JP2003048405A - Bearing device for driving wheel - Google Patents

Bearing device for driving wheel

Info

Publication number
JP2003048405A
JP2003048405A JP2001170974A JP2001170974A JP2003048405A JP 2003048405 A JP2003048405 A JP 2003048405A JP 2001170974 A JP2001170974 A JP 2001170974A JP 2001170974 A JP2001170974 A JP 2001170974A JP 2003048405 A JP2003048405 A JP 2003048405A
Authority
JP
Japan
Prior art keywords
bearing device
wheel
hub wheel
hub
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001170974A
Other languages
Japanese (ja)
Inventor
Takayasu Takubo
孝康 田窪
Tateo Adachi
健郎 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2001170974A priority Critical patent/JP2003048405A/en
Publication of JP2003048405A publication Critical patent/JP2003048405A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To heighten the fatigue resistance of a hub ring under the rotating bending condition. SOLUTION: An inner member 20 comprises a hub ring 30 having a wheel fitting flange 31 and an inner ring 40 fitted to a small diameter stepped part 32 of the hub ring 30, and a rolling surface 21 on the outboard side and a rolling surface 22 on the inboard side are formed on the outer circumference of the hub ring 30 and the outer circumference of the inner ring 40, respectively. The maximum principal stress generated in a base part of the small diameter stepped part 32 of the hub ring 30 is operated under the rotating bending condition equivalent to that in a practical application, and the shape of the inner member 20 is controlled so that the operated value reaches the regulated value or under.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、自動車等の駆動車
輪(FR車の後輪、FF車の前輪、4WD車の全輪)を
車体に対して回転自在に支持するための軸受装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bearing device for rotatably supporting drive wheels of an automobile or the like (rear wheels of FR vehicles, front wheels of FF vehicles, all wheels of 4WD vehicles) with respect to a vehicle body. Is.

【0002】[0002]

【従来の技術】図5に示す駆動車輪用軸受装置は、ハブ
輪3と複列の軸受Bとをユニット化したもので、軸受B
は、外方部材1の内周に形成した複列の転走面1aと、
内方部材2の外周に形成した複列の転走面2a,2bと
の間に複列の転動体5(図示例ではボール)を組み込ん
で構成される。ハブ輪3の一端には、他所よりも小径で
かつ円筒状の小径段部3aが形成される。この小径段部
3aの外周に内輪4を圧入し、内輪4端面をハブ輪3の
肩面3bと突き合わせることにより、複列の転走面2
a,2bを有する内方部材2が構成される。図示例の軸
受装置は、内方部材2の複列の転走面のうちの一方2b
をハブ輪3の外周に直接形成し、他方2aを内輪4の外
周に形成したものである。
2. Description of the Related Art A drive wheel bearing device shown in FIG. 5 is a unit in which a hub wheel 3 and a double row bearing B are unitized.
Is a double row rolling surface 1a formed on the inner periphery of the outer member 1,
A double row rolling element 5 (ball in the illustrated example) is incorporated between the double row rolling surfaces 2a and 2b formed on the outer periphery of the inner member 2. At one end of the hub wheel 3, a cylindrical small-diameter step portion 3a having a smaller diameter than the other parts is formed. The inner race 4 is press-fitted onto the outer circumference of the small-diameter step portion 3a, and the end face of the inner race 4 is brought into abutment with the shoulder surface 3b of the hub race 3, whereby the double row rolling surface
An inner member 2 having a and 2b is constructed. The bearing device of the illustrated example has one of two rows of rolling surfaces of the inner member 2 2b.
Is formed directly on the outer circumference of the hub wheel 3, and the other 2a is formed on the outer circumference of the inner ring 4.

【0003】ハブ輪3と内輪4の突き合わせ位置X’
は、軸受中心O’(複列のボール中心間の軸方向中心)
上、あるいはこれよりもアウトボード側(図面左側)に
ある。
Butt position X'of the hub wheel 3 and the inner wheel 4
Is the bearing center O '(axial center between the double-row ball centers)
Above or on the outboard side (left side of the drawing).

【0004】[0004]

【発明が解決しようとする課題】従来、上記駆動車輪用
軸受装置の設計は、主として、繰返し荷重による転走面
の転がり疲労寿命や静最大荷重下での転動面強度を検討
することにより行っている。
Conventionally, the design of the above-mentioned bearing device for a drive wheel has been carried out mainly by examining the rolling contact fatigue life of the rolling contact surface under repeated load and the rolling contact surface strength under static maximum load. ing.

【0005】しかしながら、当該軸受装置の実際の使用
中は、車両の旋回等に伴い、横方向の荷重による垂直曲
げモーメントが作用するので、ハブ輪は大きなモーメン
ト荷重を繰返し受けることになる。このモーメント荷重
の繰返し負荷は、軸受装置の耐疲労性が大きく影響を及
ぼすと考えられるが、従来では、この点が車輪軸受装置
の設計に十分に反映されておらず、改善の余地がある。
However, during actual use of the bearing device, a vertical bending moment due to a lateral load acts as the vehicle turns, and the hub wheel is repeatedly subjected to a large moment load. It is considered that the repeated load of the moment load has a great influence on the fatigue resistance of the bearing device, but conventionally, this point has not been sufficiently reflected in the design of the wheel bearing device, and there is room for improvement.

【0006】本発明者は、モーメント荷重の繰返し負荷
がハブ輪の耐疲労性に与える影響を確認するため、駆動
車輪用軸受装置をダミーナックルに取り付けた状態で、
車両旋回時(旋回条件μ=0.7G)に相当するモーメ
ント荷重を軸受装置に与えて回転曲げ疲労試験を行っ
た。この試験では、ホイールセンタ上に9.6kNのラ
ジアル荷重を作用させる一方、軸芯部に6.7kNのア
キシアル荷重を付与し、この状態で半径368mmのタ
イヤを回転数400r/minで回転させた。軸受中心
O’は、ホイールセンタよりもインボード側に3.0m
mオフセットさせている。
In order to confirm the influence of the repeated load of the moment load on the fatigue resistance of the hub wheel, the inventor of the present invention attached the drive wheel bearing device to the dummy knuckle,
A rotary bending fatigue test was performed by applying a moment load corresponding to the turning of the vehicle (turning condition μ = 0.7 G) to the bearing device. In this test, a radial load of 9.6 kN was applied on the wheel center, an axial load of 6.7 kN was applied to the shaft core, and a tire with a radius of 368 mm was rotated at a rotation speed of 400 r / min in this state. . Bearing center O'is 3.0m on the inboard side of the wheel center
m offset.

