JP2003041312A - Method for removing silicon from molten pig iron - Google Patents

Method for removing silicon from molten pig iron

Info

Publication number
JP2003041312A
JP2003041312A JP2001230908A JP2001230908A JP2003041312A JP 2003041312 A JP2003041312 A JP 2003041312A JP 2001230908 A JP2001230908 A JP 2001230908A JP 2001230908 A JP2001230908 A JP 2001230908A JP 2003041312 A JP2003041312 A JP 2003041312A
Authority
JP
Japan
Prior art keywords
lance
hot metal
gas injection
decarburization
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001230908A
Other languages
Japanese (ja)
Inventor
Sachiyo Morita
幸代 森田
Yoshiteru Kikuchi
良輝 菊地
Eiju Matsuno
英寿 松野
Yoshie Nakai
由枝 中井
Satoshi Kodaira
悟史 小平
Shinichi Akai
真一 赤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2001230908A priority Critical patent/JP2003041312A/en
Publication of JP2003041312A publication Critical patent/JP2003041312A/en
Pending legal-status Critical Current

Links

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for removing silicon from a molten pig iron, while accurately grasping the progress of decarburization in the removal process. SOLUTION: It was found that when the removal step of silicon from the molten pig iron proceeds and a generation rate of a CO gas associated with decarburization reaction exceeds a given value, in a silicon removal step from the molten pig iron, the temperature of a fire point generated on the surface of the molten pig iron bath caused by blown oxygen from a lance for blowing oxygen rises, and that the progress of decarburization of the molten pig iron can be accurately grasped to some extent by catching the temperature rise of the fire point. Thereby, the objective method was completed. The method is characterized by measuring the temperature of the fire point generating on the molten pig iron bath caused by blown oxygen from the lance, with an optical fiber type radiation thermometer which is arranged at the lance for blowing oxygen, and determining a decarburization condition in the molten pig iron, based on the change of the fire point.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】本発明は、溶銑予備処理とし
て行われる溶銑の脱珪処理方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hot metal desiliconizing method which is carried out as a hot metal pretreatment.

【0002】[0002]

【従来の技術】溶銑の脱燐及び脱炭処理を効率的に行う
ために、溶銑予備処理として溶銑脱珪処理が行われてい
る。従来行われている溶銑脱珪処理では、高炉鋳床や傾
注樋に酸化鉄やミルスケールに代表される酸化物を添加
し、必要に応じて気体酸素を添加する方法が採られてい
る。また、容器内の溶銑に対して送酸ランスから酸素を
上吹きし、必要に応じて固体酸素源(例えば、焼結粉や
ミルスケールなどの酸化鉄)を添加しつつ、底吹きノズ
ルや浸漬ランスなどを通じて浴中に撹拌ガス又は撹拌ガ
スと粉体(例えば、媒溶剤)を吹き込んで浴を撹拌する
方法も行われている。しかし、この溶銑脱珪処理では脱
珪の進行により溶銑中の珪素濃度が低下してくるのに伴
い脱珪酸素効率が低下し、過剰の酸素が溶銑中の炭素と
反応(脱炭反応)し、生成したCOガスによりスラグが
フォーミングして安定操業が阻害される、発生排ガスの
高温化により設備損傷が引き起こされる、溶銑中の炭素
濃度の低下によって下工程への供給熱量が不安定になる
などの問題を生じる。
2. Description of the Related Art In order to efficiently perform dephosphorization and decarburization of hot metal, hot metal desiliconization is performed as a hot metal pretreatment. In the conventional hot metal desiliconization treatment, a method of adding an oxide represented by iron oxide or mill scale to a blast furnace casting floor or a tilt gutter and adding gaseous oxygen as necessary is adopted. Also, oxygen is top-blown from the acid-feeding lance to the hot metal in the container, and if necessary, a solid oxygen source (for example, iron oxide such as sintered powder or mill scale) is added, while a bottom-blown nozzle or immersion is applied. There is also a method in which a stirring gas or a stirring gas and powder (for example, a solvent medium) are blown into the bath through a lance or the like to stir the bath. However, in this hot metal desiliconization treatment, as the silicon concentration in the hot metal decreases due to the progress of desiliconization, the desiliconization oxygen efficiency decreases, and excess oxygen reacts with the carbon in the hot metal (decarburization reaction). The generated CO gas hinders stable operation by forming slag, equipment damage is caused by the high temperature of generated exhaust gas, and the amount of heat supplied to the lower process becomes unstable due to a decrease in carbon concentration in the hot metal. Cause problems.

【0003】[0003]

【発明が解決しようとする課題】したがって、溶銑脱珪
処理では脱珪の進行に伴う溶銑の脱炭を極力抑制する必
要があるが、このような溶銑の脱炭を抑制するには、ま
ず、処理工程中における脱珪や脱炭の進行状況を正確に
把握する必要がある。しかし、従来この脱珪や脱炭の進
行状況を正確に把握できるような方法は知られていな
い。
Therefore, in the hot metal desiliconization treatment, it is necessary to suppress the decarburization of the hot metal as the desiliconization progresses. To suppress such decarburization of the hot metal, first, It is necessary to accurately grasp the progress of desiliconization and decarburization during the treatment process. However, there is no known method for accurately grasping the progress of desiliconization and decarburization.

【0004】また、溶銑脱珪時の脱炭を抑制するための
従来技術としては、溶銑中の珪素濃度の低下に応じて
溶銑中に吹き込まれるガス中の酸素/不活性ガス比を変
更する方法(特開昭61−15909号)、撹拌力を
規定することで脱炭を制御する方法(特開平7−278
636号)などがあるが、このうちの方法では酸素/
不活性比が大きいために低珪素濃度域では脱炭が進行し
てしまい、また、の方法では吹き込みガス中に酸素ガ
スが含まれているために、この酸素ガスと溶銑中の炭素
との反応が避けられない。また、いずれの方法も、上述
したように脱珪や脱炭の進行状況を正確に把握する方法
がないため、的確なタイミングで制御を行うことが難し
いという根本的な問題がある。
As a conventional technique for suppressing decarburization during hot metal desiliconization, a method of changing the oxygen / inert gas ratio in the gas blown into the hot metal in accordance with the decrease in the silicon concentration in the hot metal. (JP-A 61-15909), a method of controlling decarburization by defining a stirring force (JP-A-7-278).
No. 636), but in this method oxygen /
Since the inertness ratio is large, decarburization proceeds in the low silicon concentration range, and in the method, since the blowing gas contains oxygen gas, the reaction between this oxygen gas and the carbon in the hot metal Is inevitable. Further, since neither method has a method of accurately grasping the progress of desiliconization or decarburization as described above, there is a fundamental problem that it is difficult to perform control at an appropriate timing.

