JP2003045423A - Positive active material for alkaline secondary battery, alkaline secondary battery, hybrid car and electric vehicle - Google Patents

Positive active material for alkaline secondary battery, alkaline secondary battery, hybrid car and electric vehicle

Info

Publication number
JP2003045423A
JP2003045423A JP2001233801A JP2001233801A JP2003045423A JP 2003045423 A JP2003045423 A JP 2003045423A JP 2001233801 A JP2001233801 A JP 2001233801A JP 2001233801 A JP2001233801 A JP 2001233801A JP 2003045423 A JP2003045423 A JP 2003045423A
Authority
JP
Japan
Prior art keywords
secondary battery
positive electrode
nickel hydroxide
hydroxide particles
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001233801A
Other languages
Japanese (ja)
Inventor
Hidenori Yoshida
秀紀 吉田
Takamichi Inaba
隆道 稲葉
Masaaki Yamamoto
雅秋 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2001233801A priority Critical patent/JP2003045423A/en
Publication of JP2003045423A publication Critical patent/JP2003045423A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a positive active material for a secondary battery enhancing the charging efficiency at high temperature in initial charging/discharging cycles. SOLUTION: Nickel hydroxide particles containing 1.5% or more Li to Ni in weight ratio is contained in the positive active material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、水酸化ニッケルを
含むアルカリ二次電池用正極活物質と、この正極活物質
を含む正極を備えるアルカリ二次電池と、このアルカリ
二次電池を用いたハイブリッドカー並びに電気自動車に
関するものである。また、このアルカリ二次電池は、ハ
イブリッドカー及び電気自動車の他に、携帯電子機器な
どにも搭載可能である。
TECHNICAL FIELD The present invention relates to a positive electrode active material for an alkaline secondary battery containing nickel hydroxide, an alkaline secondary battery including a positive electrode containing the positive electrode active material, and a hybrid using the alkaline secondary battery. It relates to cars and electric vehicles. Further, the alkaline secondary battery can be mounted on a portable electronic device or the like in addition to a hybrid car and an electric vehicle.

【0002】[0002]

【従来の技術】アルカリ二次電池の一例であるニッケル
・水素二次電池は、携帯電話などの各種モバイル機器の
電源や、ハイブリッド電気自動車用の電池として多用さ
れている。また、電動工具の電源には主にニッケル・カ
ドミウム電池が使用されているが、このニッケル・カド
ミウム電池に代替する環境調和型の電池としての需要も
見込まれている。
2. Description of the Related Art Nickel-hydrogen secondary batteries, which are an example of alkaline secondary batteries, are widely used as power sources for various mobile devices such as mobile phones and batteries for hybrid electric vehicles. Also, although nickel-cadmium batteries are mainly used as the power source for electric tools, demand for environmentally friendly batteries that can replace these nickel-cadmium batteries is also expected.

【0003】ニッケル水素二次電池では、ニッケルカド
ミウム電池と同様に水酸化ニッケル(Ni(OH)2
を正極活物質として使用し、かつニッケルカドミウム電
池とは異なり、負極材料として水素吸蔵合金を用いてい
る。これまで各社とも、負極材料である水素吸蔵合金の
特性改善に大きく注力し、その結果、現在使用している
水素吸蔵合金ではほぼ理論値に近い容量が得られつつあ
り、更なる高容量化と電池特性改善のためには、正極の
性能向上が必須となっている。
In the nickel-hydrogen secondary battery, nickel hydroxide (Ni (OH) 2 ) is used as in the nickel-cadmium battery.
Is used as the positive electrode active material, and unlike the nickel-cadmium battery, a hydrogen storage alloy is used as the negative electrode material. To date, each company has made great efforts to improve the characteristics of the hydrogen storage alloy that is the negative electrode material, and as a result, the hydrogen storage alloys currently in use have reached capacities close to the theoretical values, and further higher capacity In order to improve battery characteristics, it is essential to improve the performance of the positive electrode.

【0004】水酸化ニッケルを正極活物質として用いる
場合、通常は充放電による活性化で正極の充電効率を所
定値まで高める。充放電により充電効率が高められるの
は、水酸化ニッケル粒子が初期の充放電の繰り返しによ
って、電解液中のアルカリ金属イオンや水を格子中に取
り込み、状態が次第に変化していくためであると思われ
る。
When nickel hydroxide is used as the positive electrode active material, the charging efficiency of the positive electrode is usually increased to a predetermined value by activation by charging / discharging. The reason why the charging efficiency is improved by charging and discharging is that the nickel hydroxide particles take in alkali metal ions and water in the electrolyte into the lattice by repeating the initial charging and discharging, and the state gradually changes. Seem.

【0005】特に、アルカリ電解液中のLiイオンは活
物質中に取り込まれ易く、活物質の導電性向上や高温時
の充電受け入れ性向上に有効とされている。
In particular, Li ions in the alkaline electrolyte are easily taken into the active material, and it is said to be effective for improving the conductivity of the active material and the charge acceptability at high temperature.

【0006】しかしながら、水酸化リチウムは溶解度が
低いために電解液中に析出しやすく、電解液の導電率を
維持する観点から電解液中の全アルカリイオン量に占め
るLiイオン量は自ずと制限される。また、密閉型電池
では過充電時の発生ガスの再結合を円滑に行わせるため
に、電解液注入量も制限されている。従って、注入され
た電解液中のLiイオンが全て、水酸化ニッケル中に取
り込まれたとしても、Niに対するLiの重量比で1.
0%程度までしかLi含有率を上げられなかった。よっ
て、この手法では、水酸化ニッケル粒子中に多量にLi
OHを添加することは困難である。加えて、正極活物質
中のアルカリイオンの存在量が定常状態に達するまでに
充放電を繰り返し行うことが必要となるため、サイクル
初期において十分な特性が得られないという問題があ
る。
However, since lithium hydroxide has a low solubility, it is likely to precipitate in the electrolytic solution, and from the viewpoint of maintaining the conductivity of the electrolytic solution, the amount of Li ions in the total amount of alkali ions in the electrolytic solution is naturally limited. . In addition, in the sealed battery, the amount of electrolyte injected is limited in order to smoothly recombine the generated gas during overcharge. Therefore, even if all of the Li ions in the injected electrolytic solution were taken into the nickel hydroxide, the weight ratio of Li to Ni was 1.
The Li content could only be increased to about 0%. Therefore, in this method, a large amount of Li is contained in the nickel hydroxide particles.
It is difficult to add OH. In addition, since it is necessary to repeatedly charge and discharge until the amount of alkali ions present in the positive electrode active material reaches a steady state, there is a problem that sufficient characteristics cannot be obtained at the beginning of the cycle.

【0007】このようなことから、特開平8−4550
6号公開公報には、酸性のリチウム塩と酸性のニッケル
塩の混合水溶液と、アルカリ水溶液とを、反応槽内pH
が所定値に維持されるようにそれぞれの水溶液の導入量
を制御しつつ、反応槽内に徐々に導入して混合すること
により、リチウムを含有した水酸化ニッケル結晶を析出
させることが提案されている。このような方法による
と、特開昭60−211767号公報に記載されている
方法、すなわちニッケル塩溶液にリチウムを含むアルカ
リ金属を作用させることにより水酸化ニッケルの集合粒
子中にリチウムを含有させる方法に比べて、水酸化ニッ
ケル結晶格子内にリチウムイオンを取り込みやすいた
め、常温における充放電初期の電池容量を向上させるこ
とが可能である。
From the above, Japanese Patent Application Laid-Open No. 8-4550
No. 6 publication discloses that a mixed aqueous solution of an acidic lithium salt and an acidic nickel salt and an alkaline aqueous solution are used to measure the pH in a reaction tank.
While controlling the introduction amount of each aqueous solution so that is maintained at a predetermined value, by gradually introducing and mixing in the reaction tank, it has been proposed to precipitate nickel hydroxide crystals containing lithium. There is. According to such a method, a method described in JP-A-60-211767, that is, a method of causing lithium to be contained in aggregate particles of nickel hydroxide by causing an alkali metal containing lithium to act on a nickel salt solution. In comparison with the above, since it is easy to take lithium ions into the nickel hydroxide crystal lattice, it is possible to improve the battery capacity in the initial stage of charge / discharge at room temperature.

【0008】しかしながら、特開平8−45506号公
開公報に記載された方法によると、段落[0014]〜
[0016]に記載されているように、水酸化ニッケル
粒子中のリチウム含有量は1重量%と低く、高温におい
て高い初期充電効率を得ることが困難になる。すなわ
ち、水酸化ニッケル粒子を酸化させて結晶面の間隔を広
げるという処理を行っていないため、1.5重量%以上
の高濃度にLiを取り込ませられない。また、残留硫酸
根等の高濃度化を避ける目的もあって、酸性リチウム塩
と酸性ニッケル塩の混合水溶液におけるリチウム濃度が
自ずと制限される。このため、水酸化ニッケル粒子中の
リチウム含有量は1重量%程度までにしか高められな
い。
However, according to the method described in Japanese Patent Laid-Open No. 8-45506, paragraphs [0014] to
As described in [0016], the lithium content in the nickel hydroxide particles is as low as 1% by weight, which makes it difficult to obtain high initial charging efficiency at high temperatures. That is, since the process of oxidizing the nickel hydroxide particles to widen the distance between the crystal planes is not performed, Li cannot be incorporated at a high concentration of 1.5% by weight or more. In addition, the lithium concentration in the mixed aqueous solution of the acidic lithium salt and the acidic nickel salt is naturally limited for the purpose of avoiding increasing the concentration of residual sulfate groups and the like. Therefore, the lithium content in the nickel hydroxide particles can only be increased to about 1% by weight.

