JP2003040634A - Annealing method for optical glass element - Google Patents

Annealing method for optical glass element

Info

Publication number
JP2003040634A
JP2003040634A JP2001227397A JP2001227397A JP2003040634A JP 2003040634 A JP2003040634 A JP 2003040634A JP 2001227397 A JP2001227397 A JP 2001227397A JP 2001227397 A JP2001227397 A JP 2001227397A JP 2003040634 A JP2003040634 A JP 2003040634A
Authority
JP
Japan
Prior art keywords
annealing
optical glass
glass element
temperature
maximum temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001227397A
Other languages
Japanese (ja)
Inventor
Mamoru Fujimura
守 藤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP2001227397A priority Critical patent/JP2003040634A/en
Publication of JP2003040634A publication Critical patent/JP2003040634A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/12Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould
    • C03B11/125Cooling
    • C03B11/127Cooling of hollow or semi-hollow articles or their moulds

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To shorten an annealing time for releasing a gradient refractive index and a stress during manufacturing procss such as a molding process without impacting to an optical property of an optical glass element. SOLUTION: A cooling rate of an annealing from a maximum temperature of heating a formed optical glass element is adjusted between 20 deg.C and 50 deg.C per hour. And the maximum temperature of an annealing furnace is kept above a distortion temperature of a nitrate material to be annealed and below an annealing temperature; furthermore a retention time of the maximum temperature is kept from 5 minutes to an hour.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】本発明は精密な光学ガラス素子を成形によ
り安価に製造する技術に関し、特に成形される光学ガラ
ス素子内部の歪みを除去し、屈折率を調整するためのア
ニール工程に関する。
The present invention relates to a technique for manufacturing a precision optical glass element at low cost by molding, and more particularly to an annealing process for removing distortion inside the molded optical glass element and adjusting the refractive index.

【0002】[0002]

【従来の技術】光学系の高性能化、小型化のニーズ拡大
に伴い、非球面ガラスレンズの効率的な製造方法が重要
視されている。
2. Description of the Related Art As the needs for high performance and miniaturization of optical systems have expanded, an efficient manufacturing method for aspherical glass lenses has been emphasized.

【0003】非球面ガラスレンズの量産手段は数多く考
案されているが、最近は加熱軟化した光学ガラス素材を
成形型間で成形しながら冷却固化して非球面ガラスレン
ズとする製造方法が主流となっている。この製造方法
は、デジタルカメラなどの小型かつ高性能で安価なレン
ズが要求される製品で現在、最も適しているが、要求性
能の向上に従い、ガラス素材の冷却固化過程でレンズ内
部に生じる屈折率分布や歪みなどが光学性能に及ぼす影
響が懸念されるようになってきた。
Although many mass production means for aspherical glass lenses have been devised, recently, a manufacturing method in which an aspherical glass lens is formed by cooling and solidifying an optical glass material that has been softened by heating while being molded between molding dies, has become mainstream. ing. This manufacturing method is currently most suitable for products that require compact, high-performance and inexpensive lenses such as digital cameras, but as the required performance improves, the refractive index generated inside the lens during the cooling and solidification process of the glass material There is a growing concern about the influence of distribution and distortion on optical performance.

【0004】光学ガラス素子内部の歪みを除去し、屈折
率を調整する手段としてはアニール工程の導入が最も有
効であり、公知の技術として硝材メーカーなどで導入さ
れている。精密アニール処理は光学ガラス素材の硝材本
来の性能を引き出すには不可欠であるが、硝材メーカー
推奨のアニール条件は一般に1バッチに1週間程度の時
間を必要とするなど処理に時間がかかるため、製造過程
での不良品の発見までに時間を要し、大量の不良品が発
生する可能性がある。この場合、再投入から製品ができ
るまでに倍の時間を要していることも問題である。また
タクトタイムが長いことは製品コストにも影響するため
好ましくない。以上のことから、アニール時間を短くす
る技術が望まれている。
The annealing process is most effective as a means for removing the strain inside the optical glass element and adjusting the refractive index, and is a well-known technique introduced by glass material makers and the like. Precision annealing is essential to bring out the original performance of optical glass materials, but the annealing conditions recommended by glass manufacturers generally take a long time, such as about one week for each batch. It takes time to find defective products in the process, and a large number of defective products may occur. In this case, it is also a problem that it takes twice as much time from re-introduction to production of a product. Further, a long tact time is not preferable because it also affects the product cost. From the above, a technique for shortening the annealing time is desired.

