JP2003041676A - Heat exchange convection wall and building for electric, communicating, and mechanical facilities using this wall - Google Patents

Heat exchange convection wall and building for electric, communicating, and mechanical facilities using this wall

Info

Publication number
JP2003041676A
JP2003041676A JP2001227337A JP2001227337A JP2003041676A JP 2003041676 A JP2003041676 A JP 2003041676A JP 2001227337 A JP2001227337 A JP 2001227337A JP 2001227337 A JP2001227337 A JP 2001227337A JP 2003041676 A JP2003041676 A JP 2003041676A
Authority
JP
Japan
Prior art keywords
wall
air
building
convection
electric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001227337A
Other languages
Japanese (ja)
Inventor
Yoshimitsu Shimada
義充 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SADENKO CO Inc
Original Assignee
SADENKO CO Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SADENKO CO Inc filed Critical SADENKO CO Inc
Priority to JP2001227337A priority Critical patent/JP2003041676A/en
Publication of JP2003041676A publication Critical patent/JP2003041676A/en
Pending legal-status Critical Current

Links

Landscapes

  • Building Environments (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a heat exchange convection wall having both the heat insulation function and heat radiation function and also to restrict the running cost of air regulator, reduce power consumption and contribute to the solution of environmental problems as a result in a building for electric, communicating and mechanical facilities by using the wall. SOLUTION: The heat exchange and convection wall 10 comprises an outer side panel 1 comprising a high heat transmission material, an insulation member 2 adhered to the inner surface of the outer side panel, and an inner side panel 4 comprising a high heat transmission material provided with a predetermined space 3 from an insulation member. An air inflow hole 31 is provided at one end of a predetermined space 3, an air outflow hole 32 is provided at the other end of the space. A building 50 for electric, communicating, and mechanical facilities use the heat exchange and convection wall 10 for exterior wall 51 and roof 52 of the building, an air inflow hole 31 is provided for air convection layer 3 at the side wall near the corner of the building floor 31, air outflow holes 32 for air convection layer are provided at several places on the roof 52 of the building, and a ventilating fan 60 is connected to an outlet hole.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、熱交換対流壁およ
び熱交換対流壁を用いた電気・通信機械設備建築物に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchange convection wall and an electric / communication machinery / equipment building using the heat exchange convection wall.

【0002】[0002]

【従来の技術】従来、建築物に採用されているエアー・
コンディショニングは、外気流入負荷を防止するため
に、熱貫流率を考慮に入れた断熱材からなる外壁構造
と、空気調整機による空気調和とを主な設計要因として
いる。
2. Description of the Related Art Air conventionally used in buildings
In order to prevent external air inflow load, conditioning is mainly designed with an outer wall structure made of a heat insulating material in consideration of heat transmission coefficient and air conditioning by an air conditioner.

【0003】一方、通信機器、電源装置、空気調整機等
の施設を備えた電気・通信機械設備建築物においては、
設置機器の発熱により屋内が高温となることがあり、年
間を通して常に冷房を必要とするので、エネルギ消費が
膨大なものとなっている。外壁材により屋内を断熱する
考え方は、屋外温度が屋内温度よりも高い場合には効果
的である。しかし、屋外温度が室内温度よりも低い場合
には外壁断熱材が保温材の働きをして屋内からの放熱を
妨げ、逆効果になる。外気を直接導入する換気調整も検
討要因とはなるが、屋内に精密機械が設置されている場
合、塵埃、塩害、さらにはガス類による化学反応等の悪
影響が懸念されるので、直接外気導入には問題が残る。
On the other hand, in an electric / communication machinery / equipment building provided with facilities such as communication equipment, power supply, and air conditioner,
The indoor equipment may have a high temperature due to the heat generated by the installed equipment, which requires constant cooling throughout the year, resulting in enormous energy consumption. The concept of insulating the interior of the room with the outer wall material is effective when the outdoor temperature is higher than the indoor temperature. However, when the outdoor temperature is lower than the indoor temperature, the outer wall heat insulating material acts as a heat insulating material to prevent heat radiation from indoors, which has the opposite effect. Ventilation adjustment that directly introduces outside air is also a factor to be considered, but when precision machinery is installed indoors, there is concern about adverse effects such as dust, salt damage, and chemical reactions due to gases, so direct introduction of outside air is not recommended. Remains a problem.

【0004】そこで、外壁材自体が、夏季の日中のよう
な「屋外温度>屋内温度(屋外温度が屋内温度よりも高
い)」の場合は断熱機能を持ち、「屋外温度<屋内温度
(屋外温度が屋内温度よりも低い)」の場合は、放熱機
能をもつことが好ましい。したがって、「断熱」と「放
熱」の機能を併せもつ外壁材が最も理想的な外壁といえ
る。
Therefore, the outer wall material itself has a heat insulating function in the case of "outdoor temperature> indoor temperature (outdoor temperature is higher than indoor temperature)" such as during the daytime in summer, and "outdoor temperature <indoor temperature (outdoor temperature If the temperature is lower than the indoor temperature) ", it is preferable to have a heat dissipation function. Therefore, it can be said that the outer wall material that has the functions of "heat insulation" and "heat dissipation" is the most ideal outer wall.

