JP2003047221A - Conductor termination ring holding configuration of cage rotor - Google Patents

Conductor termination ring holding configuration of cage rotor

Info

Publication number
JP2003047221A
JP2003047221A JP2001235194A JP2001235194A JP2003047221A JP 2003047221 A JP2003047221 A JP 2003047221A JP 2001235194 A JP2001235194 A JP 2001235194A JP 2001235194 A JP2001235194 A JP 2001235194A JP 2003047221 A JP2003047221 A JP 2003047221A
Authority
JP
Japan
Prior art keywords
short
conductor
reinforcing member
rotating shaft
laminated core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001235194A
Other languages
Japanese (ja)
Inventor
Hiroshi Shimono
博史 下野
Akihide Sato
明秀 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2001235194A priority Critical patent/JP2003047221A/en
Publication of JP2003047221A publication Critical patent/JP2003047221A/en
Pending legal-status Critical Current

Links

Landscapes

  • Induction Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a conductor termination ring holding configuration of cage rotor which can increase strength of a termination ring by centrifugal force and can also prevent stress applied on reinforcing materials by thermal expansion of the termination ring. SOLUTION: This cage rotor comprises a stacked core 12 which is formed by stacking a plurality of magnetic thin plates and is fixed to a rotating shaft 11, a plurality of through-holes 14 formed in the axial direction in proximity to the external circumferential surface of the stacked core 12, a conductor which is formed integrally with the casting process of the termination rings which terminate conductor bars 15 at both end portions in the axial direction of a plurality of conductor bars 15 allocated in the through-holes 14 and stacked core 12 and are mutually coupled and a reinforcing member 17 which covers the termination rings 16 to prevent deformation thereof. The reinforcing member is formed of aluminum alloy having higher strength and also has almost L-shape cross-section. Moreover, this reinforcing member is integrated with the stacked core 12 and termination rings 16 when the conductor part is casted in order to cover the termination rings 16 keeping the predetermined interval toward the diameter direction from the external circumference of a rotating shaft 11.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、かご形回転子の導
体短絡環の保持構造に関する。 【0002】 【従来の技術】従来、かご形回転子の導体短絡環の保持
構造は、図2のようになっている 図2において、10は回転子、11は回転軸、12は回
転軸11に嵌着固定される複数の磁性薄板を積層してな
る積層コア、13は積層コアの軸方向両端面間に貫通形
成される中心穴、14は積層コア12の外周面に近接し
て周方向略等間隔配置で軸方向へ貫通形成された複数の
貫通穴、15は貫通穴14のそれぞれに配置される複数
の導体棒、16は積層コア12の軸方向両端に配置さ
れ、複数の導体棒15を相互に機械的かつ電気的に連結
する一対の短絡環、21は各々の短絡環を被覆する一対
の補強部材である。また、複数の導体棒15と一対の短
絡環16は導体部分を構成するものであって、例えばア
ルムニウムなどの電気良導性金属材料からダイカスト等
の鋳造工程を経て一体成形される。これにより積層コア
12の積層構造が一体に固定されるとともに積層コア1
2と各補強部材21とが一体的に連結される。さらに、
補強部材21は、外側に開口する略L字状周部断面を有
した環状要素からなり、鉄、ステンレス等の高剛性材料
から切断、切削等の機械加工により成形される。各補強
部材21はそれぞれ、積層コア12の中心穴13の径と
略同一の内径を有し、回転軸11に接触する筒状内壁1
8と、筒状内壁18の軸方向一端縁から積層コア12の
外径と略同一の外径を呈するまで半径方向外側に延長さ
れる環状端壁19と、筒状内壁18の軸方向他端縁から
積層コア12の複数の貫通穴14の半径方向最内部によ
って規定される径以下の外径を呈するまで半径方向外側
に延長される環状係止壁20とを一体的に備える。この
ような構成において、複数の導体棒15及び一対の短絡
環16からなる導体部分を鋳造成形により一体化する
と、各補強部材21は環状係止壁20を介して積層コア
12に固定的に支持され、かつ筒状内壁18を介して回
転軸11に特に半径方向へ固定的に支持される。その結
果、補強部材21の環状端壁19は、短絡環16の軸方
