JP2003041955A - Reference position learning system for variable valve mechanism - Google Patents

Reference position learning system for variable valve mechanism

Info

Publication number
JP2003041955A
JP2003041955A JP2001229413A JP2001229413A JP2003041955A JP 2003041955 A JP2003041955 A JP 2003041955A JP 2001229413 A JP2001229413 A JP 2001229413A JP 2001229413 A JP2001229413 A JP 2001229413A JP 2003041955 A JP2003041955 A JP 2003041955A
Authority
JP
Japan
Prior art keywords
operating angle
angle
control shaft
angular position
reference position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001229413A
Other languages
Japanese (ja)
Other versions
JP4024020B2 (en
Inventor
Kenichi Machida
憲一 町田
Hirokazu Shimizu
博和 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Hitachi Unisia Automotive Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Unisia Automotive Ltd filed Critical Hitachi Unisia Automotive Ltd
Priority to JP2001229413A priority Critical patent/JP4024020B2/en
Publication of JP2003041955A publication Critical patent/JP2003041955A/en
Application granted granted Critical
Publication of JP4024020B2 publication Critical patent/JP4024020B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To suppress a degradation in detection accuracy due to output dispersion of an operating angle sensor for detecting an operating angle of a control shaft, in a variable valve mechanism for continuously varying a valve lift and a valve operating angle of an engine valve by varying the operating angle of the control shaft. SOLUTION: If any condition is met out of an off position of an ignition switch, a start-up, an engine stall and a target operating angle equal to a minimal angle (S3), the target operating angle is set smaller than the minimal operating angle (S5) to abut the control shaft in a minimal operating angle position. In the state, a mean value of outputs of the operating angle sensor is learned as an output corresponding to the minimal operating angle position (S6 to S8), and the sensor output used for detection of the operating angle is corrected according to the learning result (S9).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、制御軸の作動角に
応じて機関弁のバルブリフト量及びバルブ作動角を連続
的に変化させる可変バルブ機構において、前記制御軸の
基準位置に対応するセンサ出力を学習する装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a variable valve mechanism for continuously changing a valve lift amount and a valve working angle of an engine valve according to a working angle of a control shaft, and a sensor corresponding to a reference position of the control shaft. A device for learning output.

【0002】[0002]

【従来の技術】従来から、吸気バルブ・排気バルブのバ
ルブリフト量及びバルブ作動角を連続的に変える構成の
可変バルブ機構が知られている(特開2001−012
262号公報参照)。前記可変バルブ機構は、クランク
軸に同期し回転する駆動軸と、該駆動軸に固定された駆
動カムと、揺動することで吸気バルブを開閉作動する揺
動カムと、一端で前記駆動カム側と連係し他端で前記揺
動カム側と連係する伝達機構と、該伝達機構の姿勢を変
化させる制御カムを有する制御軸と、該制御軸を回動す
るアクチュエータと、を備える。
2. Description of the Related Art Conventionally, there is known a variable valve mechanism having a structure in which a valve lift amount and a valve operating angle of an intake valve / exhaust valve are continuously changed (JP 2001-012A).
262). The variable valve mechanism includes a drive shaft that rotates in synchronization with a crankshaft, a drive cam fixed to the drive shaft, a swing cam that swings to open and close an intake valve, and one end of the drive cam side. And a control shaft having a control cam for changing the attitude of the transmission mechanism, and an actuator for rotating the control shaft.

【0003】そして、作動角センサで検出される前記制
御軸の実際の作動角を、要求のバルブ開特性に対応する
目標作動角に一致させるべく、前記アクチュエータをフ
ィードバック制御するよう構成される。
The actuator is feedback-controlled so that the actual operating angle of the control shaft detected by the operating angle sensor matches the target operating angle corresponding to the required valve opening characteristic.

【0004】[0004]

【発明が解決しようとする課題】ところで、前記作動角
センサとしてポテンショメータなどが用いられるが、機
械的及び電気的なばらつきによってセンサ出力と実際の
作動角との相関にばらつきが生じるため、センサ出力に
基づく作動角のフィードバック制御の精度が低下し、所
期のバルブリフト量及びバルブ作動角に正確に制御する
ことができなくなる可能性があった。
By the way, a potentiometer or the like is used as the working angle sensor. However, since the correlation between the sensor output and the actual working angle varies due to mechanical and electrical variations, the sensor output is changed. There is a possibility that the accuracy of the feedback control of the operating angle based on this may be deteriorated, and the desired valve lift amount and valve operating angle may not be accurately controlled.

【0005】本発明は上記問題点に鑑みなされたもので
あり、センサ出力と実際の作動角との相関にばらつきが
あっても、実際の作動角を正確に検出でき、以って、バ
ルブリフト量及びバルブ作動角を正確に制御することが
できるようにすることを目的とする。
The present invention has been made in view of the above problems, and the actual operating angle can be accurately detected even if the correlation between the sensor output and the actual operating angle varies. The aim is to be able to precisely control the quantity and the valve operating angle.

【0006】[0006]

【課題を解決するための手段】そのため請求項1記載の
発明は、クランク軸に同期し回転する駆動軸と、該駆動
軸に固定された駆動カムと、揺動することで吸気バルブ
を開閉作動する揺動カムと、一端で前記駆動カム側と連
係し他端で前記揺動カム側と連係する伝達機構と、該伝
達機構の姿勢を変化させる制御カムを有する制御軸と、
該制御軸を回動するアクチュエータと、を含んで構成さ
れた可変バルブ機構において、前記制御軸を回転可能範
囲の最小角度位置又は最大角度位置に突き当てるべく前
記アクチュエータを制御し、このときの前記作動角セン
サの出力を基準位置出力として学習し、該基準位置出力
に基づいて前記作動角センサの出力から前記作動角を検
出する構成とした。
Therefore, the invention according to claim 1 is to open and close an intake valve by swinging a drive shaft that rotates in synchronization with a crank shaft, a drive cam fixed to the drive shaft, and the like. A rocking cam, a transmission mechanism having one end linked to the drive cam side and the other end linked to the swing cam side, and a control shaft having a control cam for changing the posture of the transmission mechanism.
In a variable valve mechanism configured to include an actuator that rotates the control shaft, the actuator is controlled to abut the control shaft at a minimum angular position or a maximum angular position in a rotatable range, and at this time, The output of the operating angle sensor is learned as a reference position output, and the operating angle is detected from the output of the operating angle sensor based on the reference position output.