【0005】したがって本発明の目的は、処理工程中の
脱炭の進行状況を正確に把握しつつ溶銑脱珪処理を行う
ことができる溶銑脱珪処理方法を提供することにある。
また、本発明の他の目的は、処理工程中の脱炭の進行状
況を正確に把握し、これに基づき特に溶銑の脱珪が進ん
だ低珪素濃度域において脱炭反応が適切に抑制された効
率的な溶銑脱珪処理を行うことができる溶銑脱珪処理方
法を提供することにある。
Therefore, it is an object of the present invention to provide a hot metal desiliconizing method capable of performing hot metal desiliconizing while accurately grasping the progress of decarburization during a processing step.
Another object of the present invention is to accurately grasp the progress of decarburization during the treatment process, and based on this, the decarburization reaction is appropriately suppressed especially in the low silicon concentration region where the desiliconization of the hot metal has advanced. It is an object of the present invention to provide a hot metal desiliconizing treatment method capable of performing an efficient hot metal desiliconizing treatment.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記の課
題を解決すべく溶銑脱珪処理中の脱炭の進行状況を正確
に把握することができる手法、さらには、このような脱
炭の進行状況の正確な把握に基づいて低珪素濃度域にお
いて脱炭反応を適切に抑制することができる方法につい
て検討を行い、以下のような知見を得た。
Means for Solving the Problems The present inventors have proposed a method capable of accurately grasping the progress of decarburization during hot metal desiliconization in order to solve the above-mentioned problems. Based on an accurate grasp of the progress of charcoal, a method that can appropriately suppress the decarburization reaction in the low silicon concentration region was investigated, and the following findings were obtained.

【0007】(1) 溶銑脱珪処理において溶銑の脱珪が進
行し、溶銑中の珪素濃度が0.2mass%以下の低珪素濃
度領域になると、脱珪反応は浴中珪素の物質移動が律速
することになるため、脱珪反応に使われる単位時間当た
りの酸素量は次第に減少し、それに伴い脱炭反応に使わ
れる単位時間当たりの酸素量が増加する。このように溶
銑中の珪素濃度の低下に伴い単位時間当たりの脱炭量が
増え、脱炭反応に伴うCOガスの生成速度がある値以上
になると、送酸ランスからの送酸により溶銑浴面に生じ
た火点の温度上昇が認められ、したがってこの火点温度
の上昇を捉えることにより溶銑の脱炭の進行状況をある
程度正確に把握できることが判った。また、この火点温
度は送酸ランスに配置した光ファイバー式放射温度計に
より容易に検出できることが判った。
(1) When the silicon removal in the hot metal progresses in the hot metal desiliconization process and the silicon concentration in the hot metal reaches a low silicon concentration region of 0.2 mass% or less, the silicon removal in the bath is rate-determining in the desiliconization reaction. Therefore, the oxygen amount per unit time used for the desiliconization reaction gradually decreases, and the oxygen amount per unit time used for the decarburization reaction increases accordingly. In this way, as the silicon concentration in the hot metal decreases, the amount of decarburization per unit time increases, and when the CO gas generation rate associated with the decarburization reaction exceeds a certain value, the hot metal bath surface is fed by the acid feeding from the acid feeding lance. It was found that the temperature rise of the hot spot that occurred in the above was recognized, and therefore the progress of decarburization of the hot metal can be grasped to some extent accurately by grasping the rise of the hot spot temperature. It was also found that this flash point temperature can be easily detected by an optical fiber type radiation thermometer arranged on the acid feeding lance.

【0008】(2) また、このような脱炭の進行状況の把
握に基づく脱炭抑制のためのアクションについては、溶
銑の脱炭を抑制するには脱珪に消費される以外の酸素量
を低減することが重要であるが、このためには送酸ラン
スからの送酸速度(気体酸素源の供給速度又は気体酸素
源の酸素濃度)を低下させるのが有効であることが確認
できた。また、同一送酸条件下においては、浴の撹拌を
強化することにより珪素の移動速度が高められ、これに
より優先脱珪が促進される結果、脱炭反応が抑制される
ことも確認した。また、浴の撹拌を高める方法として
は、撹拌ガスの供給速度の増加でも粉体の供給速度の増
加でも、また両者の併用でも有為差は見られなかった。
(2) Further, regarding the action for suppressing decarburization based on the understanding of the progress of decarburization, in order to suppress the decarburization of the hot metal, the amount of oxygen other than that consumed for desiliconization is set. Although it is important to reduce the amount, it has been confirmed that for this purpose, it is effective to reduce the rate of oxygen transfer from the oxygen transfer lance (supply rate of gaseous oxygen source or oxygen concentration of gaseous oxygen source). It was also confirmed that under the same acid feeding conditions, by enhancing the stirring of the bath, the moving speed of silicon was increased, which promoted preferential desiliconization, and as a result, the decarburization reaction was suppressed. As a method of increasing the stirring of the bath, no significant difference was observed by increasing the supply rate of the stirring gas, the supply rate of the powder, or the combination of both.

【0009】本発明は以上のような知見に基づきなされ
たもので、その特徴は以下の通りである。 [1] 溶銑予備処理として容器内で行われ、送酸ランスか
ら容器内に気体酸素源を供給しつつ溶銑を脱珪処理する
方法において、送酸ランスに配置した光ファイバー式放
射温度計により、ランスからの送酸により溶銑浴面に生
じた火点の温度を測定し、この火点温度の変化に基づい
て溶銑の脱炭状況を判定することを特徴とする溶銑脱珪
処理方法。 [2] 上記[1]の脱珪処理方法において、底吹きノズル又
は浸漬ランスから撹拌ガス又は撹拌ガスと粉体を浴中に
吹き込んで浴を撹拌することを特徴とする溶銑脱珪処理
方法。
The present invention has been made on the basis of the above findings, and its features are as follows. [1] In the method for performing hot metal pretreatment in a container, in which the hot metal is desiliconized while supplying a gaseous oxygen source from the acid-feeding lance, a lance with an optical fiber type radiation thermometer placed on the acid-feeding lance is used. A hot metal desiliconizing method characterized by measuring the temperature of a hot spot generated on the surface of a hot metal bath due to the feeding of acid from the steel, and determining the decarburization state of the hot metal based on the change in the hot spot temperature. [2] The hot metal desiliconizing method according to the above [1], wherein the stirring gas or the stirring gas and powder are blown into the bath from a bottom blowing nozzle or a dipping lance to stir the bath.