【0007】この試験の結果、供試軸受装置では、ハブ
輪が46.9〜50.5h(112.6〜121.2万
回転)で内周のセレーション部を起点として小径段部3
2の基部において輪断した。ここで、輪断後のハブ輪3
や内輪4、あるいは外方部材1の転走面2a,2b,1
aを観察してもフレーキング等の発生は認められなかっ
た。従って、ハブ輪は、軸受の転がり疲労寿命に達する
より以前に疲労破断したと考えられ、これよりモーメン
ト荷重の繰返し負荷が軸受装置の耐久性に大きな影響を
及ぼすことが判明した。
As a result of this test, in the test bearing device, the hub wheel is 46.9 to 50.5 h (112.6 to 1212,000 rotations), and the small diameter stepped portion 3 starts from the inner serration portion.
Broken at the base of 2. Here, the hub wheel 3 after the wheel break
Or inner race 4, or the rolling surfaces 2a, 2b, 1 of the outer member 1
The occurrence of flaking and the like was not observed even when a was observed. Therefore, it is considered that the hub wheel is fatigue-ruptured before the rolling fatigue life of the bearing is reached, and it has been found that the repeated load of the moment load has a great influence on the durability of the bearing device.

【0008】一方、実使用時のモーメント荷重を負荷し
た状態で、内方部材の応力分布を有限要素解析したとこ
ろ、ハブ輪の小径段部の基部付近で最大主応力が特に大
きく、この部分がハブ輪の最弱部になることが判明し
た。
On the other hand, when the finite element analysis of the stress distribution of the inner member is carried out under the condition that the moment load is actually applied, the maximum principal stress is particularly large near the base of the small diameter step of the hub wheel, and this part is It turned out to be the weakest part of the hub wheel.

【0009】本発明は、以上の知見に基づいてなされた
もので、過大なモーメント荷重が負荷される条件下での
ハブ輪の耐疲労性を高めた駆動車輪用軸受装置の提供を
目的とするものである。
The present invention has been made based on the above findings, and an object of the present invention is to provide a drive wheel bearing device in which the fatigue resistance of the hub wheel is enhanced under the condition that an excessive moment load is applied. It is a thing.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、本発明では、内周に複列の転走面を有する外方部材
と、外方部材の転走面とそれぞれ対向する複列の転走
面、および車輪取付けフランジを外周に、トルク伝達用
の歯部を内周にそれぞれ有する内方部材と、対向する転
走面間に組み込まれた複列の転動体とを備え、上記内方
部材が、車輪取り付けフランジおよび小径段部を一体に
有するハブ輪と、このハブ輪の小径段部に嵌合され、複
列の転走面のうち、少なくともインボート側の転走面を
有する内輪とからなる駆動車輪用軸受装置において、実
使用時に相当する回転曲げ条件下で、上記ハブ輪の小径
段部の基部に生じる最大主応力を演算し、この演算値が
規定値以下となるよう内方部材の形状を管理した。
In order to achieve the above object, in the present invention, an outer member having a double row rolling contact surface on the inner periphery and a double row member facing the rolling contact surface of the outer member respectively. An inner member having a rolling surface, a wheel mounting flange on the outer circumference, and tooth portions for torque transmission on the inner circumference, and a double row rolling element incorporated between opposing rolling surfaces. A square member is integrally fitted with a wheel mounting flange and a small-diameter step portion, and is fitted to the small-diameter step portion of the hub wheel, and has at least an inboard side rolling surface of the double-row rolling surfaces. In a drive wheel bearing device including an inner ring, the maximum principal stress generated at the base of the small-diameter stepped portion of the hub wheel is calculated under the rotating bending condition corresponding to the time of actual use, and the calculated value becomes equal to or less than the specified value. The shape of the inner member was controlled.

【0011】これにより、軸受の回転中にモーメント荷
重を与えた、いわゆる回転曲げ条件下で最弱部となる小
径段部の基部で応力が緩和されるので、当該基部の強度
アップを図ることができ、ハブ輪の耐疲労性のさらなる
向上を図ることができる。ここで、「実使用時に相当す
る回転曲げ条件」とは、0.5G〜0.8Gの旋回条件
で旋回する際にハブ輪が受けるモーメント荷重を意味す
る。
As a result, the stress is relieved at the base of the small-diameter stepped portion which is the weakest portion under the so-called rotational bending condition in which a moment load is applied during the rotation of the bearing, so that the strength of the base can be increased. Therefore, the fatigue resistance of the hub wheel can be further improved. Here, the "rotational bending condition corresponding to the time of actual use" means the moment load that the hub wheel receives when turning under the turning condition of 0.5G to 0.8G.

【0012】本発明者が回転曲げ疲労試験を行った結
果、0.7Gの旋回条件では、基部の最大主応力が30
0MPaとなるよう内方部材を設計すれば、ハブ輪の疲
労破断を確実に防止できることが判明した。従って、規
定値を300MPaに設定するのが望ましい。
As a result of the rotating bending fatigue test conducted by the inventor of the present invention, the maximum principal stress of the base is 30 under the turning condition of 0.7 G.
It has been found that the fatigue fracture of the hub wheel can be reliably prevented by designing the inner member to have 0 MPa. Therefore, it is desirable to set the specified value to 300 MPa.

