JP2003047103A - Regenerative overcharge suppression control device - Google Patents

Regenerative overcharge suppression control device

Info

Publication number
JP2003047103A
JP2003047103A JP2001229733A JP2001229733A JP2003047103A JP 2003047103 A JP2003047103 A JP 2003047103A JP 2001229733 A JP2001229733 A JP 2001229733A JP 2001229733 A JP2001229733 A JP 2001229733A JP 2003047103 A JP2003047103 A JP 2003047103A
Authority
JP
Japan
Prior art keywords
amount
charge
battery
regenerative
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001229733A
Other languages
Japanese (ja)
Other versions
JP4650657B2 (en
Inventor
Yoji Nakano
陽二 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atex Co Ltd
Original Assignee
Atex Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atex Co Ltd filed Critical Atex Co Ltd
Priority to JP2001229733A priority Critical patent/JP4650657B2/en
Publication of JP2003047103A publication Critical patent/JP2003047103A/en
Application granted granted Critical
Publication of JP4650657B2 publication Critical patent/JP4650657B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a control device to suppress a phenomenon that a battery deteriorates due to overcharging of it by the regenerative current caused by going down a slope or the like. SOLUTION: The regenerative overcharge suppression control device comprises a current integrating means which detects the state of overcharge caused by the regenerative current generated during the running of a motor car, and a charging control means which restricts, in correlation with current integrating means, the quantity of electricity being changed in the battery when charging the motor car, and further comprises a charging control means which enables the restricted quantity of the quantity of electricity being charged at the time of charging to be varied promptly followed in the fluctuation in the state of overcharging.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、電動車椅子等の
電動車に関するものであって、詳しくは主に電動車の降
坂時に発生する回生電流によるバッテリーの過充電を抑
制する制御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric vehicle such as an electric wheelchair, and more particularly to a control device for suppressing overcharging of a battery mainly due to a regenerative current generated when the electric vehicle descends a slope. is there.

【0002】[0002]

【従来の技術】電動車にあっては主に降坂時においてモ
ータから発電され車載のバッテリーに流れ込む回生電流
によって該バッテリーが過充電状態となる使用環境が想
定され、この環境での使用の繰り返しによって車載のバ
ッテリーに容量低下等の劣化症状が現れる事が懸念され
る。そこで、この回生電流による過充電を抑制する手段
として、走行中のバッテリー電圧を監視し、該バッテリ
ー電圧が所定値を超える場合には走行速度を減速させて
バッテリーに流れ込む回生電流を減少させる技術が特開
2000−102116に開示されている。又、他の技
術としては、抵抗器等から成るバッテリーの放電手段を
設け、前述のバッテリー電圧監視結果等によって回生電
流による過充電が検出された場合は、該放電手段を作動
させてバッテリーの放電を行う事により、過充電状態を
回避する事も考えられる。
2. Description of the Related Art In an electric vehicle, a use environment is assumed in which the battery is overcharged due to a regenerative current that is generated from a motor and flows into a vehicle-mounted battery mainly when descending a slope, and repeated use in this environment is assumed. There is a concern that the on-board battery may show deterioration symptoms such as low capacity. Therefore, as a means for suppressing overcharging due to this regenerative current, there is a technique of monitoring the battery voltage during traveling and reducing the traveling speed to reduce the regenerative current flowing into the battery when the battery voltage exceeds a predetermined value. It is disclosed in Japanese Patent Laid-Open No. 2000-102116. Further, as another technique, a battery discharging means including a resistor or the like is provided, and when overcharge due to a regenerative current is detected by the battery voltage monitoring result, etc., the discharging means is operated to discharge the battery. It is possible to avoid the overcharged state by performing

【0003】[0003]

【発明が解決しようとする課題】上述の技術にあって
は、回生電流による過充電が検出された場合に走行速度
を減速させただけでは、降坂角度が急な場合等では充分
な回生電流抑制が出来ず過充電となる場合が想定され、
又充電直後に降坂する場合には略確実に車速が低速とな
る為、使用者にとって不自由を感じさせる原因ともな
る。バッテリーの放電手段を設けた場合は過充電状態を
確実に回避する事が可能ではあるが、放電手段に充分な
放電能力を持たせるとコスト高となり、容易に導入する
事が困難なものである。そこで本発明においては、安価
な構成で回生電流による過充電を抑制出来、その作用に
よって使用者に不自由を感じさせる事のない電動車の回
生過充電抑制制御装置を提供する事を課題とする。
In the above-mentioned technique, if the traveling speed is reduced only when the overcharge due to the regenerative current is detected, the regenerative current is sufficient when the downhill angle is steep. It is assumed that overcharging may not be possible,
Also, when descending a slope immediately after charging, the vehicle speed will almost certainly become low, which may cause the user to feel inconvenience. If a battery discharge means is provided, it is possible to reliably avoid an overcharged state, but if the discharge means has sufficient discharge capacity, the cost will be high and it will be difficult to introduce it easily. . Therefore, it is an object of the present invention to provide a regenerative overcharge suppression control device for an electric vehicle that can suppress overcharge due to a regenerative current with an inexpensive configuration and that does not cause the user to feel inconvenienced due to the action. .

【0004】[0004]

【課題を解決するための手段】請求項1の発明の電動車
の回生過充電抑制制御装置では、電動車に車載のバッテ
リーから消費される電流(ID)を減算し、該バッテリ
ーに流れ込む電流(IC)を加算して制御装置が認識す
るバッテリー残量(CB)を更新すると共に、降坂時等
にモータ1から発電されバッテリーに流れ込む回生電流
(IC)の加算によってバッテリー残量(CB)が定格
容量(C0)を越えようとする場合には、その超過分は
回生過充電量(CK)として積算する電流積算手段を備
え、更に充電操作時には該回生過充電量(CK)に応じ
てバッテリーへの充電量(CC)を制御する充電制御手
段を備えた構成とした。
According to another aspect of the present invention, there is provided a regenerative overcharge suppressing control device for an electric vehicle, wherein a current (ID) consumed from a battery mounted on the electric vehicle is subtracted, and a current flowing into the battery ( IC) is added to update the remaining battery level (CB) recognized by the control device, and the remaining battery level (CB) is calculated by adding the regenerative current (IC) generated from the motor 1 and flowing into the battery when the vehicle is descending a slope. When exceeding the rated capacity (C0), the excess amount is provided with a current integrating means for integrating it as a regenerative overcharge amount (CK), and during charging operation, the battery is recharged according to the regenerative overcharge amount (CK). The charge control means for controlling the charge amount (CC) to the battery is provided.