【0010】[3] 上記[1]又は[2]の溶銑脱珪処理方法に
おいて、火点温度の上昇が測定された際に、送酸ランス
による送酸速度、撹拌ガスの供給速度、粉体の供給速度
のうちの少なくとも1つを制御することを特徴とする溶
銑脱珪処理方法。 [4] 上記[3]の溶銑脱珪処理方法において、10秒間で
50℃以上の火点温度の上昇が測定された際に、送酸ラ
ンスによる送酸速度、撹拌ガスの供給速度、粉体の供給
速度のうちの少なくとも1つを制御することを特徴とす
る記載の溶銑脱珪処理方法。 [5] 上記[1]〜[4]のいずれかの溶銑脱珪処理方法におい
て、光ファイバー式放射温度計の光ファイバー部先端の
検出端を、送酸ランス先端のガス噴射孔内又は該ガス噴
射孔の吐出口近傍に配置したことを特徴とする溶銑脱珪
処理方法。
[3] In the hot metal desiliconization method of [1] or [2] above, when an increase in the hot spot temperature is measured, an acid transfer rate by an acid transfer lance, a stirring gas supply rate, a powder At least one of the supply rates of the above is controlled, and the hot metal desiliconization method is characterized. [4] In the hot metal desiliconization treatment method of [3] above, when an increase in the flash point temperature of 50 ° C. or higher is measured for 10 seconds, an acid transfer rate by an acid transfer lance, a stirring gas supply rate, a powder At least one of the supply rates of the above is controlled, The hot metal desiliconization method of description. [5] In the hot metal desiliconization treatment method according to any one of the above [1] to [4], the detection end at the tip of the optical fiber part of the optical fiber type radiation thermometer is provided in the gas injection hole at the tip of the acid-feeding lance or the gas injection hole. A hot metal desiliconization treatment method, characterized in that the hot metal desiliconization treatment is performed in the vicinity of the discharge port.

【0011】[6] 上記[5]の溶銑脱珪処理方法におい
て、ガス噴射流量が異なる複数のガス噴射孔を有する送
酸ランスを用い、複数のガス噴射孔のうちガス噴射流量
が最も多いガス噴射孔内又は該ガス噴射孔の吐出口近傍
に光ファイバー式放射温度計の光ファイバー部先端の検
出端を配置したことを特徴とする溶銑脱珪処理方法。こ
のような本発明法によれば、従来技術では難しかった溶
銑中の珪素濃度の低下に伴う脱炭反応が生じる時期を正
確に把握することができるため、チャージ毎に脱炭反応
を抑制するための迅速且つ最適なアクションを採ること
ができる。
[6] In the hot metal desiliconization method of the above [5], an oxygen transfer lance having a plurality of gas injection holes having different gas injection flow rates is used, and a gas having the highest gas injection flow rate among the plurality of gas injection holes is used. A hot metal desiliconization treatment method characterized in that a detection end at the tip of an optical fiber portion of an optical fiber type radiation thermometer is arranged in the injection hole or in the vicinity of the discharge port of the gas injection hole. According to the method of the present invention as described above, it is possible to accurately grasp the time when the decarburization reaction occurs due to the decrease in the silicon concentration in the hot metal, which was difficult in the conventional technique, and therefore the decarburization reaction is suppressed for each charge. You can take quick and optimal action.

【0012】[0012]

【発明の実施の形態】本発明法は、溶銑予備処理として
行われる溶銑脱珪処理において、送酸ランスに配置した
光ファイバー式放射温度計により、ランスからの送酸に
より溶銑浴面生じた火点の温度を測定し、この火点温度
の変化に基づいて溶銑の脱炭状況を判定する。そして、
この判定に基づき脱炭抑制のために必要なアクションを
採る。
BEST MODE FOR CARRYING OUT THE INVENTION In the method of the present invention, in the hot metal desiliconization treatment carried out as a hot metal pretreatment, an optical fiber type radiation thermometer arranged on an acid feeding lance is used to generate a hot spot on the hot metal bath surface by the acid feeding from the lance. Temperature is measured, and the decarburization status of the hot metal is judged based on this change in the flash point temperature. And
Based on this judgment, take the necessary action to suppress decarburization.

【0013】一般に、高炉から出銑された溶銑は鋳床を
経由して溶銑鍋等の容器に注湯及び貯留されるが、溶銑
予備処理として行われる脱珪処理は、溶銑鍋等の容器内
だけで脱珪処理を行う場合と、鋳床で脱珪処理(鋳床脱
珪)を行った後、さらに溶銑鍋等の容器内で脱珪処理を
行う場合とがあり、本発明法はいずれの場合にも適用で
きる。本発明が対象とする容器内での脱珪処理は、処理
容器として溶銑鍋や装入鍋等の取鍋、トピードカー(混
銑車)、その他の脱珪専用容器等を用いることができ
る。脱珪処理では脱珪剤として酸素源が添加され、ま
た、必要に応じて媒溶剤として焼石灰等のCaO源が添
加され、スラグの塩基度が調整される。酸素源として
は、少なくとも気体酸素源が用いられ、通常、この気体
酸素源は送酸ランス(上吹きランス)等を通じて容器内
に供給される。また、必要に応じて固体酸素源(焼結
粉、ミルスケール等の酸化鉄)を添加してもよい。媒溶
剤や固体酸素源は炉上部からの上置き装入又は浸漬ラン
ス(インジェクションランス)や炉体の吹き込みノズル
等の手段による浴中への吹き込み等により浴中に添加さ
れる。
Generally, the hot metal tapped from the blast furnace is poured and stored in a container such as a hot metal ladle via the casting floor, and the desiliconization treatment performed as a hot metal pretreatment is performed in the container such as the hot metal ladle. There are cases where desiliconization treatment is performed only by itself, and cases where desiliconization treatment is performed in the casting bed (cast bed desiliconization) and then further performed in a container such as a hot metal ladle. Can also be applied to. For the desiliconization treatment in the container targeted by the present invention, a ladle such as a hot metal ladle or a charging pot, a toped car (mixed pig car), or another container for desiliconization can be used as the processing container. In the desiliconization treatment, an oxygen source is added as a desiliconizing agent, and if necessary, a CaO source such as calcined lime is added as a solvent to adjust the basicity of the slag. As the oxygen source, at least a gaseous oxygen source is used, and normally this gaseous oxygen source is supplied into the container through an acid feeding lance (upper blowing lance) or the like. In addition, a solid oxygen source (sintered powder, iron oxide such as mill scale) may be added if necessary. The solvent medium and the solid oxygen source are added into the bath by top-up charging from the upper part of the furnace or by blowing into the bath by means such as an immersion lance (injection lance) or a blowing nozzle of the furnace body.