【0007】かかる構成によると、最小角度位置又は最
大角度位置に突き当てるべくアクチュエータを制御して
いるときに、そのときのセンサ出力を、最小作動角又は
最大作動角(基準位置)に対応する基準位置出力値とし
て学習し、該基準位置出力を基準としてセンサ出力を判
別して、作動角の検出を行なわせる。請求項2記載の発
明では、前記制御軸の回転可能範囲を超える目標作動角
の設定によって、前記制御軸を回転可能範囲の最小角度
位置又は最大角度位置に突き当てる構成とした。
According to this structure, when the actuator is controlled to abut the minimum angular position or the maximum angular position, the sensor output at that time is used as a reference corresponding to the minimum operating angle or the maximum operating angle (reference position). The position output value is learned, the sensor output is discriminated based on the reference position output, and the operating angle is detected. According to a second aspect of the invention, the control shaft is abutted against the minimum angular position or the maximum angular position of the rotatable range by setting the target operating angle exceeding the rotatable range of the control shaft.

【0008】かかる構成によると、回転可能範囲を超え
て制御軸を回転させる必要がある目標作動角の設定によ
って、制御軸を回転可能範囲の最小角度位置又は最大角
度位置に突き当てる。請求項3記載の発明では、機関運
転条件に基づく目標作動角が、前記最小角度位置又は最
大角度位置であるときに、前記最小角度よりも小さい又
は最大角度よりも大きい目標作動角を設定する構成とし
た。
According to this structure, the control shaft is abutted against the minimum angular position or the maximum angular position of the rotatable range by setting the target operating angle that requires the control shaft to rotate beyond the rotatable range. In the invention according to claim 3, when the target operating angle based on the engine operating condition is the minimum angular position or the maximum angular position, a target operating angle smaller than the minimum angle or larger than the maximum angle is set. And

【0009】かかる構成によると、機関運転条件から作
動角を最小角度又は最大角度に制御する要求があるとき
に、制御軸を確実に最小角度位置又は最大角度位置に突
き当てるべく、運転条件による目標が最小角度であれば
より目標を小さく変更し、また、運転条件による目標が
最大角度であればより目標を大きく変更する。請求項4
記載の発明では、機関のイグニッションスイッチがオフ
されたときに、前記最小角度よりも小さい又は最大角度
よりも大きい目標作動角を設定する構成とした。
According to such a configuration, when there is a demand for controlling the operating angle to the minimum angle or the maximum angle from the engine operating conditions, the target depending on the operating conditions should be set so that the control shaft is surely brought into contact with the minimum angular position or the maximum angular position. If is the minimum angle, the target is changed to a smaller value, and if the target under operating conditions is the maximum angle, the target is changed to a larger value. Claim 4
In the invention described above, when the ignition switch of the engine is turned off, the target operating angle smaller than the minimum angle or larger than the maximum angle is set.

【0010】かかる構成によると、機関のイグニッショ
ンスイッチがオフされ、機関が停止している状態で、回
転可能範囲を超える目標を与えることで、制御軸を最小
角度位置又は最大角度位置に突き当てる。請求項5記載
の発明では、機関の始動時に、前記最小角度よりも小さ
い又は最大角度よりも大きい目標作動角を設定する構成
とした。
According to this structure, the control shaft is abutted at the minimum angular position or the maximum angular position by giving a target exceeding the rotatable range in a state where the engine ignition switch is turned off and the engine is stopped. According to the invention of claim 5, when the engine is started, a target operating angle smaller than the minimum angle or larger than the maximum angle is set.

【0011】かかる構成によると、機関の始動時におい
て、回転可能範囲を超える目標を与えることで、制御軸
を最小角度位置又は最大角度位置に突き当てる。請求項
6記載の発明では、機関の停止直後に、前記最小角度よ
りも小さい又は最大角度よりも大きい目標作動角を設定
する構成とした。かかる構成によると、イグニッション
スイッチのオフに伴う機関の停止や所謂エンスト発生時
など機関が停止すると、回転可能範囲を超える目標を与
えることで、制御軸を最小角度位置又は最大角度位置に
突き当てる。
According to this structure, at the time of starting the engine, the control shaft is abutted against the minimum angular position or the maximum angular position by giving a target exceeding the rotatable range. In the invention according to claim 6, the target operating angle smaller than the minimum angle or larger than the maximum angle is set immediately after the engine is stopped. With this configuration, when the engine is stopped due to the ignition switch being turned off, or when the engine is stopped, such as when a so-called engine stall occurs, the control shaft is abutted at the minimum angular position or the maximum angular position by giving a target that exceeds the rotatable range.

【0012】[0012]

【発明の効果】請求項1記載の発明によると、制御軸の
作動角が実際に最小又は最大になっていると推定される
状態でのセンサ出力を基準として中間角度の検出を行な
わせるので、センサ出力と実際の作動角との相関が、セ
ンサの機械的・電気的ばらつきによってばらついても、
センサ出力から実際の作動角を精度良く検出でき、以っ
て、機関弁のバルブリフト量及びバルブ作動角を正確に
制御することができるようになるという効果がある。
According to the first aspect of the present invention, the intermediate angle is detected based on the sensor output in the state where the operating angle of the control shaft is actually estimated to be minimum or maximum. Even if the correlation between the sensor output and the actual operating angle varies due to mechanical and electrical variations of the sensor,
There is an effect that the actual operating angle can be accurately detected from the sensor output, and thus the valve lift amount and the valve operating angle of the engine valve can be accurately controlled.

