, the ultraviolet ray and / or the visible ray is irradiated for 10 minutes at an irradiance of 2.2 W · cm −2. The deterioration rate of the transmittance of light having a wavelength of 450 nm is 1.0% or less. here,
The deterioration rate of the transmittance is the same as in claim 3.

【0020】請求項5に記載の発明は、請求項1、2、
3または4に記載の光学ガラスにおいて、400〜80
0nmの波長範囲における光弾性定数(β)の絶対値が
1.0×10-5nm/cm/Pa以下であることを特徴
とする。
The invention described in claim 5 is the same as in claim 1, 2,
The optical glass as described in 3 or 4, 400 to 80.
The absolute value of the photoelastic constant (β) in the wavelength range of 0 nm is 1.0 × 10 −5 nm / cm / Pa or less.

【0021】請求項6に記載の発明は、請求項1、2、
3、4または5に記載の光学ガラスにおいて、質量%
で、SiO2 18〜29%、PbO 66〜78%、
TeO2 0.1〜3.5%、B23 0.1〜6%、
Li2O 0.4〜5%を含有し、屈折率(nd)が
1.75〜1.90の範囲であることを特徴とする。
The invention according to claim 6 is the same as claim 1, 2 or
%, In the optical glass as described in 3, 4, or 5.
Then, SiO 2 18-29%, PbO 66-78%,
TeO 2 0.1-3.5%, B 2 O 3 0.1-6%,
It is characterized by containing 0.4 to 5% of Li 2 O and having a refractive index (nd) in the range of 1.75 to 1.90.

【0022】請求項7に記載の発明は、請求項6に記載
の光学ガラスにおいて、さらに、質量%で、Na2
0〜8%、K2O 0〜8%、ただし、Li2O+Na2
O+K2O 0.4〜10%、MgO 0〜5%、Ca
O 0〜5%、SrO 0〜5%、BaO 0〜10
%、ZnO 0〜5%、ただし、MgO+CaO+Sr
O+BaO+ZnO 0〜10%、GeO2 0〜5
%、Al230〜3%、Nb25 0〜3%、ただし、
GeO2+Al23+Nb25 0〜5%、As23
0〜1%およびSb23 0〜1%を含有することを特
徴とする。
[0022] The invention according to claim 7, the optical glass according to claim 6, further containing, by mass%, Na 2 O
0~8%, K 2 O 0~8% , however, Li 2 O + Na 2
O + K 2 O 0.4~10%, 0~5% MgO, Ca
O 0-5%, SrO 0-5%, BaO 0-10
%, ZnO 0 to 5%, but MgO + CaO + Sr
O + BaO + ZnO 0-10%, GeO 2 0-5
%, Al 2 O 3 0 to 3%, Nb 2 O 5 0 to 3%,
GeO 2 + Al 2 O 3 + Nb 2 O 5 0-5%, As 2 O 3
It is characterized by containing 0 to 1% and Sb 2 O 3 0 to 1%.

【0023】請求項8に記載の発明は、請求項1、2、
3、4または5に記載の光学ガラスにおいて、質量%
で、SiO2 18〜29%、PbO 66〜78%、
TeO2 0.1〜3.5%、B23 0.1〜2%未
満、Li2O 0.4〜5%、Na2O 0〜8%、K2
O 0〜8%、ただし、Li2O+Na2O+K2
0.4〜10%、MgO 0〜5%、CaO 0〜5
%、SrO 0〜5%、BaO 0〜10%、ZnO
0〜5%、ただし、MgO+CaO+SrO+BaO+
ZnO 0〜10%、GeO2 0〜5%、Al23
0〜3%、Nb25 0〜3%、ただし、GeO2+A
23+Nb25 0〜5%、As23 0〜1%およ
びSb23 0〜1%を含有し、屈折率(nd)が1.
75〜1.90の範囲であることを特徴とする。
The invention according to claim 8 is the invention according to claim 1, 2,
%, In the optical glass as described in 3, 4, or 5.
Then, SiO 2 18-29%, PbO 66-78%,
TeO 2 0.1 to 3.5%, B 2 O 3 0.1 to less than 2 %, Li 2 O 0.4 to 5%, Na 2 O 0 to 8%, K 2
O 0-8%, provided that Li 2 O + Na 2 O + K 2 O
0.4-10%, MgO 0-5%, CaO 0-5
%, SrO 0-5%, BaO 0-10%, ZnO
0-5%, but MgO + CaO + SrO + BaO +
ZnO 0-10%, GeO 2 0-5%, Al 2 O 3
0-3%, Nb 2 O 5 0-3%, provided that GeO 2 + A
1 2 O 3 + Nb 2 O 5 0 to 5%, As 2 O 3 0 to 1% and Sb 2 O 3 0 to 1% are contained, and the refractive index (nd) is 1.
It is characterized in that it is in the range of 75 to 1.90.

【0024】請求項9に記載の発明は、請求項1、2、
3、4、5、6、7または8に記載の光学ガラスにおい
て、アッベ数(νd)が28未満であることを特徴とす
る。
The invention described in claim 9 is the same as in claim 1,
The optical glass described in 3, 4, 5, 6, 7 or 8 is characterized in that the Abbe number (νd) is less than 28.

【0025】[0025]

【発明の実施の形態】つぎに、本発明の光学ガラスにお
いて、前記のとおり各成分の組成範囲を限定した理由を
説明する。SiO2成分は、ガラス形成酸化物であり、
本発明のガラスにおいて必須の成分である。その量が1
8%未満では本発明のガラスを構成する諸成分を混合し
た原料をガラス化することが困難になり、また、その量
が29%を超えるとガラスの溶融性が悪くなり、高温で
溶融しないと原料がガラス化しなくなる。特にガラスの
溶融性を良くするためには、その量を27%までとする
ことがより好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION Next, the reason why the composition range of each component is limited in the optical glass of the present invention will be explained. The SiO 2 component is a glass-forming oxide,
It is an essential component in the glass of the present invention. The amount is 1
If it is less than 8%, it becomes difficult to vitrify the raw material in which the components of the glass of the present invention are mixed, and if the amount exceeds 29%, the meltability of the glass deteriorates and it must be melted at high temperature. Raw material does not vitrify. In particular, in order to improve the meltability of the glass, the amount is more preferably set to 27%.

【0026】PbO成分は、ガラスの屈折率を高める効
果があり、本発明のガラスにおいて必須の成分である。
また、PbO成分はガラスの光弾性定数(β)の絶対値
を小さくする効果も合わせもっている。PbO成分の量
が、66%未満ではこれらの効果を得がたく、またその
量が、78%を超えると、光線透過性が悪化するうえ、
かえって光弾性定数(β)の絶対値が大きくなる。
The PbO component has the effect of increasing the refractive index of glass and is an essential component in the glass of the present invention.
Further, the PbO component also has the effect of reducing the absolute value of the photoelastic constant (β) of glass. When the amount of the PbO component is less than 66%, it is difficult to obtain these effects, and when the amount exceeds 78%, the light transmittance is deteriorated.
On the contrary, the absolute value of the photoelastic constant (β) becomes large.