【0005】請求項2の発明の電動車の回生過充電抑制
制御装置では、請求項1における充電制御手段が、バッ
テリーへの充電量(CC)をバッテリー固有の適正充電
率(R0)で初期化された完了充電率(RC)によって
制御すべく、充電中に積算される充電量(CC)が、 (RC)×((C0)−(CB2)) (CB2)は、充電開始時のバッテリー残量(CB) で表される電気量に達した時点でバッテリー残量(C
B)に定格容量(C0)を設定して充電を完了する構成
とし、前記構成において充電を開始する時、回生過充電
量(CK)が一定以上積算されている場合には完了充電
率(RC)を減少補正し、一定未満しか積算されていな
い場合には完了充電率(RC)を増大補正し、該減少補
正或いは増大補正と共に、回生過充電量(CK)は0に
リセットし、更に、 (RC)<(R0) である場合に、 ((R0)−(RC))×((C0)−(CB2)) で表される電気量を充電抑制量(CN)として保存する
と共に、請求項1における電流積算手段は、走行状態に
おいて該充電抑制量(CN)が0でなければ、回生電流
(IC)を充電抑制量(CN)から減算し、充電抑制量
(CN)が0であれば、バッテリー残量(CB)に加算
する構成とした。
In the regenerative overcharge suppression control device for an electric vehicle according to a second aspect of the present invention, the charge control means according to the first aspect initializes the charge amount (CC) to the battery with a proper charge rate (R0) specific to the battery. The amount of charge (CC) integrated during charging to be controlled by the completed charging rate (RC) is (RC) × ((C0) − (CB2)) (CB2) is the battery remaining at the start of charging. When the amount of electricity represented by the amount (CB) is reached, the battery remaining amount (C
When the rated capacity (C0) is set in B) and the charging is completed, and when the charging is started in the above-mentioned configuration and the regenerative overcharge amount (CK) is accumulated over a certain amount, the completed charge rate (RC ) Is decreased, and the completed charge rate (RC) is increased if less than a certain value is integrated, and the regenerative overcharge amount (CK) is reset to 0 together with the decrease correction or the increase correction. When (RC) <(R0), the amount of electricity represented by ((R0) − (RC)) × ((C0) − (CB2)) is stored as the charge suppression amount (CN), and the charge If the charge suppression amount (CN) is not 0 in the running state, the current integration means in the item 1 subtracts the regenerative current (IC) from the charge suppression amount (CN) to set the charge suppression amount (CN) to 0. For example, the configuration is such that it is added to the battery level (CB).

【0006】請求項3の発明の電動車の回生過充電抑制
制御装置では、請求項2における充電制御手段が、完了
充電率の増大補正量(AP)を、減少補正量(AM)よ
り大きくする構成とした。
In the regenerative overcharge suppressing control device for an electric vehicle according to a third aspect of the present invention, the charging control means according to the second aspect makes the increase correction amount (AP) of the complete charge rate larger than the decrease correction amount (AM). It was configured.

【0007】[0007]

【発明の作用及び効果】請求項1の発明の電動車の回生
過充電抑制制御装置では、電流積算手段において、制御
装置が認識するバッテリー残量(CB)には、電動車に
車載のバッテリーから消費される電流(ID)が減算さ
れ、該バッテリーに流れ込む電流(IC)が加算されて
更新され、更にバッテリー残量(CB)が定格容量(C
0)に達しない間は、降坂時等にモータ1から発電され
バッテリーに流れ込む回生電流(IC)も加算され、バ
ッテリー残量(CB)が定格容量(C0)を越えようと
する場合には、バッテリー残量(CB)は定格容量(C
0)を維持したまま、回生電流(IC)は回生過充電量
(CK)として積算される。該回生過充電量(CK)は
走行状態においてバッテリーから消費される電流(I
D)によるバッテリー残量(CB)の減少時もその値を
維持されているから、充電操作時に充電制御手段によっ
て走行状態における回生電流(IC)による過充電量
(CK)を判定して、バッテリーへの充電量(CC)を
制御する事を可能にする。
In the regenerative overcharge suppressing control device for an electric vehicle according to the first aspect of the present invention, the battery remaining amount (CB) recognized by the control device in the current accumulating means is calculated from the battery mounted in the electric vehicle. The consumed current (ID) is subtracted, the current (IC) flowing into the battery is added and updated, and the remaining battery capacity (CB) is the rated capacity (C).
While 0) is not reached, the regenerative current (IC) that is generated from the motor 1 and flows into the battery at the time of downhill is also added, and when the remaining battery charge (CB) tries to exceed the rated capacity (C0), , Battery remaining capacity (CB) is rated capacity (C
While maintaining 0), the regenerative current (IC) is integrated as the regenerative overcharge amount (CK). The regenerative overcharge amount (CK) is the current (I
Since the value is maintained even when the battery remaining amount (CB) is reduced by D), the charge control means determines the overcharge amount (CK) due to the regenerative current (IC) in the running state during the charging operation to determine the battery. It is possible to control the charge amount (CC) to the battery.

【0008】請求項2の発明の電動車の回生過充電抑制
制御装置では、請求項1における充電制御手段が、バッ
テリーへの充電量(CC)をバッテリー固有の適正充電
率(R0)で初期化された完了充電率(RC)によって
制御すべく、充電中に積算される充電量(CC)が、 (RC)×((C0)−(CB2)) (CB2)は、充電開始時のバッテリー残量(CB) で表される電気量に達した時点でバッテリー残量(C
B)に定格容量(C0)を設定して充電を完了するか
ら、該充電制御手段で充電開始時において、回生過充電
量(CK)が一定以上積算されている場合には完了充電
率(RC)を減少補正し、一定未満しか積算されていな
い場合には完了充電率(RC)を増大補正する事によ
り、バッテリーへの充電量(CC)を、回生過充電量
(CK)が一定以上積算されている場合には減少方向
へ、又、回生過充電量(CK)が一定未満しか積算され
ていない場合には増大方向に制御する事を可能とする。
又、完了充電率(RC)の補正と共に、回生過充電量
(CK)は0にリセットされ、次回の走行時も回生過充
電量(CK)の積算を正常に行う事が可能となる。更
に、 (RC)<(R0) である場合には、請求項1における充電制御手段によっ
て ((R0)−(RC))×((C0)−(CB2)) で表される電気量が充電抑制量(CN)として保存され
る共に、請求項1における電流積算手段が、走行状態に
おいて該充電抑制量(CN)が0でなければ、回生電流
(IC)を充電抑制量(CN)から減算し、充電抑制量
(CN)が0であれば、バッテリー残量(CB)に加算
するから、直前の充電抑制量(CN)に保存されている
電気量分だけ、回生電流(IC)の回生過充電量(C
K)への積算が遅延され、即ち回生過充電量(CK)に
は、直前の充電時に抑制された充電抑制量(CN)分の
回生過充電がされた後に発生した回生過充電のみが積算
され、次回の請求項1における充電制御手段を正常に作
用させる事が可能となる。
In the regenerative overcharge suppressing control device for an electric vehicle according to a second aspect of the present invention, the charging control means according to the first aspect initializes the charge amount (CC) to the battery with a proper charge rate (R0) specific to the battery. The amount of charge (CC) integrated during charging to be controlled by the completed charging rate (RC) is (RC) × ((C0) − (CB2)) (CB2) is the battery remaining at the start of charging. When the amount of electricity represented by the amount (CB) is reached, the battery remaining amount (C
Since the charging is completed by setting the rated capacity (C0) in B), when the regenerative overcharge amount (CK) is integrated at a certain amount or more at the start of charging by the charging control means, the completed charging rate (RC) ) Is reduced and the completed charge rate (RC) is increased and corrected when the total is less than a certain amount, the charge amount (CC) to the battery is accumulated more than a certain amount of the regenerative overcharge amount (CK). If the regenerative overcharge amount (CK) is less than a certain value, the control can be performed in the decreasing direction when the charging is being performed, and in the increasing direction when the regenerative overcharge amount (CK) is less than a certain value.
Further, the regenerative overcharge amount (CK) is reset to 0 together with the correction of the completed charge rate (RC), and the regenerative overcharge amount (CK) can be normally integrated during the next running. Furthermore, when (RC) <(R0), the amount of electricity represented by ((R0) − (RC)) × ((C0) − (CB2)) is charged by the charge control means in claim 1. The current accumulating means according to claim 1 subtracts the regenerative current (IC) from the charge suppression amount (CN) when the charge suppression amount (CN) is not 0 in the traveling state while being stored as the suppression amount (CN). If the charge suppression amount (CN) is 0, it is added to the battery remaining amount (CB). Therefore, the regenerative current (IC) is regenerated by the amount of electricity stored in the immediately previous charge suppression amount (CN). Overcharge amount (C
K) is delayed, that is, the regenerative overcharge amount (CK) is integrated only by the regenerative overcharge generated after the regenerative overcharge corresponding to the charge suppression amount (CN) suppressed during the immediately preceding charging. As a result, the next charge control means according to claim 1 can be normally operated.