【0005】特開平11−35330号公報には、従来
数日要していたアニール工程を短くする高速アニール方
法が開示されている。この方法は、精密アニールを行う
ことを想定して光学ガラス素子の設計を行い、実際の製
造工程では、精密アニールの冷却速度よりも速い速度で
光学ガラス素子のアニールを行うか、またはアニールを
全く行わないようにするものである。
Japanese Unexamined Patent Publication (Kokai) No. 11-35330 discloses a high-speed annealing method that shortens the annealing process that conventionally takes several days. In this method, the optical glass element is designed on the assumption that precision annealing is performed, and in the actual manufacturing process, the optical glass element is annealed at a speed faster than the cooling rate of the precision annealing, or the annealing is not performed at all. It is something that should not be done.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上述の
ようにアニールを全く行わない場合には、光学系が精密
になった場合の歪みによる複屈折現象のもたらすフレア
や屈折率分布による解像力低下の影響を無視できないこ
とが多く、全ての光学ガラス素子に対してアニールが不
必要とはならないものである。また、冷却速度を速くす
る点についてもアニール工程における冷却速度は屈折率
を決める重要な工程であることから、むやみに冷却速度
を速くすると光学系全体としての特性が満足できなくな
る問題が発生する。
However, in the case where the annealing is not performed at all as described above, the influence of the flare caused by the birefringence phenomenon due to the distortion when the optical system becomes precise and the reduction in the resolution due to the refractive index distribution. Is often not negligible, and annealing is not unnecessary for all optical glass elements. Also, in terms of increasing the cooling rate, the cooling rate in the annealing step is an important step for determining the refractive index. Therefore, if the cooling rate is unnecessarily increased, the characteristics of the entire optical system may not be satisfied.

【0007】本発明は、以上のような問題点を考慮して
なされたものであり、面精度を高い精度に保持したまま
で、歪みや屈折率分布をレンズ性能に影響のないレベル
まで低減し、アニール工程のタクトタイムも短くする光
学ガラス素子のアニール方法を提供することを目的とす
る。
The present invention has been made in consideration of the above problems, and reduces the distortion and the refractive index distribution to a level that does not affect the lens performance while keeping the surface accuracy at a high level. An object of the present invention is to provide an annealing method for an optical glass element that shortens the takt time of the annealing step.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、請求項1の発明の光学ガラス素子のアニール方法
は、成形工程などの影響による歪みや屈折率分布を取り
除く光学ガラス素子のアニール方法において、冷却速度
を毎時20℃から100℃とすることを特徴とする。
In order to achieve the above object, the optical glass element annealing method according to the invention of claim 1 is an optical glass element annealing method for removing distortion and refractive index distribution due to the influence of a molding step or the like. The cooling rate is 20 ° C. to 100 ° C. per hour.

【0009】この発明では、成形された光学ガラス素子
の冷却に際し、ガラスの内部均質性を保ちながら、アニ
ール処理に要する時間を短縮できる。
According to the present invention, when the molded optical glass element is cooled, the time required for the annealing treatment can be shortened while maintaining the internal homogeneity of the glass.

【0010】請求項2の発明は、請求項1記載の光学ガ
ラス素子のアニール方法であって、アニール炉内の最高
温度をアニールする硝材の歪み点温度以上アニール点温
度以下とし、最高温度保持時間を5分から1時間とする
ことを特徴とする。
A second aspect of the present invention is the method for annealing an optical glass element according to the first aspect, wherein the maximum temperature in the annealing furnace is not less than the strain point temperature of the glass material to be annealed and not more than the annealing point temperature, and the maximum temperature holding time is maintained. Is set to 5 minutes to 1 hour.