【0027】TeO2成分は、PbOを多く含むガラス
の溶融、清澄時の粘度を小さくする効果があり、本発明
において非常に重要な成分である。TeO2成分を導入
することにより、ガラスの清澄性、すなわち泡切れが非
常に良くなり、泡の非常に少ないまたは泡のないガラス
を得ることができるうえ、長波長側から可視域の紫色領
域に至るまでの波長の光線に対して優れた光線透過性を
有するガラスを得ることができる。TeO2を含むこと
により、溶融、清澄時にガラス中に溶け込む白金の量が
少なくなることがガラスの光線透過性が良くなる理由の
一つとして考えられる。しかし、TeO2成分の量が
0.1%未満であると、これらの効果を得がたく、ま
た、その量が3.5%を超えると、かえって可視域の短
波長側でのガラスの光線透過率が悪くなり、また、ガラ
スに紫外光および/または可視光を照射することによる
ガラスの透過率劣化量も大きくなる。特に光線透過率が
良く、かつ、透過率劣化量が小さいガラスを得るために
は、TeO2成分の量を3.0%までとすることが好ま
しく、さらに、1.5%までとすることがより好まし
い。
The TeO 2 component has the effect of reducing the viscosity of the glass containing a large amount of PbO during melting and refining, and is a very important component in the present invention. By introducing the TeO 2 component, the clarity of the glass, that is, the defoaming of the glass becomes very good, and it is possible to obtain glass with very few bubbles or no bubbles, and also from the long wavelength side to the violet region of the visible region. It is possible to obtain a glass having excellent light transmittance for light rays of all wavelengths. It is considered that one of the reasons why the light transmittance of the glass is improved is that the content of platinum dissolved in the glass at the time of melting and refining is reduced by including TeO 2 . However, when the amount of TeO 2 component is less than 0.1%, it is difficult to obtain these effects, and when the amount exceeds 3.5%, the light beam of glass on the short wavelength side in the visible region is rather adversely affected. The transmittance deteriorates, and the amount of deterioration of the glass due to irradiation of the glass with ultraviolet light and / or visible light also increases. In particular, in order to obtain a glass having a good light transmittance and a small transmittance deterioration amount, it is preferable that the amount of the TeO 2 component be up to 3.0%, and further up to 1.5%. More preferable.

【0028】B23成分は、SiO2およびPbO成分
を含有するガラスに、TeO2成分を導入するために、
不可欠な成分である。TeO2成分は、上述のようにガ
ラスの溶融、清澄時の粘度を小さくするが、SiO2
よびPbO成分を含有するガラスに、TeO2のみを入
れると、原料としてのTeO2が溶け残りやすく、均質
なガラスを得ることが困難となり、TeO2を溶け込ま
せるためガラスの溶融温度および清澄温度を高くせざる
を得なくなる。ところが、B23成分を導入すると、T
eO2が非常に溶け込みやすくなる。すなわち、B23
成分には、本発明のガラスにおいてTeO2の溶融を促
進しガラス中に適量のTeO2成分を導入可能にするた
め、上述したTeO2成分の効果を十分に発揮させる効
果があり、B2 3成分自体にもガラスの溶融、清澄時の
粘度を小さくする効果がある。しかし、B23成分の量
が0.1%未満ではこれらの効果を得がたく、また、そ
の量が6%を超えると、紫外光および/または可視光を
ガラスに照射することによるガラスの透過率劣化量が大
きくなる。また、特に化学的耐久性(耐水性、耐酸性、
耐候性および耐洗剤性)が優れたガラスを得るために
は、その量を2%未満にするとよい。
B2O3Ingredient is SiO2And PbO component
TeO on glass containing2To introduce the ingredients,
It is an essential ingredient. TeO2The ingredients are
The viscosity of lath melted and clarified is reduced, but SiO2Oh
And glass containing PbO component, TeO2Enter only
Then, TeO as a raw material2Is easily melted and remains homogeneous
Difficult to obtain a good glass, and TeO2Melted in
In order to increase the melting temperature and refining temperature of the glass
Get lost. However, B2O3When the ingredients are introduced, T
eO2Becomes very easy to melt. That is, B2O3
The components include TeO in the glass of the present invention.2Promote the melting of
Proper amount of TeO in the glass2Introducing ingredients
Therefore, TeO described above2Effect to fully exert the effect of the ingredients
There is a fruit, B2O 3When melting and refining glass, the ingredients themselves
It has the effect of reducing the viscosity. But B2O3Amount of ingredients
Is less than 0.1%, it is difficult to obtain these effects.
If the amount exceeds 6%, UV and / or visible light
The amount of deterioration of the transmittance of the glass caused by irradiating the glass is large.
I hear Also, especially chemical durability (water resistance, acid resistance,
To obtain glass with excellent weather resistance and detergent resistance)
Should be less than 2%.

【0029】Li2O成分は、本発明の光学ガラスにお
いて、紫外光および/または可視光をガラスに照射する
ことによる透過率劣化量を非常に小さくする効果がある
ことを見出した重要な成分であり、また、ガラス原料の
溶融を促進する効果もあるが、その量が0.4%未満で
あると、上記諸効果が非常に小さい。また、その量が5
%を超えるとガラスの化学的耐久性(耐水性、耐酸性、
耐候性および耐洗剤性)が悪くなりがちである。
The Li 2 O component is an important component which has been found to have the effect of significantly reducing the amount of deterioration in transmittance caused by irradiating the glass with ultraviolet light and / or visible light in the optical glass of the present invention. There is also an effect of promoting the melting of the glass raw material, but if the amount is less than 0.4%, the above-mentioned various effects are very small. Also, the amount is 5
%, The chemical durability of glass (water resistance, acid resistance,
Weather resistance and detergent resistance) tend to deteriorate.

【0030】Na2OおよびK2O成分は、ガラス原料の
溶融を促進する効果があり、必要に応じて任意に含有さ
せることができるが、これらの成分の量が、それぞれ、
8%を超えるとガラスの化学的耐久性が悪くなる。ま
た、Li2O、Na2OおよびK 2O成分の合計量が10
%を超えるとガラスの化学的耐久性(耐水性、耐酸性、
耐候性および耐洗剤性)が悪くなる。PbO成分の一部
を、R'O成分、すなわち、MgO、CaO、SrO、
BaO、およびZnO成分の1種または2種以上で置換
すると、絶対値の小さい光弾性定数を維持しつつ、屈折
率を低くすることができるため、これらの成分を必要に
応じて任意に添加することができる。しかし、これらの
成分の量が、それぞれ、MgO5%、CaO5%、Sr
O5%、BaO10%およびZnO5%を超えるとガラ
スが失透しやすくなり、また、これら5成分の合計量
が、10%を超えるとガラスが失透しやすくなるうえ、
絶対値の小さい光弾性定数を維持しがたくなる。
Na2O and K2O component is a glass raw material
It has the effect of accelerating melting, and it is optionally contained as needed.
However, the amount of each of these ingredients
If it exceeds 8%, the chemical durability of glass deteriorates. Well
Li2O, Na2O and K 2The total amount of O component is 10
%, The chemical durability of glass (water resistance, acid resistance,
Weather resistance and detergent resistance) deteriorate. Part of PbO component
R′O component, that is, MgO, CaO, SrO,
Substituted with one or more of BaO and ZnO components
Then, while maintaining the photoelastic constant with a small absolute value,
These ingredients are needed because the rate can be lower
It can be optionally added depending on the type. But these
The amount of each component is MgO 5%, CaO 5%, Sr
If O5%, BaO10% and ZnO5% are exceeded, it will be
Devitrification tends to occur, and the total amount of these 5 components
However, if it exceeds 10%, the glass tends to devitrify and
It becomes difficult to maintain the photoelastic constant having a small absolute value.