【0009】[0009]

【発明が解決しようとする課題】本発明は、充放電サイ
クル初期における高温での充電効率を向上することが可
能なアルカリ二次電池用正極活物質およびアルカリ二次
電池と、このアルカリ二次電池を用いるハイブリッドカ
ー並びに電気自動車とを提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention is directed to a positive electrode active material for an alkaline secondary battery and an alkaline secondary battery capable of improving the charging efficiency at high temperature in the initial stage of a charge / discharge cycle, and the alkaline secondary battery. It is an object to provide a hybrid car and an electric vehicle using the.

【0010】[0010]

【課題を解決するための手段】本発明に係るアルカリ二
次電池用正極活物質は、Niに対する重量比で1.5%
以上のLiを含有する水酸化ニッケル粒子を含むことを
特徴とするものである。
The positive electrode active material for an alkaline secondary battery according to the present invention has a weight ratio to Ni of 1.5%.
It is characterized by containing the nickel hydroxide particles containing Li described above.

【0011】本発明に係るアルカリ二次電池は、正極活
物質を含む正極と、負極と、アルカリ電解液とを備える
アルカリ二次電池において、前記正極活物質は、Niに
対する重量比で1.5%以上のLiを含有する水酸化ニ
ッケル粒子を含むことを特徴とするものである。
The alkaline secondary battery according to the present invention is an alkaline secondary battery including a positive electrode containing a positive electrode active material, a negative electrode, and an alkaline electrolyte, wherein the positive electrode active material has a weight ratio to Ni of 1.5. % Of Li is included in the nickel hydroxide particles.

【0012】本発明に係るハイブリッドカーは、電気駆
動手段と、アルカリ二次電池を含む電気駆動手段用電源
とを具備したハイブリッドカーにおいて、前記アルカリ
二次電池は、正極活物質を含む正極と、負極と、アルカ
リ電解液とを備え、かつ前記正極活物質は、Niに対す
る重量比で1.5%以上のLiを含有する水酸化ニッケ
ル粒子を含むことを特徴とするものである。
The hybrid car according to the present invention is a hybrid car provided with an electric drive means and a power source for the electric drive means including an alkaline secondary battery, wherein the alkaline secondary battery includes a positive electrode containing a positive electrode active material, It is characterized in that it comprises a negative electrode and an alkaline electrolyte, and that the positive electrode active material contains nickel hydroxide particles containing Li in a weight ratio of 1.5% or more with respect to Ni.

【0013】本発明に係る電気自動車は、アルカリ二次
電池を含む駆動電源を備える電気自動車において、前記
アルカリ二次電池は、正極活物質を含む正極と、負極
と、アルカリ電解液とを備え、かつ前記正極活物質は、
Niに対する重量比で1.5%以上のLiを含有する水
酸化ニッケル粒子を含むことを特徴とするものである。
The electric vehicle according to the present invention is an electric vehicle including a driving power source including an alkaline secondary battery, wherein the alkaline secondary battery includes a positive electrode containing a positive electrode active material, a negative electrode, and an alkaline electrolyte. And the positive electrode active material,
It is characterized by containing nickel hydroxide particles containing Li in a weight ratio of 1.5% or more with respect to Ni.

【0014】[0014]

【発明の実施の形態】まず、本発明に係るアルカリ二次
電池用正極活物質について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION First, the positive electrode active material for an alkaline secondary battery according to the present invention will be described.

【0015】このアルカリ二次電池用正極活物質は、N
iに対する重量比で1.5%以上のLiを含有する水酸
化ニッケル粒子を含むことを特徴とするものである。
The positive electrode active material for an alkaline secondary battery is N
It is characterized by containing nickel hydroxide particles containing Li in a weight ratio of 1.5% or more with respect to i.

【0016】Liは、水酸化ニッケルの結晶格子内に存
在することができる。また、Liの存在形態は、原子、
イオン、化合物等の形態を取り得る。Li含有量を1.
5重量%未満にすると、充放電サイクル初期における高
温での充電効率が低下する。また、Li含有量を3重量
%より多くしても、高温での充電効率の大幅な改善が望
めないばかりか、高い正極利用率と優れた充放電サイク
ル特性を得られなくなる恐れがある。よって、Li含有
量は、1.5〜3重量%の範囲内にすることが好まし
い。さらに好ましい範囲は、2.5〜2.7重量%であ
る。
Li can be present in the crystal lattice of nickel hydroxide. The existence form of Li is an atom,
It may take the form of an ion, a compound or the like. The Li content is 1.
If it is less than 5% by weight, the charging efficiency at high temperature at the beginning of the charge / discharge cycle is lowered. Further, even if the Li content is more than 3% by weight, not only a large improvement in charging efficiency at high temperature cannot be expected, but also a high positive electrode utilization rate and excellent charge / discharge cycle characteristics may not be obtained. Therefore, the Li content is preferably in the range of 1.5 to 3% by weight. A more preferable range is 2.5 to 2.7% by weight.

【0017】水酸化ニッケル粒子には、Liの他に、正
極利用率とサイクル寿命を更に向上させる観点から、Z
n、Co、MgおよびYよりなる群から選択される1種
類以上の元素を含有させることができる。
In addition to Li, the nickel hydroxide particles contain Z from the viewpoint of further improving the positive electrode utilization rate and cycle life.
One or more kinds of elements selected from the group consisting of n, Co, Mg and Y can be contained.

【0018】水酸化ニッケル粒子の表面には、オキシ水
酸化コバルト(CoOOH)を含有する導電層を形成し
ても良い。表面に導電層が形成されている水酸化ニッケ
ル粒子は、正極の導電性を向上させることができるた
め、正極利用率とサイクル寿命を改善することが可能で
ある。
A conductive layer containing cobalt oxyhydroxide (CoOOH) may be formed on the surface of the nickel hydroxide particles. The nickel hydroxide particles having the conductive layer formed on the surface thereof can improve the conductivity of the positive electrode, and thus can improve the positive electrode utilization rate and the cycle life.

【0019】水酸化ニッケル粒子の平均粒径は、4〜1
8μmの範囲内にすることが好ましい。より好ましい範
囲は、7〜12μmである。
The nickel hydroxide particles have an average particle size of 4 to 1
It is preferably within the range of 8 μm. A more preferable range is 7 to 12 μm.

【0020】本発明に係る正極活物質は、例えば、リチ
ウムイオンを含む溶液中において水酸化ニッケル粒子の
少なくとも一部をNi(II)からNi(III)の状態に
なるまで酸化させることにより得られる。水酸化ニッケ
ルの少なくとも一部をNi(III)の状態に酸化してN
iOOHにすることによって、結晶面の間隔を広げるこ
とができるため、結晶格子中にLiイオンが取り込まれ
やすくなる。その結果、Niに対する重量比で1.5%
以上のLiを含有する水酸化ニッケル粒子を作製するこ
とができる。具体的な製造方法について以下に説明す
る。
The positive electrode active material according to the present invention is obtained, for example, by oxidizing at least a part of nickel hydroxide particles in a solution containing lithium ions until the state of Ni (II) is changed to Ni (III). . At least a part of nickel hydroxide is oxidized to Ni (III) state and N
By using iOOH, the distance between crystal planes can be widened, so that Li ions are easily incorporated into the crystal lattice. As a result, the weight ratio to Ni is 1.5%
The nickel hydroxide particles containing Li described above can be produced. A specific manufacturing method will be described below.

【0021】まず、水酸化リチウムを含む水溶液と水酸
化ニッケル粒子と酸化剤とを攪拌混合することにより、
目的の水酸化ニッケル粒子を得る。得られた水酸化ニッ
ケルは、一部または全部がオキシ水酸化ニッケル(Ni
OOH)の状態に酸化されているため、必要に応じて還
元処理を施すことが望ましい。
First, by stirring and mixing an aqueous solution containing lithium hydroxide, nickel hydroxide particles and an oxidizing agent,
The target nickel hydroxide particles are obtained. Part or all of the obtained nickel hydroxide is nickel oxyhydroxide (Ni
Since it has been oxidized to the (OOH) state, it is desirable to carry out a reduction treatment if necessary.

【0022】原料の水酸化ニッケル粒子には、例えば、
ZnおよびCoのうち少なくとも一方の金属が共晶され
ている水酸化ニッケル粒子や、無共晶の水酸化ニッケル
粒子を使用することができる。
The nickel hydroxide particles as a raw material include, for example,
Nickel hydroxide particles in which at least one metal of Zn and Co is eutectic, or non-eutectic nickel hydroxide particles can be used.