【0005】近年、環境問題がクローズアップされ、オ
ゾン層破壊防止・地球温暖化防止がテーマとなり、空調
機もその対象となっている。こうした環境問題を捉え
て、関係者は、インバータエアコン・新冷媒を開発し、
実用化に向けた試みが検討されている。
In recent years, environmental issues have been highlighted, and prevention of ozone layer depletion and prevention of global warming have become the subject, and air conditioners have also been the subject. Taking these environmental problems into consideration, the people involved developed an inverter air conditioner and new refrigerant,
Attempts to put it into practical use are being studied.

【0006】[0006]

【発明が解決しようとする課題】本出願人は、移動体通
信事業に供されるシェルター・メーカとして、環境問題
を考慮したシェルターを研究開発しているなかで、自然
界に存在する外気を利用した「断熱」と「放熱」を併せ
持つ熱交換対流壁を開発した。本発明の課題は、空気調
整機のランニングコストを抑え、消費電力を削減し、結
果的に環境問題解決に寄与することにある。
As a shelter manufacturer for the mobile communications business, the present applicant has been researching and developing a shelter in consideration of environmental problems, and has utilized outside air existing in nature. We have developed a heat exchange convection wall that has both "insulation" and "heat dissipation". An object of the present invention is to reduce the running cost of an air conditioner, reduce power consumption, and eventually contribute to solving environmental problems.

【0007】[0007]

【課題を解決するための手段】本発明の熱交換対流壁
は、高熱貫流材料からなる外側パネルと、外側パネルの
内面に接着された断熱部材と、断熱部材から所定の空間
をあけて設けられた高熱貫流材料からなる内側パネルと
からなる。所定の空間の一端に空気流入口が設けられ、
空間の他端に空気流出口が設けられて空気対流層が形成
される。
A heat exchange convection wall according to the present invention is provided with an outer panel made of a high heat flow-through material, a heat insulating member adhered to the inner surface of the outer panel, and a predetermined space from the heat insulating member. And an inner panel made of high heat flow-through material. An air inlet is provided at one end of the predetermined space,
An air outlet is provided at the other end of the space to form an air convection layer.

【0008】上述したように形成された熱交換対流壁を
建築物の外壁および屋根に用い、建築物外壁下部の建築
物床隅部付近に空気対流層の空気流入口を設け、建築物
屋根の複数箇所に空気対流層の空気流出口を設け、流出
口に換気扇を接続しすることによって、電気・通信機械
設備建築物が得られる。
The heat exchange convection wall formed as described above is used for the outer wall and roof of a building, and an air inlet of an air convection layer is provided near the corner of the building floor below the outer wall of the building to provide a roof of the building. An electric / communication machinery / equipment building can be obtained by providing air outlets of an air convection layer at a plurality of locations and connecting ventilation fans to the outlets.

【0009】建築物の内外にそれぞれ温度センサを設
け、換気扇に電動シャッタを設けることが好ましい。温
度センサが、屋外温度が屋内温度よりも上昇しているか
または屋外温度が屋内露点温度よりも下降していること
を検知したとき、換気扇を停止し、電動シャッタを閉じ
る。このようにすることによって、結露の防止を図って
いる。
It is preferable that temperature sensors are provided inside and outside the building, and an electric shutter is provided on the ventilation fan. When the temperature sensor detects that the outdoor temperature is higher than the indoor temperature or the outdoor temperature is lower than the indoor dew point temperature, the ventilation fan is stopped and the electric shutter is closed. By doing so, condensation is prevented.

【0010】建築物の屋根と側壁(外壁)との取合部及
び/又は空気対流層の流出口にパンチング加工を施した
パネルを設けることが好ましい。このようにすることに
よって、空気対流層内の空気流を一様にし、偏流を防止
することができる。
It is preferable to provide a punched panel at the joint between the roof and the side wall (outer wall) of the building and / or at the outlet of the air convection layer. By doing so, the air flow in the air convection layer can be made uniform and uneven flow can be prevented.

【0011】空気対流層の空気流入口に屈曲流路を連通
することが好ましい。このようにすることによって、空
気流入口からのゴミ、雨水の吸込みおよび目詰まりを防
止するとともに、進入したゴミ、雨水の排出、結露水の
排水を容易にする。
It is preferable to connect the bent flow path to the air inlet of the air convection layer. By doing so, it is possible to prevent dust and rainwater from being sucked in and clogged from the air inlet, and to facilitate the discharge of dust, rainwater, and condensed water that have entered.