【0031】GeO2成分は、光学定数(屈折率)を高
めに調整したり、ガラスの化学的耐久性(耐水性、耐酸
性、耐候性および耐洗剤性)および耐失透性をさらに向
上させるために、任意に添加することができるが、その
量が5%を超えると、ガラスの溶融温度が高くなり、溶
融性が悪化する。Al23成分は、溶融ガラスの種々の
成形方法に応じてガラスの粘度を高めに調整したり、ガ
ラスの化学的耐久性(耐水性、耐酸性、耐候性および耐
洗剤性)を良好に保つのに有効な成分であり、必要に応
じて任意に添加することができるが、その量が3%を超
えると、ガラスが失透しやすくなるため好ましくない。
Nb25成分は、ガラスの化学的耐久性(耐水性、耐酸
性、耐候性および耐洗剤性)を増大し、ガラスの屈折率
を高めに調整するのに有効であるが、その量が3%を超
えると、ガラスの光線透過性が悪化して着色度が大きく
なったり、ガラスが失透しやすくなったりするため好ま
しくない。また、GeO2、Al23およびNb25
分の合計量が5%を超えるとガラスの耐失透性が悪化す
るため好ましくない
The GeO 2 component adjusts the optical constant (refractive index) to a high level and further improves the chemical durability (water resistance, acid resistance, weather resistance and detergent resistance) and devitrification resistance of the glass. Therefore, it can be added arbitrarily, but if the amount exceeds 5%, the melting temperature of the glass becomes high and the meltability deteriorates. The Al 2 O 3 component adjusts the viscosity of the glass to a high level according to various molding methods of molten glass, and improves the chemical durability of the glass (water resistance, acid resistance, weather resistance and detergent resistance). It is a component effective for keeping, and it can be optionally added if necessary, but if the amount exceeds 3%, the glass tends to devitrify, which is not preferable.
The Nb 2 O 5 component is effective in increasing the chemical durability of the glass (water resistance, acid resistance, weather resistance and detergent resistance) and adjusting the refractive index of the glass to a higher level, but the amount thereof is If it exceeds 3%, the light transmittance of the glass is deteriorated, the degree of coloring is increased, and the glass tends to devitrify, which is not preferable. Further, when the total amount of the GeO 2 , Al 2 O 3 and Nb 2 O 5 components exceeds 5%, the devitrification resistance of the glass deteriorates, which is not preferable.

【0032】As23およびSb23成分は、共にガラ
スの清澄剤としての効果を有するため任意に添加し得る
が、清澄効果を得るためには、それらの量は、それぞれ
1%以下で十分である。特に光線透過率の良いガラスを
得るためには、As23成分を添加することが好まし
い。さらに本発明の光学ガラスに、屈折率を高める目的
で、In23およびGa23成分を添加しうるが、これ
らの成分の量がそれぞれ3.5%を超えると、光線透過
率が悪化し、かつ、ガラスが失透しやすくなり均質なガ
ラスを得にくくなるので好ましくない。また、これら2
成分の合計量が、3.5%を超えても、上記同様の好ま
しくない結果をまねく。
Since the As 2 O 3 and Sb 2 O 3 components both have the effect as a fining agent for glass, they can be optionally added, but in order to obtain the fining effect, their amounts are each 1% or less. Is enough. Particularly, in order to obtain a glass having a good light transmittance, it is preferable to add an As 2 O 3 component. Further, In 2 O 3 and Ga 2 O 3 components may be added to the optical glass of the present invention for the purpose of increasing the refractive index, but when the amount of each of these components exceeds 3.5%, the light transmittance is increased. It is not preferable because the glass deteriorates and the glass is easily devitrified, and it becomes difficult to obtain a homogeneous glass. Also, these 2
Even if the total amount of the components exceeds 3.5%, the same unfavorable result as described above is caused.

【0033】[0033]

【実施例】以下に、本発明の好適な実施例について説明
する。なお、本発明は以下の実施例に限定されるもので
はない。まず、表1〜表3に示す組成比を有する本発明
の光学ガラスを製造した。表1〜表3に示した実施例N
o.1〜No.20のガラスは、いずれも、酸化物、炭
酸塩、硝酸塩、水酸化物等の通常の光学ガラス用の原料
を所定の割合で秤量、混合し、白金製の坩堝に投入し、
組成による溶融性に応じて800〜1000℃の温度で
約1〜3時間溶融し、ついで、900〜1100℃の温
度で1〜3時間清澄して溶融ガラスの泡切り、すなわ
ち、脱泡をし、さらに溶融ガラスを撹拌して脈理を消失
さて、溶融ガラスを均質化した後、金型に鋳込み徐冷
(アニール)することにより容易に得ることができた。
得られた光学ガラスの各種物性を次のように評価し、そ
の結果を表1〜表3に示した。評価項目は、屈折率(n
d)、アッベ数(νd)、反射損失を含み透過率80%
で透過する光線の波長(T80)または反射損失を含み透
過率70%で透過する光線の波長(T70)、光弾性定数
(β)の測定結果、透過率劣化量、泡の評価である。
The preferred embodiments of the present invention will be described below. The present invention is not limited to the examples below. First, the optical glass of the present invention having the composition ratios shown in Tables 1 to 3 was manufactured. Example N shown in Tables 1 to 3
o. 1-No. In each of the 20 glasses, raw materials for ordinary optical glass such as oxides, carbonates, nitrates, and hydroxides are weighed and mixed at a predetermined ratio, and charged into a platinum crucible,
It is melted at a temperature of 800 to 1000 ° C. for about 1 to 3 hours, and then clarified at a temperature of 900 to 1100 ° C. for 1 to 3 hours depending on the meltability depending on the composition to defoam the molten glass, that is, defoam. Further, the molten glass was stirred to eliminate the striae, and the molten glass was homogenized, and then cast into a mold and gradually cooled (annealed), which could be easily obtained.
Various physical properties of the obtained optical glass were evaluated as follows, and the results are shown in Tables 1 to 3. The evaluation item is the refractive index (n
d), Abbe number (νd), transmittance including reflection loss 80%
Is the wavelength of the light beam (T 80 ) that is transmitted through at or the wavelength of the light beam that transmits at a transmittance of 70% (T 70 ) including reflection loss, the measurement result of the photoelastic constant (β), the deterioration amount of the transmittance, and the evaluation of bubbles. .

【0034】また、表4には、光弾性定数(β)の絶対
値が小さい従来の偏光光学系用光学ガラスである比較例
(No.A〜C)の組成比を、実施例No.1〜No.
20同様に評価した評価結果とともに示した。なお、ア
ッベ数(νd)は、光学ガラスを光偏光制御素子に用い
る場合は、それほど重要な物性ではないため本発明の実
施組成例(No.1〜No.20)についてのみ記載し
た。表4に示した比較例(No.A〜No.C)のガラ
スは、酸化物、炭酸塩、硝酸塩、水酸化物等の通常の光
学ガラス用の原料を所定の割合で秤量、混合し、白金製
の坩堝に投入し、組成による溶融性に応じて1000℃
の温度で約1〜3時間溶融し、ついで、1100℃の温
度で約1〜3時間時間清澄し、さらに溶融ガラスを撹拌
して脈理を消失させて、溶融ガラスを均質化した後、金
型に鋳込み徐冷(アニール)して得た。
Table 4 shows the composition ratios of Comparative Examples (Nos. A to C), which are conventional optical glasses for polarizing optical systems, in which the absolute value of the photoelastic constant (β) is small. 1-No.
20 is shown together with the evaluation results evaluated in the same manner. It should be noted that the Abbe number (νd) is not so important when the optical glass is used for the light polarization control element, and therefore only the composition examples (No. 1 to No. 20) of the present invention are described. The glass of the comparative examples (No. A to No. C) shown in Table 4 is a raw material for ordinary optical glass such as an oxide, a carbonate, a nitrate, and a hydroxide, which are weighed and mixed at a predetermined ratio, Put into a platinum crucible, 1000 ℃ depending on the meltability by composition
Melted at a temperature of about 1 to 3 hours, then clarified at a temperature of 1100 ° C. for about 1 to 3 hours, further stirring the molten glass to eliminate striae, homogenizing the molten glass, and then gold. It was obtained by casting in a mold and gradually cooling (annealing).