【0023】水溶液中の水酸化リチウム(LiOH)の
濃度は、1M(mol/L)以上、4M(mol/L)
以下にすることが好ましい。これは次のような理由によ
るものである。LiOH濃度を1M未満にすると、水酸
化ニッケル中のLi含有量を1.5重量%以上にするこ
とが困難になる恐れがある。また、水酸化リチウムの水
に対する溶解度が低いため、LiOH濃度が4Mを超え
る水溶液の調製はほとんど困難である。LiOH濃度を
1M以上、4M以下にすることによって、水酸化ニッケ
ル粒子中のLi含有量を1.5〜3重量%の範囲内にす
ることができる。LiOH濃度のより好ましい範囲は、
1.5M以上、3.5M以下で、更に好ましい範囲は2
M以上、3M以下である。
The concentration of lithium hydroxide (LiOH) in the aqueous solution is 1 M (mol / L) or more and 4 M (mol / L)
The following is preferable. This is due to the following reasons. When the LiOH concentration is less than 1 M, it may be difficult to set the Li content in nickel hydroxide to 1.5% by weight or more. Moreover, since the solubility of lithium hydroxide in water is low, it is almost difficult to prepare an aqueous solution having a LiOH concentration of more than 4M. By setting the LiOH concentration to 1 M or more and 4 M or less, the Li content in the nickel hydroxide particles can be in the range of 1.5 to 3% by weight. The more preferable range of the LiOH concentration is
1.5M or more and 3.5M or less, more preferable range is 2
It is M or more and 3M or less.

【0024】水酸化リチウムを含む水溶液には、KOH
のような他のアルカリ金属水酸化物を含有させても良
い。
The aqueous solution containing lithium hydroxide contains KOH
Other alkali metal hydroxides such as

【0025】前記酸化剤には、例えば、過塩素酸塩、塩
素酸塩およびオゾンよりなる群から選択される少なくと
も1種類を用いることができる。中でも、過塩素酸塩が
望ましい。過塩素酸塩としては、例えば、KClOなど
を挙げることができる。
As the oxidizer, for example, at least one selected from the group consisting of perchlorates, chlorates and ozone can be used. Of these, perchlorate is preferable. Examples of perchlorates include KClO and the like.

【0026】撹拌混合の際の温度は、45℃以上、75
℃以下の範囲内に保持することが好ましい。これは次の
ような理由によるものである。撹拌混合の温度を45℃
未満にすると、水酸化ニッケル粒子中のLi含有量が
1.5重量%未満になる可能性がある。一方、撹拌混合
の際の温度が75℃を超えると、水酸化ニッケル粒子の
表面が荒れて正極用ペーストの調製が困難になる恐れが
ある。より好ましい攪拌温度は、50℃以上、70℃以
下である。
The temperature at the time of stirring and mixing is 45 ° C. or higher, 75
It is preferable to keep the temperature within the range of ℃ or less. This is due to the following reasons. Stir mixing temperature 45 ° C
When it is less than 1, the Li content in the nickel hydroxide particles may be less than 1.5% by weight. On the other hand, if the temperature at the time of stirring and mixing exceeds 75 ° C., the surface of the nickel hydroxide particles may become rough, and it may be difficult to prepare the positive electrode paste. The more preferable stirring temperature is 50 ° C. or higher and 70 ° C. or lower.

【0027】還元処理の際に使用する還元剤としては、
例えば、過酸化水素水等を挙げることができる。また、
還元剤の量は、酸化された状態にある正極活物質を化学
当量的に還元可能な量の30〜120%の範囲内にする
ことが好ましい。還元処理は、酸化状態にある正極活物
質を還元剤中にて攪拌混合することによって行うことが
できる。攪拌混合の温度は、室温以上、45℃以下にす
ることが望ましい。
As the reducing agent used in the reduction treatment,
For example, hydrogen peroxide water can be used. Also,
The amount of the reducing agent is preferably within the range of 30 to 120% of the amount that can be stoichiometrically reduced in the oxidized positive electrode active material. The reduction treatment can be performed by stirring and mixing the oxidized positive electrode active material in a reducing agent. The temperature of stirring and mixing is preferably room temperature or higher and 45 ° C. or lower.

【0028】なお、亜鉛イオン、コバルトイオン、マグ
ネシウムイオン、またはイットリウムイオンを含む溶液
中において水酸化ニッケル粒子の少なくとも一部をNi
(II)からNi(III)の状態になるまで酸化させるこ
とにより、水酸化ニッケル粒子中に目的元素を含有させ
ると、正極利用率及び充放電サイクル寿命を向上するこ
とが可能な正極活物質を得ることができる。
At least a part of the nickel hydroxide particles is Ni in a solution containing zinc ions, cobalt ions, magnesium ions or yttrium ions.
When the target element is contained in the nickel hydroxide particles by oxidizing from (II) to the state of Ni (III), a positive electrode active material capable of improving the positive electrode utilization rate and charge / discharge cycle life is obtained. Obtainable.

【0029】以下、本発明に係る正極活物質を含む正極
を備えるアルカリ二次電池について説明する。
Hereinafter, an alkaline secondary battery having a positive electrode containing the positive electrode active material according to the present invention will be described.

【0030】本発明に係るアルカリ二次電池は、前述し
た正極活物質を含む正極と負極とを有する電極群と、ア
ルカリ電解液と、前記電極群および前記アルカリ電解液
が収納される容器とを備える。また、本発明に係るアル
カリ二次電池においては、前記正極と前記負極の間にセ
パレータを介在させることができる。
The alkaline secondary battery according to the present invention comprises an electrode group having a positive electrode containing the positive electrode active material and a negative electrode, an alkaline electrolyte, and a container accommodating the electrode group and the alkaline electrolyte. Prepare Moreover, in the alkaline secondary battery according to the present invention, a separator can be interposed between the positive electrode and the negative electrode.

【0031】以下、正極、負極、セパレータ、アルカリ
電解液および容器について説明する。
The positive electrode, negative electrode, separator, alkaline electrolyte and container will be described below.

【0032】1)正極 この正極は、Niに対する重量比で1.5%以上のLi
を含有する水酸化ニッケル粒子を含む正極活物質を含有
する。
1) Positive Electrode This positive electrode has a Li / Ni content of 1.5% or more by weight.
It contains a positive electrode active material containing nickel hydroxide particles containing.

【0033】前記正極は、例えば、正極活物質、導電材
料、高分子結着剤および水を含むペーストを調製し、前
記ペーストを導電性基板に充填し、乾燥した後、プレス
成形することにより作製される。
The positive electrode is prepared by, for example, preparing a paste containing a positive electrode active material, a conductive material, a polymer binder and water, filling the conductive substrate with the paste, drying and then press-molding. To be done.

【0034】前記導電材料としては、例えば、コバルト
酸化物(例えば、一酸化コバルト、オキシ水酸化コバル
ト)、コバルト水酸化物、金属コバルト、金属ニッケ
ル、炭素などを挙げることができる。この導電材料は、
正極活物質とは別の粉末として添加しても良いし、また
正極活物質の表面を導電材料で被覆しても良い。
Examples of the conductive material include cobalt oxide (for example, cobalt monoxide, cobalt oxyhydroxide), cobalt hydroxide, metallic cobalt, metallic nickel, carbon and the like. This conductive material is
It may be added as a powder separate from the positive electrode active material, or the surface of the positive electrode active material may be coated with a conductive material.

【0035】前記高分子結着剤としては、例えば、カル
ボキシメチルセルロース、メチルセルロース、ポリアク
リル酸ナトリウム、ポリテトラフルオロエチレン、スチ
レンブタジエンゴム等を挙げることができる。
Examples of the polymer binder include carboxymethyl cellulose, methyl cellulose, sodium polyacrylate, polytetrafluoroethylene, styrene butadiene rubber and the like.

【0036】前記導電性基板としては、例えば、二次元
多孔体基板や、三次元多孔体基板を使用することができ
る。二次元多孔体基板としては、例えば、パンチドメタ
ル、エキスパンデッドメタル、ニッケルネット等を挙げ
ることができる。また、二次元多孔体基板の表面に凹凸
を形成したものを導電性基板として用いても良い。一
方、三次元多孔体基板としては、例えば、フェルト状金
属多孔体、スポンジ状金属多孔体、ニッケル繊維焼結体
等を挙げることができる。これら導電性基板を形成する
材料としては、例えば、ニッケル、表面にニッケルが配
された金属材料(例えば、ステンレス、鉄)などを挙げ
ることができる。導電性基板には、三次元多孔体基板を
使用することが望ましい。
As the conductive substrate, for example, a two-dimensional porous substrate or a three-dimensional porous substrate can be used. Examples of the two-dimensional porous substrate include punched metal, expanded metal, nickel net and the like. Further, a two-dimensional porous substrate having irregularities formed on its surface may be used as the conductive substrate. On the other hand, examples of the three-dimensional porous body substrate include a felt-like metal porous body, a sponge-like metal porous body, and a nickel fiber sintered body. Examples of the material for forming these conductive substrates include nickel and metallic materials having nickel on the surface thereof (eg, stainless steel, iron). It is desirable to use a three-dimensional porous substrate as the conductive substrate.

【0037】2)負極 この負極は、例えば、水素吸蔵合金の粉末に導電材を添
加し、高分子結着剤および水とともに混練してペースト
を調製し、前記ペーストを導電材基板に充填し、乾燥し
た後、プレス成形することにより作製される。
2) Negative Electrode In this negative electrode, for example, a conductive material is added to powder of a hydrogen storage alloy, and the mixture is kneaded with a polymer binder and water to prepare a paste, and the paste is filled in a conductive material substrate, It is produced by pressing after drying.