【0013】なお、この規定値300MPaは、ハブ輪
の一般的素材である炭素鋼の両振り疲労限度とほぼ等し
く、従って、上記規定値は、ハブ輪の素材の両振り疲労
限度に応じて定めることができると考えられる。
The specified value of 300 MPa is almost equal to the swing fatigue limit of carbon steel, which is a general material for hub wheels, and therefore the specified value is determined according to the swing fatigue limit of the material of the hub wheel. It is considered possible.

【0014】ハブ輪外周のうち、少なくとも小径段部の
基部を含む領域に熱処理による表面硬化層を形成すれ
ば、最弱部となる上記基部のさらなる強度アップを図る
ことができる。熱処理後の表面固さを58HRc以上と
する場合、両振り疲れ限度は生材のほぼ2倍になること
が経験的に知られているので、このような熱処理を施し
た場合の上記規定値は、600MPaに設定するのが望
ましい。
By forming a surface-hardened layer by heat treatment in a region including at least the base of the small-diameter step portion on the outer periphery of the hub wheel, it is possible to further increase the strength of the weakest base. It is empirically known that when the surface hardness after heat treatment is set to 58 HRc or more, the double swing fatigue limit is almost twice as much as that of raw material. , 600 MPa is desirable.

【0015】ハブ輪と内輪は軸方向で突き合わせて配置
される。この際、両部材の突き合わせ位置を軸受中心
(複列の転動体中心の軸方向中心)よりもインボード側
にオフセットすると、小径段部の長さが短くなり、ハブ
輪の厚肉部分の容積が増すので、小径段部の基部付近の
応力を緩和してハブ輪の耐疲労性を向上させることがで
きる。
The hub wheel and the inner wheel are arranged to face each other in the axial direction. At this time, if the abutting position of both members is offset toward the inboard side from the bearing center (axial center of the double row rolling element center), the length of the small diameter step becomes shorter and the volume of the thick part of the hub ring becomes smaller. Therefore, the stress near the base portion of the small-diameter step portion can be relaxed, and the fatigue resistance of the hub wheel can be improved.

【0016】具体的には、複列の転動体の中心距離を
P、ハブ輪および内輪の突き合わせ位置とインボード側
の転動体の中心との間の距離をL、インボード側の転動
体直径をDとして、L≦0.4P かつL≦Dに設定す
るのが望ましい。
Specifically, the center distance of the double row rolling elements is P, the distance between the abutment position of the hub ring and the inner ring and the center of the rolling element on the inboard side is L, and the rolling element diameter on the inboard side is L. It is desirable to set L ≦ 0.4P and L ≦ D as D.

【0017】また、ハブ輪のうち、肩面と小径段部の外
周との隅部を、研削面からなる円弧面で形成しても同様
に基部の応力を緩和し、ハブ輪の耐疲労性を高めること
ができる。従来では、この隅部に凹状の研削用ヌスミを
形成していたため、切欠き効果により応力集中が生じや
すくなっていたが、上記構成であればこの応力集中が緩
和される。
Further, in the hub wheel, even if the corner portion between the shoulder surface and the outer periphery of the small-diameter step portion is formed by an arc surface formed of a ground surface, the stress of the base portion is similarly relaxed, and the fatigue resistance of the hub wheel is improved. Can be increased. In the past, since the concave shape of the grinding gutter was formed in this corner, stress concentration was likely to occur due to the notch effect, but with the above configuration, this stress concentration is alleviated.

【0018】上述のように、内方部材の複列の転走面の
うち、インボード側の転走面は内輪の外周に形成される
が、残りのアウトボード側の転走面はハブ輪の外周に形
成することができる。この他、ハブ輪の小径段部に二つ
の内輪を突き合わせ状態で嵌合し、双方の内輪の外周に
それぞれ転走面を形成することもできる。
As described above, among the double-row rolling surfaces of the inner member, the inboard-side rolling surface is formed on the outer periphery of the inner ring, while the remaining outboard-side rolling surfaces are hub wheels. Can be formed on the outer periphery of. Besides, it is also possible to fit two inner rings in a small diameter stepped portion of the hub ring in a butted state, and form rolling surfaces on the outer circumferences of both inner rings.

【0019】[0019]

【発明の実施の形態】以下、本発明の実施形態を図1〜
図4に基づいて説明する。なお、以下の説明において
は、車両に組み付けた状態で車両の外側寄りとなる側を
アウトボード側といい、車両の中央寄りとなる側をイン
ボード側という。図1〜図4においては、左側がアウト
ボード側となり、右側がインボード側となる。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to FIGS.
It will be described with reference to FIG. In the following description, the side closer to the outer side of the vehicle when assembled to the vehicle is referred to as the outboard side, and the side closer to the center of the vehicle is referred to as the inboard side. 1 to 4, the left side is the outboard side and the right side is the inboard side.

【0020】図1は、本発明にかかる駆動車輪用軸受装
置の断面図で、外方部材10と内方部材20との間に複
列の転動体50を所定の接触角をもって組み込み、内方
部材20を回転自在に支持する構造である。複列の転動
体50は保持器60で円周方向等間隔に保持され、外方
部材10および内方部材20の複列の転走面11,2
1,22の間に組み込まれている。ここでは、転動体5
0としてボールを使用する場合を例示してあるが、円す
いころを使用することもできる。
FIG. 1 is a cross-sectional view of a drive wheel bearing device according to the present invention. A double row rolling element 50 is installed between an outer member 10 and an inner member 20 with a predetermined contact angle to form an inner member. This is a structure for rotatably supporting the member 20. The double row rolling elements 50 are held at equal intervals in the circumferential direction by a cage 60, and the double row rolling surfaces 11, 2 of the outer member 10 and the inner member 20 are held.
It is installed between 1 and 22. Here, the rolling element 5
Although the case where a ball is used as 0 is illustrated, a tapered roller can also be used.