【0013】請求項2記載の発明によると、制御軸を最
小角度位置又は最大角度位置に確実に突き当てることが
でき、基準位置出力の学習を精度良く行なわせることが
できるという効果がある。請求項3〜6記載の発明によ
ると、機関の運転性に影響を与えることなく、強制的に
制御軸の作動角を最小角度位置又は最大角度位置に突き
当てて、基準位置に対応するセンサ出力を定期的に学習
させることができるという効果がある。
According to the second aspect of the invention, there is an effect that the control axis can be reliably abutted against the minimum angular position or the maximum angular position, and the reference position output can be learned with high accuracy. According to the invention described in claims 3 to 6, the operating angle of the control shaft is forcibly abutted against the minimum angular position or the maximum angular position without affecting the drivability of the engine, and the sensor output corresponding to the reference position is output. There is an effect that can be learned regularly.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態を図に
基づいて説明する。図1〜図3は、実施の形態における
車両用内燃機関の可変バルブ機構VELを示すものであ
り、1気筒あたり2つ備えられる吸気弁のバルブリフト
量及びバルブ作動角を連続的に変化させる機構である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. 1 to 3 show a variable valve mechanism VEL of an internal combustion engine for a vehicle according to an embodiment, which is a mechanism for continuously changing a valve lift amount and a valve operating angle of two intake valves provided for each cylinder. Is.

【0015】尚、排気弁を駆動する構成の可変バルブ機
構であっても良いことは明らかである。図1〜図3に示
す可変バルブ機構VELは、一対の吸気弁12,12
と、シリンダヘッド11のカム軸受14に回転自在に支
持された中空状のカム軸13(駆動軸)と、該カム軸1
3に軸支された回転カムである2つの偏心カム15,1
5(駆動カム)と、前記カム軸13の上方位置に同じカ
ム軸受14に回転自在に支持された制御軸16と、該制
御軸16に制御カム17を介して揺動自在に支持された
一対のロッカアーム18,18と、各吸気弁12,12
の上端部にバルブリフター19,19を介して配置され
た一対のそれぞれ独立した揺動カム20,20とを備え
ている。
It is obvious that a variable valve mechanism having a structure for driving the exhaust valve may be used. The variable valve mechanism VEL shown in FIGS. 1 to 3 includes a pair of intake valves 12, 12
A hollow cam shaft 13 (driving shaft) rotatably supported by a cam bearing 14 of the cylinder head 11, and the cam shaft 1
Two eccentric cams 15, 1 which are rotary cams pivotally supported by 3
5 (driving cam), a control shaft 16 rotatably supported by the same cam bearing 14 above the cam shaft 13, and a pair swingably supported by the control shaft 16 via the control cam 17. Rocker arms 18 and 18 and respective intake valves 12 and 12
Is provided with a pair of independent rocking cams 20 and 20 arranged via valve lifters 19 and 19, respectively.

【0016】前記偏心カム15,15とロッカアーム1
8,18とは、リンクアーム25,25によって連係さ
れ、ロッカアーム18,18と揺動カム20,20と
は、リンク部材26,26によって連係されている。上
記ロッカアーム18,18,リンクアーム25,25,
リンク部材26,26が伝達機構を構成する。
The eccentric cams 15 and 15 and the rocker arm 1
8 and 18 are linked by link arms 25 and 25, and rocker arms 18 and 18 and swing cams 20 and 20 are linked by link members 26 and 26. The rocker arms 18, 18, the link arms 25, 25,
The link members 26, 26 form a transmission mechanism.

【0017】前記偏心カム15は、図4に示すように、
略リング状を呈し、小径なカム本体15aと、該カム本
体15aの外端面に一体に設けられたフランジ部15b
とからなり、内部軸方向にカム軸挿通孔15cが貫通形
成されていると共に、カム本体15aの軸心Xがカム軸
13の軸心Yから所定量だけ偏心している。また、前記
偏心カム15は、カム軸13に対し前記バルブリフター
19に干渉しない両外側にカム軸挿通孔15cを介して
圧入固定されていると共に、カム本体15aの外周面1
5dが同一のカムプロフィールに形成されている。
The eccentric cam 15 is, as shown in FIG.
A cam body 15a having a substantially ring shape and having a small diameter, and a flange portion 15b integrally provided on an outer end surface of the cam body 15a.
The cam shaft insertion hole 15c is formed so as to penetrate in the inner axial direction, and the shaft center X of the cam body 15a is eccentric from the shaft center Y of the cam shaft 13 by a predetermined amount. Further, the eccentric cam 15 is press-fitted and fixed to the cam shaft 13 on both outer sides which do not interfere with the valve lifter 19 through the cam shaft insertion holes 15c, and the outer peripheral surface 1 of the cam body 15a.
5d have the same cam profile.

【0018】前記ロッカアーム18は、図3に示すよう
に、略クランク状に屈曲形成され、中央の基部18aが
制御カム17に回転自存に支持されている。また、基部
18aの外端部に突設された一端部18bには、リンク
アーム25の先端部と連結するピン21が圧入されるピ
ン孔18dが貫通形成されている一方、基部18aの内
端部に突設された他端部18cには、各リンク部材26
の後述する一端部26aと連結するピン28が圧入され
るピン孔18eが形成されている。
As shown in FIG. 3, the rocker arm 18 is bent in a substantially crank shape, and a central base portion 18a is rotatably supported by the control cam 17. In addition, a pin hole 18d into which a pin 21 that is connected to the tip of the link arm 25 is press-fitted is formed through one end 18b protruding from the outer end of the base 18a, while an inner end of the base 18a is formed. Each of the link members 26 is attached to the other end portion 18c protrudingly provided in the portion.
Is formed with a pin hole 18e into which a pin 28 that is to be connected to one end portion 26a of FIG.

【0019】前記制御カム17は、円筒状を呈し、制御
軸16外周に固定されていると共に、図1に示すように
軸心P1位置が制御軸16の軸心P2からαだけ偏心し
ている。前記揺動カム20は、図1及び図5,図6に示
すように略横U字形状を呈し、略円環状の基端部22に
カム軸13が嵌挿されて回転自在に支持される支持孔2
2aが貫通形成されていると共に、ロッカアーム18の
他端部18c側に位置する端部23にピン孔23aが貫
通形成されている。
The control cam 17 has a cylindrical shape and is fixed to the outer periphery of the control shaft 16, and the position of the shaft center P1 is eccentric from the shaft center P2 of the control shaft 16 by α as shown in FIG. The swing cam 20 has a substantially horizontal U-shape as shown in FIGS. 1, 5, and 6, and the cam shaft 13 is fitted and inserted into a substantially annular base end portion 22 to be rotatably supported. Support hole 2
2a is formed so as to penetrate, and a pin hole 23a is formed so as to penetrate through the end portion 23 of the rocker arm 18 located on the other end portion 18c side.