【0011】この発明では、光学ガラス素子に与える温
度を、アニールする硝材の歪み点温度以上アニール点温
度以下とし、時間を5分から1時間とすることで、光学
ガラス素子の変形量を最小限に抑えつつ、内部歪みや屈
折率分布を除去できる。
In the present invention, the temperature applied to the optical glass element is set to the strain point temperature of the glass material to be annealed or higher and the annealing point temperature or lower, and the time is set to 5 minutes to 1 hour to minimize the deformation amount of the optical glass element. Internal strain and refractive index distribution can be removed while suppressing.

【0012】[0012]

【発明の実施の形態】本発明の各実施の形態を、図1お
よび図2を参照して詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail with reference to FIGS.

【0013】[実施の形態1]本実施の形態の説明に先
立ち、従来のアニール方法について説明する。図示しな
い成形装置により、図1に示す光学ガラス素子1を成形
した。この光学ガラス素子1は直径(φ)12mm、肉
厚3.2mmの両凸レンズであり、s−BAL41(屈
折率カタログ値n=1.56384、歪み点温度48
6℃、アニール点温度523℃)の硝材を用いて成形さ
れている。アニール処理を行う前の光学ガラス素子1の
面精度は、両面ともニュートン縞本数2本、タリサーフ
PV値0.15μmであり、光学特性は中心付近の屈折
率がn=1.56010、径方向の屈折率分布が約3
0/10万であった。
[First Embodiment] Prior to the description of the present embodiment, a conventional annealing method will be described. The optical glass element 1 shown in FIG. 1 was molded by a molding device (not shown). This optical glass element 1 is a biconvex lens having a diameter (φ) of 12 mm and a wall thickness of 3.2 mm, and is s-BAL41 (refractive index catalog value n d = 1.56384, strain point temperature 48).
It is molded using a glass material having a temperature of 6 ° C. and an annealing point temperature of 523 ° C.). The surface precision of the optical glass element 1 before the annealing treatment is 2 Newton fringes on both sides, the Talysurf PV value is 0.15 μm, and the optical characteristics are such that the refractive index near the center is n d = 1.56010, the radial direction. Has a refractive index distribution of about 3
It was 0 / 100,000.

【0014】この光学ガラス素子1を、図示しないマッ
フルを備えたプログラム温度調節機構付電気炉(アニー
ル炉)に入れ、密閉した後に、図2に示すように室温か
ら「昇温時間」を経て「最高温度」である500℃まで
加熱する。「最高温度」まで加熱することで硝材の粘度
が下がり歪みが緩和される。
This optical glass element 1 is put in an electric furnace (annealing furnace) with a program temperature adjusting mechanism equipped with a muffle (not shown) and sealed. Then, as shown in FIG. Heat up to 500 ° C, which is the "highest temperature". By heating to the "maximum temperature", the viscosity of the glass material decreases and strain is alleviated.

【0015】このまま、「最高温度」で600分、すな
わち10時間の「保持時間」を保ち、炉内温度のばらつ
きや光学ガラス素子1の固体差などによる歪みが除去さ
れるまでの時間差を吸収する。「保持時間」経過後、1
時間あたり2℃の「冷却速度」でアニール(徐冷)を行
う。この場合における「冷却速度」は、歪みが除去され
た光学ガラス素子1の内部に新たな歪みを生じさせない
ように設定されるものである。
In this state, the "maximum temperature" is maintained for 600 minutes, that is, the "holding time" of 10 hours, to absorb the time difference until the distortion due to the variation in the temperature in the furnace or the difference in the individual elements of the optical glass element 1 is removed. . After "holding time" has passed, 1
Annealing (gradual cooling) is performed at a “cooling rate” of 2 ° C. per hour. The "cooling rate" in this case is set so as not to generate new strain inside the optical glass element 1 from which the strain has been removed.

【0016】こうして一定の「冷却速度」で冷却が進
み、炉内温度が「外気放冷温度」まで下がったところで
外気を炉内に導入する。光学ガラス素子1を取り出せる
温度まで炉内温度が下がるのを待ち、光学ガラス素子1
を取り出してアニール工程が終了する。処理に要した時
間は約160時間、すなわち1週間弱であった。
In this way, cooling proceeds at a constant "cooling rate", and when the temperature inside the furnace has dropped to "outside air cooling temperature", outside air is introduced into the furnace. Wait for the temperature in the furnace to fall to a temperature at which the optical glass element 1 can be taken out, and then the optical glass element 1
Then, the annealing process is completed. The time required for the treatment was about 160 hours, that is, less than one week.