【0021】外方部材10は、内周に複列の転走面11
を備え、外周に車体側の取り付け部材、例えば懸架装置
から延びるナックルに取り付けるための車体取り付けフ
ランジ12を一体に備える。外方部材10の両端開口部
にシール13,14が装着され、内部に充填したグリー
スの漏洩並びに外部からの水や異物の侵入を防止するよ
うになっている。
The outer member 10 has a double row rolling surface 11 on the inner circumference.
And a vehicle body mounting flange 12 for mounting on a vehicle body side mounting member, for example, a knuckle extending from a suspension device. Seals 13 and 14 are attached to the openings at both ends of the outer member 10 so as to prevent leakage of the grease filled inside and intrusion of water or foreign matter from the outside.

【0022】内方部材20は、ハブ輪30とその外周に
嵌合した内輪40とで構成される。ハブ輪30の外周に
は、車輪を取り付けるための車輪取り付けフランジ31
が一体に形成され、このフランジ31に植え込まれたハ
ブボルト35により、図示しない駆動車輪がブレーキロ
ータを介して車輪取り付けフランジ31に固定される。
ハブ輪30のインボード側の外周には小径段部32があ
り、この小径段部32の外周に内輪40が圧入されてい
る。内方部材20の転走面21,22のうち、インボー
ド側の転走面22は内輪40の外周に形成され、アウト
ボード側の転走面21は、ハブ輪30外周に直接形成さ
れている。ハブ輪30の軸芯部には、後述する等速自在
継手70の外側継手部材72を取り付けるための貫通孔
が形成されている。
The inner member 20 is composed of a hub wheel 30 and an inner ring 40 fitted to the outer circumference thereof. A wheel mounting flange 31 for mounting a wheel is provided on the outer periphery of the hub wheel 30.
Is integrally formed, and the hub bolt 35 embedded in the flange 31 fixes the drive wheel (not shown) to the wheel mounting flange 31 via the brake rotor.
A small-diameter step portion 32 is provided on the outer circumference of the hub wheel 30 on the inboard side, and the inner ring 40 is press-fitted to the outer circumference of the small-diameter step portion 32. Of the rolling surfaces 21, 22 of the inner member 20, the rolling surface 22 on the inboard side is formed on the outer circumference of the inner ring 40, and the rolling surface 21 on the outboard side is directly formed on the outer circumference of the hub wheel 30. There is. A through hole for attaching an outer joint member 72 of a constant velocity universal joint 70, which will be described later, is formed in the shaft core portion of the hub wheel 30.

【0023】ハブ輪30は、S53C等の炭素鋼を使用
して鍛造加工により形成され、そのうち、図2の散点模
様で表された部分、すなわち、車輪取り付けフランジ3
1の基端部付近から始まって、アウトボード側の転走面
21、内輪40端面と当接した肩面38、および小径段
部32の外周にかけての領域には、熱処理によってHv
510〜900程度の表面効果層が形成される。焼入れ
方法は、高周波焼入れ、浸炭焼入れ、レーザ焼入れ等の
周知の技術から選択することができるが、上述の焼入れ
パターンで熱処理を施す場合には、高周波焼入れが適し
ている。図示は省略するが、熱処理は内輪40の全表面
にも施される。この焼入れは高周波焼入れによって行う
他、いわゆるズブ焼入れにより芯部まで硬化させてもよ
い。
The hub wheel 30 is formed by forging using carbon steel such as S53C, of which the portion shown by the dotted pattern in FIG. 2, that is, the wheel mounting flange 3
Starting from the vicinity of the base end portion of 1, the rolling surface 21 on the outboard side, the shoulder surface 38 in contact with the end surface of the inner ring 40, and the outer periphery of the small-diameter step portion 32 are heat-treated in a region Hv.
A surface effect layer of about 510 to 900 is formed. The quenching method can be selected from known techniques such as induction quenching, carburizing quenching, laser quenching, etc., but when the heat treatment is carried out in the above quenching pattern, induction quenching is suitable. Although illustration is omitted, the heat treatment is also applied to the entire surface of the inner ring 40. This quenching may be performed by induction quenching, or the core may be hardened by so-called zub quenching.

【0024】この軸受装置には、図1に示すように、等
速自在継手70が組み付けられる。等速自在継手70
は、ドライブシャフトからのトルクを内側継手部材74
およびトルク伝達ボール75を介して外側継手部材72
に伝達する。外側継手部材72は、一端(アウトボード
側)を閉じると共に、他端(インボード側)を開口した
カップ状のマウス部72aと軸状のステム部72bとを
備え、マウス部72aの内周部には複数のトラック溝7
1が形成されている。このトラック溝71と内側継手部
材74の外周部に設けた複数のトラック溝73との協働
で複数のボールトラックが形成され、各ボールトラック
にトルク伝達ボール75が配置される。各トルク伝達ボ
ール75は、ケージ76によって二軸間の二等分面上に
保持されている。
As shown in FIG. 1, a constant velocity universal joint 70 is assembled to this bearing device. Constant velocity universal joint 70
Applies torque from the drive shaft to the inner joint member 74
And the outer joint member 72 via the torque transmission balls 75.
Communicate to. The outer joint member 72 includes a cup-shaped mouth portion 72a having one end (outboard side) closed and the other end (inboard side) opened, and a shaft-shaped stem portion 72b, and an inner peripheral portion of the mouth portion 72a. Multiple track grooves 7
1 is formed. A plurality of ball tracks are formed by the cooperation of the track grooves 71 and a plurality of track grooves 73 provided on the outer peripheral portion of the inner joint member 74, and the torque transmitting balls 75 are arranged in the respective ball tracks. Each torque transmission ball 75 is held by a cage 76 on the bisecting plane between the two shafts.

【0025】ハブ輪30の内周には、外側継手部材72
のステム部72bが圧入される。ハブ輪30とステム部
72bは、軸方向に延びる歯部同士の噛み合いでトルク
伝達を行うトルク伝達手段を介してトルク伝達可能に結
合され、図示例では、ハブ輪内周のトルク伝達用歯部と
してセレーション81を、ステム部72b外周のトルク
伝達用歯部としてセレーション軸82を例示している
(この他、スプラインで両者を結合することもでき
る)。
An outer joint member 72 is provided on the inner circumference of the hub wheel 30.
The stem portion 72b is press-fitted. The hub wheel 30 and the stem portion 72b are coupled so that torque can be transmitted through a torque transmitting means for transmitting torque by meshing of tooth portions extending in the axial direction. As an example, the serration 81 is illustrated, and the serration shaft 82 is illustrated as a torque transmitting tooth portion on the outer periphery of the stem portion 72b (in addition, both can be connected by a spline).