【0020】また、揺動カム20の下面には、基端部2
2側の基円面24aと該基円面24aから端部23端縁
側に円弧状に延びるカム面24bとが形成されており、
該基円面24aとカム面24bとが、揺動カム20の揺
動位置に応じて各バルブリフター19の上面所定位置に
当接するようになっている。即ち、図7に示すバルブリ
フト特性からみると、図1に示すように基円面24aの
所定角度範囲θ1がベースサークル区間になり、カム面
24bの前記ベースサークル区間θ1から所定角度範囲
θ2が所謂ランプ区間となり、更に、カム面24bのラ
ンプ区間θ2から所定角度範囲θ3がリフト区間になる
ように設定されている。
On the lower surface of the swing cam 20, the base end portion 2 is provided.
A base circular surface 24a on the second side and a cam surface 24b extending in an arc shape from the base circular surface 24a to the end edge of the end portion 23 are formed,
The base circular surface 24a and the cam surface 24b come into contact with predetermined positions on the upper surface of each valve lifter 19 according to the swing position of the swing cam 20. That is, as seen from the valve lift characteristics shown in FIG. 7, as shown in FIG. 1, the predetermined angle range θ1 of the base circle surface 24a becomes the base circle section, and the predetermined angle range θ2 from the base circle section θ1 of the cam surface 24b. A so-called ramp section is set, and further, a predetermined angle range θ3 from the ramp section θ2 of the cam surface 24b is set to be a lift section.

【0021】また、前記リンクアーム25は、円環状の
基部25aと、該基部25aの外周面所定位置に突設さ
れた突出端25bとを備え、基部25aの中央位置に
は、前記偏心カム15のカム本体15aの外周面に回転
自在に嵌合する嵌合穴25cが形成されている一方、突
出端25bには、前記ピン21が回転自在に挿通するピ
ン孔25dが貫通形成されている。
The link arm 25 is provided with an annular base portion 25a and a projecting end 25b protruding at a predetermined position on the outer peripheral surface of the base portion 25a, and the eccentric cam 15 is provided at the center of the base portion 25a. A fitting hole 25c for rotatably fitting is formed on the outer peripheral surface of the cam body 15a, while a pin hole 25d through which the pin 21 is rotatably inserted is formed at the protruding end 25b.

【0022】更に、前記リンク部材26は、所定長さの
直線状に形成され、円形状の両端部26a,26bには
前記ロッカアーム18の他端部18cと揺動カム20の
端部23の各ピン孔18d,23aに圧入した各ピン2
8,29の端部が回転自在に挿通するピン挿通孔26
c,26dが貫通形成されている。尚、各ピン21,2
8,29の一端部には、リンクアーム25やリンク部材
26の軸方向の移動を規制するスナップリング30,3
1,32が設けられている。
Further, the link member 26 is formed in a straight line of a predetermined length, and the other ends 26a and 26b of the circular shape are the other end 18c of the rocker arm 18 and the end 23 of the rocking cam 20, respectively. Each pin 2 press-fitted into the pin holes 18d, 23a
Pin insertion holes 26 through which the ends of 8, 29 are rotatably inserted
c and 26d are formed through. In addition, each pin 21,2
Snap rings 30, 3 for restricting axial movement of the link arm 25 and the link member 26 are provided at one end of
1, 32 are provided.

【0023】前記制御軸16は、一端部に設けられたD
Cサーボモータ等のアクチュエータ101によって、ス
トッパで規定される最小角度位置と最大角度位置との間
の所定回転角度範囲内で回転駆動され、前記制御軸16
の作動角を前記アクチュエータ101で変化させること
で、吸気弁12のバルブリフト量及びバルブ作動角が連
続的に変化する構成であって、バルブリフト量の減少に
応じてバルブ作動角がより小さく変化する(図8参
照)。
The control shaft 16 has a D provided at one end.
An actuator 101 such as a C servo motor drives the control shaft 16 to rotate within a predetermined rotation angle range between a minimum angular position and a maximum angular position defined by a stopper.
The valve lift amount and the valve working angle of the intake valve 12 are continuously changed by changing the working angle of the actuator 101 by the actuator 101, and the valve working angle is changed smaller as the valve lift amount decreases. (See FIG. 8).

【0024】バルブリフト量及びバルブ作動角を小さく
する場合には、図5(A),(B)に示すように、制御
軸16の軸心P2が制御カム17の軸心P1がよりも下
方に位置するように、制御軸16を回転させ、逆に、バ
ルブリフト量及びバルブ作動角を大きくする場合には、
図6(A),(B)に示すように、制御軸16の軸心P
2が制御カム17の軸心P1がよりも上方に位置するよ
うに、制御軸16を回転させる。
When the valve lift amount and the valve operating angle are reduced, as shown in FIGS. 5A and 5B, the axis P2 of the control shaft 16 is lower than the axis P1 of the control cam 17. When the control shaft 16 is rotated so that the valve lift amount and the valve operating angle are increased,
As shown in FIGS. 6A and 6B, the axis P of the control shaft 16
2 rotates the control shaft 16 so that the shaft center P1 of the control cam 17 is located higher than the shaft center P1.

【0025】前記アクチュエータ101は、図9に示す
ように、コントロールユニット102からの駆動信号に
基づき制御される。前記コントロールユニット102に
は、機関負荷センサ103及び機関回転速度センサ10
4からの検出信号、及び、前記制御軸16の作動角を検
出する作動角センサ105から出力が入力される。
The actuator 101 is controlled based on a drive signal from the control unit 102, as shown in FIG. The control unit 102 includes an engine load sensor 103 and an engine speed sensor 10
4 and the output from the operating angle sensor 105 that detects the operating angle of the control shaft 16.