【0009】請求項3の発明の電動車の回生過充電抑制
制御装置では、請求項2における充電制御手段が、充電
開始時において、回生過充電量(CK)が一定以上積算
されている場合には完了充電率(RC)を減少補正量
(AM)で補正し、一定未満しか積算されていない場合
には完了充電率(RC)を減少補正量(AM)より大き
な増大補正量(AP)で補正する事により、電動車の使
用環境が変化し回生過充電量(CK)が大きく減少した
場合における、バッテリーへの充電量(CC)の制御の
追従性を良くする効果を奏する。
According to a third aspect of the present invention, there is provided a regenerative overcharge suppressing control device for an electric vehicle, wherein the charging control means according to the second aspect is such that when the regenerative overcharge amount (CK) is accumulated at a certain amount or more at the start of charging. Corrects the complete charge rate (RC) with the decrease correction amount (AM), and when the integration is less than a certain amount, the complete charge rate (RC) is increased with the increase correction amount (AP) larger than the decrease correction amount (AM). The correction has the effect of improving the followability of the control of the charge amount (CC) to the battery when the use environment of the electric vehicle changes and the regenerative overcharge amount (CK) greatly decreases.

【0010】[0010]

【発明の実施の形態】図例は電動車に本発明を実施した
ものであって、図1は入力手段及び制御手段の接続状態
を示すブロック図であって、3はCPU、4はキースイ
ッチであり、該キースイッチ4の接続によりバッテリー
電源の電流を電源回路5を介して、制御回路と、モータ
駆動回路6へ供給可能に構成してある。尚キースイッチ
4の接続,切断状態はCPU3に信号として入力され、
CPU3がキースイッチ4の切断,接続状態を認識可能
に構成してある。27は、充電電源であって、電動車の
充電時にAC電源を供給する事で、全波整流されたDC
電流を電源回路5に入力し、制御回路に電流供給可能に
構成してある。尚充電電源27の作動状態はCPU3に
信号として入力され、CPU3が充電電源27の「作
動」,「停止」状態を認識可能に構成してある。CPU
3は、電動車にAC電源を供給する充電操作を、前記充
電電源27の「作動」状態信号によって検出した場合
は、バッテリーへの充電をコントロールする充電モード
となり、充電操作が検出されずキースイッチ4の接続が
検出された場合は、電動車の走行をコントロールする走
行モードとなる。
1 is a block diagram showing a connection state of input means and control means, 3 is a CPU, and 4 is a key switch. By connecting the key switch 4, the current of the battery power supply can be supplied to the control circuit and the motor drive circuit 6 via the power supply circuit 5. The connection / disconnection state of the key switch 4 is input to the CPU 3 as a signal,
The CPU 3 is constructed so that the disconnection and connection state of the key switch 4 can be recognized. Reference numeral 27 denotes a charging power supply, which is a full-wave rectified DC by supplying an AC power supply when the electric vehicle is charged.
A current is input to the power supply circuit 5 so that the control circuit can be supplied with the current. The operating state of the charging power source 27 is input to the CPU 3 as a signal so that the CPU 3 can recognize the "operating" and "stopping" states of the charging power source 27. CPU
When the charging operation for supplying the AC power to the electric vehicle is detected by the "operation" status signal of the charging power source 27, 3 is a charging mode for controlling the charging of the battery, and the charging operation is not detected and the key switch is pressed. When the connection of No. 4 is detected, the running mode for controlling the running of the electric vehicle is set.

【0011】16は、バッテリー電圧センサーであっ
て、分圧抵抗等から成り、バッテリーの電圧を分圧して
CPU3に入力する。24は電流検出回路であって、バ
ッテリーから消費される電流(ID)及び、該バッテリ
ーに流れ込む電流(IC)を電圧に変換してCPU3へ
入力する。20は5連のLEDからなるバッテリー残量
メータであり、バッテリー残量(CB)を点灯表示す
る。2は、CPU3から制御データを書き込み,読み出
し可能に接続したEEP−ROMであって、制御回路製
造時に内部の各種制御データの消去や初期データ設定等
の初期化処理が施され、又、走行モード及び充電モード
において、更新されるバッテリー残量(BC)その他の
制御データを不揮発状態で記憶可能な構成としている。
28は、電源自己保持回路であってキースイッチ4の切
断或いは、AC電源供給停止と同時にCPU3から起動
信号を受けて作動し、CPU3がEEP−ROM2への
書き込みを完了し起動信号を断つまでの間、バッテリー
電源の電流を電源回路5を介して、制御回路に供給可能
に構成してある。22は制御回路温度センサー、23は
外気温度センサーであり、各々、CPU3にその出力電
圧を入力する。
Reference numeral 16 denotes a battery voltage sensor, which is composed of a voltage dividing resistor or the like, which divides the voltage of the battery and inputs it to the CPU 3. A current detection circuit 24 converts a current (ID) consumed from the battery and a current (IC) flowing into the battery into a voltage and inputs the voltage to the CPU 3. Reference numeral 20 denotes a battery level meter including five LEDs, which lights and displays the battery level (CB). Reference numeral 2 denotes an EEP-ROM to which control data can be written and read from the CPU 3 and which is subjected to initialization processing such as erasing various control data inside the control circuit and initial data setting when the control circuit is manufactured, and a running mode. In the charging mode, the remaining battery level (BC) and other control data to be updated can be stored in a nonvolatile state.
Reference numeral 28 denotes a power supply self-holding circuit which operates by receiving a start signal from the CPU 3 at the same time as the disconnection of the key switch 4 or the stop of the AC power supply, until the CPU 3 completes writing to the EEP-ROM 2 and cuts off the start signal. During this period, the current of the battery power supply can be supplied to the control circuit via the power supply circuit 5. Reference numeral 22 is a control circuit temperature sensor, and 23 is an outside air temperature sensor, which input their output voltages to the CPU 3, respectively.