【0014】また、脱珪効率を高めるために、溶銑中に
は浴を撹拌するための撹拌ガスを吹き込むことが好まし
い。通常、この撹拌ガスとしては窒素ガスやアルゴンガ
ス等が用いられ、例えば、浸漬ランスや炉体の吹き込み
ノズル等を通じて浴中に吹き込まれる。この際、先に述
べたような媒溶剤や固体酸素源がこの撹拌ガスとともに
吹き込まれることもある。
Further, in order to enhance the desiliconization efficiency, it is preferable to blow a stirring gas into the molten pig iron for stirring the bath. Usually, nitrogen gas, argon gas, or the like is used as the stirring gas, and for example, it is blown into the bath through an immersion lance or a blowing nozzle of the furnace body. At this time, the solvent medium and solid oxygen source as described above may be blown together with the stirring gas.

【0015】図1は、溶銑鍋1を用いた脱珪処理状況の
一例を模式的に示しており、溶銑鍋1内に送酸ランス2
を通じて気体酸素源が吹き込まれるとともに、浸漬ラン
ス3を通じて撹拌ガスや媒溶剤が溶銑中に吹き込まれ、
さらに必要に応じて固体酸素源(例えば、焼結粉やミル
スケール等の酸化鉄)が鍋上方の原料投入装置(図示せ
ず)から上置き装入できるようになっている。
FIG. 1 schematically shows an example of a state of desiliconization treatment using the hot metal ladle 1, in which the acid feeding lance 2 is placed in the hot metal ladle 1.
A gaseous oxygen source is blown in through, and a stirring gas and a solvent are blown into the hot metal through the immersion lance 3.
Further, if necessary, a solid oxygen source (for example, iron oxide such as sintered powder or mill scale) can be placed on top from a raw material feeding device (not shown) above the pot.

【0016】本発明法では、前記送酸ランス2に光ファ
イバー式放射温度計4を配置し、ランスからの送酸によ
り溶銑浴面に生じる火点の温度を測定する。この光ファ
イバー式放射温度計4は、長尺の光ファイバー部と温度
計本体とから構成され、前記光ファイバー部はランス長
手方向に沿って配置され、その基端部が温度計本体に接
続される。
In the method of the present invention, an optical fiber type radiation thermometer 4 is arranged on the acid feeding lance 2 and the temperature of the fire point generated on the hot metal bath surface by the acid feeding from the lance is measured. The optical fiber type radiation thermometer 4 is composed of a long optical fiber portion and a thermometer main body. The optical fiber portion is arranged along the longitudinal direction of the lance, and its base end is connected to the thermometer main body.

【0017】光ファイバー式放射温度計4の送酸ランス
2に対する取付位置や取付構造は、火点温度を測定でき
るような位置や構造であれば特別な制限はないが、通
常、光ファイバー式放射温度計4の光ファイバー部をラ
ンス長手方向の内部に沿わせ、光ファイバー部先端の検
出端をランス先端のガス噴射孔(送酸ノズル)内又は該
ガス噴射孔の吐出口近傍に配置すれば、ランス下方に形
成される火点の温度を検出することができる。一般に、
光ファイバー部先端の検出端は、ランスのガス噴射孔が
単孔の場合にはそのガス噴射孔内又はその吐出口近傍に
配置すればよいし、ガス噴射孔が多孔の場合には任意の
1つのガス噴射孔内又はその吐出口近傍に配置すればよ
い。
The mounting position and mounting structure of the optical fiber type radiation thermometer 4 with respect to the acid feeding lance 2 are not particularly limited as long as they are positions and structures capable of measuring the fire point temperature. If the optical fiber part of 4 is arranged along the inside of the lance and the detection end of the optical fiber part is arranged in the gas injection hole (acid feed nozzle) of the lance tip or in the vicinity of the discharge port of the gas injection hole, The temperature of the formed flash point can be detected. In general,
If the gas injection hole of the lance is a single hole, the detection end at the tip of the optical fiber part may be arranged in or near the gas injection hole, and if the gas injection hole is porous, any one of them may be arranged. It may be arranged in the gas injection hole or in the vicinity of the discharge port.

【0018】この光ファイバー式放射温度計による温度
の測定は、黒体放射条件が成立すればその放射スペクト
ル分布から絶対温度が算出できるという計測原理を利用
している。光ファイバー先端の検出端から火点が放射す
るスペクトル光を入力し、このスペクトル光がファイバ
ー内を伝播して温度計本体に入力される。温度計本体
は、例えば2波長の輝度出力の比較から温度を求める2
色温度計や放射光の輝度出力から直接温度を求める赤外
放射温度計などにより構成されており、入力した光スペ
クトル信号からそれぞれの測定方式に従って温度を算出
し、この算出された温度信号は電気信号として出力さ
れ、記録計などへ供給される。
The measurement of the temperature by the optical fiber type radiation thermometer uses the principle of measurement that the absolute temperature can be calculated from the radiation spectrum distribution of the black body if the black body radiation condition is satisfied. Spectral light emitted by the fire point is input from the detection end of the optical fiber tip, and this spectral light propagates in the fiber and is input to the thermometer body. The thermometer main body calculates the temperature by comparing the brightness outputs of two wavelengths, for example.
It consists of a color thermometer and an infrared radiation thermometer that determines the temperature directly from the brightness output of the synchrotron radiation.It calculates the temperature from the input optical spectrum signal according to each measurement method, and the calculated temperature signal is an electrical signal. It is output as a signal and supplied to a recorder.

【0019】図2及び図3は、それぞれ本発明法に使用
する送酸ランスの先端部の構造例を示したもので、図2
(A)及び図3(A)はそれぞれ送酸ランス先端の正面
図、図2(B)及び図3(B)は、それぞれ図2(A)
及び図3(A)のB−B線に沿う断面図である。図にお
いて、5は光ファイバー式放射温度計4の光ファイバー
部、50はその先端の検出端である。
2 and 3 each show an example of the structure of the tip of the oxygen-sending lance used in the method of the present invention.
(A) and FIG. 3 (A) are front views of the tip of the acid transfer lance, and FIG. 2 (B) and FIG. 3 (B) are respectively FIG. 2 (A).
3 is a cross-sectional view taken along the line BB of FIG. In the figure, 5 is an optical fiber part of the optical fiber type radiation thermometer 4, and 50 is a detection end at the tip thereof.