【0038】前記水素吸蔵合金としては、たとえば、
(a)CaCu5型構造を有する希土類−ニッケル系水素
吸蔵合金(例えば、LaNi5、MmNi5(Mmはミッ
シュメタルを示す)、LmNi5(Lmはランタン富化
したミッシュメタルを示す)、またはこれらのNiの一
部をAl、Mn、Co、Ti、Cu、Zn、Zr、C
r、Bのような元素で置換した多元素系のもの)、(b)
希土類−マグネシウム−ニッケル系水素吸蔵合金、(c)
Ti−Ni系水素吸蔵合金、(d)Ti−Fe系水素吸蔵
合金、(e)Ti−Ni系水素吸蔵合金、(f)Zr−V−
Ni系水素吸蔵合金、(g)Mg系水素吸蔵合金、(h)ラ
ーべス相水素吸蔵合金等を挙げることができる。前記水
素吸蔵合金としては、前述した(a)〜(h)に示され
る合金相からなる単相合金を使用しても良いが、前述し
た(a)〜(h)に示される合金相を主相として含む多
相合金を使用することも可能である。
As the hydrogen storage alloy, for example,
(a) a rare earth-nickel-based hydrogen storage alloy having a CaCu 5 type structure (for example, LaNi 5 , MmNi 5 (Mm represents misch metal), LmNi 5 (Lm represents lanthanum-enriched misch metal), or these Part of Ni in Al, Mn, Co, Ti, Cu, Zn, Zr, C
(Multi-element system substituted with elements such as r and B), (b)
Rare earth-magnesium-nickel hydrogen storage alloy, (c)
Ti-Ni-based hydrogen storage alloy, (d) Ti-Fe-based hydrogen storage alloy, (e) Ti-Ni-based hydrogen storage alloy, (f) Zr-V-
Examples include Ni-based hydrogen storage alloys, (g) Mg-based hydrogen storage alloys, (h) Laves phase hydrogen storage alloys, and the like. As the hydrogen storage alloy, a single phase alloy composed of the alloy phases shown in (a) to (h) above may be used, but the alloy phase shown in (a) to (h) above is mainly used. It is also possible to use multiphase alloys which contain as phases.

【0039】中でも、希土類−ニッケル系水素吸蔵合金
と希土類−マグネシウム−ニッケル系水素吸蔵合金が好
ましい。希土類−ニッケル系水素吸蔵合金としては、一
般式LnNi5-x-y Cox My(ただし、LnはYを含
む希土類元素から選ばれる少なくとも1種の元素、Mは
Mn,Al,Cu,Fe及びCrからなる群より選ばれ
る1種以上の元素、原子比x、yは0.2≦x≦0.
8、0.2≦y≦1を示す)で表されるものが好まし
い。また、希土類−マグネシウム−ニッケル系水素吸蔵
合金では、特に、一般式R1-a-bMgabNiz-x
x(ただし、式中、RはYを含む希土類元素から選ばれ
る少なくとも1種の元素、TはCa、Ti、Zrおよび
Hfよりなる群から選ばれる少なくとも1種の元素、M
はCo、Mn、Fe、Al、Ga、Zn、Sn、Cu、
Si、B、Nb、W、Mo、V、Cr、Ta、Pおよび
Sよりなる群から選ばれる少なくとも1種の元素、原子
比a、b、x及びzは0.15≦a≦0.35、0≦b
≦0.3、0≦x≦2、3≦z≦3.8を示す)で表さ
れるものが好ましい。
Of these, rare earth-nickel based hydrogen storage alloys and rare earth-magnesium-nickel based hydrogen storage alloys are preferable. As a rare earth-nickel-based hydrogen storage alloy, a general formula LnNi 5-xy Co x My (where Ln is at least one element selected from rare earth elements including Y, M is Mn, Al, Cu, Fe and Cr) One or more elements selected from the group consisting of atomic ratios x and y of 0.2 ≦ x ≦ 0.
8, 0.2 ≦ y ≦ 1) is preferable. Further, in the rare earth-magnesium-nickel-based hydrogen storage alloy, in particular, the general formula R 1-ab Mg a T b Ni zx M
x (wherein R is at least one element selected from rare earth elements including Y, T is at least one element selected from the group consisting of Ca, Ti, Zr and Hf, M
Is Co, Mn, Fe, Al, Ga, Zn, Sn, Cu,
At least one element selected from the group consisting of Si, B, Nb, W, Mo, V, Cr, Ta, P and S, and the atomic ratio a, b, x and z is 0.15 ≦ a ≦ 0.35. , 0 ≦ b
≦ 0.3, 0 ≦ x ≦ 2, 3 ≦ z ≦ 3.8) are preferable.

【0040】特に、一般式R1-a-bMgabNiz-xx
で表される組成を有する水素吸蔵合金を含む負極は、初
期活性の立ち上りが速いため、二次電池の放電容量を向
上することができる。
In particular, the general formula R 1-ab Mg a T b Ni zx M x
Since the negative electrode containing the hydrogen storage alloy having the composition represented by the above formula has a rapid initial activation, the discharge capacity of the secondary battery can be improved.

【0041】前記結着剤としては、前記正極で説明した
のと同様なものを挙げることができる。
As the binder, the same binders as described for the positive electrode can be used.

【0042】前記導電材としては、例えば、ニッケル粉
末、カーボンブラック等を挙げることができる。
Examples of the conductive material include nickel powder and carbon black.

【0043】前記ペースト中に、Y23、Er23、Y
23、Sm23、Mn34、LiMn24、Nb
25、SnO2などの酸化物を添加しても良い。負極中
に前記酸化物を含有させることによって、高温でのサイ
クル寿命を改善することが可能となる。また、添加する
酸化物の種類は、1種類もしくは2種類以上にすること
ができる。酸化物の添加量は、前記水素吸蔵合金に対し
て0.2〜5wt%の範囲にすることが好ましい。より
好ましい範囲は0.4〜2wt%の範囲である。
In the paste, Y 2 O 3 , Er 2 O 3 , Y
b 2 O 3 , Sm 2 O 3 , Mn 3 O 4 , LiMn 2 O 4 , Nb
An oxide such as 2 O 5 or SnO 2 may be added. By including the oxide in the negative electrode, the cycle life at high temperature can be improved. Further, the type of oxide to be added can be one type or two or more types. The amount of oxide added is preferably in the range of 0.2 to 5 wt% with respect to the hydrogen storage alloy. A more preferable range is 0.4 to 2 wt%.

【0044】前記導電性基板には、二次元多孔体基板
や、三次元多孔体基板を使用することができる。二次元
多孔体基板としては、例えば、パンチドメタル、エキス
パンデッドメタル、ニッケルネット等を挙げることがで
きる。また、二次元多孔体基板の表面に凹凸を形成した
ものを導電性基板として用いても良い。一方、三次元多
孔体基板としては、例えば、フェルト状金属多孔体、ス
ポンジ状金属多孔体、ニッケル繊維焼結体等を挙げるこ
とができる。これら導電性基板を形成する材料として
は、例えば、ニッケル、表面にニッケルが配された金属
材料(例えば、ステンレス、鉄)などを挙げることがで
きる。導電性基板には、二次元多孔体基板を使用するこ
とが望ましい。
A two-dimensional porous substrate or a three-dimensional porous substrate can be used as the conductive substrate. Examples of the two-dimensional porous substrate include punched metal, expanded metal, nickel net and the like. Further, a two-dimensional porous substrate having irregularities formed on its surface may be used as the conductive substrate. On the other hand, examples of the three-dimensional porous body substrate include a felt-like metal porous body, a sponge-like metal porous body, and a nickel fiber sintered body. Examples of the material for forming these conductive substrates include nickel and metallic materials having nickel on the surface thereof (eg, stainless steel, iron). It is desirable to use a two-dimensional porous substrate as the conductive substrate.

【0045】3)セパレータ このセパレータとしては、例えば、ポリプロピレン不織
布、ナイロン不織布、ポリプロピレン繊維とナイロン繊
維を混繊した不織布のような高分子不織布等を挙げるこ
とができる。特に、表面が親水化処理されたポリプロピ
レン不織布はセパレータとして好適である。
3) Separator As the separator, for example, a polymer non-woven fabric such as a polypropylene non-woven fabric, a nylon non-woven fabric, or a non-woven fabric obtained by mixing polypropylene fibers and nylon fibers can be mentioned. In particular, a polypropylene nonwoven fabric whose surface is hydrophilized is suitable as a separator.

【0046】4)アルカリ電解液 このアルカリ電解液としては、例えば、水酸化ナトリウ
ム(NaOH)の水溶液、水酸化リチウム(LiOH)
の水溶液、水酸化カリウム(KOH)の水溶液、NaO
HとLiOHの混合液、KOHとLiOHの混合液、K
OHとLiOHとNaOHの混合液等を用いることがで
きる。また、本発明に係る正極活物質は、アルカリ電解
液にポリマー等を添加することによりゲル化させたもの
を使用するアルカリ二次電池にも適用可能である。
4) Alkaline Electrolyte This alkaline electrolyte is, for example, an aqueous solution of sodium hydroxide (NaOH) or lithium hydroxide (LiOH).
Aqueous solution of potassium hydroxide (KOH), NaO
H and LiOH mixture, KOH and LiOH mixture, K
A mixed solution of OH, LiOH, and NaOH can be used. Further, the positive electrode active material according to the present invention can be applied to an alkaline secondary battery using a gelled product obtained by adding a polymer or the like to an alkaline electrolyte.