向外端面を被覆して、高速回転時の遠心力による短絡環
16の、特に内周縁部分のめくれ上がりのような撓曲を
防止するようになっている(例えば、特開平9−280
64号公報)。 【0003】 【発明が解決しようとする課題】ところが従来技術で
は、回転子10が高速回転すると、回転子10に働く遠
心力あるいは、モータ内に生じる鉄損や銅損などの諸々
の損失により回転子10の温度が上昇し、それによる短
絡環16の熱線膨において短絡環16の線膨張係数と補
強部材21の線膨張係数の違いから、補強部材21に応
力がかかるという問題があった。その結果、補強部材2
1に応力がかかると、短絡環16が撓んだり破壊された
りするという危惧があった。また、補強部材21を回転
軸11に直接固定した構造は、回転子10が軸方向に熱
膨張した際に補強部材21に無理な力が発生し、回転軸
10を曲げるという問題があった。本発明は上記課題を
解決するためになされたものであり、遠心力による短絡
環の強度を増大させるとともに、短絡環の熱膨張によっ
て補強部材に応力がかかるのを防止できるようにしたか
ご形回転子の導体短絡環の保持構造を提供することを目
的とする。 【0004】 【課題を解決するための手段】上記課題を解決するため
に、本発明によるかご形回転子の導体短絡環の保持構造
は、回転軸と、前記回転軸に固定され、複数の磁性薄板
を積層してなる積層コアと、前記積層コアの外周面に近
接して軸方向へ貫通形成された複数の貫通穴と、前記貫
通穴に配置される複数の導体棒および前記積層コアの軸
方向両端でそれら導体棒を短絡し、かつ、相互に連結す
る一対の短絡環より構成されると共に鋳造工程により一
体成形される導体部分と、前記短絡環を被覆して短絡環
の変形を防止する一対の補強部材とを備えたかご形回転
子において、前記補強部材は、高強度のアルミニウム合
金で構成された略L字状の断面を有すると共に、前記回
転軸の外周から径方向に所定の間隔を空けて前記短絡環
を包むよう、前記導体部分の鋳造時に前記積層コアおよ
び前記短絡環と一体成形してなるものである。 【0005】 【発明の実施の形態】本発明の実施例を図に基づいて説
明する。図1は本発明の実施例によるかご形回転子の導
体短絡環の構造を示した断面図である。本発明の構成要
素が従来技術と同じものについて同一符号を付してその
説明を省略するとともに、異なる点についてのみ説明す
る。本発明が従来と異なる点は、以下のとおりである。
すなわち、補強部材17は、従来の補強部材21に替え
て高強度のアルミニウム合金で構成された略L字状の断
面を有すると共に、回転軸11の外周から径方向に向か
い所定の間隔を空けて短絡環16を包むよう、導体部分
の鋳造時に積層コア12および短絡環16と一体成形し
た点である。具体的には、補強部材17を構成する筒状
内壁18の内径は、積層コア12の中心穴13の径より
大きく、かつ、貫通穴14の内周の径より小さくした構
成になっており、補強部材17が、回転軸11に接触し
ない形状を有する点で明らかに異なるものである。 【0006】次に、かご形回転子の製造工程の一例を説
明する。まず、中心穴13及び貫通穴14に対応する各
開口を備えるべく円板状に打抜かれた複数の磁性薄板を
積層し、例えばかしめにより相互に仮固定して積層コア
12を形成する。次いで補強部材17の略L字状の水平
部分を積層コア12の軸方向各端面に当接させた状態
で、積層コア12に同心状に配置する。このとき、この
ような回転子10を図示しない鋳造空間を有する型に収
容した状態で、鋳造を実施すると、積層コア12の軸方
向両端面に回転軸10の外周から径方向に向かって所定
の間隔を空けて短絡環を包むように設けた補強部材に1
7よって、積層コア12の軸方向へ貫通形成された複数
の貫通穴14に導体棒15が形成され、また、積層コア
12の軸方向両端には半径方向外方へ開口する環状空間
となる短絡環16が形成される。 【0007】したがって、本発明における補強部材17
は、高強度のアルミニウム合金で構成された略L字状の
断面を有すると共に、回転軸11の外周から所定の間隔
を空けて短絡環16を包むよう、導体部分の鋳造時に積
層コア12および短絡環16と一体成形してなる構成に
したので、補強部材17と短絡環16の線膨張係数が等
しいことから高速回転時の短絡環の熱膨張によって補強
部材に応力がかかるのを防止することができる。それか
ら、アルミニウム合金は鉄やステンレスよりも比重が軽
いため、イナーシャの増加を少なくでき、安定した高速
回転に有利である。また、熱膨張において無理な力がか
からないために補強部材3を回転軸に固定する必要が無
く、ロータが軸方向に膨張した時に補強部材に無理な力
が発生し、軸を曲げるという問題も解決することができ
る。 【0008】 【発明の効果】以上述べたように本発明によれば、本発
明における補強部材は、高強度のアルミニウム合金で構
成された略L字状の断面を有すると共に、回転軸11の
外周から所定の間隔を空けて短絡環を包むよう、導体部
分の鋳造時に積層コア13および短絡環と一体成形して
なる構成にしたため、補強部材と短絡環の線膨張係数が
等しいことから高速回転時の短絡環の熱膨張によって補
強部材に応力がかかるのを防止することができる。それ
から、アルミニウム合金は鉄やステンレスよりも比重が
軽いため、イナーシャの増加を少なくでき、安定した高
速回転に有利である。また、熱膨張において無理な力が
かからないために補強部材3を回転軸に固定する必要が
無く、ロータが軸方向に膨張した時に補強部材に無理な
力が発生し、軸を曲げるという問題も解決することがで
きる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure for holding a conductor short-circuit ring of a cage rotor. 2. Description of the Related Art Conventionally, a structure for holding a conductor short-circuiting ring of a cage rotor is shown in FIG. 2. In FIG. 2, reference numeral 10 denotes a rotor, 11 denotes a rotating shaft, and 12 denotes a rotating shaft 11. A laminated core formed by laminating a plurality of magnetic thin plates fitted and fixed on the laminated core; 13, a central hole formed between both end surfaces in the axial direction of the laminated core; A plurality of through holes formed in the axial direction at substantially regular intervals, a plurality of conductor rods 15 disposed in each of the through holes 14, a plurality of conductor rods 16 disposed at both axial