【0012】[0012]

【発明の実施の形態】図1を参照して、本発明にもとづ
く熱交換対流壁10の実施例について説明する。本発明
の熱交換対流壁10は、高熱貫流材料(例えば、アルミ
ニウム)からなる外側パネル1と、外側パネル1の内面
11に接着された断熱部材2と、断熱部材2から所定の
空間3をあけて設けられた高熱貫流材料(例えば、アル
ミニウム)からなる内側パネル4とからなる。所定の空
間3の一端に空気流入口31が設けられ、空間3の他端
に空気流出口32が設けられて空気対流層3が形成され
る。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of a heat exchange convection wall 10 according to the present invention will be described with reference to FIG. The heat exchange convection wall 10 of the present invention includes an outer panel 1 made of a high heat flow-through material (for example, aluminum), a heat insulating member 2 bonded to an inner surface 11 of the outer panel 1, and a predetermined space 3 opened from the heat insulating member 2. And an inner panel 4 made of high heat flow-through material (for example, aluminum). An air inlet 31 is provided at one end of the predetermined space 3, and an air outlet 32 is provided at the other end of the space 3 to form the air convection layer 3.

【0013】本発明の熱交換対流外壁10の原理につい
て、図2に示す従来の断熱外壁20と対比して説明す
る。
The principle of the heat exchange convection outer wall 10 of the present invention will be described in comparison with the conventional heat insulating outer wall 20 shown in FIG.

【0014】従来の断熱外壁20は、高熱貫流材料(例
えば、アルミニウム)からなる外側パネル1と、断熱部
材2と、高熱貫流材料(例えば、アルミニウム)からな
る内側パネル4とからなる。従来の断熱外壁20は、屋
外からの日射を反射し、さらに外気温度による熱伝導を
防ぐ役割を果たしている。しかし、内部発熱が大きく年
間を通して冷房が必要な電気・通信機械設備建築物の場
合には、屋外温度が屋内温度よりも下がったときでも、
室内の温度エネルギの放出を妨げ、効率の悪い空気調整
状態となっている。
The conventional heat insulating outer wall 20 comprises an outer panel 1 made of a high heat transmission material (for example, aluminum), a heat insulating member 2, and an inner panel 4 made of a high heat transmission material (for example, aluminum). The conventional heat insulating outer wall 20 plays a role of reflecting solar radiation from the outside and preventing heat conduction due to the outside air temperature. However, in the case of electric / communication machinery / equipment buildings that require a large amount of internal heat generation and require cooling throughout the year, even when the outdoor temperature falls below the indoor temperature,
Discharge of temperature energy in the room is disturbed, and the air conditioning is inefficient.

【0015】一方、本発明の熱交換対流壁10(図1)
は、外壁には従来通り断熱材2を使用し、屋内側に空気
対流層3を設け、屋外と屋内とは熱貫流率のよいアルミ
ニウム等のパネル1、4で仕切るため、熱交換を空気対
流により効率よく行うことができる。
On the other hand, the heat exchange convection wall 10 (FIG. 1) of the present invention.
Uses the heat insulating material 2 for the outer wall as usual, provides the air convection layer 3 on the indoor side, and separates the outdoor and the indoor with the panels 1 and 4 made of aluminum or the like having a good heat transmission coefficient, so that the heat exchange is performed by the air convection. Can be performed more efficiently.

【0016】空気対流層3を屋外温度と屋内温度との温
度差により制御をすることで、「屋外温度>屋内温度」
の条件下では断熱機能を、また、「屋外温度<屋内温
度」の条件下では、放熱機能を実現することができる。
By controlling the air convection layer 3 by the temperature difference between the outdoor temperature and the indoor temperature, "outdoor temperature> indoor temperature".
A heat insulating function can be realized under the condition of, and a heat radiating function can be realized under the condition of "outdoor temperature <indoor temperature".

【0017】次に、上述した熱交換対流壁10を用いた
本発明の電気・通信機械設備建築物50の実施例につい
て、図3〜8を参照して説明する。
Next, an embodiment of the electric / communication machinery / equipment building 50 of the present invention using the above-mentioned heat exchange convection wall 10 will be described with reference to FIGS.

【0018】電気・通信機械設備建築物50は、図3〜
5に最もよく示すように、熱交換対流壁10を建築物の
外壁51および屋根52に用い、建築物床53隅部付近
の外壁51の下部に空気対流層3の空気流入口31(図
8参照)を設け、建築物屋根52の複数箇所に空気対流
層3の空気流出口32(図6)を設け、流出口32に換
気扇60を接続している。
The electric / communication machinery / equipment building 50 is shown in FIG.
5, the heat exchange convection wall 10 is used for the outer wall 51 and the roof 52 of the building, and the air inlet 31 of the air convection layer 3 is provided under the outer wall 51 near the corner of the building floor 53 (see FIG. 8). (See FIG. 6), the air outlet 32 (FIG. 6) of the air convection layer 3 is provided at a plurality of points on the building roof 52, and the ventilation fan 60 is connected to the outlet 32.