【0026】外側継手部材72の肩部72cを内輪40
のインボード側の端面に押し当て、さらにステム部72
bの軸端にナット83を螺合して締め付けることによ
り、内輪40のアウトボード側の端面がハブ輪30の肩
面38に当接し、内輪40の位置決めが行われる。内輪
40の位置決めは、ハブ輪30のインボード側の端部を
外径側に加締めることによっても行うことができる。
The shoulder portion 72c of the outer joint member 72 is connected to the inner ring 40.
Press on the end surface of the inboard side of the
By screwing and tightening the nut 83 on the shaft end of b, the end surface of the inner ring 40 on the outboard side contacts the shoulder surface 38 of the hub wheel 30, and the inner ring 40 is positioned. Positioning of the inner ring 40 can also be performed by swaging the inboard side end of the hub ring 30 to the outer diameter side.

【0027】上述のように、実使用時に相当する回転曲
げ条件下では、ハブ輪30の小径段部32の基部(肩面
38およびその周辺を含む)が最弱部となる。本発明で
は、この基部で生じる応力を緩和するため、上記実使用
時の回転曲げ条件下で当該基部に生じる最大主応力を算
出し、この算出値が規定値よりも小さくなるように内方
部材20の形状を管理することとした。
As described above, the base portion (including the shoulder surface 38 and its periphery) of the small-diameter step portion 32 of the hub wheel 30 is the weakest portion under the rotary bending condition corresponding to the actual use. In the present invention, in order to relieve the stress generated in the base portion, the maximum principal stress generated in the base portion under the rotating bending condition in actual use is calculated, and the inner member is adjusted so that the calculated value becomes smaller than the specified value. It was decided to manage 20 shapes.

【0028】図1は、この形状管理の一例で、従来では
軸受中心O’(図3(B)参照)上、もしくはこれより
もアウトボード側にあったハブ輪30と内輪40の突き
合わせ位置Xを、軸受中心Oよりもインボード側にオフ
セットしたものである(同図(A)参照)。この構成で
あれば、小径段部32の軸方向長さが従来品よりも減少
するため、ハブ輪30の厚肉部分の容積が従来品よりも
増加する。従って、小径段部32の基部付近で最大主応
力が減少し、ハブ輪30の耐疲労性が改善される。
FIG. 1 shows an example of this shape management. In the conventional case, the abutment position X of the hub ring 30 and the inner ring 40 on the bearing center O '(see FIG. 3B) or on the outboard side relative to this is X. Is offset toward the inboard side with respect to the bearing center O (see FIG. 7A). With this configuration, the axial length of the small-diameter step portion 32 is smaller than that of the conventional product, and therefore the volume of the thick portion of the hub wheel 30 is larger than that of the conventional product. Therefore, the maximum principal stress is reduced near the base of the small-diameter step portion 32, and the fatigue resistance of the hub wheel 30 is improved.

【0029】具体的には、図2に示すように、複列の転
動体50の中心間距離をP、ハブ輪30および内輪40
の突き合わせ位置Xとインボード側の転動体50の中心
との間の距離をL、インボード側の転動体直径をDとし
て、L≦0.4P かつL≦Dに設定するのが望まし
い。Lが0.4Pよりも大きい場合、およびLが転動体
直径Dよりも大きい場合の何れでも、小径段部32が長
くなって上述した効果が得られない。なお、インボード
側の転動体中心は、ハブ輪30内周のセレーション81
のインボード側端部よりもアウトボード側に配設するの
が望ましい(E≧0)。
Specifically, as shown in FIG. 2, the distance between the centers of the double-row rolling elements 50 is P, the hub wheel 30 and the inner ring 40.
It is desirable to set L ≦ 0.4P and L ≦ D, where L is the distance between the abutting position X and the center of the rolling element 50 on the inboard side and D is the diameter of the rolling element on the inboard side. In either case where L is larger than 0.4P or when L is larger than the rolling element diameter D, the small diameter step portion 32 becomes long and the above-described effect cannot be obtained. The center of the rolling element on the inboard side is the serration 81 on the inner circumference of the hub wheel 30.
It is desirable to dispose it on the outboard side rather than the inboard side end of (E ≧ 0).

【0030】上記構成による応力緩和効果を確認するた
め、実使用時の回転曲げ条件(旋回条件μ=0.7G)
に相当するモーメント荷重を内方部材20に負荷し、そ
の時の内方部材20の応力分布を有限要素解析により求
めた。解析モデルは、図1と同様に等速自在継手70と
一体化した軸受装置で、この解析モデルにおいては、ハ
ブ輪30と内輪40の間の締め代を25μm、ナット8
3の締め付けによるハブ輪30の変形量を20μmに設
定している。ハブ輪30内周のセレーション83は円筒
に置き換え、これに嵌合する外側継手部材72との間の
締め代は0に設定した。
In order to confirm the stress relaxation effect of the above structure, the rotary bending condition (rotation condition μ = 0.7 G) during actual use
Was applied to the inner member 20 and the stress distribution of the inner member 20 at that time was obtained by finite element analysis. The analysis model is a bearing device integrated with the constant velocity universal joint 70 as in FIG. 1. In this analysis model, the tightening margin between the hub wheel 30 and the inner ring 40 is 25 μm, and the nut 8
The amount of deformation of the hub wheel 30 due to the tightening of No. 3 is set to 20 μm. The serration 83 on the inner circumference of the hub wheel 30 was replaced with a cylinder, and the interference between the serration 83 and the outer joint member 72 fitted to this was set to zero.