【0026】そして、コントロールユニット102内に
おいて、目標作動角演算部106が、機関負荷・機関回
転速度などの機関運転条件に応じて制御軸16の目標作
動角を演算する一方、作動角検出部107が作動角セン
サ105の出力に基づいて制御軸16の実際の作動角を
検出し、駆動回路108が、前記目標作動角と実際の作
動角との偏差に応じて前記アクチュエータ101に出力
する駆動信号をフィードバック制御する。
In the control unit 102, the target operating angle calculating section 106 calculates the target operating angle of the control shaft 16 in accordance with the engine operating conditions such as the engine load and the engine speed, while the operating angle detecting section 107. Detects the actual operating angle of the control shaft 16 based on the output of the operating angle sensor 105, and the drive circuit 108 outputs a drive signal to the actuator 101 according to the deviation between the target operating angle and the actual operating angle. Feedback control.

【0027】前記作動角センサ105は、例えばポテン
ショメータ式のセンサであって、図10に示すように、
制御軸16の作動角の制御範囲(最小値MIN〜最大値
MAX)において、作動角の増大変化に比例して出力電
圧が増大変化する構成であり、前記作動角検出部107
では、図10に実線で示すような相関に従ってセンサ出
力電圧を作動角のデータに変換する処理を行なう。
The operating angle sensor 105 is, for example, a potentiometer type sensor, and as shown in FIG.
In the control range of the operating angle of the control shaft 16 (minimum value MIN to maximum value MAX), the output voltage increases and changes in proportion to the increasing change of the operating angle.
Then, the process of converting the sensor output voltage into the data of the operating angle is performed according to the correlation shown by the solid line in FIG.

【0028】ここで、制御軸16の作動角に対応するセ
ンサ出力電圧が、センサばらつきによって図10中に点
線で示すように全体的にシフトすることがあり、基準特
性(図10中実線示)に基づいて、センサ出力電圧を作
動角に変換すると、作動角を誤検出することになってし
まう。そこで、前記シフト量を学習する基準位置出力学
習部109が設けられており、以下では、図11のフロ
ーチャートに従って前記基準位置出力学習部109の処
理内容を詳細に説明する。
Here, the sensor output voltage corresponding to the operating angle of the control shaft 16 may shift as a whole as shown by the dotted line in FIG. 10 due to sensor variations, and the reference characteristic (shown by the solid line in FIG. 10). If the sensor output voltage is converted into the operating angle based on the above, the operating angle will be erroneously detected. Therefore, a reference position output learning unit 109 for learning the shift amount is provided, and the processing contents of the reference position output learning unit 109 will be described in detail below with reference to the flowchart of FIG. 11.

【0029】ステップS1では、作動角センサ105の
断線やショートなどの故障が診断されていないか否かを
判別し、作動角センサ105に断線やショートなどの故
障が発生していないときには、ステップS2へ進む。ス
テップS2では、作動角センサ105の電源であるバッ
テリの電圧VBが所定電圧以上であるか否かを判別す
る。
In step S1, it is determined whether or not a failure such as disconnection or short-circuit of the operating angle sensor 105 has been diagnosed. If no failure such as disconnection or short-circuiting has occurred in the operating angle sensor 105, step S2 is performed. Go to. In step S2, it is determined whether or not the voltage VB of the battery that is the power source of the operating angle sensor 105 is equal to or higher than a predetermined voltage.

【0030】電圧VBが所定電圧以上であるとステップ
S3へ進み、イグニッションスイッチ110のOFF
時,始動時,エンスト時,機関運転条件に基づく目標作
動角が最小角度位置である状態のいずれかであるかを判
別する。ステップS3で、イグニッションスイッチのO
FF時,始動時,エンスト時,機関運転条件に基づく目
標作動角が最小角度位置である状態のいずれかであると
判別されると、ステップS4へ進み、ステップS1〜ス
テップS3の条件が全て成立している継続時間が所定時
間以上になっているか否かを判別する。
If the voltage VB is equal to or higher than the predetermined voltage, the process proceeds to step S3, and the ignition switch 110 is turned off.
Time, starting, engine stall, or whether the target operating angle based on engine operating conditions is at the minimum angular position. In step S3, turn the ignition switch O
When it is determined that the target operating angle based on the engine operating condition is at the minimum angular position during FF, starting, engine stall, the process proceeds to step S4, and all the conditions of step S1 to step S3 are satisfied. It is discriminated whether or not the continued time is longer than a predetermined time.

【0031】ステップS4で所定時間以上の継続が判定
されると、ステップS5へ進み、最小角度位置よりも小
さい目標作動角を設定する。上記のように最小角度位置
よりも小さい目標作動角を設定させることによって、ス
トッパで規定される最小角度位置に制御軸16が突き当
てられるようにする。
If it is determined in step S4 that the operation will continue for a predetermined time or longer, the process proceeds to step S5, and a target operating angle smaller than the minimum angular position is set. By setting the target operating angle smaller than the minimum angular position as described above, the control shaft 16 is abutted against the minimum angular position defined by the stopper.

【0032】ステップS6では、作動角センサ105の
出力電圧を順次読み込んで、それまでに読み込んだ電圧
の平均値を演算する。ステップS7では、前記平均値演
算におけるサンプル数が所定数以上になったか否かを判
別し、所定数以上になるまで、ステップS6の処理を繰
り返す。所定数以上の出力電圧を平均すると、ステップ
S7からステップS8へ進み、前記平均値を最小角度位
置に対応するセンサ出力値である基準位置出力として学
習する。
In step S6, the output voltage of the working angle sensor 105 is sequentially read, and the average value of the voltages read so far is calculated. In step S7, it is determined whether or not the number of samples in the average value calculation is equal to or larger than a predetermined number, and the process of step S6 is repeated until the number of samples is equal to or larger than the predetermined number. When the output voltages of a predetermined number or more are averaged, the process proceeds from step S7 to step S8, and the average value is learned as the reference position output which is the sensor output value corresponding to the minimum angular position.

【0033】図10に示すように、作動角センサ105
の出力電圧は、最小角度位置で0.5Vとなる初期設定
になっており、出力電圧の作動角への変換も前記初期設
定に基づいて行なわれる。従って、例えば作動角に対す
るセンサ出力電圧が全体的に増大方向にシフトし、最小
角度位置で0.5Vよりも高い電圧を出力するようであ
ると、実際には、最小角度位置であるのに、より大きな
作動角が検出されることになってしまう。
As shown in FIG. 10, the operating angle sensor 105
The output voltage is set to 0.5 V at the minimum angular position, and the output voltage is converted into the operating angle based on the initial setting. Therefore, for example, if the sensor output voltage with respect to the operating angle shifts in the increasing direction as a whole and a voltage higher than 0.5 V is output at the minimum angular position, it is actually the minimum angular position. A larger operating angle will be detected.