【0019】空気対流の流れとしては、図6〜8の白抜
き矢印に示すように、天井中央部にある換気扇60を作
動させることにより外壁51の下方に設けた空気流入口
31から外気を空気対流層3に取り入れ強制的に対流を
起す。流入した外気は、外壁51と屋根52を通過しな
がら屋内の熱を吸収し天井部の換気扇60から屋外へ放
出される。これは、空気対流層のいわゆる放熱機能とい
える。
As for the flow of air convection, as shown by the white arrows in FIGS. 6 to 8, by operating the ventilation fan 60 in the central portion of the ceiling, the outside air is introduced from the air inlet 31 provided below the outer wall 51. It is taken into the convection layer 3 and forcedly causes convection. The outside air that has flowed in absorbs heat inside the room while passing through the outer wall 51 and the roof 52, and is discharged to the outside from the ventilation fan 60 at the ceiling. This can be said to be the so-called heat dissipation function of the air convection layer.

【0020】図3、5に示す実施例においては、換気扇
60が屋根52の長手方向中心線にそって3箇所設けら
れている。換気扇60の容量、設置場所、個数について
は、建築物50の形状、屋内設置機器の発熱量等にもと
づいて決定する。結露を発生させることを前提条件とし
て、外壁51および屋根52の内部に結露面を設け、後
述するように、結露水を排出処理する構造をとってもよ
い。
In the embodiment shown in FIGS. 3 and 5, ventilation fans 60 are provided at three locations along the longitudinal centerline of the roof 52. The capacity, installation location, and number of the ventilation fans 60 are determined based on the shape of the building 50, the amount of heat generated by the indoor installation equipment, and the like. On the condition that dew condensation is generated, a dew condensation surface may be provided inside the outer wall 51 and the roof 52, and the dew condensation water may be discharged as described later.

【0021】電気・通信機械設備建築物50の内外にそ
れぞれ温度センサ70(図3参照)を設け、換気扇60
に電動シャッタ61(図6参照)を設けることが好まし
い。温度センサ70が、屋外温度が屋内温度よりも上昇
しているかまたは屋外温度が屋内露点温度よりも下降し
ていることを検知したとき、換気扇60を停止し、電動
シャッタ61を閉じる。屋内は完全に密閉状態となって
いるため屋外の環境に影響されることはない。これは、
空気対流層のいわゆる断熱機能といえる。この場合、結
露水は外壁51の下部空気流入口31から排水される。
さらに、換気扇60には風雨逆流防止フードを設けて、
台風時等の風雨侵入を防ぐことが好ましい。
A temperature sensor 70 (see FIG. 3) is provided inside and outside the electric / communication machinery / equipment building 50, and a ventilation fan 60 is provided.
It is preferable to provide an electric shutter 61 (see FIG. 6). When the temperature sensor 70 detects that the outdoor temperature is higher than the indoor temperature or the outdoor temperature is lower than the indoor dew point temperature, the ventilation fan 60 is stopped and the electric shutter 61 is closed. Since it is completely sealed indoors, it is not affected by the outdoor environment. this is,
It can be said that this is the so-called heat insulation function of the air convection layer. In this case, the condensed water is drained from the lower air inlet 31 of the outer wall 51.
Furthermore, the ventilation fan 60 is provided with a hood backflow prevention hood,
It is preferable to prevent wind and rain from entering during a typhoon.

【0022】図6、7に示すように、電気・通信機械設
備建築物50の屋根52と側壁(外壁)51との取合部
及び/又は空気対流層3の流出口32にパンチング加工
を施したパネル12、13を設けることが好ましい。こ
のようにすることによって、空気対流層3内の空気流を
一様にし、偏流を防止することができる。
As shown in FIGS. 6 and 7, punching processing is performed on the joint portion between the roof 52 and the side wall (outer wall) 51 of the electric / communication machinery / equipment building 50 and / or the outlet 32 of the air convection layer 3. It is preferable to provide the panels 12 and 13 described above. By doing so, the air flow in the air convection layer 3 can be made uniform and uneven flow can be prevented.

【0023】図8に示すように、空気対流層3の空気流
入口31に屈曲流路14を連通させることが好ましい。
このようにすることによって、空気流入口31からのゴ
ミ、雨水の吸込みおよび目詰まりを防止するとともに、
進入したゴミ、雨水の排出、結露水の排水を容易にす
る。
As shown in FIG. 8, it is preferable to connect the bent flow passage 14 to the air inlet 31 of the air convection layer 3.
By doing so, it is possible to prevent suction of dust and rainwater from the air inlet 31 and clogging, and
Facilitates the discharge of entering dust, rainwater, and condensation water.