【0047】5)容器 この容器は、例えば、ニッケル、ニッケルメッキが施さ
れたステンレスのような金属、合成樹脂、金属層と樹脂
層を含むラミネートフィルム等から形成することができ
る。
5) Container This container can be formed from, for example, nickel, a metal such as nickel-plated stainless steel, a synthetic resin, a laminated film including a metal layer and a resin layer, or the like.

【0048】本発明に係るアルカリ二次電池の一例であ
る円筒形アルカリ二次電池を図1に示す。
FIG. 1 shows a cylindrical alkaline secondary battery as an example of the alkaline secondary battery according to the present invention.

【0049】図1に示すように有底円筒状の容器1内に
は、正極2とセパレータ3と負極4とを積層してスパイ
ラル状に捲回することにより作製された電極群5が収納
されている。前記負極4は、前記電極群5の最外周に配
置されて前記容器1と電気的に接触している。アルカリ
電解液は、前記容器1内に収容されている。中央に孔6
を有する円形の封口板7は、前記容器1の上部開口部に
配置されている。リング状の絶縁性ガスケット8は、前
記封口板7の周縁と前記容器1の上部開口部内面の間に
配置され、前記上部開口部を内側に縮径するカシメ加工
により前記容器1に前記封口板7を前記ガスケット8を
介して気密に固定している。正極リード9は、一端が前
記正極2に接続、他端が前記封口板7の下面に接続され
ている。帽子形状をなす正極端子10は、前記封口板7
上に前記孔6を覆うように取り付けられている。ゴム製
の安全弁11は、前記封口板7と前記正極端子10で囲
まれた空間内に前記孔6を塞ぐように配置されている。
中央に穴を有する絶縁材料からなる円形の押え板12
は、前記正極端子10上に前記正極端子10の突起部が
その押え板12の前記穴から突出されるように配置され
ている。外装チューブ13は、前記押え板12の周縁、
前記容器1の側面及び前記容器1の底部周縁を被覆して
いる。
As shown in FIG. 1, an electrode group 5 made by stacking a positive electrode 2, a separator 3 and a negative electrode 4 and spirally winding them is housed in a bottomed cylindrical container 1. ing. The negative electrode 4 is disposed on the outermost periphery of the electrode group 5 and is in electrical contact with the container 1. The alkaline electrolyte is contained in the container 1. Hole 6 in the center
A circular sealing plate 7 having a is arranged in the upper opening of the container 1. The ring-shaped insulating gasket 8 is disposed between the peripheral edge of the sealing plate 7 and the inner surface of the upper opening of the container 1, and the sealing plate is attached to the container 1 by caulking to reduce the diameter of the upper opening inward. 7 is airtightly fixed via the gasket 8. The positive electrode lead 9 has one end connected to the positive electrode 2 and the other end connected to the lower surface of the sealing plate 7. The positive electrode terminal 10 having a hat shape is the sealing plate 7
It is attached so as to cover the hole 6 above. The rubber safety valve 11 is arranged so as to close the hole 6 in the space surrounded by the sealing plate 7 and the positive electrode terminal 10.
A circular holding plate 12 made of an insulating material having a hole in the center
Is arranged on the positive electrode terminal 10 such that the protrusion of the positive electrode terminal 10 projects from the hole of the holding plate 12. The outer tube 13 is a peripheral edge of the pressing plate 12,
The side surface of the container 1 and the peripheral edge of the bottom of the container 1 are covered.

【0050】本発明に係る二次電池は、前述した図1に
示すような円筒形アルカリ二次電池の他に、正極と負極
とをセパレータを介して交互に積層した構造の電極群
と、アルカリ電解液とが有底矩形筒状の容器内に収納さ
れた構造の角形アルカリ二次電池や、正極と負極とをセ
パレータを介して交互に積層した構造の電極群をラミネ
ートフィルムや樹脂で包囲し、密閉した薄型アルカリ二
次電池に同様に適用することができる。
The secondary battery according to the present invention includes, in addition to the cylindrical alkaline secondary battery as shown in FIG. 1, an electrode group having a structure in which positive electrodes and negative electrodes are alternately laminated with separators, and an alkaline group. A rectangular alkaline secondary battery having a structure in which an electrolytic solution is housed in a rectangular tubular container with a bottom, and an electrode group having a structure in which positive electrodes and negative electrodes are alternately laminated with a separator surrounded by a laminate film or resin. The same can be applied to a sealed thin alkaline secondary battery.

【0051】以上説明した本発明に係る正極活物質は、
Niに対する重量比で1.5%以上のLiを含有する水
酸化ニッケル粒子を含む。このような水酸化ニッケル粒
子は、結晶格子の歪みが大きく、かつ充放電開始後、短
時間で平衡状態に到達することができる。よって、本発
明に係る正極活物質を含む正極を備えたアルカリ二次電
池は、充放電サイクル初期から高い充電効率を得ること
が可能になるため、高温環境下でも初期から高容量を得
ることができる。
The positive electrode active material according to the present invention described above is
It includes nickel hydroxide particles containing 1.5% by weight or more of Li with respect to Ni. Such nickel hydroxide particles have a large crystal lattice distortion and can reach an equilibrium state in a short time after the start of charge / discharge. Therefore, since the alkaline secondary battery provided with the positive electrode containing the positive electrode active material according to the present invention can obtain high charging efficiency from the beginning of the charge / discharge cycle, it is possible to obtain high capacity from the beginning even in a high temperature environment. it can.

【0052】また、水酸化ニッケル粒子中のLi含有量
をNiに対する重量比で1.5〜3%の範囲内にするこ
とによって、高温環境下において初期から高い電池容量
を確保しつつ、正極利用率および二次電池の充放電サイ
クル寿命を改善することができる。
Further, by setting the Li content in the nickel hydroxide particles within the range of 1.5 to 3% by weight ratio with respect to Ni, a high battery capacity can be secured from the initial stage in a high temperature environment while using the positive electrode. Rate and the charge / discharge cycle life of the secondary battery can be improved.

【0053】また、Niに対する重量比で1.5%以上
のLiを含有する水酸化ニッケル粒子を、リチウムイオ
ンを含む溶液中において水酸化ニッケル粒子の少なくと
も一部をNi(II)からNi(III)の状態になるまで
酸化させることにより得ると、結晶歪みを適度な大きさ
に維持しつつ、結晶格子中に多量のリチウムを導入する
ことが可能になる。したがって、正極利用率、充放電サ
イクル寿命および高温での充電効率を同時に満足するア
ルカリ二次電池を実現することができる。
In addition, nickel hydroxide particles containing 1.5% or more of Li in a weight ratio with respect to Ni were mixed with Ni (II) to Ni (III) in a solution containing lithium ions. When obtained by oxidizing until the state of (1), a large amount of lithium can be introduced into the crystal lattice while maintaining the crystal strain at an appropriate level. Therefore, it is possible to realize an alkaline secondary battery that simultaneously satisfies the positive electrode utilization rate, charge / discharge cycle life, and charge efficiency at high temperatures.

【0054】次いで、本発明に係るハイブリッドカー及
び電気自動車について説明する。
Next, a hybrid car and an electric vehicle according to the present invention will be described.

【0055】本発明に係るハイブリッドカーは、外燃機
関もしくは内燃機関と、例えばモータからなる電気駆動
手段と、前記電気駆動手段用の電源とを具備する。前記
電源は、本発明に係るアルカリ二次電池を具備する。
The hybrid car according to the present invention comprises an external combustion engine or an internal combustion engine, an electric drive means such as a motor, and a power supply for the electric drive means. The power source includes the alkaline secondary battery according to the present invention.

【0056】ここでいう“ハイブリッドカー”には、外
燃機関もしくは内燃機関が発電機を駆動し、発電した電
力と前記二次電池からの電力により電気駆動手段が車輪
を駆動するものと、外燃機関もしくは内燃機関ならびに
電気駆動手段の双方の駆動力を使い分けて車輪を駆動す
るものとが包含される。
The "hybrid car" referred to here is one in which an external combustion engine or internal combustion engine drives a generator, and electric drive means drives wheels by the generated power and the power from the secondary battery. The driving force of both the combustion engine or the internal combustion engine and the electric driving means is used to drive the wheels.

【0057】本発明に係る電気自動車は、駆動電源とし
て本発明に係るアルカリ二次電池を具備する。
The electric vehicle according to the present invention includes the alkaline secondary battery according to the present invention as a driving power source.

【0058】本発明に係るアルカリ二次電池が搭載され
たハイブリッドカー及び電気自動車は、燃費等の走行性
能を高くすることができる。
The hybrid car and electric vehicle equipped with the alkaline secondary battery according to the present invention can have high running performance such as fuel consumption.

【0059】[0059]

【実施例】以下、本発明の好ましい実施例を前述した図
面を参照して詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will now be described in detail with reference to the above-mentioned drawings.