【0034】そこで、ステップS9では、最小角度位置
の初期設定出力である0.5Vから前記基準位置出力を
減算した結果を、出力電圧の補正値として設定し、出力
電圧を作動角に変換するときに、実際の出力電圧に補正
値を加算した結果を、作動角に変換させるようにする。
例えば、前記基準位置出力が1.0Vであるとすると、
−0.5Vが補正値として設定され、センサ出力電圧か
ら0.5Vを減算した値が作動角に変換されることにな
り、結果、作動角の検出に用いられるセンサ出力特性
が、図10に実線で示す特性に補正されることになる。
Therefore, in step S9, the result obtained by subtracting the reference position output from 0.5 V which is the initial setting output of the minimum angular position is set as the correction value of the output voltage, and the output voltage is converted into the working angle. In addition, the result of adding the correction value to the actual output voltage is converted into the working angle.
For example, if the reference position output is 1.0V,
-0.5V is set as the correction value, and the value obtained by subtracting 0.5V from the sensor output voltage is converted into the working angle. As a result, the sensor output characteristic used for detecting the working angle is shown in FIG. It will be corrected to the characteristic shown by the solid line.

【0035】尚、上記実施形態では、最小角度位置より
も小さい目標作動角の設定によって、制御軸16を最小
角度位置に突き当てる構成としたが、最大角度位置より
も大きい目標作動角の設定によって制御軸16を最大角
度位置に突き当てる構成としても良く、この場合は、ス
テップS3で、運転条件に応じた目標作動角が最大角度
位置であるか否かを判別させ、ステップS9では、最大
角度位置に対応する初期設定出力(4.5V)と最大角
度位置に対応するものとして学習した基準位置出力との
差を補正値として設定させる。
In the above embodiment, the control shaft 16 is abutted against the minimum angular position by setting the target operating angle smaller than the minimum angular position, but by setting the target operating angle larger than the maximum angular position. The control shaft 16 may be abutted against the maximum angular position. In this case, in step S3, it is determined whether or not the target operating angle according to the operating condition is the maximum angular position, and in step S9, the maximum angle is determined. The difference between the initial setting output (4.5 V) corresponding to the position and the reference position output learned as corresponding to the maximum angular position is set as the correction value.

【0036】また、上記実施形態では、作動角センサを
ポテンショメータ式としたが、その他の方式で作動角を
検出するセンサであっても良いことは明らかである。
Further, in the above embodiment, the working angle sensor is of potentiometer type, but it is obvious that it may be a sensor which detects the working angle by other methods.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態における可変バルブ機構を示
す断面図(図2のA−A断面図)。
FIG. 1 is a sectional view showing a variable valve mechanism according to an embodiment of the present invention (a sectional view taken along the line AA in FIG. 2).

【図2】上記可変バルブ機構の側面図。FIG. 2 is a side view of the variable valve mechanism.

【図3】上記可変バルブ機構の平面図。FIG. 3 is a plan view of the variable valve mechanism.

【図4】上記可変バルブ機構に使用される偏心カムを示
す斜視図。
FIG. 4 is a perspective view showing an eccentric cam used in the variable valve mechanism.

【図5】上記可変バルブ機構の低リフト時の作用を示す
断面図(図2のB−B断面図)。
FIG. 5 is a cross-sectional view showing a function of the variable valve mechanism at a low lift (cross-sectional view taken along the line BB in FIG. 2).

【図6】上記可変バルブ機構の高リフト時の作用を示す
断面図(図2のB−B断面図)。
FIG. 6 is a cross-sectional view (cross-sectional view taken along the line BB in FIG. 2) showing the action of the variable valve mechanism during high lift.

【図7】上記可変バルブ機構における揺動カムの基端面
とカム面に対応したバルブリフト特性図。
FIG. 7 is a valve lift characteristic diagram corresponding to a base end surface and a cam surface of a swing cam in the variable valve mechanism.

【図8】上記可変バルブ機構のバルブタイミングとバル
ブリフトの特性図。
FIG. 8 is a characteristic diagram of valve timing and valve lift of the variable valve mechanism.

【図9】上記可変バルブ機構の制御系を示すブロック
図。
FIG. 9 is a block diagram showing a control system of the variable valve mechanism.

【図10】上記可変バルブ機構の作動角センサの出力特
性を示す線図。
FIG. 10 is a diagram showing the output characteristics of the operating angle sensor of the variable valve mechanism.

【図11】上記可変バルブ機構における作動角センサの
基準位置出力の学習を示すフローチャート。
FIG. 11 is a flowchart showing learning of a reference position output of an operating angle sensor in the variable valve mechanism.

【符号の説明】[Explanation of symbols]

12…吸気弁 13…カム軸 15…偏心カム 16…制御軸 17…制御カム 18…ロッカアーム 20…揺動カム 25…リンクアーム 101…アクチュエータ 102…コントロールユニット 103…機関負荷センサ 104…機関回転速度センサ 105…作動角センサ 106…目標作動角演算部 107…作動角検出部 108…駆動回路 109…基準位置出力学習部 110…イグニッションスイッチ 12 ... Intake valve 13 ... Cam shaft 15 ... Eccentric cam 16 ... Control axis 17 ... Control cam 18 ... Rocker Arm 20 ... Swing cam 25 ... Link arm 101 ... Actuator 102 ... Control unit 103 ... Engine load sensor 104 ... Engine speed sensor 105 ... Working angle sensor 106 ... Target operating angle calculation unit 107 ... Working angle detector 108 ... Driving circuit 109 ... Reference position output learning unit 110 ... Ignition switch

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3G018 AB05 BA19 CA07 DA03 DA04 DA09 DA10 DA12 DA19 DA66 EA21 EA22 EA35 FA01 FA06 FA07 FA08 FA09 GA02 3G092 AA11 DA05 EA03 EA04 EA10 EB06 EC05 FA06 FA48 GA01 GA10 HA13Z HE01Z    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 3G018 AB05 BA19 CA07 DA03 DA04                       DA09 DA10 DA12 DA19 DA66                       EA21 EA22 EA35 FA01 FA06                       FA07 FA08 FA09 GA02                 3G092 AA11 DA05 EA03 EA04 EA10                       EB06 EC05 FA06 FA48 GA01                       GA10 HA13Z HE01Z