【0024】[0024]

【実施例1】本発明の熱交換対流壁10(図1)を用い
た電気・通信機械設備建築物30(図3−5)における
空気調整機(図示せず)のランニングコスト・シミュレ
ーションを、従来の断熱壁20(図2)を用いた電気・
通信機械設備建築物(図示せず)における空気調整機の
それと比較した。ランニングコスト・シミュレーション
は、以下の条件で行う。 (1)場所:鹿児島市 (2)内部発熱:15.4kw(13,244kcal/
h) (3)外壁:従来断熱材 :本発明空気対流層(自然対流) :本発明空気対流層(強制対流) (4)結果:省エネルギ効果を電気代に換算し、表1に
示す。
[Example 1] A running cost simulation of an air conditioner (not shown) in an electric / communication machinery / equipment building 30 (Figs. 3-5) using the heat exchange convection wall 10 (Fig. 1) of the present invention, Electricity using the conventional heat insulation wall 20 (Fig. 2)
It was compared with that of an air conditioner in a telecommunication equipment building (not shown). The running cost simulation is performed under the following conditions. (1) Place: Kagoshima City (2) Internal heat generation: 15.4kw (13,244kcal /
h) (3) Outer wall: Conventional heat insulating material: Air convection layer of the present invention (natural convection): Air convection layer of the present invention (forced convection) (4) Result: Energy saving effect is converted into electricity bill and shown in Table 1.

【0025】《表1》<< Table 1 >>

【表1】 [Table 1]

【0026】結論として、本発明の対流外壁を用いるこ
とにより、約1割の省エネルギ効果があると考えられ
る。特に、空気対流層に強制的に空気を通した場合、自
然対流の場合にくらべて、約2倍程度の改善が期待でき
る。
In conclusion, by using the convection outer wall of the present invention, it is considered that there is an energy saving effect of about 10%. In particular, when the air is forced to pass through the air convection layer, an improvement of about twice can be expected as compared with the case of natural convection.

【0027】[0027]

【実施例2】本発明の熱交換対流壁10(図1)を用い
た電気・通信機械設備建築物30(図3〜5)における
結露シミュレーションを、従来の断熱壁20(図2)を
用いた電気・通信機械設備建築物(図示せず)における
それと比較した。無線通信機器室等のような人の出入り
が少ない電気・通信機械設備建築物50においては、屋
内の温度・湿度がほぼ一定といえる。屋外が高温・高湿
の夏季においては、断熱材を用いた屋内で気温35℃、
湿度20〜30%を維持している。
EXAMPLE 2 A conventional heat insulation wall 20 (FIG. 2) is used for a simulation of dew condensation in an electric / communication machinery / equipment building 30 (FIGS. 3-5) using the heat exchange convection wall 10 (FIG. 1) of the present invention. It was compared with the one in the electric / communication machinery / equipment building (not shown). In an electric / communication machinery / equipment building 50 such as a wireless communication equipment room where people are less likely to come and go, the indoor temperature and humidity can be said to be substantially constant. In summer when the temperature is high and humidity is high outside, the temperature is 35 ° C indoors using heat insulation material.
Humidity of 20 to 30% is maintained.

【0028】ここで、アルミニウム・パネル(厚みt=
1mm)を隔てて、外気と内気とを触れさせた場合に発生
する内壁の結露について、結露温度の試算を下記の条件
で行う。 (1)屋内温度: 35℃ (2)屋内湿度: 30% (3)壁熱伝導率α: 180.6kcal/mh℃
(アルミニウム、t=1.0mm) (4)外表面熱伝達率α: 20kcal/mh℃ (5)内表面熱伝達率α: 8kcal/mh℃
Here, the aluminum panel (thickness t =
For the condensation on the inner wall that occurs when the outside air and the inside air are in contact with each other at a distance of 1 mm), a trial calculation of the condensation temperature is performed under the following conditions. (1) Indoor temperature: 35 ° C (2) Indoor humidity: 30% (3) Wall thermal conductivity α: 180.6 kcal / mh ° C
(Aluminum, t = 1.0 mm) (4) Outer surface heat transfer coefficient α o : 20 kcal / mh ° C. (5) Inner surface heat transfer coefficient α i : 8 kcal / mh ° C.

【0029】ここで、壁(アルミニウムt=1.0mm)の
熱貫流抵抗Rを求める。 R=1/20+0.001/180.6+1/81 =0.05+0.000000554+0.125 ≒0.175mh℃/kcal 気温35℃の飽和水蒸気圧fは、42.18mmHgと
なるので、湿度30%より屋内の水蒸気圧f′は、f′
=(30/100)×42.18=12.654mmHg
となる。水蒸気圧f′が飽和水蒸気圧fとなる温度(壁
表面温度)は、結露温度t=14.8℃となる。い
ま、屋内温度35℃で結露温度t=14.8℃になる
外気温度tを求める。 t=屋内温度+(t−屋内温度)×α×R =35+(14.8−35)×8×0.175 =6.72℃
Here, the heat transmission resistance R of the wall (aluminum t = 1.0 mm) is determined. R = 1/20 + 0.001 / 180.6 + 1/81 = 0.05 + 0.0000000554 + 0.125 ≈0.175 m 2 h ° C / kcal Saturated water vapor pressure f at a temperature of 35 ° C is 42.18 mmHg, so the humidity is 30%. More indoor water vapor pressure f'is f '
= (30/100) x 42.18 = 12.654 mmHg
Becomes The temperature at which the water vapor pressure f ′ becomes the saturated water vapor pressure f (wall surface temperature) is the condensation temperature t d = 14.8 ° C. Now, the outside air temperature t at which the indoor temperature is 35 ° C. and the condensation temperature t d = 14.8 ° C. is obtained. t = indoor temperature + (t d −indoor temperature) × α i × R = 35 + (14.8−35) × 8 × 0.175 = 6.72 ° C.