ends of the laminated core 12. A pair of short-circuit rings that mechanically and electrically connect 15 to each other, and a pair of reinforcing members 21 that cover each short-circuit ring. The plurality of conductor rods 15 and the pair of short-circuit rings 16 constitute a conductor portion, and are integrally formed from a highly conductive metal material such as aluminum through a casting process such as die casting. Thereby, the laminated structure of the laminated core 12 is integrally fixed and the laminated core 1 is fixed.
2 and each reinforcing member 21 are integrally connected. further,
The reinforcing member 21 is formed of an annular element having a substantially L-shaped peripheral section that is open to the outside, and is formed from a highly rigid material such as iron or stainless steel by machining such as cutting or cutting. Each reinforcing member 21 has an inner diameter that is substantially the same as the diameter of the center hole 13 of the laminated core 12, and the cylindrical inner wall 1 that contacts the rotating shaft 11.
8, an annular end wall 19 extending radially outward from one axial end edge of the cylindrical inner wall 18 to exhibit an outer diameter substantially equal to the outer diameter of the laminated core 12, and an axial other end of the cylindrical inner wall 18 An annular locking wall 20 is provided integrally extending from the edge to the outside in the radial direction until the outer diameter of the plurality of through holes 14 of the laminated core 12 is smaller than or equal to the diameter defined by the innermost part in the radial direction. In such a configuration, when a conductor portion composed of a plurality of conductor rods 15 and a pair of short-circuit rings 16 is integrated by casting, each reinforcing member 21 is fixedly supported on the laminated core 12 via the annular locking wall 20. And is fixedly supported on the rotating shaft 11 through the cylindrical inner wall 18, particularly in the radial direction. As a result, the annular end wall 19 of the reinforcing member 21 covers the axially outer end face of the short-circuit ring 16, and the short-circuit ring 16 bends due to centrifugal force at the time of high-speed rotation, such as turning up of the inner peripheral edge part. (For example, see Japanese Patent Application Laid-Open No. 9-280).
No. 64). However, in the prior art, when the rotor 10 rotates at high speed, the rotor 10 rotates due to centrifugal force acting on the rotor 10 or various losses such as iron loss and copper loss generated in the motor. There is a problem in that the temperature of the armature 10 rises and the thermal expansion of the short-circuit ring 16 causes stress on the reinforcing member 21 due to the difference between the linear expansion coefficient of the short-circuit ring 16 and the linear expansion coefficient of the reinforcing member 21. As a result, the reinforcing member 2