【0012】7は速度指令用可変抵抗器であって、アク
セルレバーによって回動され、その出力電圧はCPU3
へ入力される。尚、アクセルレバーを離した際に自動復
帰されるニュートラル位置を中心に、車体前後方向に回
動自在に構成してあり、ニュートラル対応位置の速度指
令用可変抵抗器7の出力電圧を停止指令電圧に設定して
ある。又、車体後方側への可動範囲の出力電圧を前進指
令電圧範囲として複数段に設定してあり、前方側への可
動範囲の出力電圧を後進指令電圧範囲として複数段に設
定してある。8は速度調整用可変抵抗器であって、操作
ダイヤルによって回動設定され、その出力電圧はCPU
3へ入力され、上述の速度指令用可変抵抗の指令電圧
を、例えば30%から100%の範囲で調整可能として
ある。9はメインリレーコイルであり、キースイッチ4
の接続よりCPU3から出力されるメインリレー出力信
号に励磁されてメインリレー10を接続しモータ駆動回
路6へバッテリー電流を供給可能状態とする。11,1
2,13,14は駆動トランジスターであって、モータ
駆動回路6に各々のゲート側が接続されてフルブリッジ
回路を構成しており、上述の速度指令用可変抵抗器7及
び速度調整用可変抵抗器8の指令速度と後述のモータ回
転センサー15で検出される実速度をCPU3へ入力し
て演算し、CPU3から出力される駆動パルス及び駆動
方向信号によって駆動制御され、モータ1へ電流を回転
方向制御可能に供給して駆動する。モータ回転センサー
15はモータ軸に取着のタコジエネで構成され、モータ
軸周囲2ヶ所での回転パルス出力を検出することで、モ
ータ1の回転数と回転方向を検出可能に構成してある。
21はモータ温度センサーであり、CPU3にその出力
電圧を入力する。17は負作動の電磁ブレーキであっ
て、走行中は通電により制動を解除し、又、停止中はバ
ネ力により復帰してモータ軸に制動力を加えるよう構成
されている。18,19は電磁ブレーキ二段増幅用のト
ランジスターである。25はホーンスイッチであって、
その出力電圧はCPU3に入力され、CPU3は制御状
態に応じたホーンスイッチ25入力値の処理を行い、例
えば走行中の警笛音発声操作を処理した場合は、ブザー
出力回路26にブザー信号を出力し該ブザー出力回路2
6に接続するブザー26aを駆動する。
Reference numeral 7 is a variable resistor for speed command, which is rotated by an accelerator lever, and its output voltage is CPU3.
Is input to. It should be noted that the output voltage of the speed command variable resistor 7 at the neutral corresponding position is set to a stop command voltage because the neutral position is automatically returned when the accelerator lever is released. Is set to. Further, the output voltage in the movable range to the rear side of the vehicle body is set in a plurality of steps as the forward command voltage range, and the output voltage in the movable range to the front side is set in a plurality of steps as the reverse command voltage range. Reference numeral 8 denotes a variable resistor for speed adjustment, which is set to rotate by an operation dial, the output voltage of which is a CPU.
3, the command voltage of the above-described variable resistor for speed command can be adjusted in the range of 30% to 100%, for example. 9 is a main relay coil, key switch 4
The main relay output signal output from the CPU 3 is connected to the main relay 10 to connect the main relay 10 to supply the battery current to the motor drive circuit 6. 11, 1
Reference numerals 2, 13 and 14 denote drive transistors, each gate side of which is connected to the motor drive circuit 6 to form a full bridge circuit. The variable resistor 7 for speed command and the variable resistor 8 for speed adjustment described above are provided. Command speed and the actual speed detected by the motor rotation sensor 15 to be described later are input to the CPU 3 for calculation, and the drive is controlled by the drive pulse and the drive direction signal output from the CPU 3, and the rotation direction of the current to the motor 1 can be controlled. Supply to drive. The motor rotation sensor 15 is composed of a tachogenerator attached to the motor shaft, and can detect the rotation speed and rotation direction of the motor 1 by detecting the rotation pulse output at two places around the motor shaft.
A motor temperature sensor 21 inputs its output voltage to the CPU 3. Reference numeral 17 denotes a negatively-operated electromagnetic brake, which is configured to release braking by energizing while traveling, and return by spring force to apply braking force to the motor shaft while stopped. Reference numerals 18 and 19 are transistors for electromagnetic brake two-stage amplification. 25 is a horn switch,
The output voltage is input to the CPU 3, and the CPU 3 processes the input value of the horn switch 25 according to the control state. For example, when processing a horn sounding operation during running, a buzzer signal is output to the buzzer output circuit 26. The buzzer output circuit 2
The buzzer 26a connected to 6 is driven.

【0013】27aは、充電回路であって、充電モード
において、充電電源27から入力されるDC電流を、C
PU3から入力される充電出力信号に従ってスイッチン
グし、バッテリーに充電する電流を制御する。CPU3
は、バッテリーに流れ込む電流(IC),バッテリー電
圧,及び外気温度センサー23の出力電圧等を監視しな
がら、一定の定電流状態或いは一定の定電圧状態で充電
すべく充電出力信号を制御して充電回路27aに入力す
る。
Reference numeral 27a denotes a charging circuit which, in the charging mode, supplies a DC current input from the charging power source 27 to C
It switches according to the charge output signal input from PU3, and controls the electric current which charges a battery. CPU3
Controls the charging output signal to charge in a constant current state or a constant voltage state while monitoring the current (IC) flowing into the battery, the battery voltage, the output voltage of the outside air temperature sensor 23, and the like. Input to the circuit 27a.

【0014】次に、上記構成の電動車における電流積算
手段の動作について、説明する。図2は、CPU3にプ
ログラムされた走行モードにおける電流積算手段の動作
を示すフローチャートであって、走行モード時にCPU
3で、一定周期毎、本実施の形態においては25m秒周
期毎に処理されるものであり、まずステップS101で
バッテリーから消費される電流(ID)を入力し、ステ
ップS102では、バッテリーから消費される電流(I
D)を、バッテリー残量(CB)から減算する。尚、該
バッテリー残量(CB)を構成するデータはCPU3動
作時にはCPU3内臓のRAMに保存されており、制御
回路への電源供給が断たれる時にCPU3からEEP−
ROM2に書き込まれて不揮発的に保存され、制御回路
への供給が開始されてCPU3が動作を開始した時に該
EEP−ROM2からCPU3内臓のRAMに読み込ま
れて保存される構成としている。又、バッテリー残量
(CB)は前述の制御回路製造時の初期化処理の際及び
制御回路上に実装されたデータ初期化用のディップスイ
ッチ操作の際にバッテリー固有の定格容量(C0)に初
期化される様にしてあり、バッテリー交換等を行った後
には該ディップスイッチを操作して初期化可能としてい
る。次に、ステップS103では、ステップS102の
減算の結果、バッテリー残量(CB)が0を下回る場合
は、ステップS104でバッテリー残量(CB)に0を
代入する事でバッテリー残量(CB)の下限を0に制限
する。
Next, the operation of the current accumulating means in the electric vehicle having the above structure will be described. FIG. 2 is a flow chart showing the operation of the current accumulating means in the traveling mode programmed in the CPU 3, and the CPU in the traveling mode.
In step 3, the current (ID) consumed from the battery is input in step S101, and the current is consumed from the battery in step S102. Current (I
D) is subtracted from the battery level (CB). It should be noted that the data constituting the remaining battery level (CB) is stored in the RAM incorporated in the CPU 3 when the CPU 3 is operating, and when the power supply to the control circuit is cut off, the CPU 3 outputs EEP-.
It is written in the ROM 2 and stored in a non-volatile manner, and when the supply to the control circuit is started and the CPU 3 starts operating, it is read from the EEP-ROM 2 and stored in the RAM incorporated in the CPU 3 and stored. Further, the battery remaining capacity (CB) is initially set to the rated capacity (C0) peculiar to the battery at the time of the initialization process at the time of manufacturing the control circuit and at the time of operating the DIP switch for data initialization mounted on the control circuit. After the battery is replaced, the dip switch can be operated to initialize the battery. Next, in step S103, if the battery remaining amount (CB) is less than 0 as a result of the subtraction in step S102, 0 is substituted for the battery remaining amount (CB) in step S104 to determine the battery remaining amount (CB). Limit the lower bound to 0.