【0030】以上の結果より、屋外温度tが6.72℃
よりも低いとき、結露が発生する。例えば、高温多湿の
九州においては、冬期になると平均屋外温度は氷点下ま
で下がり、空気対流層に外気を対流させると、屋内温度
が高温であるため結露は避けられない。その結露防止対
策として、露点温度(6.72℃)を外気温度よりも高
くする条件下に空気対流層を制御することによって結露
を回避できる。
From the above results, the outdoor temperature t is 6.72 ° C.
Condensation occurs when lower than. For example, in Kyushu, where the temperature is high and the humidity is high, the average outdoor temperature drops to below freezing in winter, and when convection of outside air into the air convection layer causes dew condensation, which is high because the indoor temperature is high. As a dew condensation prevention measure, dew condensation can be avoided by controlling the air convection layer under the condition that the dew point temperature (6.72 ° C.) is higher than the outside air temperature.

【0031】[0031]

【実施例3】次に、熱交換対流壁の熱貫流率について検
討する。屋外温度>屋内温度>屋内露点温度の条件以外
では、空気対流層に対流が起こらないときは、これを非
密閉空気層とみなすことができる。非密閉空気層の熱抵
抗と断熱材の熱抵抗を比較すると、次のような結果にな
る。例えば、断熱材としてカネライトフォーム、コンク
リート、ALCの3種で検討した結果を、下記の表2に
示す。
Third Embodiment Next, the heat transfer coefficient of the heat exchange convection wall will be examined. Under conditions other than outdoor temperature> indoor temperature> indoor dew point temperature, when convection does not occur in the air convection layer, this can be regarded as a non-sealed air layer. Comparing the thermal resistance of the non-enclosed air layer with the thermal resistance of the heat insulating material gives the following results. For example, Table 2 below shows the results of examination using three types of heat insulating materials, namely canelite foam, concrete, and ALC.

【0032】《表2》<< Table 2 >>

【表2】 [Table 2]

【0033】従来の断熱壁の断熱機能を維持するために
は、空気対流層3の厚みを上記の表2に示す値以下に薄
くしないことが条件となる。
In order to maintain the heat insulating function of the conventional heat insulating wall, it is a condition that the thickness of the air convection layer 3 is not made thinner than the values shown in Table 2 above.

【0034】[0034]

【発明の効果】本発明によれば、「断熱」と「放熱」の
機能を併せもつ熱交換対流壁を得ることができ、それを
電気・通信機械設備建築物に利用した場合に、空気調整
機のランニングコストを抑え、消費電力を削減すること
ができ、結果的に環境問題解決に寄与することができ
る。
According to the present invention, it is possible to obtain a heat exchange convection wall having both the functions of "heat insulation" and "heat dissipation", and when it is used in an electric / communication machinery / equipment building, air conditioning is performed. The running cost of the machine can be suppressed, the power consumption can be reduced, and as a result, it can contribute to solving environmental problems.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の熱交換対流壁の原理を示す説明図で
ある。
FIG. 1 is an explanatory view showing the principle of a heat exchange convection wall of the present invention.

【図2】 従来の断熱壁の原理を示す説明図である。FIG. 2 is an explanatory diagram showing the principle of a conventional heat insulating wall.

【図3】 本発明の熱交換対流壁を用いた電気・通信機
械設備建築物の縦断面図である。
FIG. 3 is a vertical cross-sectional view of an electric / communication machinery / equipment building using the heat exchange convection wall of the present invention.

【図4】 図3におけるIV−IV線からみた電気・通
信機械設備建築物の横断面図である。
FIG. 4 is a transverse cross-sectional view of the electric / communication machinery / equipment building seen from line IV-IV in FIG. 3.

【図5】 図3おけるV−V線からみた電気・通信機械
設備建築物の平面図である。
5 is a plan view of the electric / communication machinery / equipment building seen from the line VV in FIG. 3. FIG.

【図6】 図3に示す電気・通信機械設備建築物の屋根
に設けた換気扇付近の縦断面図である。
FIG. 6 is a vertical cross-sectional view of the vicinity of a ventilation fan provided on the roof of the electric / communication machinery / equipment building shown in FIG.

【図7】 図3に示す電気・通信機械設備建築物の屋根
と側壁との取合部付近の縦断面図である。
7 is a vertical cross-sectional view in the vicinity of a joint between a roof and a side wall of the electric / communication machinery / equipment building shown in FIG.

【図8】 図3に示す電気・通信機械設備建築物の側壁
床隅部付近の縦断面図である。
FIG. 8 is a vertical cross-sectional view in the vicinity of a side wall floor corner of the electric / communication machinery / equipment building shown in FIG.