When a stress is applied to No. 1, there is a fear that the short-circuit ring 16 may be bent or broken. Further, the structure in which the reinforcing member 21 is directly fixed to the rotating shaft 11 has a problem that when the rotor 10 thermally expands in the axial direction, an excessive force is generated in the reinforcing member 21 and the rotating shaft 10 is bent. SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problem, and has been made to increase the strength of a short-circuit ring due to centrifugal force, and to prevent a stress from being applied to a reinforcing member due to thermal expansion of the short-circuit ring. An object of the present invention is to provide a holding structure for a conductor short-circuit ring of a child. [0004] In order to solve the above-mentioned problems, a cage short-circuit ring holding structure for a cage rotor according to the present invention comprises a rotating shaft and a plurality of magnetic short-circuiting rings fixed to the rotating shaft. A laminated core formed by laminating thin plates; a plurality of through holes formed in the axial direction in proximity to the outer peripheral surface of the laminated core; a plurality of conductor rods disposed in the through holes and an axis of the laminated core The conductor rods are short-circuited at both ends in the direction, and are constituted by a pair of short-circuit rings connected to each other and integrally formed by a casting process, and the short-circuit rings are covered to prevent deformation of the short-circuit rings. In a cage rotor provided with a pair of reinforcing members, the reinforcing members have a substantially L-shaped cross section made of a high-strength aluminum alloy, and have a predetermined distance from an outer periphery of the rotating shaft in a radial direction. And wrap the short-circuit ring. That is, the conductor portion is formed integrally with the laminated core and the short-circuit ring at the time of casting. An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a sectional view showing a structure of a conductor short-circuit ring of a cage rotor according to an embodiment of the present invention. Constituent elements of the present invention that are the same as those in the related art are given the same reference numerals, and description thereof is omitted. Only different points will be described. The difference between the present invention and the conventional one is as follows.
That is, the reinforcing member 17 has a substantially L-shaped cross section made of a high-strength aluminum alloy instead of the conventional reinforcing member 21 and is spaced from the outer periphery of the rotating shaft 11 in the radial direction by a predetermined distance. The point is that the conductor portion is integrally molded with the laminated core 12 and the short-circuit ring 16 so as to surround the short-circuit ring 16. Specifically, the inner diameter of the cylindrical inner wall 18 constituting the reinforcing member 17 is larger than the diameter of the center hole 13 of the laminated core 12 and smaller than the inner diameter of the through hole 14. This is obviously different in that the reinforcing member 17 has a shape that does not contact the rotating shaft 11. Next, an example of a manufacturing process of the cage rotor will be described. First, a plurality of magnetic thin plates punched in a disk shape are provided so as to have respective openings corresponding to the center hole 13 and the through-hole 