【0060】(実施例1) <正極の作製>水酸化ニッケル粒子500gと、有効塩
素濃度5%のKClO溶液500ccと、0.3Mの水
酸化リチウム水溶液1500ccとをこれらを60℃に
保持しながら5時間撹拌混合することにより、水酸化ニ
ッケル粒子中にリチウムを含有させた。次いで、還元処
理を施すことにより、リチウム含有水酸化ニッケル粒子
を得た。得られた水酸化ニッケル粒子について、内部ま
で含めた粒子の全体組成を決定するために、希塩酸に水
酸化ニッケル粒子を溶解させた後、誘導結合プラズマ発
光分光法(ICP)により、水酸化ニッケル粒子中のN
iに対するLi濃度(重量%)を測定し、その結果を組
立て前における水酸化ニッケル粒子のLi濃度として下
記表1に示す。
Example 1 <Preparation of Positive Electrode> 500 g of nickel hydroxide particles, 500 cc of a KClO solution having an effective chlorine concentration of 5%, and 1500 cc of a 0.3 M lithium hydroxide aqueous solution were kept at 60 ° C. By mixing with stirring for 5 hours, lithium was contained in the nickel hydroxide particles. Then, reduction treatment was performed to obtain lithium-containing nickel hydroxide particles. Regarding the obtained nickel hydroxide particles, in order to determine the overall composition of the particles including the inside, after dissolving the nickel hydroxide particles in dilute hydrochloric acid, the nickel hydroxide particles were analyzed by inductively coupled plasma emission spectroscopy (ICP). N in
The Li concentration (% by weight) with respect to i was measured, and the results are shown in Table 1 below as the Li concentration of the nickel hydroxide particles before assembly.

【0061】得られたリチウム含有水酸化ニッケル粒子
90重量部に対してカルボキシルメチルセルロースのN
a塩を0.25重量部、ポリテトラフルオロエチレン3
重量部を加え、さらに水を加えて混練することによりペ
ーストを調製した。このペーストを発泡ニッケル基板に
充填し、乾燥させた後にロールプレスにより圧延成型し
て正極を得た。正極寸法は40mm×70mmとした。
また、正極中の水酸化ニッケル粒子充填量については、
水酸化ニッケルが289mAh/gの容量を持つと仮定
して、ICP分析値に基づく水酸化ニッケル粒子中のニ
ッケル量が1300mAhに相当するように設定した。
90 parts by weight of the lithium-containing nickel hydroxide particles thus obtained was used, and N of carboxymethyl cellulose was added.
0.25 part by weight of salt a, polytetrafluoroethylene 3
A paste was prepared by adding parts by weight and further adding water and kneading. This paste was filled in a foamed nickel substrate, dried, and then roll-molded by a roll press to obtain a positive electrode. The size of the positive electrode was 40 mm × 70 mm.
Regarding the amount of nickel hydroxide particles filled in the positive electrode,
Assuming that nickel hydroxide has a capacity of 289 mAh / g, the amount of nickel in the nickel hydroxide particles based on the ICP analysis value was set to correspond to 1300 mAh.

【0062】<負極の作製>組成がMmNi3.7 Co
0.6 Mn0.4 Al0.3 (Mmは、ミッシュメタルを示
す)で表わされる水素吸蔵合金の粉末に結着剤および水
を添加し、混練することによりペーストを調製し、得ら
れたペーストをパンチドメタル基板に塗布し、乾燥し、
プレスすることにより、寸法が41mm×107mmの
負極を作製した。
<Preparation of Negative Electrode> Composition is MmNi 3.7 Co
A paste is prepared by adding a binder and water to a powder of a hydrogen storage alloy represented by 0.6 Mn 0.4 Al 0.3 (Mm represents a misch metal), and kneading the resulting paste, and the obtained paste is a punched metal substrate. On, dry
By pressing, a negative electrode having dimensions of 41 mm × 107 mm was produced.

【0063】<電池組み立て>この正極と負極との間に
セパレータを介して渦巻状に捲回することにより電極群
を構成した。得られた電極群を電池缶に挿入し、6mo
l/lのKOHと1mol/lのNaOHと0.5mo
l/lのLiOHの混合水溶液であるアルカリ電解液を
注入した後、密閉することにより、前述した図1に示す
構造を有し、容量が1300mAhで、AAサイズの円
筒形ニッケル水素二次電池を組み立てた。
<Battery Assembly> An electrode group was constructed by spirally winding the positive electrode and the negative electrode with a separator interposed therebetween. Insert the obtained electrode group into a battery can and
1 / l KOH and 1 mol / l NaOH and 0.5mo
A cylindrical nickel-hydrogen secondary battery of AA size having a structure of 1300 mAh and having the structure shown in FIG. Assembled

【0064】(実施例2〜13および比較例1〜6)水
酸化ニッケル粒子へのリチウム導入過程において、水酸
化リチウム水溶液の濃度、攪拌混合時間および攪拌混合
時の温度を下記表1に示すように変更すること以外は、
前述した実施例1と同様にしてリチウム含有水酸化ニッ
ケル粒子を得た。なお、比較例1は、酸化剤のみで水酸
化ニッケル粒子を処理した例である。得られた水酸化ニ
ッケル粒子について、前述した実施例1で説明したのと
同様にして水酸化ニッケル粒子中のNiに対するLi濃
度(重量%)を測定し、その結果を組立て前における水
酸化ニッケル粒子のLi濃度として下記表1に示す。
Examples 2 to 13 and Comparative Examples 1 to 6 In the process of introducing lithium into the nickel hydroxide particles, the concentration of the lithium hydroxide aqueous solution, the stirring and mixing time, and the temperature during stirring and mixing are shown in Table 1 below. Except change to
Lithium-containing nickel hydroxide particles were obtained in the same manner as in Example 1 described above. Comparative Example 1 is an example in which nickel hydroxide particles were treated with only an oxidizing agent. With respect to the obtained nickel hydroxide particles, the Li concentration (% by weight) with respect to Ni in the nickel hydroxide particles was measured in the same manner as described in Example 1 above, and the result was measured. Table 1 below shows the Li concentration.

【0065】これら水酸化ニッケル粒子から前述した実
施例1と同様にして円筒形ニッケル水素二次電池を組み
立てた。
A cylindrical nickel-hydrogen secondary battery was assembled from these nickel hydroxide particles in the same manner as in Example 1 described above.

【0066】得られた実施例1〜13および比較例1〜
6の二次電池について、初充放電として、室温において
0.1Cで15時間かけて150%充電を行い、次いで
0.2Cで1Vになるまでの放電を行った。その後、4
5℃において0.1Cで150%充電を行い、0.5C
で1Vになるまでの放電を行うという充放電を3サイク
ル行った。この3サイクル目の電池の放電容量を電池の
定格容量で除して初期の充電効率(%)を求めた。比較
例1の45℃における初期充電効率を1として、各実施
例の相対的な初期の充電効率を表1に示した。
The obtained Examples 1 to 13 and Comparative Examples 1 to 1
Regarding the secondary battery of No. 6, as initial charge / discharge, 150% charge was performed at room temperature for 15 hours at 0.1 C, and then discharge was performed at 0.2 C until the voltage reached 1V. Then 4
150% charge at 0.1C at 5 ° C, 0.5C
The charging / discharging was performed for 3 cycles in which discharging was performed up to 1 V. The discharge capacity of the battery at the third cycle was divided by the rated capacity of the battery to obtain the initial charging efficiency (%). Table 1 shows the relative initial charging efficiency of each example, where the initial charging efficiency at 45 ° C. of Comparative Example 1 is 1.

【0067】[0067]

【表1】 [Table 1]

【0068】表1から明らかなように、Niに対する重
量比で1.5%以上のLiを含有する水酸化ニッケル粒
子を含む実施例1〜13の二次電池は、45℃における
初期の充電効率が、Li含有量が1.5%より低い水酸
化ニッケル粒子を備えた比較例1〜6に比べて高いこと
がわかる。
As is clear from Table 1, the secondary batteries of Examples 1 to 13 containing nickel hydroxide particles containing Li in a weight ratio of 1.5% or more with respect to Ni were the initial charging efficiency at 45 ° C. However, it can be seen that the Li content is higher than in Comparative Examples 1 to 6 including nickel hydroxide particles having a Li content lower than 1.5%.

【0069】なお、アルカリ電解液中に含有されている
水酸化リチウムの影響を調べるために、実施例1〜13
および比較例1〜6の二次電池について、前述した条件
で初充放電後、分解し、水酸化ニッケル粒子を希塩酸に
溶解させた後、誘導結合プラズマ発光分光法(ICP)
により、水酸化ニッケル粒子中のNiに対するLi濃度
(重量%)を測定し、その結果を、出荷時のニッケル水
素二次電池の正極に含まれる水酸化ニッケル粒子のLi
含有量(出荷時のLi濃度)として前述した表1に併記
する。
In order to investigate the influence of lithium hydroxide contained in the alkaline electrolyte, Examples 1 to 13 were used.
Regarding the secondary batteries of Comparative Examples 1 to 6, after initial charge and discharge under the conditions described above, the nickel hydroxide particles were decomposed and dissolved in dilute hydrochloric acid, and then the inductively coupled plasma emission spectroscopy (ICP) was performed.
To measure the Li concentration (% by weight) with respect to Ni in the nickel hydroxide particles, and use the result as the Li of nickel hydroxide particles contained in the positive electrode of the nickel-hydrogen secondary battery at the time of shipment.
The content (Li concentration at shipping) is also shown in Table 1 described above.