【0031】解析モデルのヤング率は20.78×10
4MPa、ポアソン比は0.3に設定し、拘束条件とし
て、ハブボルト35のボルト孔中心をXYZ方向に完全
拘束した。荷重条件は、ワッシャ座面位置84に20μ
mの変位を与えた状態で、0.7G旋回条件下での転動
体荷重を相当節点に集中荷重で負荷した。
The Young's modulus of the analytical model is 20.78 × 10.
4 MPa, Poisson's ratio was set to 0.3, and as a constraint condition, the center of the bolt hole of the hub bolt 35 was completely restrained in the XYZ directions. The load condition is 20μ at the washer seat surface position 84.
With the displacement of m, the rolling element load under the 0.7 G turning condition was applied as a concentrated load to the corresponding nodes.

【0032】解析の結果、図3(A)に示すように内輪
40の幅aを17mmとした本発明品では、ハブ輪30
の肩面38で最大主応力が292MPaとなった。これ
に対し、同図(B)に示すように、内輪4の幅21mm
とした従来品を同条件で解析すると、肩面3bの最大主
応力が374MPaとなり、本発明による応力の緩和効
果が実証された。
As a result of the analysis, as shown in FIG. 3 (A), in the case of the product of the present invention in which the width a of the inner ring 40 is 17 mm, the hub ring 30
The maximum principal stress was 292 MPa at the shoulder surface 38. On the other hand, as shown in FIG.
When the conventional product was analyzed under the same conditions, the maximum principal stress of the shoulder surface 3b was 374 MPa, demonstrating the stress relaxation effect of the present invention.

【0033】次に、本発明品をダミーナックルに取り付
け、段落[0006]と同様の条件で回転曲げ疲労試験
を行ったが、ハブ輪30の輪断等は生じず、軸受の転が
り疲労寿命以上の高い耐疲労性を有することが確認され
た。以上から、0.7Gの旋回条件では、上記規定値を
300MPaに設定するのが望ましい。
Next, the product of the present invention was attached to a dummy knuckle and a rotary bending fatigue test was conducted under the same conditions as in paragraph [0006]. However, the hub ring 30 was not broken, and the rolling fatigue life of the bearing was longer than that. It was confirmed to have high fatigue resistance. From the above, it is desirable to set the specified value to 300 MPa under the turning condition of 0.7 G.

【0034】ところで、上記最大主応力292MPa
は、ハブ輪素材である炭素鋼の両振り疲れ限度にほぼ一
致する。従って、上記規定値は、素材の両振り疲れ限度
に基づいて増減することができる。例えば、炭素鋼を未
熱処理の生の状態で使用する場合、両振り疲れ限度は約
300MPaとなるが、小径段部32の基部を含めて熱
処理を行い、表面硬さ58HRcまで硬化させると、両
振り疲れ限度が二倍程度になることが経験的に知られて
いるので、この場合の上記規定値は600MPaに設定
する。
By the way, the maximum principal stress is 292 MPa.
Is approximately equal to the double fatigue limit of carbon steel, which is the material of the hub wheel. Therefore, the specified value can be increased or decreased based on the double swing fatigue limit of the material. For example, when carbon steel is used in an unheated raw state, the swing fatigue limit is about 300 MPa, but when heat treatment is performed including the base of the small diameter step portion 32 to harden it to a surface hardness of 58 HRc, Since it is empirically known that the swing fatigue limit becomes about twice, the specified value in this case is set to 600 MPa.

【0035】この他、上記形状管理として、図4に示す
ように、内輪40の端面と突き合わせたハブ輪30の肩
面38と小径段部32の外周との隅部39を、研削面か
らなる円弧面90で形成することもできる。従来では、
図中の破線で示すように、当該隅部39の研削用のヌス
ミ91を鍛造や切削で形成していたが、本発明では、こ
のヌスミ91を廃して図中の実線で示すように、隅部3
9を肩面38と小径段部32外周とに滑らかにつながる
円弧面90で形成した。この円弧面90は、肩面38お
よび小径段部32外周と同時に研削することによって仕
上げられる。これにより、ヌスミ91を形成する場合に
比べ、切り欠き効果による応力集中が緩和されるので、
小径段部32の基部での最大主応力が緩和され、回転曲
げ条件下でのハブ輪の耐疲労性を向上させることが可能
となる。
In addition to this, as shown in FIG. 4, for the above-mentioned shape management, a corner 39 between the shoulder surface 38 of the hub wheel 30 and the outer circumference of the small-diameter step portion 32, which are abutted with the end surface of the inner ring 40, is made of a ground surface. It can also be formed by an arcuate surface 90. Traditionally,
As shown by the broken line in the figure, the nose 91 for grinding the corner 39 was formed by forging or cutting, but in the present invention, the nose 91 is eliminated and the corner 91 is shown by the solid line in the figure. Part 3
9 is formed by an arcuate surface 90 smoothly connected to the shoulder surface 38 and the outer circumference of the small-diameter step portion 32. The arcuate surface 90 is finished by grinding the shoulder surface 38 and the outer circumference of the small-diameter step portion 32 at the same time. As a result, stress concentration due to the notch effect is relaxed as compared with the case where the slime 91 is formed.
The maximum principal stress at the base of the small-diameter step portion 32 is relaxed, and the fatigue resistance of the hub wheel under rotary bending conditions can be improved.

【0036】応力緩和効果は、円弧面90の曲率半径が
大きいほど(曲率が小さいほど)高まるので、円弧面9
0のR寸法はできるだけ大きくするのが望ましい。この
場合、ハブ輪30と内輪40の突き合わせ面積の減少を
抑制するため、内輪40外周のアウトボード側の端部の
面取り92は最小限に抑えるのが好ましい。
The stress relaxation effect increases as the radius of curvature of the arc surface 90 increases (the curvature decreases).
It is desirable that the R dimension of 0 be as large as possible. In this case, it is preferable to minimize the chamfer 92 at the end portion of the outer periphery of the inner ring 40 on the outboard side in order to suppress the reduction of the abutting area of the hub ring 30 and the inner ring 40.