【符号の説明】[Explanation of symbols]

1 外側パネル 2 断熱
部材 3 空気対流層 4 内側
パネル 10 熱交換対流壁 11 内
面 12 パネル 13 パ
ネル 14 屈曲流路 20 断
熱外壁 31 空気流入口 32 空
気流出口 50 電気・通信機械設備建築物 51 外
壁 52 屋根 53 建
築物床 60 換気扇 61 シ
ャッタ 70 温度センサ
1 Outer Panel 2 Heat Insulation Member 3 Air Convection Layer 4 Inner Panel 10 Heat Exchange Convection Wall 11 Inner Surface 12 Panel 13 Panel 14 Bent Flow Path 20 Insulated Outer Wall 31 Air Inlet 32 Air Outlet 50 Electrical / Communication Equipment Building 51 Outer Wall 52 Roof 53 Building floor 60 Ventilation fan 61 Shutter 70 Temperature sensor

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 高熱貫流材料からなる外側パネルと、該
外側パネルの内面に接着された断熱部材と、該断熱部材
から所定の空間をあけて設けられた高熱貫流材料からな
る内側パネルとからなり、前記所定の空間の一端に空気
流入口を設け他端に空気流出口を設けて空気対流層を形
成した熱交換対流壁。
1. An outer panel made of a high heat flow-through material, a heat insulating member bonded to an inner surface of the outer panel, and an inner panel made of a high heat flow through material provided with a predetermined space from the heat insulating member. A heat exchange convection wall in which an air inlet is provided at one end of the predetermined space and an air outlet is provided at the other end to form an air convection layer.
【請求項2】 高熱貫流材料からなる外側パネルと、該
外側パネルの内面に接着された断熱部材と、該断熱部材
から所定の空間をあけて設けられた高熱貫流材料からな
る内側パネルとからなり、前記所定の空間の一端に空気
流入口を設け他端に空気流出口を設けて空気対流層を形
成した熱交換対流壁を建築物の外壁および屋根に用い、
建築物外壁下部の建築物床隅部付近に前記空気対流層の
空気流入口を設け、前記建築物屋根の複数箇所に前記空
気対流層の空気流出口を設け、該流出口に換気扇を接続
した、電気・通信機械設備建築物。
2. An outer panel made of a high heat flow-through material, a heat insulating member adhered to an inner surface of the outer panel, and an inner panel made of a high heat flow through material provided with a predetermined space from the heat insulating member. A heat exchange convection wall having an air convection layer formed by providing an air inflow port at one end of the predetermined space and an air outflow port at the other end thereof is used as an outer wall and a roof of a building,
An air inlet of the air convection layer was provided near the corner of the building floor under the outer wall of the building, air outlets of the air convection layer were provided at a plurality of points on the building roof, and a ventilation fan was connected to the outlet. , Electrical / communication machinery and equipment buildings.
【請求項3】 前記建築物の内外にそれぞれ温度センサ
を設け、前記換気扇に電動シャッタを設け、前記温度セ
ンサが、屋外温度が屋内温度よりも上昇しているかまた
は屋外温度が屋内露点温度よりも下降していることを検
知したとき、前記換気扇を停止し、前記シャッタを閉じ
る、請求項2記載の電気・通信機械設備建築物。
3. A temperature sensor is provided inside and outside the building, and an electric shutter is provided on the ventilation fan, and the temperature sensor indicates that the outdoor temperature is higher than the indoor temperature or the outdoor temperature is higher than the indoor dew point temperature. The electric / communication machinery / equipment building according to claim 2, wherein the ventilating fan is stopped and the shutter is closed when it is detected that the fan is descending.
【請求項4】 前記建築物の屋根と側壁との取合部及び
/又は前記空気対流層の流出口にパンチング加工を施し
たパネルを設けた、請求項2記載の電気・通信機械設備
建築物。
4. The electrical / communication machinery / equipment building according to claim 2, wherein a panel having a punching process is provided at a joint between a roof and a side wall of the building and / or an outlet of the air convection layer. .
【請求項5】 前記空気対流層の空気流入口に屈曲流路
を連通した、請求項2記載の電気・通信機械設備建築
物。
5. The electric / communication machinery / equipment building according to claim 2, wherein a curved flow path communicates with an air inlet of the air convection layer.
JP2001227337A 2001-07-27 2001-07-27 Heat exchange convection wall and building for electric, communicating, and mechanical facilities using this wall Pending JP2003041676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001227337A JP2003041676A (en) 2001-07-27 2001-07-27 Heat exchange convection wall and building for electric, communicating, and mechanical facilities using this wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001227337A JP2003041676A (en) 2001-07-27 2001-07-27 Heat exchange convection wall and building for electric, communicating, and mechanical facilities using this wall

Publications (1)

Publication Number Publication Date
JP2003041676A true JP2003041676A (en) 2003-02-13