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】クランク軸に同期し回転する駆動軸と、 該駆動軸に固定された駆動カムと、 揺動することで吸気バルブを開閉作動する揺動カムと、 一端で前記駆動カム側と連係し他端で前記揺動カム側と
連係する伝達機構と、 該伝達機構の姿勢を変化させる制御カムを有する制御軸
と、 該制御軸を回動するアクチュエータと、 前記制御軸の作動角に応じた出力を発生する作動角セン
サと、 を含んで構成された可変バルブ機構において、 前記制御軸を回転可能範囲の最小角度位置又は最大角度
位置に突き当てるべく前記アクチュエータを制御し、こ
のときの前記作動角センサの出力を基準位置出力として
学習し、該基準位置出力に基づいて前記作動角センサの
出力から前記作動角を検出することを特徴とする可変バ
ルブ機構の基準位置学習装置。
1. A drive shaft that rotates in synchronization with a crankshaft, a drive cam fixed to the drive shaft, a swing cam that swings to open and close an intake valve, and a drive cam side at one end. A transmission mechanism that is linked to the rocking cam side at the other end, a control shaft having a control cam that changes the posture of the transmission mechanism, an actuator that rotates the control shaft, and an operating angle of the control shaft. In a variable valve mechanism configured to include an operating angle sensor that generates a corresponding output, the actuator is controlled to bring the control shaft into contact with the minimum angular position or the maximum angular position of the rotatable range. A reference position learning of a variable valve mechanism, wherein the output of the operating angle sensor is learned as a reference position output, and the operating angle is detected from the output of the operating angle sensor based on the reference position output. Location.
【請求項2】前記制御軸の回転可能範囲を超える目標作
動角の設定によって、前記制御軸を回転可能範囲の最小
角度位置又は最大角度位置に突き当てることを特徴とす
る請求項1記載の可変バルブ機構の基準位置学習装置。
2. The variable according to claim 1, wherein the control shaft is abutted against the minimum angular position or the maximum angular position of the rotatable range by setting a target operating angle exceeding the rotatable range of the control shaft. Reference position learning device for valve mechanism.
【請求項3】機関運転条件に基づく目標作動角が、前記
最小角度位置又は最大角度位置であるときに、前記最小
角度よりも小さい又は最大角度よりも大きい目標作動角
を設定することを特徴とする請求項2記載の可変バルブ
機構の基準位置学習装置。
3. A target operating angle smaller than the minimum angle or larger than the maximum angle is set when the target operating angle based on the engine operating condition is the minimum angular position or the maximum angular position. The reference position learning device for the variable valve mechanism according to claim 2.
【請求項4】機関のイグニッションスイッチがオフされ
たときに、前記最小角度よりも小さい又は最大角度より
も大きい目標作動角を設定することを特徴とする請求項
2記載の可変バルブ機構の基準位置学習装置。
4. The reference position of the variable valve mechanism according to claim 2, wherein when the ignition switch of the engine is turned off, a target operating angle smaller than the minimum angle or larger than the maximum angle is set. Learning device.
【請求項5】機関の始動時に、前記最小角度よりも小さ
い又は最大角度よりも大きい目標作動角を設定すること
を特徴とする請求項2記載の可変バルブ機構の基準位置
学習装置。
5. The reference position learning device for a variable valve mechanism according to claim 2, wherein a target operating angle smaller than the minimum angle or larger than the maximum angle is set when the engine is started.
【請求項6】機関の停止直後に、前記最小角度よりも小
さい又は最大角度よりも大きい目標作動角を設定するこ
とを特徴とする請求項2記載の可変バルブ機構の基準位
置学習装置。
6. The reference position learning device for a variable valve mechanism according to claim 2, wherein a target operating angle smaller than the minimum angle or larger than the maximum angle is set immediately after the engine is stopped.
JP2001229413A 2001-07-30 2001-07-30 Reference position learning device for variable valve mechanism Expired - Fee Related JP4024020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001229413A JP4024020B2 (en) 2001-07-30 2001-07-30 Reference position learning device for variable valve mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001229413A JP4024020B2 (en) 2001-07-30 2001-07-30 Reference position learning device for variable valve mechanism

Publications (2)

Publication Number Publication Date
JP2003041955A true JP2003041955A (en) 2003-02-13
JP4024020B2 JP4024020B2 (en) 2007-12-19

Family

ID=19061768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001229413A Expired - Fee Related JP4024020B2 (en) 2001-07-30 2001-07-30 Reference position learning device for variable valve mechanism

Country Status (1)

Country Link
JP (1) JP4024020B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6920852B2 (en) 2003-06-26 2005-07-26 Hitachi, Ltd. Apparatus and method for controlling engine valve opening in internal combustion engine
US7021258B2 (en) 2004-02-13 2006-04-04 Nissan Motor Co., Ltd. Learning apparatus and method for variable valve control of internal combustion engine
JP2006266200A (en) * 2005-03-25 2006-10-05 Toyota Motor Corp Valve characteristic control device for internal combustion engine
JP2007127110A (en) * 2005-11-07 2007-05-24 Toyota Motor Corp Control device for internal combustion engine
US7308873B2 (en) 2004-04-15 2007-12-18 Nissan Motor Co., Ltd. Variable valve control system for internal combustion engine
JP2008157088A (en) * 2006-12-22 2008-07-10 Toyota Motor Corp Valve gear for internal combustion engine
JP2010180887A (en) * 2010-04-05 2010-08-19 Toyota Motor Corp Engine control device
US7921711B2 (en) 2008-05-23 2011-04-12 Toyota Jidosha Kabushiki Kaisha Abnormality determination apparatus and abnormality determination method for valve characteristics change mechanism
KR20190122032A (en) * 2018-04-19 2019-10-29 현대자동차주식회사 Early learning method for cvvd position and cvvd system
KR20200022615A (en) * 2018-08-23 2020-03-04 현대자동차주식회사 Method for CVVD Position Learning Based On Relearning Situation Classification and Continuously Variable Valve Duration System Thereof
CN110872997A (en) * 2018-08-30 2020-03-10 现代自动车株式会社 CVVD position learning method based on condition application and CVVD system
KR20200025367A (en) * 2018-08-30 2020-03-10 현대자동차주식회사 Method for CVVD Location Learning Correction Based on Indirect Diagnosis and CVVD System Thereof
JP2022000589A (en) * 2016-02-26 2022-01-04 株式会社半導体エネルギー研究所 Power supply device