14, and are temporarily fixed to each other by, for example, caulking to form the laminated core 12. Then, the substantially L-shaped horizontal portion of the reinforcing member 17 is concentrically arranged on the laminated core 12 in a state of being in contact with each end face in the axial direction of the laminated core 12. At this time, when casting is performed in a state where such a rotor 10 is accommodated in a mold having a casting space (not shown), a predetermined radial direction is formed on both end surfaces in the axial direction of the laminated core 12 from the outer periphery of the rotating shaft 10. A reinforcing member provided so as to wrap the short-circuit ring at an interval
As a result, the conductor rods 15 are formed in the plurality of through-holes 14 formed in the laminated core 12 in the axial direction, and short-circuits are formed at both axial ends of the laminated core 12 as annular spaces that open radially outward. A ring 16 is formed. Accordingly, the reinforcing member 17 according to the present invention is used.
Has a substantially L-shaped cross-section made of a high-strength aluminum alloy, and has a laminated core 12 and a short-circuit when the conductor portion is cast so as to wrap the short-circuit ring 16 at a predetermined distance from the outer periphery of the rotating shaft 11. Since the reinforcing member 17 and the short-circuit ring 16 have the same linear expansion coefficient because they are formed integrally with the ring 16, it is possible to prevent stress from being applied to the reinforcing member due to thermal expansion of the short-circuit ring during high-speed rotation. it can. In addition, since aluminum alloy has a lower specific gravity than iron and stainless steel, an increase in inertia can be reduced, which is advantageous for stable high-speed rotation. In addition, there is no need to fix the reinforcing member 3 to the rotating shaft because excessive force is not applied in thermal expansion, and the problem that excessive force is generated in the reinforcing member when the rotor expands in the axial direction and the shaft is bent is also solved. can do. As described above, according to the present invention, the reinforcing member of the present invention has a substantially L-shaped cross section made of a high-strength aluminum alloy, and has the outer periphery of the rotating shaft 11. Is formed integrally with the laminated core 13 and the short-circuit ring at the time of casting the conductor portion so as to wrap the short-circuit ring at a predetermined distance from the reinforcing member. It is possible to prevent stress from being applied to the reinforcing member due to thermal expansion of the short-circuit ring. In addition, since aluminum alloy has a lower specific gravity than iron and stainless steel, an increase in inertia can be reduced, which is advantageous for stable high-speed rotation. In addition, there is no need to fix the reinforcing member 3 to the rotating shaft because excessive force is not applied in thermal expansion, and the problem that excessive force is generated in the reinforcing member when the rotor expands in the axial direction and the shaft is bent is also solved. can do.