【0017】こうして得られた光学ガラス素子1につい
ての実装評価と屈折率測定を行った。この結果は実験1
として表2に示すとおりである。また、アニール条件は
実験1として表1に示す。
Mounting evaluation and refractive index measurement of the optical glass element 1 thus obtained were carried out. This result is Experiment 1
Is as shown in Table 2. The annealing conditions are shown in Table 1 as Experiment 1.

【0018】次に、実施の形態1では、上記従来のアニ
ール方法で用いたのと同じ硝材を同様に成形加工して、
図1の光学ガラス素子1を得る。そして、同様にアニー
ル炉内に入れ、密閉して同様に「最高温度」の500℃
まで加熱する。
Next, in the first embodiment, the same glass material as that used in the conventional annealing method is similarly shaped and processed,
The optical glass element 1 of FIG. 1 is obtained. Then, in the same manner, put it in the annealing furnace, seal it, and similarly "maximum temperature" 500 ° C.
Heat up to.

【0019】この実施の形態では、この後、20分の
「保持時間」をおいて、1時間あたり100℃の「冷却
速度」で冷却を行った。この冷却が従来のアニール方法
と異なっている。炉内温度が「外気放冷温度」まで下が
ったところで外気を炉内に導入し、その後、光学ガラス
素子1を取り出せる温度まで炉内温度が下がったところ
で光学ガラス素子1を取り出してアニール工程を終了す
る。この実施の形態では、アニール処理に要した時間は
約8時間であった。
In this embodiment, thereafter, cooling was performed at a "cooling rate" of 100 ° C. per hour after a "holding time" of 20 minutes. This cooling is different from the conventional annealing method. When the temperature inside the furnace has dropped to the "outside air cooling temperature", the outside air is introduced into the furnace. After that, when the temperature inside the furnace has dropped to a temperature at which the optical glass element 1 can be taken out, the optical glass element 1 is taken out and the annealing process is completed. To do. In this embodiment, the time required for the annealing treatment was about 8 hours.

【0020】従来のアニール方法である実験1と比較す
るために、この実施の形態のアニール条件を実験2とし
て表1に示し、アニール後の光学ガラス素子の特性を実
験2として表2に示す。
For comparison with Experiment 1 which is a conventional annealing method, the annealing conditions of this embodiment are shown in Table 2 as Experiment 2, and the characteristics of the optical glass element after annealing are shown in Table 2 as Experiment 2.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】表2から判るように、実験1、2ともに内
部はほぼ均質にすることができた。即ち、アニール速度
を速くしても屈折率の絶対値以外の硝材性能を維持する
ことができた。
As can be seen from Table 2, in Experiments 1 and 2, the inside could be made almost homogeneous. That is, even if the annealing rate was increased, the glass material performance other than the absolute value of the refractive index could be maintained.

【0024】また、面精度については従来型のアニール
条件より向上させることができた。これは実験1の条件
では、高温度にレンズを曝している時間がながすぎるた
めと考えられる。結果として面精度が若干劣化したた
め、解像力が実験2のレンズに比べて一段劣ったもので
ある。
Further, the surface accuracy could be improved as compared with the conventional annealing condition. It is considered that this is because under the conditions of Experiment 1, it takes too long to expose the lens to the high temperature. As a result, the surface accuracy was slightly deteriorated, and thus the resolution was further inferior to that of the lens of Experiment 2.

【0025】このように本実施の形態によるアニール方
法を従来型のアニール方法と比較した場合、本実施の形
態によるアニール方法では光学ガラス素子の光学特性が
優れており、しかもアニール時間が約1/20となって
コスト面でも有利となっている。
As described above, when the annealing method according to the present embodiment is compared with the conventional annealing method, the optical characteristics of the optical glass element are excellent in the annealing method according to the present embodiment, and the annealing time is about 1 / It is 20 and is advantageous in terms of cost.

【0026】なお、本実施の形態のアニール方法は、s
−BAL41以外の硝材にも同様に有効である。硝材を
変更する場合には、その硝材の歪み点温度と冷却速度に
よる屈折率の特性変化に合わせて最高温度と冷却速度を
設定することにより可能である。
The annealing method of the present embodiment uses s
-It is similarly effective for glass materials other than BAL41. When changing the glass material, it is possible to set the maximum temperature and the cooling rate in accordance with the change in the refractive index characteristics due to the strain point temperature of the glass material and the cooling rate.

【0027】冷却速度については、20℃/hから10
0℃/hが生産性と性能面のバランスの観点から最も良
好である。冷却速度を20℃/hより遅くしても、処理
時間の増加に見合った特性向上は得られず、性能に反し
てコストがかかりすぎる。さらに、冷却速度を100℃
/hより早くした場合には、炉内と光学ガラス素子とを
均一に冷却することは技術的に困難であり、品質にばら
つきを生じるおそれがある。
The cooling rate is from 20 ° C./h to 10
0 ° C./h is the best from the viewpoint of the balance between productivity and performance. Even if the cooling rate is slower than 20 ° C./h, the characteristic improvement commensurate with the increase in the processing time cannot be obtained, and the cost is too high, contrary to the performance. In addition, the cooling rate is 100 ℃
If it is faster than / h, it is technically difficult to uniformly cool the inside of the furnace and the optical glass element, and the quality may vary.

【0028】なお、この実施の形態では、成形された光
学ガラス素子の形状を問わないことは言うまでもない
が、最高温度やその保持時間は光学ガラス素子の形状や
体積に合わせて選択することが面精度の保持のために有
効である。例えば光学ガラス素子の体積(外径)が増加
する場合には、均質性を確保するために保持時間を若干
増やすのが良好である。
In this embodiment, it goes without saying that the shape of the molded optical glass element does not matter, but the maximum temperature and its holding time can be selected according to the shape and volume of the optical glass element. It is effective for maintaining accuracy. For example, when the volume (outer diameter) of the optical glass element increases, it is preferable to slightly increase the holding time in order to ensure homogeneity.

【0029】[実施の形態2]本実施の形態では、用い
た光学ガラス素子1とアニール炉は実施の形態1と同様
であるが、アニール条件中の最高温度が実施の形態1と
相違している。すなわち、表3に示すように、実験3で
は、実験1の最高温度である500℃より高い温度であ
り、アニール点温度(523℃)近くの520℃に設定
した。また、実験4では、アニール点温度以上で転移点
温度よりは低く、しかも実験3よりさらに高温の540
℃に最高温度を設定した。冷却速度はいずれも実施の形
態1と同じく1時間あたり100℃である。
[Embodiment 2] In this embodiment, the optical glass element 1 and the annealing furnace used are the same as those in Embodiment 1, but the maximum temperature during the annealing condition is different from that in Embodiment 1. There is. That is, as shown in Table 3, in Experiment 3, the temperature was set to 520 ° C., which is higher than the maximum temperature of Experiment 1 of 500 ° C. and close to the annealing point temperature (523 ° C.). Further, in Experiment 4, the temperature was higher than the annealing point temperature, lower than the transition point temperature, and higher than that in Experiment 3 by 540.
The maximum temperature was set to ° C. The cooling rate is 100 ° C./hour as in the first embodiment.

【0030】こうして得られた光学ガラス素子1に対し
て、実施の形態1と同様に光学ガラス素子の実装評価と
屈折率測定を行った。アニール条件を表3に、測定結果
を表3に示す。
On the optical glass element 1 thus obtained, mounting evaluation and refractive index measurement of the optical glass element were carried out as in the first embodiment. Table 3 shows the annealing conditions and Table 3 shows the measurement results.

【0031】[0031]

【表3】 [Table 3]

【0032】[0032]

【表4】 [Table 4]

【0033】表4から判るように、実験2、3、4共に
内部を略均質にすることができた。即ち、アニール速度
を速くしても屈折率の絶対値以外の硝材性能を維持する
ことができた。面精度については、実験3、4で劣化が
確認でき、結果として解像力が実験2の光学ガラス素子
に比べて劣っている。このようなことから、アニール点
温度付近が光学ガラス素子のアニール最高温度としての
限界と考えられる。
As can be seen from Table 4, in Experiments 2, 3, and 4, the inside could be made substantially homogeneous. That is, even if the annealing rate was increased, the glass material performance other than the absolute value of the refractive index could be maintained. Regarding the surface accuracy, deterioration can be confirmed in Experiments 3 and 4, and as a result, the resolution is inferior to that of the optical glass element of Experiment 2. From this, it is considered that the vicinity of the annealing point temperature is the limit as the maximum annealing temperature of the optical glass element.

【0034】この実施の形態によるアニール方法では、
従来のアニール方法に比べて製品品質とコストの両方で
有利であり、また、このアニール方法は、実施の形態1
と同様にs−BAL41以外の硝材にも有効である。硝
材を変更した場合には、その硝材の歪み点温度付近の特
性に合わせて最高温度が設定される。さらに、光学ガラ
ス素子の形状も問わないが、最高温度やその保持時間は
光学ガラス素子の形状や体積に合わせて選択することが
面精度の保持の観点から有効である。例えば光学ガラス
素子の体積(外径)が増加する場合、均質性を確保する
ために最高温度の保持時間を若干増やすのが良好であ
る。
In the annealing method according to this embodiment,
Compared with the conventional annealing method, it is advantageous in both product quality and cost, and this annealing method is the same as in the first embodiment.
Similarly, it is effective for glass materials other than s-BAL41. When the glass material is changed, the maximum temperature is set according to the characteristics of the glass material near the strain point temperature. Further, the shape of the optical glass element does not matter, but it is effective from the viewpoint of maintaining the surface accuracy that the maximum temperature and the holding time thereof are selected according to the shape and volume of the optical glass element. For example, when the volume (outer diameter) of the optical glass element increases, it is preferable to slightly increase the maximum temperature holding time in order to ensure homogeneity.

【0035】[0035]

【発明の効果】以上説明したように、請求項1の発明に
よれば、光学ガラス素子の冷却に際し、ガラスの内部均
質性を保ちながらアニールに要する時間を短縮できるた
め、効率的にアニールを行うことができる。
As described above, according to the first aspect of the present invention, when cooling the optical glass element, the time required for annealing can be shortened while maintaining the internal homogeneity of the glass, so that the annealing can be performed efficiently. be able to.

【0036】請求項2の発明によれば、光学ガラス素子
の変形量を最小限に抑えながら、短時間で内部歪みや屈
折率分布を除去でき、アニールを効率的にが行うことが
できる。
According to the second aspect of the invention, the internal strain and the refractive index distribution can be removed in a short time while minimizing the deformation amount of the optical glass element, and the annealing can be efficiently performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】アニールされる光学ガラス素子の側面図であ
る。
FIG. 1 is a side view of an optical glass element that is annealed.

【図2】アニールの温度変化を示す特性図である。FIG. 2 is a characteristic diagram showing changes in temperature during annealing.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 成形工程などの影響による歪みや屈折率
分布を取り除く光学ガラス素子のアニール方法におい
て、冷却速度を毎時20℃から100℃とすることを特
徴とする光学ガラス素子のアニール方法。
1. An annealing method for an optical glass element, wherein a cooling rate is 20 ° C. to 100 ° C./hour in an annealing method for an optical glass element that removes distortion and a refractive index distribution due to an influence of a molding process or the like.
【請求項2】 アニール炉内の最高温度をアニールする
硝材の歪み点温度以上アニール点温度以下とし、最高温
度保持時間を5分から1時間とすることを特徴とする請
求項1記載の光学ガラス素子のアニール方法。
2. The optical glass element according to claim 1, wherein a maximum temperature in the annealing furnace is set to a strain point temperature of the glass material to be annealed or higher and an annealing point temperature or lower, and a maximum temperature holding time is set to 5 minutes to 1 hour. Annealing method.
JP2001227397A 2001-07-27 2001-07-27 Annealing method for optical glass element Pending JP2003040634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001227397A JP2003040634A (en) 2001-07-27 2001-07-27 Annealing method for optical glass element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001227397A JP2003040634A (en) 2001-07-27 2001-07-27 Annealing method for optical glass element

Publications (1)

Publication Number Publication Date
JP2003040634A true JP2003040634A (en) 2003-02-13

Family

ID=19060065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001227397A Pending JP2003040634A (en) 2001-07-27 2001-07-27 Annealing method for optical glass element

Country Status (1)

Country Link
JP (1) JP2003040634A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007197283A (en) * 2006-01-30 2007-08-09 Hoya Corp Method for producing glass material for molding, glass material, and method for producing glass optical element
JP2007223850A (en) * 2006-02-24 2007-09-06 Hoya Corp Method for manufacturing glass optical element
JP2008158354A (en) * 2006-12-25 2008-07-10 Olympus Corp Manufacturing method for optical device and manufacturing apparatus therefor
KR20170102911A (en) * 2014-12-31 2017-09-12 코닝 인코포레이티드 How to heat-treat glassware
US10669196B2 (en) 2014-12-31 2020-06-02 Corning Incorporated Methods for treating glass articles

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007197283A (en) * 2006-01-30 2007-08-09 Hoya Corp Method for producing glass material for molding, glass material, and method for producing glass optical element
JP2007223850A (en) * 2006-02-24 2007-09-06 Hoya Corp Method for manufacturing glass optical element
JP2008158354A (en) * 2006-12-25 2008-07-10 Olympus Corp Manufacturing method for optical device and manufacturing apparatus therefor
KR20170102911A (en) * 2014-12-31 2017-09-12 코닝 인코포레이티드 How to heat-treat glassware
JP2018505837A (en) * 2014-12-31 2018-03-01 コーニング インコーポレイテッド Method for heat treating glass articles
US10669196B2 (en) 2014-12-31 2020-06-02 Corning Incorporated Methods for treating glass articles
KR102119191B1 (en) * 2014-12-31 2020-06-05 코닝 인코포레이티드 How to heat glass products
US10710920B2 (en) 2014-12-31 2020-07-14 Corning Incorporated Methods for thermally treating glass articles
JP2021042123A (en) * 2014-12-31 2021-03-18 コーニング インコーポレイテッド Method for heating glass article
JP7009593B2 (en) 2014-12-31 2022-01-25 コーニング インコーポレイテッド How to heat treat glass articles

Similar Documents

Publication Publication Date Title
JPS632822A (en) Glass optical element molding process and multi-part cast mold assembly therefor
CN110903021A (en) Method and device for precision compression molding of glass
US20060112731A1 (en) Optical lens molding apparatus
JP2003040634A (en) Annealing method for optical glass element
JP2001047524A (en) Manufacture of plastic optical element, manufacturing device therefor and plastic optical element manufactured using manufacturing method for plastic optical element
EP3862329A1 (en) Optical element and production method therefor
JP3196952B2 (en) Optical glass element and manufacturing method thereof
JP4223967B2 (en) Manufacturing method of glass optical element
WO2010116843A1 (en) Method of manufacturing optical elements
JP2002283352A (en) Method for manufacturing plastic optical element
US8179605B2 (en) Optical element
JP5480568B2 (en) Glass product manufacturing method and glass product
JP2002308631A (en) Method for manufacturing glass molding, method for manufacturing substrate and method for manufacturing information recording medium
JP2006206394A (en) Optical device forming mold, method of manufacturing the same and method of manufacturing optical device using the same
JPH11228150A (en) Manufacture of glass substrate
JP4436561B2 (en) Optical element manufacturing method
JP2501588B2 (en) Mold for press molding optical glass element and molding method thereof
JPH05339015A (en) Glass base stock for forming and manufacture therefor
JP2008214167A (en) Method of producing optical glass element and method of fine-adjusting refractive index of glass molded article
JPH03265528A (en) Method for molding optical element
JP2008110897A (en) Preform for precision press molding, and method of manufacturing optical element from the same
JPS6296328A (en) Method of molding optical glass element
JP2003183039A (en) Method for manufacturing optical element
JPH02196039A (en) Method for molding glass optical device
JPH1160251A (en) Formation of optical element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091023

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100303