【0035】評価方法について説明する。T80およびT
70は、両面研磨した厚さ10±0.1mmのガラス試料
について測定した結果を示し、光弾性定数(β)は、ガ
ラス試料の光透過厚、すなわち、前記式(1)における
厚さ(d)を0.8cmとし、外部からガラス試料に一
定の応力を加えた状態でe線(波長546.07nm)
の光を透過させたときに生じた複屈折による光路差を測
定することによって前記式(1)により求めた。また、
透過率劣化量は、両面研磨した厚さ40±0.1mmの
ガラス試料の反射損失を含む波長450nmの光線透過
率T(b)をまず測定し、ついで、波長が紫外域から可
視域の青色領域にわたり、かつ、放射照度が2.2W・
cm-2の光線を10分間、連続してガラス試料に照射し
た後の上記ガラス試料の反射損失を含む波長450nm
の光線透過率T(a)を測定し、透過率劣化量(%)=
(T(b)−T(a))/T(b)×100として求め
たものである。光源としては、ランプが超高圧水銀灯で
あるスポットUV照射装置−250W直射型(UIS−
25103AA ウシオ電機(株)製)を用い、この装置
の照射窓から110mm離れた位置に上記ガラス試料を
置き、上記照射装置からの照射光をガラス試料に光線を
照射した。
The evaluation method will be described. T 80 and T
70 indicates the result measured on a glass sample having a thickness of 10 ± 0.1 mm polished on both sides, and the photoelastic constant (β) is the light transmission thickness of the glass sample, that is, the thickness (d) in the above formula (1). ) Is 0.8 cm, and e-line (wavelength 546.07 nm) is applied with a constant stress applied to the glass sample from the outside.
The optical path difference due to the birefringence generated when the light of FIG. Also,
The amount of deterioration in transmittance was measured by first measuring the light transmittance T (b) at a wavelength of 450 nm including the reflection loss of a glass sample having a thickness of 40 ± 0.1 mm, which was polished on both sides, and then, from the ultraviolet region to the visible region of blue. The irradiance is 2.2 W
A wavelength of 450 nm including the reflection loss of the above glass sample after continuously irradiating the glass sample with a light beam of cm -2 for 10 minutes.
The light transmittance T (a) of is measured, and the transmittance deterioration amount (%) =
It is calculated as (T (b) -T (a)) / T (b) × 100. As a light source, a spot UV irradiation device whose lamp is an ultra-high pressure mercury lamp-250 W direct irradiation type (UIS-
25103AA manufactured by Ushio Electric Co., Ltd., the glass sample was placed at a position 110 mm away from the irradiation window of this device, and the glass sample was irradiated with light emitted from the irradiation device.

【0036】また、泡評価結果(級)は、日本光学硝子
工業会規格:JOGIS 12‐199 4「光学ガラスの泡
の測定方法」に準拠して、顕微鏡を用いて得られたガラ
ス中の泡の直径および数を測定し、その結果から、10
0mlのガラス中における泡の断面積の総和および総個
数を算出し、下記のように分類して、その級を表示した
結果である。すなわち、100ml中の断面積の総和
(mm2)が0.03未満の場合を1級、0.03以上
0.1未満の場合を2級、0.1以上0.25未満の場
合を3級、0.25以上0.5未満の場合を4級、0.
5以上の場合を5級とし、また、100ml中の泡の総
和個が10未満の場合をA級、10以上100未満の場
合をB級、100以上500未満の場合をC級、500
以上1000未満の場合をD級、1000以上の場合を
E級と分類し、例えば、断面積の総和が1級であり、総
和個がA級の場合を1A級のように表示した。
[0036] In addition, foam evaluation result (grade), the Japan Optical Glass Industry Association Standard: JOGIS 12- 199 4 in accordance with the "method of measuring the bubble of optical glass" bubbles in the glass obtained by using the microscope The diameter and number of the
The results are obtained by calculating the total sum of the cross-sectional areas and the total number of bubbles in 0 ml of glass, classifying them as follows, and displaying the grades. That is, when the total cross-sectional area (mm 2 ) in 100 ml is less than 0.03, it is grade 1, when it is 0.03 or more and less than 0.1, it is grade 2, and when it is 0.1 or more and less than 0.25, it is grade 3. Grade, if 0.25 or more and less than 0.5, grade 4.
The case where the total number of bubbles in 100 ml is less than 10 is A class, the case where the total number of bubbles in 100 ml is less than 10 is B class, the case where 100 or more and less than 500 is C class, 500
The case of less than 1000 is classified as D class, and the case of 1000 or more is classified as E class. For example, the case where the sum of the cross-sectional areas is class 1 and the sum total is class A is displayed as class 1A.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【表2】 [Table 2]

【0039】[0039]

【表3】 [Table 3]

【0040】[0040]

【表4】 [Table 4]

【0041】[0041]

【表5】 [Table 5]

【0042】表1〜表3に示すように本発明の光学ガラ
スの実施例(No.1〜No.20)のガラスはいずれ
も、透過率劣化量が表4に示した比較例(No.Aおよ
びNo.B)のガラスより少なく、かつ、T80の値が比
較例(No.A〜No.C)のガラスより小さく、光線
透過率がすぐれていることがわかる。さらに、本発明の
光学ガラスの実施例No.1〜No.20のガラスはい
ずれも光偏光制御素子に使用するのに十分なほど絶対値
が小さい光弾性定数(β)、1.0×10-5nm/cm
/Pa未満のβを有している。
As shown in Tables 1 to 3, all the glass of Examples (No. 1 to No. 20) of the optical glass of the present invention have comparative transmittance deterioration amounts shown in Table 4 (No. It can be seen that the value of T 80 is smaller than that of the glasses of Comparative Examples (No. A to No. C) and the light transmittance is excellent. Furthermore, Example No. 1 of the optical glass of the present invention. 1-No. The glass of No. 20 has a photoelastic constant (β) whose absolute value is small enough to be used for a light polarization control element, 1.0 × 10 −5 nm / cm.
It has β of less than / Pa.

【0043】得られた本発明の実施例No.1〜No.
20の光学ガラスはいずれも、表1〜表3に示すよう
に、いずれも泡評価結果が1A級であり、特にプリズム
等の通常、かなりの肉厚をもつ光学素子や2個のプリズ
ムを組み合わせて作成するPBSに使用するのに十分な
光学ガラスが得られた。一方、比較例A〜Cのガラスの
泡評価結果は、いずれも、本発明の実施例No.1〜N
o.20のガラスとくらべて、悪く、特に、比較例N
o.A、No.Cの結果は悪い。また、比較例No.B
のガラスは、比較的泡評価結果が良かったが、光線透過
率(T80)が非常に悪く、反射損失を含む分光透過率が
400〜500nmの間で80%に至らなかったので表
4には上述したT70を示した。さらに、比較例No.A
およびNo.Bのガラスは透過率劣化量が本発明の実施
例No.1〜No.19のガラスと比べて大きかった。
The obtained Example No. of the present invention. 1-No.
As shown in Tables 1 to 3, all of the optical glasses of 20 had a bubble evaluation result of 1A class, and in particular, an optical element such as a prism or the like, which usually has a considerable thickness, or two prisms were combined. Sufficient optical glass was obtained for use in the PBS made by. On the other hand, the evaluation results of bubbles of the glass of Comparative Examples A to C are all Example No. 1 of the present invention. 1 to N
o. It is worse than the glass of No. 20, especially Comparative Example N
o. A, No. The result of C is bad. In addition, Comparative Example No. B
The glass of No. 1 had a relatively good bubble evaluation result, but the light transmittance (T 80 ) was very poor, and the spectral transmittance including reflection loss did not reach 80% in the range of 400 to 500 nm. Indicates the T 70 mentioned above. Further, Comparative Example No. A
And No. In the glass of B, the deterioration amount of the transmittance is the same as that of the example No. 1 of the present invention. 1-No. It was larger than 19 glass.