【0015】次にステップS105では、バッテリーに
流れ込む電流(IC)を入力し、ステップS106で
は、後述する充電制御手段において設定される充電抑制
量(CN)が0であるかどうかの判断がされる。ステッ
プS106で、充電抑制量(CN)が0である判断がさ
れた場合は、ステップS107からの処理に移行し、ま
ずステップS107では、バッテリー残量(CB)にバ
ッテリーに流れ込む電流(IC)を加算する。次に、ス
テップS108でステップS107の加算の結果、バッ
テリー残量(CB)がバッテリー固有の定格容量(C
0)、本実施の形態においては35AHに相当する値を
超えたかどうかの判断がされ、超えていない場合は処理
を終え、超えている場合は、ステップS109で、回生
過充電量(CK)に超過分である(バッテリー残量(C
B)−定格容量(C0))で表される値を加算すると共
に、ステップS110で、バッテリー残量(CB)に定
格容量(C0)を代入する事でバッテリー残量(CB)
の上限を定格容量(C0)に制限して処理を終える。
尚、回生過充電量(CK)を構成するデータ及び後述す
る充電制御手段において設定される充電抑制量(CN)
を構成するデータも、前述したバッテリー残量(CB)
を構成するデータと同様に、CPU3動作時にはCPU
3内臓のRAMに、制御回路への電源供給が断たれてい
る間はEEP−ROM2に保存される構成としており、
制御回路製造時の初期化処理の際及びデータ初期化用の
ディップスイッチ操作の際には、各々0に初期化される
様にしている。
Next, in step S105, the current (IC) flowing into the battery is input, and in step S106, it is judged whether or not the charge suppression amount (CN) set in the charge control means described later is zero. . If it is determined in step S106 that the charge suppression amount (CN) is 0, the process proceeds to step S107. First, in step S107, the current (IC) flowing into the battery is calculated as the battery remaining amount (CB). to add. Next, in step S108, as a result of the addition in step S107, the remaining battery capacity (CB) is the rated capacity (C
0), in the present embodiment, it is determined whether or not the value corresponding to 35 AH is exceeded, and if not, the processing is terminated, and if it is exceeded, the regenerative overcharge amount (CK) is set to step S109. It is the excess (Battery level (C
B) -rated capacity (C0)) is added, and the remaining capacity (CB) of the battery is calculated by substituting the rated capacity (C0) for the remaining capacity (CB) of the battery in step S110.
The upper limit of the above is limited to the rated capacity (C0) and the processing is ended.
The data constituting the regenerative overcharge amount (CK) and the charge suppression amount (CN) set in the charge control means described later.
The data that makes up the
Similarly to the data forming the
3 Built-in RAM is configured to be stored in EEP-ROM 2 while power supply to the control circuit is cut off,
At the time of initialization processing at the time of manufacturing the control circuit and at the time of operating the DIP switch for data initialization, they are initialized to 0.

【0016】ステップS106で、充電抑制量(CN)
が0でないと判断がされた場合は、ステップS111か
らの処理に移行し、まずステップS111では、充電抑
制量(CN)からバッテリーに流れ込む電流(IC)を
減算する。次に、ステップS112でステップS111
の減算の結果、充電抑制量(CN)が0を下回ったかど
うかの判断がされ、0以上である場合は処理を終え、0
を下回った場合はその部分をバッテリー残量(CB)に
反映すべくステップS113に移行し、ステップS11
3では、負の数となっている充電抑制量(CN)をバッ
テリー残量(CB)から減算する事で、バッテリー残量
(CB)にバッテリーに流れ込む電流(IC)の一部を
加算し、更にステップS114で充電抑制量(CN)に
0を代入した後、前述のステップS108からの処理へ
移行してバッテリー残量(CB)の定格容量(C0)と
の比較及び、超過時は、回生過充電量(CK),バッテ
リー残量(CB)への処理を実施後処理を終える。
In step S106, the charge suppression amount (CN)
When it is determined that is not 0, the process proceeds to step S111 and first, in step S111, the current (IC) flowing into the battery is subtracted from the charge suppression amount (CN). Next, in step S112, step S111
As a result of the subtraction of, it is determined whether the charge suppression amount (CN) is less than 0, and if it is 0 or more, the processing is terminated and 0
If it falls below the range, the process proceeds to step S113 to reflect that portion in the battery remaining capacity (CB), and then step S11.
In 3, by subtracting the negative charge suppression amount (CN) from the battery remaining amount (CB), a part of the current (IC) flowing into the battery is added to the battery remaining amount (CB), Further, after substituting 0 for the charge suppression amount (CN) in step S114, the process shifts to the process from step S108 described above to compare the remaining battery charge (CB) with the rated capacity (C0) and regenerates when exceeded. After the process for the overcharge amount (CK) and the battery remaining amount (CB) is performed, the process is finished.

【0017】図3は、CPU3にプログラムされた充電
モードにおける電流積算手段の動作を示すフローチャー
トであって、充電モード時にCPU3で、一定周期毎、
本実施の形態においては25m秒周期毎に処理されるも
のであり、まずステップS201でバッテリーに流れ込
む電流(IC)を入力し、ステップS202では、バッ
テリー残量(CB)にバッテリーに流れ込む電流(I
C)を加算する。次に、ステップS203でステップS
202の加算の結果、バッテリー残量(CB)がバッテ
リー固有の定格容量(C0)を超えたかどうかの判断が
され、超えていない場合は処理を終え、超えている場合
は、ステップS204で、バッテリー残量(CB)に定
格容量(C0)を代入する事でバッテリー残量(CB)
の上限を定格容量(C0)に制限して処理を終える。
FIG. 3 is a flow chart showing the operation of the current accumulating means in the charging mode programmed in the CPU 3, and in the charging mode, the CPU 3 performs the operation at regular intervals.
In the present embodiment, processing is performed every 25 msec cycle. First, the current (IC) flowing into the battery is input in step S201, and in step S202, the current (I) flowing into the battery is calculated as the battery remaining amount (CB).
Add C). Next, in step S203, step S
As a result of the addition in 202, it is judged whether or not the remaining battery charge (CB) exceeds the rated capacity (C0) peculiar to the battery. If not, the process is terminated. Battery capacity (CB) by substituting the rated capacity (C0) for the remaining capacity (CB)
The upper limit of the above is limited to the rated capacity (C0) and the processing is ended.

【0018】次に、上記構成の電動車における充電制御
手段の動作について説明する。図4は、CPU3にプロ
グラムされた充電制御手段の動作を示すフローチャート
であって、充電モード時にCPU3で、一定周期毎、本
実施の形態においては25m秒周期毎に処理されるもの
であり、まずステップS301で充電制御手段の初回の
処理であるか、即ち充電開始時であるかどうかを判断
し、初回の処理であれば、ステップS302以降に続く
充電開始時の処理を行い、初回の処理でなければステッ
プS311からのバッテリーへの充電量(CC)の積算
及び充電完了判断処理に移行する。充電開始時にステッ
プS302ではまず、バッテリー残量(CB)を充電開
始時のバッテリー残量(BC2)に代入し、次にステッ
プS303で、充電量(CC)に0を代入して充電量の
積算開始の準備をし、次にステップS304で、前述の
走行モードにおける電流積算手段によって回生過充電量
(CK)が、一定の電気量以上、本実施の形態において
は定格容量(C0)の2%以上積算されているかどうか
の判断がされ、定格容量(C0)の2%以上積算されて
いる場合は、ステップS305の充電量減少処理で、完
了充電率(RC)を減少補正する。該ステップS305
の充電量減少処理については、別途、図5に示しその動
作は後述する。定格容量(C0)の2%未満の積算しか
されていない場合は、ステップS306の充電量増大処
理で、完了充電率(RC)を増大補正する。該ステップ
S306の充電量増大処理については、別途、図6に示
しその動作は後述する。
Next, the operation of the charging control means in the electric vehicle of the above construction will be described. FIG. 4 is a flow chart showing the operation of the charge control means programmed in the CPU 3, which is processed by the CPU 3 in the charge mode at regular intervals, in the present embodiment, at intervals of 25 msec. In step S301, it is determined whether this is the first process of the charging control means, that is, whether it is the start of charging. If it is the first process, the process at the start of charging following step S302 is performed. If not, the process proceeds to step S311 to integrate the charge amount (CC) of the battery and to determine the charge completion. At the start of charging, first, in step S302, the remaining battery amount (CB) is substituted into the remaining battery amount (BC2) at the start of charging, and in step S303, 0 is substituted into the charging amount (CC) to integrate the charging amount. Before starting, in step S304, the regenerative overcharge amount (CK) is equal to or more than a certain amount of electricity by the current accumulating unit in the above-described running mode, which is 2% of the rated capacity (C0) in the present embodiment. It is determined whether or not the above has been integrated, and if 2% or more of the rated capacity (C0) has been integrated, the completed charge rate (RC) is reduced and corrected in the charge amount reduction process of step S305. Step S305
The charge amount reduction process of is separately shown in FIG. 5 and its operation will be described later. When the integration is less than 2% of the rated capacity (C0), the completed charge rate (RC) is increased and corrected in the charge amount increasing process of step S306. The charge amount increasing process in step S306 is separately shown in FIG. 6 and its operation will be described later.