Family

ID=19060015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001227337A Pending JP2003041676A (en) 2001-07-27 2001-07-27 Heat exchange convection wall and building for electric, communicating, and mechanical facilities using this wall

Country Status (1)

Country Link
JP (1) JP2003041676A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005028770A1 (en) 2003-09-24 2005-03-31 Infinity Systems Ag A thermally conducting building element, a building, and a method of erecting the building
KR101341173B1 (en) 2010-12-28 2013-12-13 재단법인 포항산업과학연구원 Outer Insulation Structure And Outer Insulation
CN105544850A (en) * 2016-01-29 2016-05-04 浙江电联通信机房工程技术有限公司 Energy-saving and environment-friendly wallboard and machine room
CN105804444A (en) * 2016-01-29 2016-07-27 浙江电联通信机房工程技术有限公司 Circulating heat conduction type energy-saving and environment-friendly machine room

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5651915U (en) * 1979-09-28 1981-05-08
JPS61284998A (en) * 1985-06-11 1986-12-15 三菱電機株式会社 Heat insulator
JPH02186036A (en) * 1989-01-12 1990-07-20 Funaki Shoji Kk Construction of outer wall of structure
JPH07127148A (en) * 1993-11-05 1995-05-16 Misawa Homes Co Ltd Ventilation floor panel and floor ventilation structure
JPH0874342A (en) * 1994-09-01 1996-03-19 Takashi Ikuno Detached house
JPH1088756A (en) * 1996-09-10 1998-04-07 Shin Nikkei Co Ltd Ridge ventilating device
JPH10131320A (en) * 1996-11-05 1998-05-19 Sekisui Chem Co Ltd Ventilation system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5651915U (en) * 1979-09-28 1981-05-08
JPS61284998A (en) * 1985-06-11 1986-12-15 三菱電機株式会社 Heat insulator
JPH02186036A (en) * 1989-01-12 1990-07-20 Funaki Shoji Kk Construction of outer wall of structure
JPH07127148A (en) * 1993-11-05 1995-05-16 Misawa Homes Co Ltd Ventilation floor panel and floor ventilation structure
JPH0874342A (en) * 1994-09-01 1996-03-19 Takashi Ikuno Detached house
JPH1088756A (en) * 1996-09-10 1998-04-07 Shin Nikkei Co Ltd Ridge ventilating device
JPH10131320A (en) * 1996-11-05 1998-05-19 Sekisui Chem Co Ltd Ventilation system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005028770A1 (en) 2003-09-24 2005-03-31 Infinity Systems Ag A thermally conducting building element, a building, and a method of erecting the building
WO2005028771A1 (en) 2003-09-24 2005-03-31 Infinity Systems Ag An electrically conducting building element, a building, and a method of erecting the building
EP2280127A1 (en) 2003-09-24 2011-02-02 Infinity Systems AG A thermally conducting building element, a building, and a method of erecting the building
KR101341173B1 (en) 2010-12-28 2013-12-13 재단법인 포항산업과학연구원 Outer Insulation Structure And Outer Insulation
CN105544850A (en) * 2016-01-29 2016-05-04 浙江电联通信机房工程技术有限公司 Energy-saving and environment-friendly wallboard and machine room
CN105804444A (en) * 2016-01-29 2016-07-27 浙江电联通信机房工程技术有限公司 Circulating heat conduction type energy-saving and environment-friendly machine room

Similar Documents

Publication Publication Date Title
JP5613155B2 (en) Direct cooling type air conditioning system and heat exchange ceiling board used therefor
US11703235B2 (en) External-air conditioning apparatus and ventilation system
US5394935A (en) Earth coupled thermal barrier system
JP3936984B2 (en) Solar panel installation structure
JP2003041676A (en) Heat exchange convection wall and building for electric, communicating, and mechanical facilities using this wall
JPH08189102A (en) Air-conditioning method of house and house provided with air-conditioner
CN109098272B (en) House structure capable of fully utilizing geothermal energy
JP2017083097A (en) Ventilation air conditioning system
JP2001140370A (en) Ventilating structure of house
CN214177889U (en) Machine room
CN210425313U (en) Air conditioner external unit with optimized air outlet and return structure
JPH11264201A (en) Ventilating structure of building
JPH11101475A (en) Heat insulation structure of dwelling
JP3727229B2 (en) Air circulation type air conditioning system
CN219735479U (en) Air conditioner integrated with submerged air
US20070227178A1 (en) Evaporator shroud and assembly for a direct current air conditioning system
JP2967342B2 (en) Outside air cooling system for houses
CN212013439U (en) Warm logical energy-saving equipment for building
JPH0351640A (en) Ventilating device for housing
JP7370661B1 (en) Attic heating management system
CN211119707U (en) Air-cooled split air conditioner external unit and indoor air exhaust heat exchange energy-saving system
CN102705936A (en) Air conditioner special for bed
JP4302429B2 (en) Building ventilation structure
CN215710954U (en) Novel elevator machine room ventilation system
US20240271887A1 (en) Heat exchange system with flexible heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110324

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110720