【0044】以上のように比較例No.AおよびNo.
Cのガラスは、泡評価結果が非常に悪く、比較例No.
Bのガラスは、光線透過率が非常に悪かったため、比較
例No.AおよびNo.Cのガラスについては、泡切れ
を良くするため、清澄温度を高め、比較例No.Bのガ
ラスは、溶融ガラスへの白金の溶け込み量を少なくすれ
ば、光線透過率が改善されると予想されたので、清澄温
度を下げて、再度実験した結果を表5に示した。比較例
No.AおよびNo.Cのガラスは、泡評価結果が非常
によくなったが、ともに、光線透過率(T80)がさらに
悪化し、透過率劣化量も大きくなってしまった。一方、
比較例No.Bのガラスは光線透過率が良くなり
(T80)を測定することができたが、本発明の光学ガラ
スの実施例(No.1〜No.20)のガラスと比べて
光線透過率が悪いうえ、透過率劣化量が非常に大きくな
り、しかも、泡評価結果も非常に悪くなってしまった。
As described above, Comparative Example No. A and No.
The glass of C has a very poor bubble evaluation result, and Comparative Example No.
The glass of B had a very poor light transmittance, so that Comparative Example No. A and No. Regarding the glass of C, the refining temperature was raised to improve the breakage of bubbles, and Comparative Example No. Since it was expected that the light transmittance of the glass B was improved by reducing the amount of platinum dissolved in the molten glass, the refining temperature was lowered and the results of the experiment were shown in Table 5. Comparative Example No. A and No. In the glass of C, the bubble evaluation result was very good, but the light transmittance (T 80 ) was further deteriorated, and the deterioration amount of the transmittance was also large. on the other hand,
Comparative Example No. Although the light transmittance of the glass B was improved (T 80 ), the light transmittance was poor as compared with the glasses of Examples (No. 1 to No. 20) of the optical glass of the present invention. In addition, the deterioration amount of the transmittance was very large, and the bubble evaluation result was also very bad.

【0045】つぎに、3板式反射型液晶プロジェクター
の偏光光学系において、本発明の実施例No.20のガ
ラスを光偏光制御素子であるPBSのプリズムとして使
用した例を図1に基づき説明する。No.20のガラス
を加熱軟化させて金型によりプレス成形し、得られた成
形ガラスを研磨して6個の三角柱プリズムを作成し、そ
れらのプリズムを2個1組として計3個のPBSを作成
した。図1に示したPBS4は、それらのPBSのうち
の1個である。PBS4は、6個の三角柱プリズムのう
ち三角柱プリズム1aおよび1bを用い、三角柱プリズ
ム1aの1bとの貼り合わせ面に公知の誘電体多層膜2
を形成し、三角柱プリズム1aおよび1bを接着層3に
より貼り合わせ、作成したものである。他の2個のPB
S(図示せず)も同様にして残りの4個の三角柱プリズ
ム(図示せず)を用いて作成した。
Next, in the polarization optical system of the three-plate type reflective liquid crystal projector, the embodiment No. 1 of the present invention was used. An example in which 20 glass is used as a prism of PBS which is an optical polarization control element will be described with reference to FIG. No. Twenty glasses were heated and softened and press-molded with a mold, and the obtained molded glass was polished to form six triangular prisms, and two prisms were made into a set to make three PBSs in total. . The PBS 4 shown in FIG. 1 is one of those PBSs. The PBS 4 uses the triangular prisms 1a and 1b out of the six triangular prisms, and a known dielectric multilayer film 2 is formed on the surface of the triangular prism 1a to which the prism 1a is attached.
Is formed, and the triangular prisms 1a and 1b are bonded to each other with the adhesive layer 3. The other two PBs
Similarly, S (not shown) was formed using the remaining four triangular prisms (not shown).

【0046】つぎに、図1に示したPBS4の作用を説
明する。まず、超高圧水銀ランプ(図示せず)から放射
された光をマイクロレンズアレイ(図示せず)を通して
複数の部分光束にし、これらの部分光束を偏光変換素子
(図示せず)に入射させる。偏光変換素子に入射した部
分光束はS偏光となって、偏光変換素子(図示せず)か
ら出射される。このS偏光をコンデンサーレンズ(図示
せず)により集光させて、クロスダイクロイックプリズ
ム(図示せず)に入射させる。
Next, the operation of the PBS 4 shown in FIG. 1 will be described. First, light emitted from an ultra-high pressure mercury lamp (not shown) is made into a plurality of partial light beams through a microlens array (not shown), and these partial light beams are made incident on a polarization conversion element (not shown). The partial light flux incident on the polarization conversion element becomes S-polarized light and is emitted from the polarization conversion element (not shown). This S-polarized light is condensed by a condenser lens (not shown) and is incident on a cross dichroic prism (not shown).

【0047】クロスダイクロイックプリズムに入射した
S偏光は、このプリズムにより赤、青、緑の3原色に分
光される。ついで分光された青色のS偏光(図示せず)
をリレーレンズ(図示せず)を通して、図1の矢印で示
すように、PBS4に入射させる。入射したS偏光は誘
電体多層膜2により光路が90°変わり、反射型空間光
変調素子5に入射する。入射したS偏光は反射型空間光
変調素子5の中で図示しない液晶駆動から出力される画
像信号により変調されPBS4へ反射される。変調され
て反射したP偏光の場合は光路を変えることなく直進
し、PBS4を透過するが、S偏光であった場合には再
び誘電体多層膜2で反射されるので、画像に対応したコ
ントラストを与える。PBS4を透過したP偏光はリレ
ーレンズ(図示せず)を通して、コンデンサーレンズ
(図示せず)に入り、集光されて、クロスダイクロイッ
クプリズム(図示せず)に入射する。
The S-polarized light incident on the cross dichroic prism is split into three primary colors of red, blue and green by this prism. Then, the S-polarized blue S-polarized light (not shown)
Through a relay lens (not shown) to be incident on the PBS 4 as indicated by the arrow in FIG. The incident S-polarized light has its optical path changed by 90 ° due to the dielectric multilayer film 2 and enters the reflective spatial light modulator 5. The incident S-polarized light is modulated by the image signal output from the liquid crystal drive (not shown) in the reflective spatial light modulator 5 and reflected to the PBS 4. In the case of the P-polarized light which is modulated and reflected, it goes straight without changing the optical path and passes through the PBS 4, but when it is the S-polarized light, it is reflected again by the dielectric multilayer film 2, so that the contrast corresponding to the image is obtained. give. The P-polarized light transmitted through the PBS 4 passes through a relay lens (not shown), enters a condenser lens (not shown), is condensed, and enters a cross dichroic prism (not shown).