【図面の簡単な説明】 【図1】本発明の実施例によるかご形回転子の導体短絡
環の構造を示した断面図である。 【図2】従来のかご形回転子の導体短絡環の構造を示し
た断面図である。 【符号の説明】 10 回転子 11 回転軸 12 積層コア 13 中心穴 14 貫通穴 15 導体棒 16 短絡環 17 補強部材
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view showing a structure of a conductor short-circuit ring of a cage rotor according to an embodiment of the present invention. FIG. 2 is a cross-sectional view showing the structure of a conventional short-circuiting ring of a cage rotor. [Description of Signs] 10 Rotor 11 Rotary shaft 12 Laminated core 13 Center hole 14 Through hole 15 Conductor bar 16 Short-circuit ring 17 Reinforcement member

Claims (1)

【特許請求の範囲】 【請求項1】回転軸と、前記回転軸に固定され、複数の
磁性薄板を積層してなる積層コアと、前記積層コアの外
周面に近接して軸方向へ貫通形成された複数の貫通穴
と、前記貫通穴に配置される複数の導体棒および前記積
層コアの軸方向両端でそれら導体棒を短絡し、かつ、相
互に連結する一対の短絡環より構成されると共に鋳造工
程により一体成形される導体部分と、前記短絡環を被覆
して短絡環の変形を防止する一対の補強部材とを備えた
かご形回転子において、 前記補強部材は、高強度のアルミニウム合金で構成され
た略L字状の断面を有すると共に、前記回転軸の外周か
ら径方向に所定の間隔を空けて前記短絡環を包むよう、
前記導体部分の鋳造時に前記積層コアおよび前記短絡環
と一体成形してなるものであることを特徴とするかご形
回転子の導体短絡環の保持構造。
Claims: 1. A rotating shaft, a laminated core fixed to the rotating shaft and formed by laminating a plurality of magnetic thin plates, and an axially penetratingly formed close to an outer peripheral surface of the laminated core. A plurality of through-holes, a plurality of conductor rods arranged in the through-hole, and a short-circuit between the conductor rods at both axial ends of the laminated core, and a pair of short-circuit rings connected to each other. In a cage rotor including a conductor portion integrally formed by a casting process and a pair of reinforcing members that cover the short-circuit ring and prevent deformation of the short-circuit ring, the reinforcing member is made of a high-strength aluminum alloy. Having a configured substantially L-shaped cross-section, and wrapping the short-circuit ring at a predetermined interval in the radial direction from the outer periphery of the rotating shaft,
A structure for holding a conductor short-circuiting ring of a cage rotor, wherein the conductor-forming portion is formed integrally with the laminated core and the short-circuiting ring during casting of the conductor portion.
JP2001235194A 2001-08-02 2001-08-02 Conductor termination ring holding configuration of cage rotor Pending JP2003047221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001235194A JP2003047221A (en) 2001-08-02 2001-08-02 Conductor termination ring holding configuration of cage rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001235194A JP2003047221A (en) 2001-08-02 2001-08-02 Conductor termination ring holding configuration of cage rotor

Publications (1)

Publication Number Publication Date
JP2003047221A true JP2003047221A (en) 2003-02-14

Family

ID=19066680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001235194A Pending JP2003047221A (en) 2001-08-02 2001-08-02 Conductor termination ring holding configuration of cage rotor

Country Status (1)

Country Link
JP (1) JP2003047221A (en)

Similar Documents

Publication Publication Date Title
JP2795576B2 (en) Synchronous motor rotor
US5444319A (en) Squirrel-cage rotor for high-speed induction motor
JPH01133546A (en) Rotor structure of high-speed induction type motor
WO1997003490A1 (en) Cage rotor
JP2006025573A (en) Structure of stator of disk type rotary electric machine
US7019428B2 (en) Induction motor and rotor therefor
US9825501B2 (en) Rotor with end ring and electric motor
JP4714077B2 (en) Rotor shaft
JP2010081675A (en) Cage-type rotor and its manufacturing method
JP2010268561A (en) Rotor for rotating electrical machine and the rotating electrical machine
EP3891875A1 (en) Squirrel-cage rotor
JP4848584B2 (en) Permanent magnet rotor, method of manufacturing permanent magnet rotor, motor
US20200112213A1 (en) Magnetic Sheet for Rotor with a Non-Through Shaft, Method of Obtaining Such a Sheet and Associated Rotor
JP2003047221A (en) Conductor termination ring holding configuration of cage rotor
JP4348982B2 (en) Axial gap type induction motor
JPH0723549A (en) Rotor structure for high speed motor
JP2585711Y2 (en) High speed induction motor rotor
KR100370026B1 (en) rotor of induction motor for high-speed operation
JP2020058132A (en) Rotor manufacturing device of cage-type induction rotary electric machine
KR100364705B1 (en) Synchronous Stator of Induction motor
JP2004173423A (en) Squirrel cage rotor with conductor short-circuit ring
JPH0614506A (en) Multistage-type induction motor
JP2023169954A (en) Squirrel-cage rotor and induction motor
JPH11332189A (en) Switched reluctance motor
JP2717110B2 (en) Rotor for high frequency motor and method for manufacturing the same