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004031166B4 (en) * 2003-06-26 2008-04-10 Hitachi, Ltd. Apparatus and method for controlling an engine valve opening in an internal combustion engine
US6920852B2 (en) 2003-06-26 2005-07-26 Hitachi, Ltd. Apparatus and method for controlling engine valve opening in internal combustion engine
US7021258B2 (en) 2004-02-13 2006-04-04 Nissan Motor Co., Ltd. Learning apparatus and method for variable valve control of internal combustion engine
CN100348849C (en) * 2004-02-13 2007-11-14 日产自动车株式会社 Learning apparatus and method for variable valve control of internal combustion engine
US7308873B2 (en) 2004-04-15 2007-12-18 Nissan Motor Co., Ltd. Variable valve control system for internal combustion engine
CN100396899C (en) * 2004-04-15 2008-06-25 日产自动车株式会社 Variable valve control system for internal combustion engine
JP2006266200A (en) * 2005-03-25 2006-10-05 Toyota Motor Corp Valve characteristic control device for internal combustion engine
JP4525406B2 (en) * 2005-03-25 2010-08-18 トヨタ自動車株式会社 Valve characteristic control device for internal combustion engine
JP4640118B2 (en) * 2005-11-07 2011-03-02 トヨタ自動車株式会社 Control device for internal combustion engine
JP2007127110A (en) * 2005-11-07 2007-05-24 Toyota Motor Corp Control device for internal combustion engine
JP2008157088A (en) * 2006-12-22 2008-07-10 Toyota Motor Corp Valve gear for internal combustion engine
US7921711B2 (en) 2008-05-23 2011-04-12 Toyota Jidosha Kabushiki Kaisha Abnormality determination apparatus and abnormality determination method for valve characteristics change mechanism
JP2010180887A (en) * 2010-04-05 2010-08-19 Toyota Motor Corp Engine control device
JP2022000589A (en) * 2016-02-26 2022-01-04 株式会社半導体エネルギー研究所 Power supply device
KR20190122032A (en) * 2018-04-19 2019-10-29 현대자동차주식회사 Early learning method for cvvd position and cvvd system
KR102452705B1 (en) * 2018-04-19 2022-10-11 현대자동차주식회사 Early learning method for cvvd position and cvvd system
KR20200022615A (en) * 2018-08-23 2020-03-04 현대자동차주식회사 Method for CVVD Position Learning Based On Relearning Situation Classification and Continuously Variable Valve Duration System Thereof
KR102474614B1 (en) 2018-08-23 2022-12-06 현대자동차주식회사 Method for CVVD Position Learning Based On Relearning Situation Classification and Continuously Variable Valve Duration System Thereof
CN110872997A (en) * 2018-08-30 2020-03-10 现代自动车株式会社 CVVD position learning method based on condition application and CVVD system
KR20200025366A (en) * 2018-08-30 2020-03-10 현대자동차주식회사 Method for CVVD Position Learning Based On Conditional Application and Continuously Variable Valve Duration System Thereof
KR20200025367A (en) * 2018-08-30 2020-03-10 현대자동차주식회사 Method for CVVD Location Learning Correction Based on Indirect Diagnosis and CVVD System Thereof
KR102474615B1 (en) 2018-08-30 2022-12-06 현대자동차주식회사 Method for CVVD Location Learning Correction Based on Indirect Diagnosis and CVVD System Thereof
KR102529454B1 (en) * 2018-08-30 2023-05-08 현대자동차주식회사 Method for CVVD Position Learning Based On Conditional Application and Continuously Variable Valve Duration System Thereof
CN110872997B (en) * 2018-08-30 2023-08-04 现代自动车株式会社 CVVD position learning method and CVVD system based on condition application

Also Published As

Publication number Publication date
JP4024020B2 (en) 2007-12-19

Similar Documents

Publication Publication Date Title
US7021258B2 (en) Learning apparatus and method for variable valve control of internal combustion engine
US7308871B2 (en) Control apparatus for variable valve apparatus and method thereof
JP2003041955A (en) Reference position learning system for variable valve mechanism
US6920852B2 (en) Apparatus and method for controlling engine valve opening in internal combustion engine
JP2006226133A (en) Variable compression ratio device for internal combustion engine
JP2001173469A (en) Variable valve system of internal combustion engine
US20050174717A1 (en) Driving apparatus and control method for electric actuator
JP4892446B2 (en) Diagnostic device for position detection device
KR20060043187A (en) Variable valve operating control apparatus for internal combustion engine and control method thereof
JP2001012262A (en) Variable valve system of internal combustion engine
JP2003041994A (en) Fail safe controller for internal combustion engine
JP2001003773A (en) Variable valve system of internal combustion engine
JP2005220759A (en) Lift amount variable controller of internal combustion engine
JP4060052B2 (en) Operating angle detector for variable valve mechanism
JP4104839B2 (en) Fail-safe device for internal combustion engine
JP2003083149A (en) Failure diagnosing device for variable valve system
EP1275826B1 (en) Control apparatus and method of variable valve event and lift mechanism
JP4241412B2 (en) Drive control device for motion mechanism
JP4125880B2 (en) Fuel injection control device for internal combustion engine
JP2007107463A (en) Internal combustion engine
JP3914678B2 (en) Variable valve operating device for internal combustion engine
JP2003041954A (en) Intake air quantity control system for engine
JP2004162662A (en) Control device for variable valve mechanism
JP5134021B2 (en) Variable valve drive control apparatus for internal combustion engine
JP4415003B2 (en) Fail-safe control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040817

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071002

R150 Certificate of patent or registration of utility model

Ref document number: 4024020

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141012

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees