JP2003045096A - Method of making optical disk substrate - Google Patents

Method of making optical disk substrate

Info

Publication number
JP2003045096A
JP2003045096A JP2001227323A JP2001227323A JP2003045096A JP 2003045096 A JP2003045096 A JP 2003045096A JP 2001227323 A JP2001227323 A JP 2001227323A JP 2001227323 A JP2001227323 A JP 2001227323A JP 2003045096 A JP2003045096 A JP 2003045096A
Authority
JP
Japan
Prior art keywords
depth
optical disk
concave portion
substrate
disk substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001227323A
Other languages
Japanese (ja)
Inventor
Minoru Kawasaki
実 川崎
Masahiro Tabata
正浩 田畑
Satoshi Yamashita
智 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP2001227323A priority Critical patent/JP2003045096A/en
Publication of JP2003045096A publication Critical patent/JP2003045096A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Optical Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of making an optical disk substrate which regulates the depth of recessed parts to the prescribed depth even if the recessed parts are deepened by elongation of a resin substrate in making the optical disk substrate. SOLUTION: The method of making the optical disk substrate 1 having rugged parts 3 and 4 by transfer from the stamper to the resin substrate 2, then peeling the resin substrate 2, in which, in peeling the resin substrate 2 from the stamper, the optical disk substrate 1 is irradiated with the wavelength light longer than the depth of recessed parts 3 in a nitrogen atmosphere to make the high polymer of the resin in projecting parts 4 monomolecular when the depth of the recessed parts 3 is increased by elongation of the resin substrate 2 and the volume thereof is shrunk, by which the depth of the recessed parts 3 are regulated to the prescribed depth.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、CD、DVD等の
光ディスクに用いられる光ディスク基板の作製方法に関
する。 【0002】 【従来の技術】一般に、オーディオ、画像用途及びコン
ピュータメモリとして、高密度データを蓄積できる光デ
ィスクは、透明な光ディスク基板の表面に溝やピットを
形成した後、記録層や各種の保護層を積層して作製され
る。この溝やピットは、金属やガラスを用いたスタンパ
から転写して形成される。 【0003】光ディスク基板は、以下のようにして作製
される。ガラス基板上にフォリソグラフィ法によりフォ
トレジストパターンを形成した後、エッチング法により
エッチングして、溝やピットとなる凹凸部を有するガラ
ス原盤を作製する。次に、ガラス基板上のフォトレジス
トパターンをエッチング除去し、電鋳法によりこの凹凸
部に金属を電鋳した後、この金属をガラス基板から剥離
してスタンパを作製する。更に、このスタンパに形成さ
れた凹凸部を樹脂基板に転写した後、剥離して光ディス
ク基板を作製する。 【0004】 【発明が解決しようとする課題】しかしながら、樹脂基
板をスタンパをから剥離して光ディスク基板を作製する
際、樹脂基板が伸びて、光ディスク基板に形成された凹
部の深さが30〜40nm程度深くなってしまうことが
ある。このため、この光ディスク基板を用いて作製され
た光ディスクの凹部に情報の記録時又は凹部に記録され
た情報の再生時、レーザ光が凹部の底面に十分到達しな
くなるので、ノイズ発生の原因となり、良好なC/Nを
得ることができなかった。 【0005】そこで、本発明は、上記のような問題点を
解消するためになされたもので、光ディスク基板を作製
する際、樹脂基板が伸びて凹部が深くなっても、この凹
部の深さを所定深さにする光ディスク基板の作製方法を
提供することを目的とする。 【0006】 【課題を解決するための手段】本発明は、スタンパから
樹脂基板に転写した後、剥離して凹凸部を有する光ディ
スク基板の作製方法において、前記樹脂基板を前記スタ
ンパから剥離する際、前記樹脂基板が伸びることによっ
て、前記凹部の深さが深くなった場合に、前記凹部の深
さよりも長い波長光を窒素雰囲気中で前記光ディスク基
板に照射して、前記凸部における樹脂の高分子を単分子
化して、この体積を収縮させることにより、前記凹部の
深さを所定の深さになるようにしたことを特徴とする光
ディスク基板の作製方法を提供する。 【0007】 【発明の実施の形態】本発明の実施形態の光ディスク基
板の作製方法について図1及び図2を用いて説明する。
図1は、本発明の実施形態の光ディスク基板の作製方法
を示す断面図である。図2は、紫外光の積算光量と凹部
の深さとの関係を示す図である。 【0008】図1に示すように、従来例と同様に、図示
しないスタンパからポリカーボネートの樹脂基板2に転
写して矩形状の凹凸部3、4を有する光ディスク基板1
を作製する。この時、凹凸部3、4のピッチは、900
nm、凹部3の幅は、450nmであり、凹部3の深さ
は、後述する深さである。次に、凹凸部3、4側から凹
部3の深さよりも長い波長の紫外光を窒素雰囲気中で光
ディスク基板1に照射して、凸部4における樹脂の高分
子を単分子化して、この体積を収縮させることにより、
凹部3の深さを所定の深さに制御する。凹部3の深さよ
りも長い波長の紫外光を用いるのは、紫外光が凹部3の
底面に到達しないので、樹脂の高分子が単分子化しない
からである。 【0009】ここで、スタンパから転写した当初の凹部
3の深さを150nm及び180nmとし、この凹部3
の深さよりも長い波長254nmのレーザ光を用いて、
その積算光量を0〜10000mJ/cm2の範囲で変
化させ凹部3の深さを原子間力顕微鏡を用いて測定し
た。その結果を図2に示す。図2中、●は、スタンパか
ら転写した当初の凹部3の深さが180nmの場合、〇
は、スタンパから転写した当初の凹部3の深さが150
nmの場合を示している。 【0010】図2に示すように、スタンパから転写した
当初の凹部3の深さが150nm及び180nmの場合
共に、0〜5000mJ/cm2の範囲では、凹部3の
深さは、変化するが、5000〜10000J/cm2
の範囲では、凹部3の深さは変化しない。このことは、
以下のように説明できる。紫外光の積算光量が0〜50
00mJ/cm2の範囲では、凸部4における樹脂の高
分子が単分子化して、この体積を収縮させることから凹
部3の深さが変化するからである。また、前記した積算
光量が5000mJ/cm2〜10000mJ/cm2
範囲では、凸部4における樹脂の高分子が単分子化しな
いので、凹部3の深さは変化せず一定のままであるから
である。 【0011】即ち、スタンパから転写した当初の凹部3
の深さが150nmの場合には、紫外光の積算光量を0
〜5000mJ/cm2までの範囲で変化させることに
より、凹部3の深さを110〜150nmの範囲で変化
させることができる。スタンパから転写した当初の凹部
3の深さが180nmの場合も同様に、紫外光の積算光
量が0〜5000mJ/cm2までの範囲で、凹部3の
深さを140〜180nmの範囲で変化させることがで
きる。 【0012】このことを言い換えると、紫外光の積算光
量を0〜5000mJ/cm2の範囲で変化させること
により、凹部3の深さを0〜40nmの範囲で制御する
ことができる。樹脂基板2を図示しないスタンパから剥
離して光ディスク基板1を作製する際、樹脂基板2が伸
びて、光ディスク基板1に形成された凹部3の深さが深
くなってしまう場合でも、凹部3の深さよりも長い波長
の紫外光を、この積算光量を制御しながら光ディスク基
板1に照射して凸部4における樹脂の高分子を単分子化
して、この体積を収縮させることにより、凹部3を所定
の深さにすることができる。 【0013】この結果、記録再生時のレーザ光が凹部3
の底面に十分到達させることができるため、所定の深さ
の凹凸部3、4が形成された光ディスク基板1を用いて
作製された光ディスクは、良好なC/Nを有する記録再
生を行うことができる。 【0014】 【発明の効果】本発明の光ディスク基板の作製方法によ
れば、樹脂基板が伸びることによって、凹部の深さが深
くなった際に、この凹部の深さよりも長い波長光を窒素
雰囲気中で光ディスク基板に照射するので、凸部におけ
る樹脂の高分子を単分子化して、この体積を収縮させる
ことにより、凹部の深さを所定の深さにすることができ
る。この結果、この光ディスク基板を用いて作製された
光ディスクは、良好なC/Nを有する記録再生を行うこ
とができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an optical disk substrate used for an optical disk such as a CD and a DVD. 2. Description of the Related Art In general, an optical disk capable of storing high-density data for audio and video applications and as a computer memory is formed by forming grooves and pits on the surface of a transparent optical disk substrate, and then forming a recording layer and various protective layers. Are laminated. These grooves and pits are formed by transfer from a stamper using metal or glass. An optical disk substrate is manufactured as follows. After a photoresist pattern is formed on a glass substrate by a photolithography method, etching is performed by an etching method to produce a glass master having irregularities serving as grooves and pits. Next, the photoresist pattern on the glass substrate is removed by etching, and a metal is electroformed on the concave and convex portions by an electroforming method. Then, the metal is peeled off from the glass substrate to produce a stamper. Further, the concave and convex portions formed on the stamper are transferred to a resin substrate and then peeled off to produce an optical disk substrate. [0004] However, when the resin substrate is peeled off from the stamper to produce an optical disk substrate, the resin substrate is stretched and the depth of the concave portion formed in the optical disk substrate is 30 to 40 nm. It can be deep. Therefore, at the time of recording information in the concave portion of the optical disk manufactured using this optical disk substrate or reproducing the information recorded in the concave portion, the laser beam does not sufficiently reach the bottom surface of the concave portion, causing noise. Good C / N could not be obtained. Accordingly, the present invention has been made to solve the above-mentioned problems, and when manufacturing an optical disk substrate, even if the resin substrate extends and the concave portion becomes deep, the depth of the concave portion is reduced. An object of the present invention is to provide a method for manufacturing an optical disk substrate having a predetermined depth. According to the present invention, there is provided a method for manufacturing an optical disk substrate having an uneven portion after transferring from a stamper to a resin substrate, wherein the resin substrate is separated from the stamper. When the depth of the concave portion is increased due to the extension of the resin substrate, the optical disk substrate is irradiated with light having a wavelength longer than the depth of the concave portion in a nitrogen atmosphere, and the polymer of the resin in the convex portion is irradiated. And a method for producing an optical disk substrate, characterized in that the depth of the concave portion is made to be a predetermined depth by reducing the volume of this into a single molecule. A method for manufacturing an optical disk substrate according to an embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a cross-sectional view illustrating a method for manufacturing an optical disk substrate according to an embodiment of the present invention. FIG. 2 is a diagram illustrating a relationship between the integrated amount of ultraviolet light and the depth of the concave portion. As shown in FIG. 1, similarly to the conventional example, an optical disc substrate 1 having a rectangular uneven portion 3, 4 transferred from a stamper (not shown) to a polycarbonate resin substrate 2 is formed.
Is prepared. At this time, the pitch of the uneven portions 3 and 4 is 900
nm, the width of the concave portion 3 is 450 nm, and the depth of the concave portion 3 is a depth described later. Next, the optical disk substrate 1 is irradiated with ultraviolet light having a wavelength longer than the depth of the concave portion 3 from the side of the concave and convex portions 3 and 4 in a nitrogen atmosphere to monomolecularize the polymer of the resin in the convex portion 4. By contracting
The depth of the recess 3 is controlled to a predetermined depth. The reason why ultraviolet light having a wavelength longer than the depth of the concave portion 3 is used is that the ultraviolet light does not reach the bottom surface of the concave portion 3 and the polymer of the resin does not become a single molecule. Here, the initial depth of the concave portion 3 transferred from the stamper is set to 150 nm and 180 nm.
Using a laser beam with a wavelength of 254 nm longer than the depth of
The integrated light amount was changed in the range of 0 to 10000 mJ / cm 2 , and the depth of the concave portion 3 was measured using an atomic force microscope. The result is shown in FIG. In FIG. 2, ● indicates that the initial depth of the concave portion 3 transferred from the stamper is 180 nm, and Δ indicates that the initial depth of the concave portion 3 transferred from the stamper is 150 nm.
The case of nm is shown. As shown in FIG. 2, when the initial depth of the concave portion 3 transferred from the stamper is 150 nm and 180 nm, the depth of the concave portion 3 changes in the range of 0 to 5000 mJ / cm 2 , 5000 to 10000 J / cm 2
In the range, the depth of the concave portion 3 does not change. This means
This can be explained as follows. The integrated amount of ultraviolet light is 0 to 50
This is because, in the range of 00 mJ / cm 2 , the polymer of the resin in the convex portion 4 becomes a single molecule, and this volume is reduced, so that the depth of the concave portion 3 changes. Further, when the integrated light amount is in the range of 5000 mJ / cm 2 to 10000 mJ / cm 2 , since the polymer of the resin in the convex portion 4 does not become a single molecule, the depth of the concave portion 3 does not change and remains constant. It is. That is, the initial concave portion 3 transferred from the stamper
Is 150 nm, the integrated amount of ultraviolet light is 0
By changing the depth in the range of up to 5000 mJ / cm 2 , the depth of the concave portion 3 can be changed in the range of 110 to 150 nm. Similarly, when the initial depth of the concave portion 3 transferred from the stamper is 180 nm, the depth of the concave portion 3 is changed in the range of 140 to 180 nm when the integrated amount of ultraviolet light is in the range of 0 to 5000 mJ / cm 2 . be able to. In other words, the depth of the recess 3 can be controlled in the range of 0 to 40 nm by changing the integrated amount of ultraviolet light in the range of 0 to 5000 mJ / cm 2 . When manufacturing the optical disk substrate 1 by peeling the resin substrate 2 from a stamper (not shown), even when the resin substrate 2 is elongated and the depth of the concave portion 3 formed on the optical disk substrate 1 is increased, the depth of the concave portion 3 is increased. Irradiating the optical disc substrate 1 with ultraviolet light having a longer wavelength than that, the resin polymer in the convex portion 4 is made into a single molecule, and the volume is shrunk, so that the concave portion 3 is formed in a predetermined shape. Can be to depth. As a result, the laser beam during recording and reproduction is
The optical disk manufactured using the optical disk substrate 1 on which the concave and convex portions 3 and 4 having a predetermined depth are formed can perform recording and reproduction with a good C / N. it can. According to the method of manufacturing an optical disk substrate of the present invention, when the depth of the concave portion is increased due to the extension of the resin substrate, light having a wavelength longer than the depth of the concave portion is irradiated in a nitrogen atmosphere. Since irradiation is performed on the optical disk substrate in the inside, the polymer of the resin in the convex portion is made into a single molecule, and this volume is reduced, whereby the depth of the concave portion can be made a predetermined depth. As a result, an optical disk manufactured using this optical disk substrate can perform recording and reproduction with a good C / N.

【図面の簡単な説明】 【図1】本発明の実施形態の光ディスク基板の作製方法
を示す断面図である。 【図2】紫外光の積算光量と凹部の深さとの関係を示す
図である。 【符号の説明】 1…光ディスク基板、2…樹脂基板、3…凹部、4…凸
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view showing a method for manufacturing an optical disk substrate according to an embodiment of the present invention. FIG. 2 is a diagram showing a relationship between an integrated amount of ultraviolet light and a depth of a concave portion. [Description of Signs] 1 ... optical disk substrate, 2 ... resin substrate, 3 ... concave portion, 4 ... convex portion

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山下 智 神奈川県横浜市神奈川区守屋町3丁目12番 地 日本ビクター株式会社内 Fターム(参考) 5D121 AA02 DD06 GG02    ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Satoshi Yamashita             3-12 Moriyacho, Kanagawa-ku, Yokohama-shi, Kanagawa             Local Victor Company of Japan F term (reference) 5D121 AA02 DD06 GG02

Claims (1)

【特許請求の範囲】 【請求項1】スタンパから樹脂基板に転写した後、剥離
して凹凸部を有する光ディスク基板の作製方法におい
て、 前記樹脂基板を前記スタンパから剥離する際、前記樹脂
基板が伸びることによって、前記凹部の深さが深くなっ
た場合に、前記凹部の深さよりも長い波長光を窒素雰囲
気中で前記光ディスク基板に照射して、前記凸部におけ
る樹脂の高分子を単分子化して、この体積を収縮させる
ことにより、前記凹部の深さを所定の深さになるように
したことを特徴とする光ディスク基板の作製方法。
Claims: 1. A method for manufacturing an optical disk substrate having an uneven portion after transferring from a stamper to a resin substrate, wherein the resin substrate extends when the resin substrate is separated from the stamper. Thereby, when the depth of the concave portion is increased, the optical disc substrate is irradiated with light having a wavelength longer than the depth of the concave portion in a nitrogen atmosphere to monomolecularize the resin polymer in the convex portion. A method of manufacturing an optical disk substrate, wherein the depth of the concave portion is set to a predetermined depth by reducing this volume.
JP2001227323A 2001-07-27 2001-07-27 Method of making optical disk substrate Pending JP2003045096A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001227323A JP2003045096A (en) 2001-07-27 2001-07-27 Method of making optical disk substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001227323A JP2003045096A (en) 2001-07-27 2001-07-27 Method of making optical disk substrate

Publications (1)

Publication Number Publication Date
JP2003045096A true JP2003045096A (en) 2003-02-14

Family

ID=19060003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001227323A Pending JP2003045096A (en) 2001-07-27 2001-07-27 Method of making optical disk substrate

Country Status (1)

Country Link
JP (1) JP2003045096A (en)

Similar Documents

Publication Publication Date Title
JP3109866B2 (en) Substrate for optical information recording carrier and method of manufacturing the same
JP3104699B1 (en) Manufacturing method of molded substrate with fine grooves
CN1161769C (en) Reverse optical mastering for data storage disks
EP1749298B1 (en) Process for producing stamper of multi-valued rom disc, apparatus for producing the same, and resulting disc
US6982944B2 (en) Optical recording medium having relation between groove depths and pit depths
JP2000280255A (en) Production of master disk
KR100234292B1 (en) Manufacturing method of master disc
US20080137504A1 (en) Method Of Writing Data On A Master Substrate For Optical Recording
JP2003045096A (en) Method of making optical disk substrate
WO2002101738A1 (en) Method for manufacturing master disk for manufacturing optical recording medium havingpits and projections, stamper, and optical recording medium
JP4611944B2 (en) Groove forming method
JP2007133970A (en) Optical recording medium and manufacturing method of the same
JP4064871B2 (en) Optical disc and optical disc manufacturing method
US7118681B2 (en) Method for the fabrication of an optical disk master
US8574699B2 (en) Recording medium and method for manufacturing recording medium
JP3655289B2 (en) Optical information recording medium and manufacturing method thereof
JP2003036567A (en) Method for making optical disk substrate
JP2000348393A (en) Stamper for optical disk and its production
JP2002208180A (en) Structure of optical recording medium and its manufacturing method
KR20060099366A (en) High density disk manufacturing method and disc therefore
JP2006120221A (en) Method for manufacturing optical recording medium
JP2003006943A (en) Method of manufacturing optical master disk and optical master disk
JP2005251308A (en) Original plate for manufacturing information recording medium, stamper for information recording medium, and information recording medium
JP2006048879A (en) Optical recording medium, stamper for manufacturing optical recording medium and its manufacturing method
JPH08180476A (en) Manufacture of optical recording medium