【0048】先に分光された他の2色光もそれぞれ、青
色光と同様に他の2個のPBSにより光路が90°変わ
り、反射型空間光変調素子により偏光変調された後、反
射されて他の2個のPBSを直進透過し、クロスダイク
ロイックプリズム(図示せず)に入射する。クロスダイ
クロイックプリズム(図示せず)に入射した、3原色光
は、このプリズムにより合成されて、プリズムから出射
され、投写レンズを透過して、画像として投射、投影さ
れる。表2に示したように本発明の実施例No.20ガ
ラスは、透過率劣化量が小さいためPBS4に長時間連
続して光を通しても投射光の光量の減少は見られなかっ
た。また、このガラスは、可視域の紫色領域において、
優れた光線透過率を有しているため、光量を減じること
なく演色性の良い投射光を得ることができた。さらにこ
のガラスは、光弾性定数(β)の絶対値が小さいため、
PBS4の部分で光量の減少につながる複屈折を生じな
かった。また、本発明の実施例(No.1〜No.1
9)のガラスからそれぞれPBSを作成して使用したと
ころ、上記同様の効果が得られた。
Similarly to the blue light, the light paths of the other two color lights previously dispersed are changed by 90 degrees by the other two PBSs, and are polarized and modulated by the reflective spatial light modulator, and then reflected. Straight through the two PBSs, and enters a cross dichroic prism (not shown). The three primary color lights incident on the cross dichroic prism (not shown) are combined by this prism, emitted from the prism, transmitted through the projection lens, and projected and projected as an image. As shown in Table 2, Example No. Since 20 glass has a small amount of deterioration in transmittance, no decrease in the amount of projected light was observed even when light was continuously passed through PBS 4 for a long time. In addition, this glass, in the purple region of the visible range,
Since it has an excellent light transmittance, it is possible to obtain projection light with good color rendering properties without reducing the light amount. Furthermore, since this glass has a small absolute value of the photoelastic constant (β),
The portion of PBS4 did not cause birefringence leading to a decrease in light intensity. In addition, the embodiments of the present invention (No. 1 to No. 1)
When PBS was prepared from each of the glasses of 9) and used, the same effect as described above was obtained.

【0049】次に、本発明の実施例No.20のガラス
を偏光変換素子光学系として使用する(応用)例を説明
する。前述と同様にして三角柱プリズム、さらに三角柱
プリズムからPBSを作成した。超高圧水銀ランプなど
高出力の光を、フライレンズアレイなどで構成される光
インテグレータ(図示せず)を通して一様な光束にし、
この光束をPBSへ入射させる。PBSに入射した光束
は、偏光方向が互いに直交する二つの直線偏光光(P偏
光、S偏光)に分離される。PBSを透過したP偏光光
は、偏光回転光学系(三角柱プリズムを使った反射によ
る偏光回転)を経てS偏光へ変換され、PBSで反射さ
れたもう一方のS偏光光と合成される。従来の技術によ
る(例えば偏光板を使用)偏光交換効率を比べると、分
離したP偏光をS偏光へ変換して合成し利用するので、
ほぼ2倍の変換効率を持ち、高効率で偏光を利用する用
途(高輝度液晶プロジェクター)に好適である。
Next, Example No. 3 of the present invention. An example (application) of using 20 glasses as a polarization conversion element optical system will be described. In the same manner as above, a triangular prism was prepared, and PBS was prepared from the triangular prism. High-power light such as an ultra-high pressure mercury lamp is made into a uniform light flux through an optical integrator (not shown) composed of a fly lens array,
This light flux is made incident on the PBS. The light beam incident on the PBS is separated into two linearly polarized lights (P-polarized light and S-polarized light) whose polarization directions are orthogonal to each other. The P-polarized light transmitted through the PBS is converted into S-polarized light through a polarization rotation optical system (polarization rotation by reflection using a triangular prism), and is combined with the other S-polarized light reflected by the PBS. Comparing the polarization exchange efficiencies according to the conventional technology (using a polarizing plate, for example), the separated P polarized light is converted into S polarized light to be combined and used.
It has almost twice the conversion efficiency and is suitable for applications that use polarized light with high efficiency (high brightness liquid crystal projector).

【0050】表2に示したように、本発明の実施例N
o.20のガラスは、透過率劣化量が小さいため高強度
の光を長時間連続して照射しても投射光の光量の減少は
見られなかった。さらにこのガラスは、光弾性定数
(β)の絶対値が小さいため、光照射による温度上昇に
起因する熱応力や光学系作製時(膜の蒸着やプリズムの
張り合わせ)の機械的応力による複屈折が生じないので
偏光保持特性についても優れている。また、本発明の実
施例No.1〜No.19のガラスからそれぞれPBS
を作製して使用したところ、上記同様の効果が得られ
た。
As shown in Table 2, Example N of the present invention
o. Since the glass of No. 20 had a small amount of deterioration in transmittance, no decrease in the amount of projected light was observed even when high intensity light was continuously irradiated for a long time. Furthermore, since the absolute value of the photoelastic constant (β) of this glass is small, birefringence due to thermal stress due to temperature rise due to light irradiation and mechanical stress during optical system fabrication (film deposition or prism laminating) Since it does not occur, it has an excellent polarization maintaining property. In addition, the embodiment No. 1-No. PBS from 19 glass each
When the above was prepared and used, the same effects as described above were obtained.

【0051】[0051]

【発明の効果】以上述べたように本発明の光学ガラス
は、SiO2、PbO、B23を含み、さらに質量%
で、0.1%以上のTeO2および0.4%以上のLi2
Oを含有することを特徴とする光学ガラスであるから、
波長が紫外域および/または可視域の光線をガラスに照
射することによる透過率の劣化率が小さく、長波長側か
ら可視域の紫色領域に至るまでの波長の光線に対して優
れた光線透過性を有し、かつ、溶融、清澄時において溶
融ガラスの泡切れがよく清澄性に優れ、絶対値が小さい
光弾性定数(β)を有する高屈折率のガラスであって、
レンズ、プリズム等の光学素子や基板に用いるのに適
し、特に偏光光学系中の光学素子や、PBS、SLM、
偏光変換素子等の光偏光制御素子に用いるのに好適であ
る。
As described above, the optical glass of the present invention contains SiO 2 , PbO and B 2 O 3 , and further contains the mass% of
With 0.1% or more of TeO 2 and 0.4% or more of Li 2
Since it is an optical glass characterized by containing O,
The deterioration rate of the transmittance caused by irradiating the glass with light in the ultraviolet range and / or visible range is small, and it has excellent light transmittance for light with wavelengths from the long wavelength side to the violet range in the visible range. And, the melting, the glass of high refractive index having a good photoelastic constant (β) with a small absolute value, which is excellent in the clarity of the molten glass during melting and clarification,
Suitable for use in optical elements such as lenses and prisms and substrates, especially optical elements in polarizing optical systems, PBS, SLM,
It is suitable for use in a light polarization control element such as a polarization conversion element.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を使用したPBSを含む投射装
置の偏光光学系の要部拡大図である。
FIG. 1 is an enlarged view of a main part of a polarization optical system of a projection device including a PBS using an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1a、1b 三角柱プリズム 4 PBS 1a, 1b triangular prism 4 PBS

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成14年6月12日(2002.6.1
2)
[Submission date] June 12, 2002 (2002.6.1)
2)

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0010[Correction target item name] 0010