【0070】この結果から明らかなように、水酸化ニッ
ケル粒子中のLi含有量は、二次電池組立て後、電解液
中の水酸化リチウムの影響を受けて若干量増加する場合
があることがわかる。
As is clear from these results, the Li content in the nickel hydroxide particles may increase slightly after the secondary battery is assembled due to the influence of lithium hydroxide in the electrolytic solution. .

【0071】次いで、Liが含有されていない水酸化ニ
ッケル粒子とアルカリ電解液中の水酸化リチウム濃度と
の関係を調べるために、以下の実験を行った。
Next, the following experiment was conducted to investigate the relationship between the nickel hydroxide particles containing no Li and the lithium hydroxide concentration in the alkaline electrolyte.

【0072】(比較例7〜9)アルカリ電解液中の水酸
化リチウム濃度を下記表2に示すように変更すること以
外は、前述した比較例1と同様にして円筒形ニッケル水
素二次電池を組み立てた。
Comparative Examples 7 to 9 Cylindrical nickel-hydrogen secondary batteries were prepared in the same manner as in Comparative Example 1 described above, except that the lithium hydroxide concentration in the alkaline electrolyte was changed as shown in Table 2 below. Assembled

【0073】得られた比較例7〜9の二次電池につい
て、前述した実施例1で説明したのと同様な条件で初充
放電を行った。その後、前述した実施例1で説明したの
と同様にして初期の充電効率(%)を求めた。比較例1
の45℃における初期充電効率を1として、各比較例の
相対的な初期の充電効率を表2に示した。なお、表2に
は、前述した実施例1,2,5,7および比較例1の結
果を併記する。
The secondary batteries of Comparative Examples 7 to 9 thus obtained were subjected to initial charge / discharge under the same conditions as described in Example 1 above. Then, the initial charging efficiency (%) was determined in the same manner as described in Example 1 above. Comparative Example 1
Table 2 shows the relative initial charging efficiency of each comparative example, with the initial charging efficiency at 45 ° C. of 1 being 1. In addition, in Table 2, the results of Examples 1, 2, 5, 7 and Comparative Example 1 described above are also shown.

【0074】また、比較例7〜9の二次電池について、
前述した条件で初充放電後、分解し、水酸化ニッケル粒
子を希塩酸に溶解させた後、誘導結合プラズマ発光分光
法(ICP)により、水酸化ニッケル粒子中のNiに対
するLi濃度(重量%)を測定し、その結果を、出荷時
のニッケル水素二次電池の正極に含まれる水酸化ニッケ
ル粒子のLi含有量(出荷時のLi濃度)として前述し
た表2に併記する。なお、表2には、前述した実施例
1,2,5,7および比較例1の結果を併記する。
Regarding the secondary batteries of Comparative Examples 7 to 9,
After the initial charge and discharge under the above-mentioned conditions, the nickel hydroxide particles were decomposed, dissolved in dilute hydrochloric acid, and then the Li concentration (% by weight) relative to Ni in the nickel hydroxide particles was measured by inductively coupled plasma emission spectroscopy (ICP). The measurement results are shown in Table 2 as the Li content (Li concentration at the time of shipment) of the nickel hydroxide particles contained in the positive electrode of the nickel-hydrogen secondary battery at the time of shipment. In addition, in Table 2, the results of Examples 1, 2, 5, 7 and Comparative Example 1 described above are also shown.

【0075】[0075]

【表2】 [Table 2]

【0076】表2から明らかなように、アルカリ電解液
中の水酸化リチウム濃度を高くするほど、水酸化ニッケ
ル粒子中に多量のLiを含有させることが可能であるも
のの、アルカリ電解液中の水酸化リチウム濃度を2mo
l/lと高濃度にしてもLi含有量は高々1.3重量%
程度に過ぎないことがわかる。
As is clear from Table 2, the higher the concentration of lithium hydroxide in the alkaline electrolyte is, the more lithium can be contained in the nickel hydroxide particles, but the water in the alkaline electrolyte is increased. Lithium oxide concentration 2mo
Even if the concentration is as high as 1 / l, the Li content is at most 1.3% by weight.
You can see that it is nothing more than a degree.

【0077】(比較例10)特開平8−45506号公
開公報の段落[0014]〜[0016]に記載された
方法に準じて正極活物質を合成した。
Comparative Example 10 A positive electrode active material was synthesized according to the method described in paragraphs [0014] to [0016] of JP-A-8-45506.

【0078】まず、2.2mol/Lの硫酸ニッケルと
0.03mol/Lの硫酸リチウムとからなる混合水溶
液を調製した。
First, a mixed aqueous solution containing 2.2 mol / L nickel sulfate and 0.03 mol / L lithium sulfate was prepared.

【0079】次いで、攪拌器付きの反応槽の中にpH8
の水酸化ナトリウム水溶液を適量入れ、この反応槽内
に、前記混合水溶液を一定流量で導入するとともに、こ
れと平行して反応槽内の溶液がpH7に維持されるよう
にペーハーメータ等で槽内pHを監視しながら6mol
/Lの水酸化ナトリウム水溶液を反応槽内に導入した。
6mol/Lの水酸化ナトリウム水溶液の導入に当たっ
ては、反応槽内のpHが酸アルカリ反応の進行により変
動するので、これに合わせて6mol/Lの水酸化ナト
リウム水溶液の導入流量を適宜調製した。なお、反応槽
は、約40℃に加温されているとともに、反応槽内溶液
は常に攪拌される状態にしておいた。
Then, pH 8 was placed in a reaction vessel equipped with a stirrer.
A suitable amount of the sodium hydroxide aqueous solution is put into the reaction tank, and the mixed aqueous solution is introduced into the reaction tank at a constant flow rate. In parallel with this, a pH meter or the like is used to maintain the solution in the reaction tank inside the tank. 6 mol while monitoring pH
/ L sodium hydroxide aqueous solution was introduced into the reaction tank.
When the 6 mol / L sodium hydroxide aqueous solution was introduced, the pH in the reaction vessel fluctuated as the acid-alkali reaction proceeded. Therefore, the introduction flow rate of the 6 mol / L sodium hydroxide aqueous solution was adjusted accordingly. The reaction tank was heated to about 40 ° C., and the solution in the reaction tank was constantly stirred.

【0080】このようにしてNi・Li混合水溶液と水
酸化ナトリウム水溶液を混合し、水酸化ニッケルを析出
させ、この析出物を採取して水洗した後、乾燥し、リチ
ウム含有水酸化ニッケル粉末を得た。
Thus, the Ni / Li mixed aqueous solution and the sodium hydroxide aqueous solution were mixed to precipitate nickel hydroxide, and the precipitate was collected, washed with water, and dried to obtain a lithium-containing nickel hydroxide powder. It was

【0081】このリチウム含有水酸化ニッケル粉末のリ
チウム含有量を原子吸光分析で測定したところ、1重量
%であった。
The lithium content of this lithium-containing nickel hydroxide powder was measured by atomic absorption spectrometry and found to be 1% by weight.

【0082】このようなリチウム含有水酸化ニッケル粉
末を正極活物質として用いること以外は、前述した実施
例1と同様にして円筒形ニッケル水素二次電池を組み立
てた。
A cylindrical nickel-hydrogen secondary battery was assembled in the same manner as in Example 1 except that such lithium-containing nickel hydroxide powder was used as the positive electrode active material.

【0083】得られた比較例10の二次電池について、
前述した実施例1で説明したのと同様な条件で初充放電
を行った。その後、前述した実施例1で説明したのと同
様にして初期の充電効率(%)を求めた。比較例1の4
5℃における初期充電効率を1とした際、比較例10の
相対的な初期の充電効率は、1.01であった。
Regarding the obtained secondary battery of Comparative Example 10,
Initial charging / discharging was performed under the same conditions as described in Example 1 above. Then, the initial charging efficiency (%) was determined in the same manner as described in Example 1 above. Comparative Example 1-4
When the initial charging efficiency at 5 ° C. was set to 1, the relative initial charging efficiency of Comparative Example 10 was 1.01.

【0084】[0084]

【発明の効果】以上詳述したように本発明によれば、充
放電サイクル初期から高い充電効率が達成されるアルカ
リ二次電池用正極活物質及びアルカリ二次電池と、この
アルカリ二次電池を用いるハイブリッドカー並びに電気
自動車を提供することができる。
As described above in detail, according to the present invention, a positive electrode active material for an alkaline secondary battery and an alkaline secondary battery, which achieve high charging efficiency from the beginning of a charge / discharge cycle, and this alkaline secondary battery are provided. A hybrid car and an electric vehicle to be used can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るアルカリ二次電池の一例である円
筒形アルカリ二次電池を示す部分切欠斜視図。
FIG. 1 is a partially cutaway perspective view showing a cylindrical alkaline secondary battery as an example of the alkaline secondary battery according to the present invention.