【0037】[0037]

【発明の効果】以上のように、本発明では、実使用時に
相当する回転曲げ条件下でハブ輪の小径段部の基部が最
弱部になるという新たな知見に基づき、この基部の最大
主応力を規定値以下に抑えている。従って、車両の旋回
等により高いモーメント荷重が負荷される条件下でも、
ハブ輪に高い耐疲労性を確保することができ、高い耐久
寿命を有する駆動車輪用軸受装置の提供が可能となる。
As described above, according to the present invention, based on the new finding that the base of the small-diameter stepped portion of the hub wheel becomes the weakest part under the rotating bending condition corresponding to the actual use, the maximum main part of the base is obtained. The stress is kept below the specified value. Therefore, even under the condition that a high moment load is applied due to turning of the vehicle,
It is possible to ensure high fatigue resistance of the hub wheel, and it is possible to provide a drive wheel bearing device having a long durability life.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる駆動車輪用軸受装置の断面図で
ある。
FIG. 1 is a cross-sectional view of a drive wheel bearing device according to the present invention.

【図2】等速自在継手の組み付け前の車輪軸受装置の断
面図である。
FIG. 2 is a cross-sectional view of the wheel bearing device before the constant velocity universal joint is assembled.

【図3】上記車輪軸受装置の内方部材を示す断面図で、
(A)図は本発明品を、(B)図は従来品を表す。
FIG. 3 is a cross-sectional view showing an inner member of the wheel bearing device,
(A) shows the product of the present invention, and (B) shows the conventional product.

【図4】ハブ輪の基部付近の拡大断面図である。FIG. 4 is an enlarged cross-sectional view near the base of the hub wheel.

【図5】従来の駆動車輪用車輪軸受装置の断面図であ
る。
FIG. 5 is a cross-sectional view of a conventional wheel bearing device for driving wheels.

【符号の説明】[Explanation of symbols]

10 外方部材 11 転走面 12 車体取り付けフランジ 13 シール 14 シール 20 内方部材 21 転走面(アウトボード側) 22 転走面(インボード側) 30 ハブ輪 31 車輪取り付けフランジ 32 小径段部 35 ハブボルト 38 肩面 39 隅部 40 内輪 50 転動体 60 保持器 70 等速自在継手 71 トラック溝 72 外側継手部材 72a マウス部 72b ステム部 72c 肩部 73 トラック溝 74 内側継手部材 75 トルク伝達ボール 76 保持器 81 セレーション(トルク伝達用歯部) 82 セレーション軸(トルク伝達用歯部) 83 ナット 90 円弧面 91 ヌスミ O 軸受中心 X 突き合わせ位置 10 Outer member 11 Rolling surface 12 Body mounting flange 13 seal 14 seal 20 Inner member 21 Rolling surface (outboard side) 22 Rolling surface (inboard side) 30 hub wheels 31 Wheel mounting flange 32 small diameter step 35 hub bolt 38 Shoulder 39 corners 40 inner ring 50 rolling elements 60 cage 70 constant velocity universal joint 71 track groove 72 Outer joint member 72a mouse part 72b Stem part 72c shoulder 73 Track groove 74 Inner joint member 75 torque transmission ball 76 cage 81 Serration (torque transmission teeth) 82 Serration shaft (torque transmission teeth) 83 nuts 90 arc surface 91 Nusumi O bearing center X Butt position

フロントページの続き Fターム(参考) 3J101 AA03 AA32 AA43 AA54 AA62 AA72 BA53 BA56 DA03 EA02 FA31 GA03 Continued front page    F term (reference) 3J101 AA03 AA32 AA43 AA54 AA62                       AA72 BA53 BA56 DA03 EA02                       FA31 GA03

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 内周に複列の転走面を有する外方部材
と、外方部材の転走面とそれぞれ対向する複列の転走
面、および車輪取付けフランジを外周に、トルク伝達用
の歯部を内周にそれぞれ有する内方部材と、対向する転
走面間に組み込まれた複列の転動体とを備え、上記内方
部材が、車輪取り付けフランジおよび小径段部を一体に
有するハブ輪と、このハブ輪の小径段部に嵌合され、複
列の転走面のうち、少なくともインボート側の転走面を
有する内輪とからなる駆動車輪用軸受装置において、実
使用時に相当する回転曲げ条件下で、上記ハブ輪の小径
段部の基部に生じる最大主応力を演算し、この演算値が
規定値以下となるよう内方部材の形状を管理したことを
特徴とする駆動車輪用軸受装置。
1. An outer member having a double row rolling surface on the inner circumference, a double row rolling surface facing the rolling surface of the outer member, and a wheel mounting flange on the outer circumference for torque transmission. Each of which has inner teeth on its inner circumference, and double rows of rolling elements incorporated between opposing rolling surfaces, wherein the inner member integrally has a wheel mounting flange and a small-diameter step portion. In a drive wheel bearing device including a hub wheel and an inner ring having at least an inboard side rolling surface of a double row rolling surface that is fitted into a small-diameter step portion of the hub wheel, and is suitable for actual use. Drive wheel characterized in that the maximum principal stress generated at the base of the small-diameter step portion of the hub wheel is calculated under the rotating bending condition, and the shape of the inner member is controlled so that the calculated value is equal to or less than a specified value. Bearing device.
【請求項2】 上記規定値を300MPaに設定した請
求項1記載の駆動車輪用軸受装置。
2. The drive wheel bearing device according to claim 1, wherein the specified value is set to 300 MPa.
【請求項3】 ハブ輪外周のうち、少なくとも小径段部
の基部を含む領域に熱処理による表面硬化層を形成した
請求項1記載の駆動車輪用軸受装置。
3. The bearing device for a drive wheel according to claim 1, wherein a hardened surface layer is formed by heat treatment on a region including at least a base portion of the small diameter step portion on the outer periphery of the hub wheel.
【請求項4】 上記規定値を600MPaに設定した請
求項3記載の駆動車輪用軸受装置。
4. The drive wheel bearing device according to claim 3, wherein the specified value is set to 600 MPa.
【請求項5】 ハブ輪と内輪を軸方向で突き合わせ、か
つ両部材の突き合わせ位置を軸受中心よりもインボード
側にオフセットした請求項1〜4何れか記載の駆動車輪
用軸受装置。
5. The drive wheel bearing device according to claim 1, wherein the hub wheel and the inner ring are butted in the axial direction, and the butted positions of both members are offset toward the inboard side with respect to the bearing center.
【請求項6】 複列の転動体の中心間距離をP、上記突
き合わせ位置とインボード側の転動体の中心との間の距
離をL、インボード側の転動体直径をDとして、L≦
0.4P、かつ、L≦Dに設定した請求項5記載の駆動
車輪用軸受装置。
6. L ≦ L, where P is the distance between the centers of the double-row rolling elements, L is the distance between the abutting position and the center of the inboard rolling element, and D is the inboard rolling element diameter.
The bearing device for a drive wheel according to claim 5, wherein 0.4P and L ≦ D are set.
【請求項7】 ハブ輪のうち、肩面と小径段部の外周と
の隅部を、研削面からなる円弧面で形成した請求項1〜
6何れか記載の駆動車輪用軸受装置。
7. The hub wheel, wherein the corner portion between the shoulder surface and the outer circumference of the small-diameter step portion is formed by an arc surface which is a ground surface.
6. A bearing device for a drive wheel according to any one of 6 above.
【請求項8】 内方部材の複列の転走面のうち、アウト
ボード側の転走面をハブ輪の外周に形成した請求項1〜
7何れか記載の駆動車輪用軸受装置。
8. The rolling contact surface on the outboard side of the double-row rolling surfaces of the inner member is formed on the outer circumference of the hub wheel.
7. A bearing device for a drive wheel according to any one of 7.
JP2001170974A 2001-05-28 2001-06-06 Bearing device for driving wheel Pending JP2003048405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001170974A JP2003048405A (en) 2001-05-28 2001-06-06 Bearing device for driving wheel