【0019】尚、完了充電率(RC)を構成するデータ
も、前述したバッテリー残量(CB)を構成するデータ
と同様に、CPU3動作時にはCPU3内臓のRAM
に、制御回路への電源供給が断たれている間はEEP−
ROM2に保存される構成としており、制御回路製造時
の初期化処理の際及びデータ初期化用のディップスイッ
チ操作の際には、適正充電率(R0)に初期化される様
にしている。該適正充電率(R0)は、バッテリー固有
の値であり、バッテリーの放電量に対する理想的な充電
量を比率で表し、本実施の形態において採用しているバ
ッテリーの適正充電率(R0)は105%となってい
る。前記ステップS305或いはステップS306の処
理後、ステップはS307に移り回生過充電量(CK)
に0を代入し、次回の走行時に回生過充電量(CK)の
積算を正常に行う事を可能にする。次に、ステップS3
08で、完了充電率(RC)と適正充電率(R0)の比
較を行い、完了充電率(RC)が適正充電率(R0)よ
り低ければ、ステップS309で(適正充電率(R0)
−完了充電率(RC))×(定格容量(C0)−充電開
始時のバッテリー残量(CB2))の演算値を充電抑制
量(CN)に代入し、完了充電率(RC)が適正充電率
(R0)と等しいか又は仮に完了充電率(RC)が適正
充電率(R0)より大きい場合はステップS310で充
電抑制量(CN)に0を代入する。
Incidentally, the data constituting the complete charge rate (RC), like the data constituting the battery remaining amount (CB) described above, is a RAM built in the CPU 3 when the CPU 3 is operating.
And EEP- while the power supply to the control circuit is cut off.
It is configured to be stored in the ROM 2 so that it is initialized to an appropriate charging rate (R0) at the time of initialization processing at the time of manufacturing the control circuit and at the time of operating the DIP switch for data initialization. The proper charging rate (R0) is a value peculiar to the battery and represents an ideal charging amount with respect to the discharging amount of the battery, and the proper charging rate (R0) of the battery adopted in the present embodiment is 105. %. After the process of step S305 or step S306, the process proceeds to step S307 and the regenerative overcharge amount (CK).
By substituting 0 for, it becomes possible to normally integrate the regenerative overcharge amount (CK) at the next running. Next, step S3
At 08, the completed charging rate (RC) is compared with the appropriate charging rate (R0). If the completed charging rate (RC) is lower than the appropriate charging rate (R0), then at step S309 (the appropriate charging rate (R0)
-Completion charge rate (RC)) x (rated capacity (C0) -remaining battery capacity at the start of charging (CB2)) is substituted into the charge suppression amount (CN), and the complete charge rate (RC) is properly charged. When it is equal to the rate (R0) or the completed charge rate (RC) is larger than the proper charge rate (R0), 0 is substituted for the charge suppression amount (CN) in step S310.

【0020】前述の式による値が代入された充電抑制量
(CN)は、本来、適正充電率(R0)を最適な充電率
として充電する所を、回生過充電量(CK)を考慮した
適正充電率(R0)よりも少ない完了充電率(RC)で
充電される場合にその充電不足分の容量を示し、前述の
如く、走行モードにおける電流積算手段では、充電抑制
量(CN)が0でない場合は、バッテリーに流れ込む電
流(IC)を充電抑制量(CN)から減算して行き、充
電抑制量(CN)が0となった時点から即ち充電時に充
電不足にした容量分が走行時に充電された時点から、バ
ッテリーに流れ込む電流(IC)をバッテリー残量(C
B)或いはバッテリー残量(CB)が定格容量(C0)
を超える場合には回生過充電量(CK)に加算する。
The charging suppression amount (CN) in which the value obtained by the above equation is substituted is originally a proper charging ratio (R0) which is charged at an optimum charging ratio in consideration of the regenerative overcharge amount (CK). When the battery is charged at a completed charging rate (RC) smaller than the charging rate (R0), it shows the capacity of the insufficient charge, and as described above, the current suppressing means in the traveling mode does not have the charge suppression amount (CN) of 0. In this case, the current (IC) flowing into the battery is subtracted from the charge suppression amount (CN), and from the time when the charge suppression amount (CN) becomes 0, that is, the capacity that is insufficiently charged during charging is charged during traveling. The current (IC) flowing into the battery from the point when
B) or battery remaining capacity (CB) is rated capacity (C0)
If it exceeds, it is added to the regenerative overcharge amount (CK).

【0021】次にステップS311では、バッテリーに
流れ込む電流(IC)を入力し、ステップS312で
は、充電量(CC)にバッテリーに流れ込む電流(I
C)を加算する。次に、ステップS313では、充電量
(CC)が、完了充電率(RC)×(定格容量(C0)
−充電開始時のバッテリー残量(CB2))の演算値以
上になったかどうか、即ち完了充電率(RC)に達した
かどうかを判断し、完了充電率(RC)に達しない場合
は処理を終え、CPU3に別途プログラムされている充
電出力制御手段を継続して処理させて、充電を継続す
る。完了充電率(RC)に達した場合は、ステップS3
14で充電完了指令を出し、該充電出力制御手段を停止
さて充電を完了させると共に、ステップS315で、バ
ッテリー残量(CB)に定格容量(C0)を代入して処
理を終える。
Next, in step S311, the current (IC) flowing into the battery is input, and in step S312, the current (I) flowing into the battery for the charge amount (CC) is input.
Add C). Next, in step S313, the charge amount (CC) is equal to the completed charge rate (RC) × (rated capacity (C0)
-It is determined whether or not the remaining battery charge (CB2) at the start of charging has become equal to or greater than the calculated value, that is, whether the completed charge rate (RC) has been reached. If the completed charge rate (RC) has not been reached, the processing is executed. After that, the charging output control means separately programmed in the CPU 3 is caused to continue processing, and charging is continued. If the completed charge rate (RC) is reached, step S3
At step 14, a charge completion command is issued, the charge output control means is stopped to complete the charge, and at step S315, the rated capacity (C0) is substituted into the battery remaining capacity (CB), and the processing is ended.

【0022】図5は前述の充電制御手段のステップS3
05で処理される充電量減少処理の詳細を示すフローチ
ャートであって、ステップS401でまず完了充電率
(RC)が一定の充電率(RX)本実施の形態において
は90%を超えているかどうかの判断を行い、超えてい
ない場合は、それ以上の減少処理を行わないで処理を終
え、超えている場合はステップS402で一回の充電量
減少処理での完了充電率(RC)の減少補正量(AM)
を適宜に制限し、ステップS403及びステップS40
4で減少補正量(AM)の下限を制限してステップS4
05で完了充電率(RC)から減少補正量(AM)を減
算して充電量減少処理を終える。前記ステップS401
からステップS405では、 一定の充電率(RX)=90% 一回の完了充電率(RC)の減少補正量(AM)=
((RC)−(RX))÷6 一回の完了充電率(RC)の減少補正量(AM)≧1 完了充電率(RC)=(RC)−(AM) 完了充電率(RC)≧(RX) で表される充電量減少式を処理しているが、特にこの式
に限る必要はなく、回生過充電を考慮して完了充電率
(RC)が徐々に減少される適宜な式で処理したのでよ
い。
FIG. 5 shows step S3 of the charging control means described above.
5 is a flowchart showing the details of the charge amount reduction process executed in step 05, in which first, in step S401, whether the completed charge rate (RC) is a constant charge rate (RX) or more than 90% is determined in the present embodiment. If it does not exceed, the processing ends without further reduction processing, and if it exceeds, the reduction correction amount of the complete charging rate (RC) in one charging amount reduction processing in step S402. (AM)
Are appropriately restricted, and step S403 and step S40
The lower limit of the decrease correction amount (AM) is limited by 4 and step S4
At 05, the reduction correction amount (AM) is subtracted from the completed charge rate (RC), and the charge amount reduction processing is ended. Step S401
From step S405, constant charge rate (RX) = 90% Reduction correction amount (AM) = of complete charge rate (RC) for one time =
((RC)-(RX)) ÷ 6 Decrease correction amount (AM) of one complete charge rate (RC) ≧ 1 Complete charge rate (RC) = (RC) − (AM) Complete charge rate (RC) ≧ Although the charge amount reduction formula represented by (RX) is processed, the formula is not limited to this formula and may be an appropriate formula that gradually reduces the completed charge rate (RC) in consideration of regenerative overcharge. I have processed it.