【符号の説明】[Explanation of symbols]

1…容器、 2…正極、 3…セパレータ、 4…負極、 5…電極群、 7…封口板、 8…絶縁ガスケット。 1 ... container, 2 ... Positive electrode 3 ... separator, 4 ... Negative electrode, 5 ... electrode group, 7 ... Seal plate, 8 ... Insulation gasket.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 雅秋 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 Fターム(参考) 5H028 AA05 EE05 HH01 HH03 5H050 AA02 BA11 CA03 CB16 EA02 EA23 EA24 HA01 HA10 HA14 5H115 PC06 PG04 PI16    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Masaaki Yamamoto             8th Shinsugita Town, Isogo Ward, Yokohama City, Kanagawa Prefecture             Ceremony company Toshiba Yokohama office F term (reference) 5H028 AA05 EE05 HH01 HH03                 5H050 AA02 BA11 CA03 CB16 EA02                       EA23 EA24 HA01 HA10 HA14                 5H115 PC06 PG04 PI16

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 Niに対する重量比で1.5%以上のL
iを含有する水酸化ニッケル粒子を含むことを特徴とす
るアルカリ二次電池用正極活物質。
1. L of 1.5% or more by weight ratio to Ni
A positive electrode active material for an alkaline secondary battery, comprising nickel hydroxide particles containing i.
【請求項2】 前記水酸化ニッケル粒子は、Niに対す
る重量比で1.5〜3%のLiを含有することを特徴と
する請求項1記載のアルカリ二次電池用正極活物質。
2. The positive electrode active material for an alkaline secondary battery according to claim 1, wherein the nickel hydroxide particles contain 1.5 to 3% by weight of Li of Ni.
【請求項3】 前記水酸化ニッケル粒子は、リチウムイ
オンを含む溶液中において水酸化ニッケル粒子の少なく
とも一部をNi(II)からNi(III)の状態になるま
で酸化させることにより得られることを特徴とする請求
項1記載のアルカリ二次電池用正極活物質。
3. The nickel hydroxide particles are obtained by oxidizing at least a part of the nickel hydroxide particles in a solution containing lithium ions until the state becomes Ni (II) to Ni (III). The positive electrode active material for an alkaline secondary battery according to claim 1.
【請求項4】 正極活物質を含む正極と、負極と、アル
カリ電解液とを備えるアルカリ二次電池において、 前記正極活物質は、Niに対する重量比で1.5%以上
のLiを含有する水酸化ニッケル粒子を含むことを特徴
とするアルカリ二次電池。
4. An alkaline secondary battery comprising a positive electrode containing a positive electrode active material, a negative electrode, and an alkaline electrolyte, wherein the positive electrode active material contains water containing 1.5% or more by weight of Li with respect to Ni. An alkaline secondary battery comprising nickel oxide particles.
【請求項5】 前記水酸化ニッケル粒子は、Niに対す
る重量比で1.5〜3%の中のLiを含有することを特
徴とする請求項4記載のアルカリ二次電池。
5. The alkaline secondary battery according to claim 4, wherein the nickel hydroxide particles contain Li in a weight ratio of 1.5 to 3% with respect to Ni.
【請求項6】 前記水酸化ニッケル粒子は、Niに対す
る重量比で2.5〜2.7%のLiを含有することを特
徴とする請求項4記載のアルカリ二次電池。
6. The alkaline secondary battery according to claim 4, wherein the nickel hydroxide particles contain Li in a weight ratio of 2.5 to 2.7% with respect to Ni.
【請求項7】 前記水酸化ニッケル粒子は、リチウムイ
オンを含む溶液中において水酸化ニッケル粒子の少なく
とも一部をNi(II)からNi(III)の状態になるま
で酸化させることにより得られることを特徴とする請求
項4記載のアルカリ二次電池。
7. The nickel hydroxide particles are obtained by oxidizing at least a part of the nickel hydroxide particles in a solution containing lithium ions until the state becomes Ni (II) to Ni (III). The alkaline secondary battery according to claim 4, which is characterized in that.
【請求項8】 前記水酸化ニッケル粒子は、1〜4mo
l/Lの水酸化リチウムを含む水溶液と酸化剤と水酸化
ニッケル粒子を含む混合物を45〜75℃に保持しなが
ら攪拌混合することにより得られることを特徴とする請
求項4記載のアルカリ二次電池。
8. The nickel hydroxide particles are 1 to 4 mo.
The secondary alkali solution according to claim 4, which is obtained by stirring and mixing an aqueous solution containing 1 / L of lithium hydroxide, a mixture containing an oxidizing agent and nickel hydroxide particles while maintaining the temperature at 45 to 75 ° C. battery.
【請求項9】 電気駆動手段と、アルカリ二次電池を含
む電気駆動手段用電源とを具備したハイブリッドカーに
おいて、 前記アルカリ二次電池は、正極活物質を含む正極と、負
極と、アルカリ電解液とを備え、かつ前記正極活物質
は、Niに対する重量比で1.5%以上のLiを含有す
る水酸化ニッケル粒子を含むことを特徴とするハイブリ
ッドカー。
9. A hybrid car comprising an electric driving means and a power source for the electric driving means including an alkaline secondary battery, wherein the alkaline secondary battery comprises a positive electrode containing a positive electrode active material, a negative electrode, and an alkaline electrolyte. And the positive electrode active material contains nickel hydroxide particles containing 1.5% or more of Li in a weight ratio with respect to Ni.
【請求項10】 アルカリ二次電池を含む駆動電源を備
える電気自動車において、 前記アルカリ二次電池は、正極活物質を含む正極と、負
極と、アルカリ電解液とを備え、かつ前記正極活物質
は、Niに対する重量比で1.5%以上のLiを含有す
る水酸化ニッケル粒子を含むことを特徴とする電気自動
車。
10. An electric vehicle including a driving power source including an alkaline secondary battery, wherein the alkaline secondary battery includes a positive electrode containing a positive electrode active material, a negative electrode, and an alkaline electrolyte, and the positive electrode active material is , An electric vehicle comprising nickel hydroxide particles containing 1.5% by weight or more of Li with respect to Ni.
JP2001233801A 2001-08-01 2001-08-01 Positive active material for alkaline secondary battery, alkaline secondary battery, hybrid car and electric vehicle Pending JP2003045423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001233801A JP2003045423A (en) 2001-08-01 2001-08-01 Positive active material for alkaline secondary battery, alkaline secondary battery, hybrid car and electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001233801A JP2003045423A (en) 2001-08-01 2001-08-01 Positive active material for alkaline secondary battery, alkaline secondary battery, hybrid car and electric vehicle

Publications (1)

Publication Number Publication Date
JP2003045423A true JP2003045423A (en) 2003-02-14

Family

ID=19065531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001233801A Pending JP2003045423A (en) 2001-08-01 2001-08-01 Positive active material for alkaline secondary battery, alkaline secondary battery, hybrid car and electric vehicle

Country Status (1)

Country Link
JP (1) JP2003045423A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013206867A (en) * 2012-03-29 2013-10-07 Fdk Twicell Co Ltd Nickel hydrogen secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013206867A (en) * 2012-03-29 2013-10-07 Fdk Twicell Co Ltd Nickel hydrogen secondary battery

Similar Documents

Publication Publication Date Title
US6399247B1 (en) Nickel-metal hydride secondary battery
JP4566025B2 (en) Alkaline storage battery
JP5331300B2 (en) Nickel metal hydride secondary battery
JP2002164045A (en) Hydrogen storage alloy, secondary battery, hybrid vehicle, and electric vehicle
JP4849854B2 (en) Hydrogen storage alloy electrode, alkaline storage battery, and production method of alkaline storage battery
US20040053114A1 (en) Method for manufacturing nickel hydrogen battery
JP2002069554A (en) Hydrogen storage alloy, alkali secondary battery, hybrid car and electric vehicle
JP4642967B2 (en) Method for producing hydrogen storage alloy electrode, method for producing alkaline secondary battery, hybrid car and electric vehicle
JP2005050762A (en) Oxy-cobalt hydroxide, its manufacturing method, and alkaline storage battery using it
US6156456A (en) Positive electrode active material for alkaline storage battery
JP5465478B2 (en) Negative electrode for alkaline storage battery, alkaline storage battery, and method for producing alkaline storage battery
JP4573510B2 (en) Alkaline storage battery and battery pack
JP2007123228A (en) Hydrogen storage alloy electrode, alkaline storage battery and manufacturing method of the same
JP2002083593A (en) Nickel hydrogen secondary battery, hybrid car and electric vehicle
US6333126B2 (en) Process for producing nickel compound containing lithium
JP2003045423A (en) Positive active material for alkaline secondary battery, alkaline secondary battery, hybrid car and electric vehicle
JP4663275B2 (en) Hydrogen storage alloy for alkaline storage battery and alkaline storage battery
JP2004273261A (en) Alkaline storage battery
JPH0950805A (en) Nickel electrode for alkaline storage battery and active material for nickel electrode and its manufacturing method and alkaline storage battery
JP4115367B2 (en) Hydrogen storage alloy for alkaline storage battery, method for producing the same, and alkaline storage battery
JP2013147753A (en) Method for manufacturing hydrogen storing alloy for battery
JP4420641B2 (en) Hydrogen storage alloy for alkaline storage battery and alkaline storage battery
JP3895985B2 (en) Nickel / hydrogen storage battery
JP2003017046A (en) Nickel electrode active material for alkaline storage battery, nickel electrode for alkaline storage battery, and alkaline storage battery
JP2010010097A (en) Method of manufacturing nickel metal hydride storage battery