【0020】図2は、ランス先端の中心とその周囲にガ
ス噴射孔20a,20bを有する多孔式の送酸ランス2
を用いた実施形態であり、この実施形態ではランス先端
の中心のガス噴射孔20a内の先端近傍に光ファイバー
式放射温度計4の光ファイバー部5先端の検出端50を
配置してある。図3は、ランス先端の中心の周囲にガス
噴射孔20を有する多孔式の送酸ランス2を用いた実施
形態であり、この実施形態では複数のガス噴射孔20の
なかの任意の1つのガス噴射孔20内の先端近傍に光フ
ァイバー式放射温度計4の光ファイバー部5先端の検出
端50を配置してある。
FIG. 2 is a perforated acid transfer lance 2 having gas injection holes 20a and 20b around the center of the lance tip and around it.
In this embodiment, the detection end 50 at the tip of the optical fiber portion 5 of the optical fiber type radiation thermometer 4 is arranged near the tip in the gas injection hole 20a at the center of the lance tip. FIG. 3 is an embodiment in which a porous oxygen transfer lance 2 having a gas injection hole 20 around the center of the tip of the lance is used, and in this embodiment, any one gas of the plurality of gas injection holes 20 is used. A detection end 50 at the tip of the optical fiber portion 5 of the optical fiber type radiation thermometer 4 is arranged near the tip in the injection hole 20.

【0021】上記各実施形態のように複数のガス噴射孔
20,20a,20bのなかの1つのガス噴射孔内に光
ファイバー式放射温度計4の光ファイバー部5先端の検
出端50を配置する場合、各ガス噴射孔のガス噴射流量
に差がある場合には、ガス噴射流量が最も多いガス噴射
孔内に光ファイバー部先端50の検出端を配置すること
が好ましい。これは、ガス噴出流量が多いところの火点
周辺では脱珪速度が大きくなり、より早い時期から脱炭
速度が大きくなるので、脱炭の進行を最も早期に検知す
ることができるからである。なお、各ガス噴射孔の噴出
流量が同一であれば、何れのガス噴射孔であっても火点
の輝度に大きな差が現れないため、任意のガス噴射孔に
光ファイバー部先端50を配置してよい。また、以上は
ガス噴射孔内に光ファイバー部先端の検出端50を配置
した例であるが、場合によってはランス先端に取付用の
貫通孔を設け、この貫通孔内に光ファイバー部先端の検
出端50を配置してもよい。
When the detection end 50 at the tip of the optical fiber portion 5 of the optical fiber type radiation thermometer 4 is arranged in one gas injection hole among the plurality of gas injection holes 20, 20a, 20b as in the above embodiments, When there is a difference in the gas injection flow rate of each gas injection hole, it is preferable to arrange the detection end of the optical fiber tip 50 in the gas injection hole having the largest gas injection flow rate. This is because the desiliconization rate increases near the fire point where the gas flow rate is large, and the decarburization rate increases from an earlier time, so the progress of decarburization can be detected at the earliest. If the ejection flow rate of each gas injection hole is the same, a large difference does not appear in the brightness of the fire point in any of the gas injection holes. Therefore, the optical fiber tip 50 is placed in any gas injection hole. Good. Further, the above is an example in which the detection end 50 at the tip of the optical fiber portion is arranged in the gas injection hole, but in some cases, a through hole for mounting is provided at the tip of the lance, and the detection end 50 at the tip of the optical fiber portion is provided in this through hole. May be arranged.

【0022】本発明法では、溶銑脱珪処理の間、上記光
ファイバー式放射温度計4により送酸ランス2の送酸で
生じている火点の温度を測定し、この火点温度の変化に
基づいて溶銑の脱炭状況を判定する。具体的には火点温
度の上昇、特に急激な温度上昇が測定された際に脱炭反
応が急速に進行したと判定し、脱炭抑制に必要なアクシ
ョンを採る。先に述べたように溶銑中の脱炭反応による
COガスの生成速度がある値以上になると、送酸ランス
2の火点温度が上昇する現象が見られる。この理由は、
珪素濃度の減少に伴って単位時間当りの脱炭量が増え、
COガスの生成速度が大きくなり、火点表面におけるガ
ス温度が上昇し、その温度を放射温度計が検出するため
である。脱珪が進行すると或る時期から火点温度が上昇
し、その後一定値となるが、送酸速度が大きくなるにつ
れて火点温度は上昇する。したがって、このことからも
火点温度の上昇が生成COガスの影響であることが判
る。
In the method of the present invention, during the hot metal desiliconization treatment, the optical fiber type radiation thermometer 4 measures the temperature of the fire point generated by the acid feeding of the acid feeding lance 2, and based on the change in the hot spot temperature. To determine the decarburization status of the hot metal. Specifically, it is determined that the decarburization reaction has progressed rapidly when a rise in the flash point temperature, particularly a rapid rise in temperature, is measured, and the action necessary to suppress decarburization is taken. As described above, when the CO gas generation rate due to the decarburization reaction in the hot metal exceeds a certain value, the hot spot temperature of the acid feeding lance 2 rises. The reason for this is
As the silicon concentration decreases, the amount of decarburization per unit time increases,
This is because the generation rate of CO gas increases, the gas temperature on the surface of the fire point rises, and the temperature is detected by the radiation thermometer. When desiliconization progresses, the flash point temperature rises from a certain point and then becomes a constant value, but the flash point temperature rises as the oxygen transfer rate increases. Therefore, also from this, it is understood that the rise in the fire point temperature is an influence of the generated CO gas.

【0023】また、脱炭反応が急速に進行することによ
る火点温度の上昇は比較的急激なものであるため、通
常、10秒間で50℃以上の火点温度の上昇が測定され
た際に脱炭反応が急速に進行したと判定し、脱炭抑制に
必要なアクションを採ることが好ましい。溶銑脱珪中は
浴が撹拌されているため火点温度は瞬間的に大きく変化
するが、前後の移動平均で上昇時期は特定できるため、
10秒間程度の時間で推移を追い続ければ上昇点は容易
に確認できる。図4は、送酸ランスに配置した光ファイ
バー式放射温度計により測定された火点温度の推移の一
例を示している。
Further, since the rise of the hot spot temperature due to the rapid progress of the decarburization reaction is relatively rapid, it is usually carried out when the rise of the hot spot temperature of 50 ° C. or more is measured for 10 seconds. It is preferable to determine that the decarburization reaction has proceeded rapidly and take the action necessary to suppress the decarburization. During hot metal desiliconization, the hot spot temperature changes greatly instantaneously because the bath is stirred, but since the rising and falling times can be identified by the moving average before and after,
If you keep following the transition in about 10 seconds, you can easily check the rising point. FIG. 4 shows an example of transition of the flash point temperature measured by an optical fiber type radiation thermometer arranged in the acid feeding lance.

【0024】脱炭を抑制するために行うアクションとし
ては、送酸ランス2からの送酸速度、浸漬ランス3等か
らの撹拌ガスの供給速度、同じく浸漬ランス3等からの
粉体(媒溶剤及び/又は固体酸素源等の粉体)の供給速
度のうちの少なくとも1つを制御することが好ましい。
溶銑の脱炭を抑制するには脱珪に消費される以外の酸素
量を低減する必要があり、このためには送酸ランス2か
らの送酸速度(単位時間当たりの酸素供給量)を低下さ
せるのが有効である。この送酸ランス2からの送酸速度
を制御する方法としては、送酸ランス2から供給する
気体酸素源の供給速度そのものを調整する方法、送酸
ランス2から供給する気体酸素源の酸素濃度を調整する
方法のいずれでもよく、また,の方法を併行して行
ってもよい。但し、の方法で気体酸素源の供給速度を
処理中に大幅に変化させた場合、供給される酸素流速や
湯面での動圧が変化して酸素効率に悪影響を与えるおそ
れがあるのに対して、の方法では供給される酸素の流
速や湯面での動圧を一定に保ちながら酸素供給量だけを
変えることができ、このような観点からはの方法又は
とを併用する方法で送酸速度の制御を行うことが特
に好ましい。
Actions to be taken in order to suppress decarburization include an acid feeding rate from the acid feeding lance 2, a feeding rate of a stirring gas from the immersion lance 3 and the like, and a powder (solvent and solvent) from the immersion lance 3 and the like. It is preferable to control at least one of the supply rates of the powder of solid oxygen source etc.).
In order to suppress the decarburization of the hot metal, it is necessary to reduce the amount of oxygen other than that consumed for desiliconization. For this purpose, the oxygen transfer rate from the oxygen transfer lance 2 (oxygen supply amount per unit time) is reduced. It is effective to let As a method of controlling the acid transfer rate from the acid transfer lance 2, a method of adjusting the supply rate itself of the gas oxygen source supplied from the acid transfer lance 2 and an oxygen concentration of the gas oxygen source supplied from the acid transfer lance 2 are used. Any of the adjusting methods may be used, or the above method may be performed in parallel. However, when the supply rate of the gaseous oxygen source is changed significantly during the process by the method, the oxygen flow rate and the dynamic pressure on the molten metal surface may change, which may adversely affect the oxygen efficiency. In this method, it is possible to change only the oxygen supply amount while keeping the flow rate of oxygen supplied and the dynamic pressure on the molten metal surface constant. From this point of view, the method of It is particularly preferable to control the speed.

【0025】また、同じ送酸速度であれば、浴の撹拌を
強化した方が珪素の移動速度が高まり、その結果脱炭反
応に優先して生じる脱珪反応が促進され、脱炭が抑制さ
れる。この浴の撹拌を強化する方法としては、浸漬ラン
ス3(又は底吹きノズル)等から浴中に吹き込まれる撹
拌ガスの供給速度を増大させる、同じく撹拌ガスととも
に浴中に吹き込まれる粉体の供給速度を増大させる、撹
拌ガスと粉体の供給速度を増大させる、などの方法があ
り、いずれを実施してもよい。
Further, if the acid feeding rate is the same, the moving speed of silicon is increased by strengthening the stirring of the bath, and as a result, the desiliconization reaction which takes precedence over the decarburization reaction is promoted and the decarburization is suppressed. It As a method for strengthening the stirring of the bath, the feeding rate of the stirring gas blown into the bath from the immersion lance 3 (or the bottom blowing nozzle) or the like is increased. Similarly, the feeding rate of the powder blown into the bath together with the stirring gas is increased. And increasing the stirring gas and powder supply rates, and any of these methods may be carried out.

【0026】[0026]

【実施例】高炉から出銑された溶銑145tを溶銑鍋を
用いて脱珪処理した。脱珪処理前の溶銑の化学成分は
[C]:4.5〜4.7mass%、[Si]:0.18〜
0.22mass%であり、溶銑温度は1400〜1450
℃であった。脱珪処理では送酸ランスから溶銑鍋内の浴
面に酸素ガスを供給するとともに、撹拌ガスと石灰粉を
インジェクションランス(浸漬ランス)を通じて浴中に
吹き込んだ。なお、送酸ランスのランス高さは1100
mmで一定とした。送酸ランスからの送酸速度は0.1
0〜0.59Nm/minTとした。また、インジェ
クションランスから吹き込む撹拌ガスには窒素を用い、
そのガス供給速度は168〜383Nm/hrとし、
また石灰粉の供給速度は28〜165kg/minとし
た。
[Example] 145 t of hot metal tapped from a blast furnace was subjected to desiliconization treatment using a hot metal ladle. The chemical composition of the hot metal before desiliconization is [C]: 4.5 to 4.7 mass%, [Si]: 0.18 to
0.22 mass%, hot metal temperature is 1400 to 1450
It was ℃. In the desiliconization treatment, oxygen gas was supplied from the acid feeding lance to the bath surface in the hot metal ladle, and stirring gas and lime powder were blown into the bath through the injection lance (immersion lance). The lance height of the acid transfer lance is 1100.
It was fixed at mm. The acid transfer rate from the acid transfer lance is 0.1
It was set to 0 to 0.59 Nm 3 / minT. Also, nitrogen is used as the stirring gas blown from the injection lance,
The gas supply rate is 168 to 383 Nm 3 / hr,
The supply rate of lime powder was 28 to 165 kg / min.

【0027】送酸ランスの内部に光ファイバー式放射温
度計の光ファイバー部を装着し、その先端の検出端を図
2に示すようにランス先端中央のガス噴射孔内の先端近
傍に配置し、溶銑脱珪処理中、この放射温度計により火
点温度を測定した。溶銑脱珪処理が進行するにしたが
い、ある時期から火点温度の上昇が確認されたが、本発
明例では10秒間で50℃以上の火点温度の上昇が測定
された際に脱炭反応が急速に進行したものと判定し、送
酸ランスからの送酸速度、撹拌ガスの供給速度、粉体の
供給速度の少なくとも1つを変更した。一方、比較例で
は火点温度の上昇に拘りなく一定の条件で操業を行っ
た。
The optical fiber portion of the optical fiber type radiation thermometer is mounted inside the acid feeding lance, and the detection end at the tip is arranged near the tip inside the gas injection hole at the center of the lance as shown in FIG. The flash point temperature was measured by this radiation thermometer during the silicidation. As the hot metal desiliconization process progressed, it was confirmed that the hot spot temperature increased from a certain time, but in the present invention example, the decarburization reaction occurred when the hot spot temperature increase of 50 ° C. or higher was measured for 10 seconds. It was determined that the progress was rapid, and at least one of the acid feeding rate from the acid feeding lance, the stirring gas feeding rate, and the powder feeding rate was changed. On the other hand, in the comparative example, the operation was performed under a constant condition regardless of the increase in the fire point temperature.

【0028】表1に各試験条件とその結果を示す。な
お、表1に示されるI期とは送酸速度、撹拌ガス供給速
度、粉体供給速度の少なくとも1つを変更する前、II
期とはこれを変更した後を意味している。なお、各実施
例におけるこの変更の時期は送酸開始から約3.4分〜
4.7分後であった。表1によれば、火点温度が急激に
上昇し始めた時点で送酸速度又は浴の撹拌力を制御した
本発明例は、脱珪酸素効率が向上して酸素原単位が低減
し且つ脱炭量も少なく、処理時間も短縮できている。し
たがって、本発明によれば脱炭を抑制しつつ溶銑を極低
珪素濃度まで効率的に脱珪処理でき、しかも処理時間も
短縮できるため生産性も向上し、安定した操業が可能と
なることが判る。
Table 1 shows each test condition and its result. The term "I" shown in Table 1 means that at least one of the acid feeding rate, the stirring gas supply rate, and the powder supply rate is changed to II.
The term means after changing this. The timing of this change in each example was about 3.4 minutes from the start of acid transfer.
It was 4.7 minutes later. According to Table 1, the example of the present invention in which the rate of oxygen transfer or the stirring power of the bath was controlled at the time when the flash point temperature started to rise rapidly, the desiliconization oxygen efficiency was improved, the oxygen consumption rate was reduced, and The amount of charcoal is small and the processing time can be shortened. Therefore, according to the present invention, it is possible to efficiently desiliconize hot metal to an extremely low silicon concentration while suppressing decarburization, and further, since the processing time can be shortened, productivity is improved and stable operation is possible. I understand.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【発明の効果】以上述べたように本発明によれば、溶銑
脱珪処理中において溶銑中の珪素濃度の低下に伴う脱炭
の進行状況を正確に把握しつつ脱珪処理を行うことがで
きるため、脱炭の抑制に必要なアクションを迅速且つ適
切に実施することができる。このため特に低珪素濃度域
において脱炭反応を適切に抑制した脱珪処理を行うこと
ができ、脱珪酸素効率の向上、酸素原単位の低減化、処
理時間の短縮化を図ることができる。したがって、本発
明によれば脱炭を抑制しつつ溶銑を極低珪素濃度まで高
い生産性で効率的且つ安定的に脱珪することができる。
また、このように脱炭を抑制しつつ溶銑を極低珪素濃度
まで脱珪できるため、次工程である脱燐処理でのスラグ
等の発生量を削減することができる、溶銑の脱炭が抑制
されるため下工程での熱余裕の確保が容易となる、同じ
く溶銑の脱炭によって生じるCOガスによるスラグのフ
ォーミングや設備損傷の問題が回避できる、などの利点
もある。
As described above, according to the present invention, it is possible to perform desiliconization while accurately ascertaining the progress of decarburization accompanying a decrease in the silicon concentration in the hot metal during hot metal desiliconization. Therefore, the action required to suppress decarburization can be promptly and appropriately performed. For this reason, it is possible to perform desiliconization treatment in which the decarburization reaction is appropriately suppressed, especially in a low silicon concentration range, and it is possible to improve the efficiency of desiliconization oxygen, reduce the oxygen basic unit, and shorten the treatment time. Therefore, according to the present invention, it is possible to efficiently and stably desilver the hot metal up to an extremely low silicon concentration while suppressing decarburization.
In addition, since hot metal can be desiliconized to an extremely low silicon concentration while suppressing decarburization in this way, the amount of slag generated in the dephosphorization process that is the next step can be reduced, and decarburization of hot metal is suppressed. Therefore, there is an advantage that it is easy to secure a heat margin in the lower step, and similarly, problems of slag forming and equipment damage due to CO gas generated by decarburization of hot metal can be avoided.

【図面の簡単な説明】[Brief description of drawings]

【図1】溶銑鍋を用いた脱珪処理状況の一例を模式的に
示す説明図
FIG. 1 is an explanatory view schematically showing an example of a desiliconization treatment condition using a hot metal ladle.

【図2】本発明法に使用する送酸ランスの先端部の一構
造例を示したもので、図2(A)は送酸ランスの先端の
正面図、図2(B)は図2(A)のB−B線に沿う断面
2A and 2B show an example of the structure of the tip portion of the acid-feeding lance used in the method of the present invention. FIG. 2A is a front view of the tip of the acid-feeding lance, and FIG. Sectional drawing which follows the BB line of A).

【図3】本発明法に使用する送酸ランスの先端部の他の
構造例を示したもので、図3(A)は送酸ランスの先端
の正面図、図3(B)は図3(A)のB−B線に沿う断
面図
3A and 3B show another structural example of the tip portion of the acid feeding lance used in the method of the present invention. FIG. 3A is a front view of the tip of the acid feeding lance, and FIG. Sectional drawing which follows the BB line of (A).

【図4】本発明法において送酸ランスに配置した光ファ
イバー式放射温度計により測定された火点温度の推移の
一例を示すグラフ
FIG. 4 is a graph showing an example of transition of the fire point temperature measured by an optical fiber type radiation thermometer arranged on the acid sending lance in the method of the present invention.

【符号の説明】[Explanation of symbols]

1…溶銑鍋、2…送酸ランス、3…浸漬ランス、4…光
ファイバー式放射温度計、5…光ファイバー部、20,
20a,20b…ガス噴射孔、50…検出端
DESCRIPTION OF SYMBOLS 1 ... Hot metal pot, 2 ... Acid feeding lance, 3 ... Immersion lance, 4 ... Optical fiber type radiation thermometer, 5 ... Optical fiber part, 20,
20a, 20b ... Gas injection hole, 50 ... Detection end

フロントページの続き (72)発明者 松野 英寿 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 中井 由枝 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 小平 悟史 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 赤井 真一 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 Fターム(参考) 4K014 AA01 AC14 AD17 Continued front page    (72) Inventor Hidetoshi Matsuno             1-2-1, Marunouchi, Chiyoda-ku, Tokyo             Main Steel Pipe Co., Ltd. (72) Inventor Yukie Nakai             1-2-1, Marunouchi, Chiyoda-ku, Tokyo             Main Steel Pipe Co., Ltd. (72) Inventor Satoshi Kodaira             1-2-1, Marunouchi, Chiyoda-ku, Tokyo             Main Steel Pipe Co., Ltd. (72) Shinichi Akai             1-2-1, Marunouchi, Chiyoda-ku, Tokyo             Main Steel Pipe Co., Ltd. F-term (reference) 4K014 AA01 AC14 AD17