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0010】特開平9−48631号公報には、PbO
−B23および/またはA123系の偏光光学系用光学
ガラスが開示されている。このガラスは、透過率の劣化
量は小さく、前記公報のガラスよりもやや光線透過性が
よいものの、やはり、透過率劣化が生じる前の青色領域
の短波長側から紫色領域にかけての光線透過性が十分に
改善されておらず、また溶融、清澄時において溶融ガラ
スの泡切れが悪く、前記公報のガラスと同様に脈理を消
失させてガラスを均質化することはできるが、得られた
ガラス中に泡が残るため光学部品とするのが困難であ
る。また、特開平8−259259号公報には、SiO
2−R2O−PbO−フッ素系の偏光光学系用光学ガラス
が開示されている。このガラスは、前記二つの公報のガ
ラスよりも泡切れが良いが、透過率の劣化量が前記二つ
の公報のガラスと比べて格段大きく、その原因は、フッ
素成分であると思われる。
Japanese Unexamined Patent Publication No. 9-48631 discloses PbO.
-B 2 O 3 and / or A1 2 O 3 based polarizing optical glass for optical systems have been disclosed. This glass has a small amount of deterioration in transmittance, and although slightly better in light transmittance than the glass of the above-mentioned publication, again, the light transmittance from the short wavelength side of the blue region to the violet region before the deterioration of transmittance occurs. It is not sufficiently improved, and the melting and melting of the molten glass at the time of refining is poor, and it is possible to homogenize the glass by eliminating striae like the glass of the above publication, but in the obtained glass It is difficult to make an optical component because bubbles remain on the surface. Further, in Japanese Patent Laid-Open No. 8-259259, SiO
2 -R 2 O-PbO- fluorine-based polarizing optics for optical glass is disclosed. Although this glass has better defoaming than the glasses of the two publications, the deterioration amount of the transmittance is significantly larger than that of the glasses of the two publications, and it is considered that the cause is the fluorine component.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0012[Correction target item name] 0012

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0012】そのため、特開平9−48631号公報お
よび特開平8−259259号公報のガラスのように泡
切れが悪いガラスの場合、清澄時の温度を高くすれば、
泡切れが良くなり、泡が少ないまたは泡のないガラスを
得ることができる場合もある。しかし、温度を高くする
と、容器からガラス中に溶け込む白金の量が多くなって
得られるガラスの光線透過性が益々悪くなる。逆に清澄
時の温度を低くするとガラス中に溶け込む白金の量は少
なくなり、光線透過性はかなり良くなるが、泡切れがさ
らに悪くなる。
Therefore, in the case of a glass having poor bubble breakage, such as the glass disclosed in JP-A-9-48631 and JP-A- 8-259259 , if the temperature during fining is increased,
In some cases it may be possible to obtain a glass with better defoaming and less or no bubbles. However, when the temperature is increased, the amount of platinum dissolved in the glass from the container is increased, and the light transmittance of the obtained glass is further deteriorated. On the contrary, when the temperature during refining is lowered, the amount of platinum dissolved in the glass is reduced, and the light transmittance is considerably improved, but the bubble breakage is further deteriorated.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小野沢 雅浩 神奈川県相模原市小山1丁目15番30号 株 式会社オハラ内 (72)発明者 石岡 順子 神奈川県相模原市小山1丁目15番30号 株 式会社オハラ内 Fターム(参考) 2H049 BA05 BA43 BC10 BC22 4G062 AA01 AA04 BB04 DA04 DB01 DB02 DB03 DC02 DC03 DD01 DE01 DE02 DE03 DF06 DF07 EA02 EA03 EB01 EB02 EB03 EC01 EC02 EC03 ED01 ED02 ED03 EE01 EE02 EE03 EF01 EF02 EF03 EG01 EG02 EG03 FA01 FA10 FB01 FC01 FD01 FD02 FD03 FE01 FF01 FG01 FG02 FG03 FH01 FJ01 FK01 FL01 GA01 GB01 GC01 GD02 GD03 GE01 HH01 HH03 HH05 HH07 HH09 HH11 HH13 HH15 HH17 HH20 JJ01 JJ03 JJ04 JJ05 JJ07 JJ10 KK01 KK03 KK05 KK07 KK10 MM02 NN01 NN02    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Masahiro Onozawa             1-15-30 Koyama, Sagamihara City, Kanagawa Prefecture             In ceremony company OHARA (72) Inventor Junko Ishioka             1-15-30 Koyama, Sagamihara City, Kanagawa Prefecture             In ceremony company OHARA F-term (reference) 2H049 BA05 BA43 BC10 BC22                 4G062 AA01 AA04 BB04 DA04 DB01                       DB02 DB03 DC02 DC03 DD01                       DE01 DE02 DE03 DF06 DF07                       EA02 EA03 EB01 EB02 EB03                       EC01 EC02 EC03 ED01 ED02                       ED03 EE01 EE02 EE03 EF01                       EF02 EF03 EG01 EG02 EG03                       FA01 FA10 FB01 FC01 FD01                       FD02 FD03 FE01 FF01 FG01                       FG02 FG03 FH01 FJ01 FK01                       FL01 GA01 GB01 GC01 GD02                       GD03 GE01 HH01 HH03 HH05                       HH07 HH09 HH11 HH13 HH15                       HH17 HH20 JJ01 JJ03 JJ04                       JJ05 JJ07 JJ10 KK01 KK03                       KK05 KK07 KK10 MM02 NN01                       NN02