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-158687 2001-05-28
JP2001158687 2001-05-28
JP2001170974A JP2003048405A (en) 2001-05-28 2001-06-06 Bearing device for driving wheel

Publications (1)

Publication Number Publication Date
JP2003048405A true JP2003048405A (en) 2003-02-18

Family

ID=26615791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001170974A Pending JP2003048405A (en) 2001-05-28 2001-06-06 Bearing device for driving wheel

Country Status (1)

Country Link
JP (1) JP2003048405A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006144976A (en) * 2004-11-22 2006-06-08 Jtekt Corp Power transmission chain and power transmission device having the same
JP2007106413A (en) * 2007-01-12 2007-04-26 Ntn Corp Bearing device for vehicle wheel
JP2007106412A (en) * 2007-01-12 2007-04-26 Ntn Corp Bearing device for vehicle wheel
WO2007091408A1 (en) * 2006-02-07 2007-08-16 Ntn Corporation Wheel-use bearing device
JP2007210356A (en) * 2006-02-07 2007-08-23 Ntn Corp Bearing device for wheel
JP2009083521A (en) * 2007-09-27 2009-04-23 Jtekt Corp Bearing device for wheel
JP2013060194A (en) * 2012-10-22 2013-04-04 Jtekt Corp Bearing device for wheel

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006144976A (en) * 2004-11-22 2006-06-08 Jtekt Corp Power transmission chain and power transmission device having the same
WO2007091408A1 (en) * 2006-02-07 2007-08-16 Ntn Corporation Wheel-use bearing device
JP2007211794A (en) * 2006-02-07 2007-08-23 Ntn Corp Wheel bearing device
JP2007210356A (en) * 2006-02-07 2007-08-23 Ntn Corp Bearing device for wheel
US7635226B2 (en) 2006-02-07 2009-12-22 Ntn Corporation Bearing apparatus for a wheel of vehicle
DE112007000320B4 (en) * 2006-02-07 2017-11-16 Ntn Corp. Bearing device for a vehicle wheel
JP2007106413A (en) * 2007-01-12 2007-04-26 Ntn Corp Bearing device for vehicle wheel
JP2007106412A (en) * 2007-01-12 2007-04-26 Ntn Corp Bearing device for vehicle wheel
JP2009083521A (en) * 2007-09-27 2009-04-23 Jtekt Corp Bearing device for wheel
US8661679B2 (en) 2007-09-27 2014-03-04 Jtekt Coporation Bearing device for vehicle and method of manufacturing the same
JP2013060194A (en) * 2012-10-22 2013-04-04 Jtekt Corp Bearing device for wheel

Similar Documents

Publication Publication Date Title
JP5242957B2 (en) Wheel bearing device
JP2005003061A (en) Wheel bearing device
JP2001001710A (en) Axle bearing
JP3902415B2 (en) Drive wheel bearing device
JP2006329320A (en) Wheel bearing device
JP4499075B2 (en) Drive wheel bearing device
JP2001130209A (en) Bearing device for driving wheel
JP2003048405A (en) Bearing device for driving wheel
JP2004345543A (en) Bearing system for wheel
JP4150317B2 (en) Wheel bearing device
JP2006036020A (en) Bearing device for drive wheel
JP2002283806A (en) Bearing device for drive axle
JP2006036112A (en) Bearing device for wheel
JP4282191B2 (en) Wheel bearing device
JP2006137297A (en) Bearing device for wheel
JP4716493B2 (en) Wheel bearing device
JP2007069704A (en) Bearing device for driving wheel
JP3967653B2 (en) Wheel bearing device
JP2008296621A (en) Wheel bearing device
JP2008284960A (en) Wheel bearing system
JP5116131B2 (en) Drive wheel bearing device
JP2008155692A (en) Bearing device for wheel
JP4071965B2 (en) Drive wheel bearing device
JP2005319889A (en) Bearing device for driving wheel
JP2005119383A (en) Bearing device for wheel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070518

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070523

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070615