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 溶銑予備処理として容器内で行われ、送
酸ランスから容器内に気体酸素源を供給しつつ溶銑を脱
珪処理する方法において、 送酸ランスに配置した光ファイバー式放射温度計によ
り、ランスからの送酸により溶銑浴面に生じた火点の温
度を測定し、この火点温度の変化に基づいて溶銑の脱炭
状況を判定することを特徴とする溶銑脱珪処理方法。
1. A method for desiliconizing molten pig iron while supplying a gaseous oxygen source from the acid feeding lance into the vessel as a hot metal pretreatment, using a fiber optic radiation thermometer placed on the acid feeding lance. A hot metal desiliconizing method characterized by measuring the temperature of a hot spot generated on a hot metal bath surface by feeding oxygen from a lance and determining the decarburization state of the hot metal based on the change in the hot spot temperature.
【請求項2】 底吹きノズル又は浸漬ランスから撹拌ガ
ス又は撹拌ガスと粉体を浴中に吹き込んで浴を撹拌する
ことを特徴とする請求項1に記載の溶銑脱珪処理方法。
2. The hot metal desiliconization treatment method according to claim 1, wherein the stirring gas or the stirring gas and powder are blown into the bath from the bottom blowing nozzle or the immersion lance to stir the bath.
【請求項3】 火点温度の上昇が測定された際に、送酸
ランスによる送酸速度、撹拌ガスの供給速度、粉体の供
給速度のうちの少なくとも1つを制御することを特徴と
する請求項1又は2に記載の溶銑脱珪処理方法。
3. When the rise in the flash point temperature is measured, at least one of an acid transfer rate by an acid transfer lance, a stirring gas supply rate, and a powder supply rate is controlled. The hot metal desiliconization treatment method according to claim 1.
【請求項4】 10秒間で50℃以上の火点温度の上昇
が測定された際に、送酸ランスによる送酸速度、撹拌ガ
スの供給速度、粉体の供給速度のうちの少なくとも1つ
を制御することを特徴とする請求項3に記載の溶銑脱珪
処理方法。
4. When at least one increase in the flash point temperature of 50 ° C. is measured in 10 seconds, at least one of an acid transfer rate by an acid transfer lance, a stirring gas supply rate, and a powder supply rate is selected. It controls, The hot metal desiliconization processing method of Claim 3 characterized by the above-mentioned.
【請求項5】 光ファイバー式放射温度計の光ファイバ
ー部先端の検出端を、送酸ランス先端のガス噴射孔内又
は該ガス噴射孔の吐出口近傍に配置したことを特徴とす
る請求項1、2、3又は4に記載の溶銑脱珪処理方法。
5. The detection end at the tip of the optical fiber portion of the optical fiber type radiation thermometer is arranged in the gas injection hole at the tip of the acid feeding lance or in the vicinity of the discharge port of the gas injection hole. 3. The hot metal desiliconization treatment method according to 3 or 4.
【請求項6】 ガス噴射流量が異なる複数のガス噴射孔
を有する送酸ランスを用い、複数のガス噴射孔のうちガ
ス噴射流量が最も多いガス噴射孔内又は該ガス噴射孔の
吐出口近傍に光ファイバー式放射温度計の光ファイバー
部先端の検出端を配置したことを特徴とする請求項5に
記載の溶銑脱珪処理方法。
6. An oxygen transfer lance having a plurality of gas injection holes having different gas injection flow rates is used, and in the gas injection hole having the largest gas injection flow rate among the plurality of gas injection holes or in the vicinity of the discharge port of the gas injection hole. The hot metal desiliconization treatment method according to claim 5, wherein a detection end at the front end of the optical fiber portion of the optical fiber type radiation thermometer is arranged.
JP2001230908A 2001-07-31 2001-07-31 Method for removing silicon from molten pig iron Pending JP2003041312A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001230908A JP2003041312A (en) 2001-07-31 2001-07-31 Method for removing silicon from molten pig iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001230908A JP2003041312A (en) 2001-07-31 2001-07-31 Method for removing silicon from molten pig iron

Publications (1)

Publication Number Publication Date
JP2003041312A true JP2003041312A (en) 2003-02-13

Family

ID=19063038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001230908A Pending JP2003041312A (en) 2001-07-31 2001-07-31 Method for removing silicon from molten pig iron

Country Status (1)

Country Link
JP (1) JP2003041312A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006126062A (en) * 2004-10-29 2006-05-18 Jfe Steel Kk Temperature measurement method and apparatus for molten metal
JP2009276357A (en) * 2009-08-26 2009-11-26 Jfe Steel Corp Fire point radiation measuring method and device thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006126062A (en) * 2004-10-29 2006-05-18 Jfe Steel Kk Temperature measurement method and apparatus for molten metal
JP2009276357A (en) * 2009-08-26 2009-11-26 Jfe Steel Corp Fire point radiation measuring method and device thereof

Similar Documents

Publication Publication Date Title
KR930001125B1 (en) Method for manufacturing molten metal containing ni & cr
WO2019004157A1 (en) Converter operation monitoring method and converter operation method
EP0347884B1 (en) Process for vacuum degassing and decarbonization with temperature drop compensating feature
TWI570244B (en) Preliminary treatment method for molten iron
JP2003041312A (en) Method for removing silicon from molten pig iron
JP2006249568A (en) Method for producing molten iron having low phosphorus
US3236630A (en) Oxygen steelmaking
JP2803542B2 (en) Converter operation method
JPH04346611A (en) Method for refining stainless steel
JP7235070B2 (en) Method for secondary refining of molten steel and method for manufacturing steel
JP3235405B2 (en) Hot metal pretreatment method
JP7424350B2 (en) Molten steel denitrification method and steel manufacturing method
JP2005226127A (en) Method for refining molten pig iron
JP2004115910A (en) Method for refining molten iron
JP6825550B2 (en) How to operate the upper bottom blown converter
US20240167112A1 (en) Method for operating converter and method for producing molten steel
JP4277819B2 (en) Heating method of molten steel
JPH11217618A (en) Method for refining stainless steel in converter
JPH0860221A (en) Converter steelmaking method
KR20040091653A (en) Method for deep decarburisation of steel melts
JPH11310816A (en) Method for controlling refining in converter
JPH1161238A (en) Method for blowing molten stainless steel
JP2002363631A (en) Method for discriminating slag at firing point, and method for dephosphorizing molten iron based on the method
JPH07331315A (en) Refining method for extra-low carbon steel in converter
JPH0543926A (en) Secondary combustion blow-refining method