【0023】図6は前述の充電制御手段のステップS3
06で処理される充電量増大処理の詳細を示すフローチ
ャートであって、ステップS501でまず完了充電率
(RC)が適正充電率(R0)未満であるかどうかの判
断を行い、適正充電率(R0)以上であれば、それ以上
の増大処理を行わず、ステップS506及びステップS
507で完了充電率(RC)を上限の適正充電率(R
0)で制限して処理を終え、完了充電率(RC)が適正
充電率(R0)未満であればステップS502で一回の
充電量増大処理での完了充電率(RC)増大補正量(A
P)を適宜に制限し、ステップS503及びステップS
504で増大補正量(AP)の下限を制限してステップ
S505で完了充電率(RC)に増大補正量(AP)を
加算して、更にステップS506及びステップS507
で完了充電率(RC)を上限の適正充電率(R0)で制
限して処理を終える。前記ステップS501からステッ
プS507では、 一定の充電率(RX)=90% 一回の完了充電率(RC)の増大補正量(AP)=
((RC)−(RX))÷6 一回の完了充電率(RC)の増大補正量(AP)≧2 完了充電率(RC)=(RC)+(AP) 完了充電率(RC)≦(R0) で表される充電量増大式を処理しているが、特にこの式
に限る必要はなく、回生過充電状態が解消された時、完
了充電率(RC)が徐々に増大され、更に前述の充電量
減少処理よりも少ない処理回数で完了充電率(RC)の
上限である適正充電率(R0)に復帰すべく、減少補正
量(AM)より増大補正量(AP)を大きくしてなる適
宜な式で処理したのでよい。
FIG. 6 shows step S3 of the charge control means described above.
It is a flowchart which shows the detail of the charge amount increase process processed by 06, It is judged whether the completion charge rate (RC) is less than the proper charge rate (R0) first in step S501, and it determines whether it is a proper charge rate (R0). ) If it is the above, further increase processing is not performed, and steps S506 and S are performed.
At 507, the complete charging rate (RC) is the upper limit of the appropriate charging rate (R
0), the process is ended and the completed charge rate (RC) is less than the proper charge rate (R0). In step S502, the completed charge rate (RC) increase correction amount (A) in one charge amount increase process is increased.
P) is appropriately restricted, and steps S503 and S are performed.
The lower limit of the increase correction amount (AP) is limited in 504, the increase correction amount (AP) is added to the completed charging rate (RC) in step S505, and further steps S506 and S507.
Then, the completed charging rate (RC) is limited to the upper limit proper charging rate (R0), and the process is ended. In step S501 to step S507, a constant charging rate (RX) = 90%, an increase correction amount (AP) = of the complete charging rate (RC) for one time
((RC) − (RX)) ÷ 6 Increase correction amount (AP) of one complete charge rate (RC) ≧ 2 Complete charge rate (RC) = (RC) + (AP) Complete charge rate (RC) ≦ Although the charging amount increase formula represented by (R0) is processed, it is not particularly limited to this formula, and when the regenerative overcharge state is eliminated, the completed charge rate (RC) is gradually increased, and In order to return to the proper charging rate (R0) which is the upper limit of the complete charging rate (RC) with a smaller number of times of processing than the above-described charging amount reducing processing, the increasing correction amount (AP) is made larger than the decreasing correction amount (AM). It may be processed by an appropriate formula.

【0024】表1は、本実施の形態を採用した電動車
が、走行状態で3.5AHの回生過充電量(CK)が発
生する環境において連続的に使用された状況を想定した
時の、本発明の効果を表したものであって、1回の走行
及び充電毎に完了充電率(RC)及び充電抑制量(C
N)が増大して行き、反対に回生過充電量(CK)が減
少して行って、7回目以降では回生過充電量(CK)
が、定格容量(C0)の2%、即ち本実施の形態では3
5AHの2%の容量である0.7AHの状態と、0.3
5AHの状態とで飽和に達し、平均的には約0.5AH
の回生過充電状態にまで抑制されて維持される。
Table 1 shows a case where the electric vehicle employing this embodiment is assumed to be continuously used in an environment where a regenerative overcharge amount (CK) of 3.5 AH is generated in a running state. The effect of this invention is represented, Completion charge rate (RC) and charge suppression amount (C
N) increases and conversely the regenerative overcharge amount (CK) decreases, and after the 7th time, the regenerative overcharge amount (CK) increases.
Is 2% of the rated capacity (C0), that is, 3 in the present embodiment.
0.7 AH, which is 2% capacity of 5 AH, and 0.3
Saturation is reached at 5 AH, with an average of about 0.5 AH
The regenerative overcharge state is suppressed and maintained.

【表1】 表2は、前述の表1の飽和状態から使用環境が変化し、
回生過充電量(CK)が発生しない環境において連続的
に使用される様になった場合を想定した時の、本発明の
制御の追従状態を表したものであって、1回の走行及び
充電毎に完了充電率(RC)及び充電抑制量(CN)が
減少して行き、表1の7回目での飽和より速い5回目
で、適正充電率(R0)、即ち本実施の形態では105
%の充電率で充電される通常の充電状態にまで復帰され
る。
[Table 1] Table 2 shows that the usage environment changes from the saturated state of Table 1 above.
It represents the follow-up state of the control of the present invention, assuming a case where the regenerative overcharge amount (CK) is continuously used in an environment where it does not occur. The completed charge rate (RC) and the charge suppression amount (CN) decrease every time, and the proper charge rate (R0), that is, 105 in the present embodiment, is obtained at the fifth time, which is faster than the saturation at the seventh time in Table 1.
It returns to the normal state of charge in which it is charged at a charge rate of%.

【表2】 [Table 2]

【0025】[0025]

【図面の簡単な説明】[Brief description of drawings]

【図1】入力手段及び制御手段の接続状態を示すブロッ
ク図。
FIG. 1 is a block diagram showing a connection state of an input unit and a control unit.

【図2】走行モードにおける電流積算手段の動作を示す
フローチャート図。
FIG. 2 is a flowchart showing the operation of a current accumulating means in a traveling mode.

【図3】充電モードにおける電流積算手段の動作を示す
フローチャート図。
FIG. 3 is a flowchart showing the operation of the current integration means in the charging mode.

【図4】充電制御手段の動作を示すフローチャート図。FIG. 4 is a flowchart showing the operation of the charge control means.

【図5】充電量減少処理の詳細を示すフローチャート
図。
FIG. 5 is a flowchart showing details of a charge amount reduction process.

【図6】充電量増大処理の詳細を示すフローチャート
図。
FIG. 6 is a flowchart showing details of a charge amount increasing process.