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】SiO2、PbO、B23を含有し、さら
に質量%で、0.1%以上のTeO2および0.4%以上
のLi2Oを含有することを特徴とする光学ガラス。
1. An optical system containing SiO 2 , PbO and B 2 O 3 , and further containing 0.1% or more of TeO 2 and 0.4% or more of Li 2 O in mass%. Glass.
【請求項2】厚さ10±0.1mmである場合に、透過
率80%で透過する光の波長が420nm以下であるこ
とを特徴とする請求項1に記載の光学ガラス。
2. The optical glass according to claim 1, wherein, when the thickness is 10 ± 0.1 mm, the wavelength of light transmitted at a transmittance of 80% is 420 nm or less.
【請求項3】紫外域および/または可視域の光線を2.
2W・cm-2の放射照度で10分間照射することによる
波長450nmの光線の透過率の劣化率が3.0%以下
であることを特徴とする請求項1または2に記載の光学
ガラス。
3. Light rays in the ultraviolet range and / or visible range are 2.
The optical glass according to claim 1 or 2, wherein the deterioration rate of the transmittance of a light beam having a wavelength of 450 nm is 3.0% or less when irradiated with irradiance of 2 W · cm -2 for 10 minutes.
【請求項4】紫外域および/または可視域の光線を2.
2W・cm-2の放射照度で10分間照射することによる
波長450nmの光線の透過率の劣化率が1.0%以下
であることを特徴とする請求項1または2に記載の光学
ガラス。
4. Light rays in the ultraviolet range and / or visible range are 2.
The optical glass according to claim 1 or 2, wherein the deterioration rate of the transmittance of a light beam having a wavelength of 450 nm is 1.0% or less after irradiation with irradiance of 2 W · cm -2 for 10 minutes.
【請求項5】400〜800nmの波長範囲における光
弾性定数(β)の絶対値が1.0×10-5nm/cm/
Pa以下であることを特徴とする請求項1、2、3また
は4に記載の光学ガラス。
5. The absolute value of the photoelastic constant (β) in the wavelength range of 400 to 800 nm is 1.0 × 10 −5 nm / cm /.
The optical glass according to claim 1, 2, 3 or 4, which is Pa or less.
【請求項6】質量%で、SiO2 18〜29%、Pb
O 66〜78%、TeO2 0.1〜3.5%、B2
3 0.1〜6%、Li2O 0.4〜5%を含有し、屈
折率(nd)が1.75〜1.90の範囲であることを
特徴とする請求項1、2、3、4または5に記載の光学
ガラス。
6. Mass%, SiO 2 18-29%, Pb
O 66-78%, TeO 2 0.1-3.5%, B 2 O
3. 0.1 to 6% and Li 2 O 0.4 to 5% are contained, and the refractive index (nd) is in the range of 1.75 to 1.90. The optical glass as described in 4 or 5.
【請求項7】さらに、質量%で、Na2O 0〜8%、
2O 0〜8%、ただし、Li2O+Na2O+K2
0.4〜10%、MgO 0〜5%、CaO 0〜5
%、SrO 0〜5%、BaO 0〜10%、ZnO
0〜5%、ただし、MgO+CaO+SrO+BaO+
ZnO 0〜10%、GeO2 0〜5%、Al23
〜3%、Nb25 0〜3%、ただし、GeO2+Al2
3+Nb25 0〜5%、As23 0〜1%および
Sb23 0〜1%を含有することを特徴とする請求項
6に記載の光学ガラス。
7. Further, 0 to 8% by mass of Na 2 O,
K 2 O 0-8%, provided that Li 2 O + Na 2 O + K 2 O
0.4-10%, MgO 0-5%, CaO 0-5
%, SrO 0-5%, BaO 0-10%, ZnO
0-5%, but MgO + CaO + SrO + BaO +
ZnO 0-10%, GeO 2 0-5%, Al 2 O 3 0
~ 3%, Nb 2 O 5 0-3%, provided that GeO 2 + Al 2
The optical glass according to claim 6, which contains O 3 + Nb 2 O 5 0 to 5%, As 2 O 3 0 to 1%, and Sb 2 O 3 0 to 1%.
【請求項8】質量%で、SiO2 18〜29%、Pb
O 66〜78%、TeO2 0.1〜3.5%、B2
3 0.1〜2%未満、Li2O 0.4〜5%、Na2
O 0〜8%、K2O 0〜8%、ただし、Li2O+N
2O+K2O 0.4〜10%、MgO 0〜5%、C
aO 0〜5%、SrO 0〜5%、BaO 0〜10
%、ZnO 0〜5%、ただし、MgO+CaO+Sr
O+BaO+ZnO 0〜10%、GeO2 0〜5
%、Al23 0〜3%、Nb25 0〜3%、ただ
し、GeO2+Al23+Nb25 0〜5%、As2
3 0〜1%およびSb23 0〜1%を含有し、屈折
率(nd)が1.75〜1.90の範囲であることを特
徴とする請求項1、2、3、4または5に記載の光学ガ
ラス。
8. SiO 2 18-29%, Pb in mass%
O 66-78%, TeO 2 0.1-3.5%, B 2 O
3 0.1 to less than 2 %, Li 2 O 0.4 to 5%, Na 2
O 0-8%, K 2 O 0-8%, but Li 2 O + N
a 2 O + K 2 O 0.4-10%, MgO 0-5%, C
aO 0-5%, SrO 0-5%, BaO 0-10
%, ZnO 0 to 5%, but MgO + CaO + Sr
O + BaO + ZnO 0-10%, GeO 2 0-5
%, Al 2 O 3 0 to 3%, Nb 2 O 5 0 to 3%, provided that GeO 2 + Al 2 O 3 + Nb 2 O 5 0 to 5%, As 2 O
30 to 1 % and Sb 2 O 3 0 to 1% are contained, and the refractive index (nd) is in the range of 1.75 to 1.90. 5. The optical glass according to item 5.
【請求項9】アッベ数(νd)が28未満であることを
特徴とする請求項1、2、3、4、5、6、7または8
に記載の光学ガラス。
9. The Abbe number (νd) is less than 28, which is preferably 1, 2, 3, 4, 5, 6, 7, or 8.
Optical glass according to.
JP2002140080A 2001-05-29 2002-05-15 Optical glass Expired - Lifetime JP4138366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002140080A JP4138366B2 (en) 2001-05-29 2002-05-15 Optical glass

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001161194 2001-05-29
JP2001-161194 2001-05-29
JP2002140080A JP4138366B2 (en) 2001-05-29 2002-05-15 Optical glass

Publications (2)

Publication Number Publication Date
JP2003048746A true JP2003048746A (en) 2003-02-21
JP4138366B2 JP4138366B2 (en) 2008-08-27

Family

ID=26615898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002140080A Expired - Lifetime JP4138366B2 (en) 2001-05-29 2002-05-15 Optical glass

Country Status (1)

Country Link
JP (1) JP4138366B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005154260A (en) * 2003-10-30 2005-06-16 Asahi Glass Co Ltd Optical glass and process for producing optical device
JP2008233547A (en) * 2007-03-20 2008-10-02 Hoya Corp Lens glass material for on-vehicle camera and lens for on-vehicle camera
JP2010105902A (en) * 2008-09-30 2010-05-13 Ohara Inc Optical glass and method for suppressing deterioration of spectral transmittance
WO2011052336A1 (en) * 2009-10-29 2011-05-05 日本山村硝子株式会社 Glass composition and conductor-forming composition using same
JP2013256446A (en) * 2013-09-09 2013-12-26 Hoya Corp Lens glass material for on-vehicle camera and lens for on-vehicle camera

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005154260A (en) * 2003-10-30 2005-06-16 Asahi Glass Co Ltd Optical glass and process for producing optical device
JP2008233547A (en) * 2007-03-20 2008-10-02 Hoya Corp Lens glass material for on-vehicle camera and lens for on-vehicle camera
JP2010105902A (en) * 2008-09-30 2010-05-13 Ohara Inc Optical glass and method for suppressing deterioration of spectral transmittance
WO2011052336A1 (en) * 2009-10-29 2011-05-05 日本山村硝子株式会社 Glass composition and conductor-forming composition using same
JP2013256446A (en) * 2013-09-09 2013-12-26 Hoya Corp Lens glass material for on-vehicle camera and lens for on-vehicle camera

Also Published As

Publication number Publication date
JP4138366B2 (en) 2008-08-27

Similar Documents

Publication Publication Date Title
WO2001072650A1 (en) Optical glass and optical element
WO2012046833A1 (en) Optical glass, preform material, and optical element
JP4671647B2 (en) Optical glass with small photoelastic constant
JP2003021701A (en) Optical glass and its usage
WO2011052687A1 (en) Optical glass, preform, and optical element
JP2010208906A (en) Substrate glass for optical device
WO2010126097A1 (en) Optical glass, optical element, and preform for precision press molding
US20050075234A1 (en) Optical glass
EP1262462B1 (en) Optical glass
JPS6287433A (en) Ultraviolet-transmission glass
JP3653669B2 (en) Optical glass
JP2005037651A (en) Optical glass for lens mounted in projector, its manufacturing method, lens mounted in projector, and projector
US20030147157A1 (en) Optical glass for prism, process for the production thereof, and optical part for prism
JP6812147B2 (en) Optical glass, optics blank, and optics
JP2024019356A (en) Optical glass and optical elements
JP4138366B2 (en) Optical glass
TWI598312B (en) Highly refractive optical glass
TW201837005A (en) Optical glass
JP7401236B2 (en) Optical glass and optical elements
JP3301984B2 (en) Low photoelastic constant glass and optical glass
JP6812148B2 (en) Optical glass, optics blank, and optics
WO1995021137A1 (en) Optical glass for polarizing optical systems, method of manufacturing the same, and polarizing beam splitter
JP2003292339A (en) Optical glass for prism, method for producing the same, and optical component for prism
JPH0948631A (en) Optical glass for polarizing optical system
JP3321414B2 (en) Light polarization control element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080605

R150 Certificate of patent or registration of utility model

Ref document number: 4138366

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term