【符号の説明】 (1) モータ (ID) バッテリーから消費される電流 (IC) バッテリーに流れ込む電流 (CB) バッテリー残量 (C0) 定格容量 (CK) 回生過充電量 (CC) バッテリーへの充電量 (R0) 適正充電率 (RC) 完了充電率 (CB2) 充電開始時のバッテリー残量 (CN) 充電抑制量 (AP) 増大補正量 (AM) 減少補正量[Explanation of symbols] (1) Motor (ID) Current consumed from the battery (IC) Current flowing into the battery (CB) Battery level (C0) Rated capacity (CK) Regenerative overcharge amount (CC) Battery charge (R0) Proper charging rate (RC) Complete charge rate (CB2) Battery level at the start of charging (CN) Charge suppression amount (AP) Increased correction amount (AM) Decrease correction amount

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電動車に車載のバッテリーから消費され
る電流(ID)を減算し、該バッテリーに流れ込む電流
(IC)を加算して制御装置が認識するバッテリー残量
(CB)を更新すると共に、降坂時等にモータ(1)か
ら発電されバッテリーに流れ込む回生電流(IC)の加
算によってバッテリー残量(CB)が定格容量(C0)
を越えようとする場合には、その超過分は回生過充電量
(CK)として積算する電流積算手段を備え、更に充電
操作時には該回生過充電量(CK)に応じてバッテリー
への充電量(CC)を制御する充電制御手段を備えた事
を特徴とする電動車の回生過充電抑制制御装置。
1. A current (ID) consumed from a battery mounted on an electric vehicle is subtracted, and a current (IC) flowing into the battery is added to update a battery remaining amount (CB) recognized by a control device. , The remaining battery capacity (CB) is the rated capacity (C0) due to the addition of the regenerative current (IC) that is generated from the motor (1) and flows into the battery when going downhill.
In the case of trying to exceed the rechargeable overcharge amount (CK), the excess amount is provided with a current integrating means for integrating as a regenerative overcharge amount (CK). A regenerative overcharge suppression control device for an electric vehicle, comprising: a charge control means for controlling the CC).
【請求項2】 前記充電制御手段は、バッテリーへの充
電量(CC)をバッテリー固有の適正充電率(R0)で
初期化された完了充電率(RC)によって制御すべく、
充電中に積算される充電量(CC)が、 (RC)×((C0)−(CB2)) (CB2)は、充電開始時のバッテリー残量(CB) で表される電気量に達した時点でバッテリー残量(C
B)に定格容量(C0)を設定して充電を完了する構成
とし、前記構成において充電を開始する時、回生過充電
量(CK)が一定以上積算されている場合には完了充電
率(RC)を減少補正し、一定未満しか積算されていな
い場合には完了充電率(RC)を増大補正し、該減少補
正或いは増大補正と共に、回生過充電量(CK)は0に
リセットし、更に、 (RC)<(R0) である場合に、 ((R0)−(RC))×((C0)−(CB2)) で表される電気量を充電抑制量(CN)として保存する
と共に、請求項1における電流積算手段は、走行状態に
おいて該充電抑制量(CN)が0でなければ、回生電流
(IC)を充電抑制量(CN)から減算し、充電抑制量
(CN)が0であれば、バッテリー残量(CB)に加算
する事を特徴とする請求項1に記載の回生過充電抑制制
御装置。
2. The charge control means controls the charge amount (CC) to the battery by a completed charge rate (RC) initialized by a proper charge rate (R0) specific to the battery,
The amount of charge (CC) accumulated during charging is (RC) × ((C0)-(CB2)) (CB2) reaches the amount of electricity represented by the remaining battery charge (CB) at the start of charging. Battery level (C
When the rated capacity (C0) is set in B) and the charging is completed, and when the charging is started in the above-mentioned configuration and the regenerative overcharge amount (CK) is accumulated over a certain amount, the completed charge rate (RC ) Is decreased, and the completed charge rate (RC) is increased if less than a certain value is integrated, and the regenerative overcharge amount (CK) is reset to 0 together with the decrease correction or the increase correction. When (RC) <(R0), the amount of electricity represented by ((R0) − (RC)) × ((C0) − (CB2)) is stored as the charge suppression amount (CN), and the charge If the charge suppression amount (CN) is not 0 in the running state, the current integration means in the item 1 subtracts the regenerative current (IC) from the charge suppression amount (CN) to set the charge suppression amount (CN) to 0. For example, it is added to the battery remaining capacity (CB) Regenerative overcharge suppression control apparatus according to claim 1.
【請求項3】 前記充電制御手段は、完了充電率(R
C)の増大補正量(AP)を、減少補正量(AM)より
大きくした事を特徴とする請求項2に記載の回生過充電
抑制制御装置。
3. The completed charge rate (R
The regenerative overcharge suppression control device according to claim 2, wherein the increase correction amount (AP) of C) is made larger than the decrease correction amount (AM).
JP2001229733A 2001-07-30 2001-07-30 Electric vehicle regenerative overcharge suppression control device Expired - Lifetime JP4650657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001229733A JP4650657B2 (en) 2001-07-30 2001-07-30 Electric vehicle regenerative overcharge suppression control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001229733A JP4650657B2 (en) 2001-07-30 2001-07-30 Electric vehicle regenerative overcharge suppression control device

Publications (2)

Publication Number Publication Date
JP2003047103A true JP2003047103A (en) 2003-02-14
JP4650657B2 JP4650657B2 (en) 2011-03-16

Family

ID=19062037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001229733A Expired - Lifetime JP4650657B2 (en) 2001-07-30 2001-07-30 Electric vehicle regenerative overcharge suppression control device

Country Status (1)

Country Link
JP (1) JP4650657B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000270402A (en) * 1999-03-19 2000-09-29 Mitsubishi Motors Corp Residual capacity detector for battery
JP2001054202A (en) * 1999-08-05 2001-02-23 Nissan Motor Co Ltd Vehicle braking force controller

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000270402A (en) * 1999-03-19 2000-09-29 Mitsubishi Motors Corp Residual capacity detector for battery
JP2001054202A (en) * 1999-08-05 2001-02-23 Nissan Motor Co Ltd Vehicle braking force controller

Also Published As

Publication number Publication date
JP4650657B2 (en) 2011-03-16

Similar Documents

Publication Publication Date Title
JP3549806B2 (en) Automotive power supply controller
JP4784566B2 (en) Secondary battery input / output power control apparatus and input / output power control method
US9849793B2 (en) Electrical storage system for vehicle
JP5249277B2 (en) Vehicle charging device
JP7091830B2 (en) Power supply
KR20100091102A (en) Solar charged hybrid power system
EP2907702B1 (en) Vehicle battery system
JP2013051809A (en) Charge control unit for electric vehicle
JP2002291104A (en) Battery controller for motor-driven vehicle
EP1220350B1 (en) Electric device with timer means
JP2006335179A (en) Load control system
KR20180008976A (en) System for protecting battery from over-charge for vehicle and the controlling method
JP2010183758A (en) Vehicle controller
JP2008131772A (en) Power supply unit
JP2003047103A (en) Regenerative overcharge suppression control device
JP4714244B2 (en) Car equipped with fuel cell
JP3000758B2 (en) Power supply for vehicles
JPH1056741A (en) Battery charging structure for small electric vehicle
JP2007252063A (en) Charge control device of battery, and charge/discharge control device of battery
JP3688233B2 (en) Battery charger for electric car
JP6680068B2 (en) Charge / discharge control device
JP3917337B2 (en) Series hybrid electric vehicle
EP3394422B1 (en) Control method of the power management system in a vehicle provided with two batteries
JP2004187398A (en) Battery controller
JP2001224102A (en) Charging and discharging controlling device for vehicle storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100917

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101201

R150 Certificate of patent or registration of utility model

Ref document number: 4650657

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term